Optimasi Pengambilan Keputusan pada Eksplorasi Bijih Laterit dalam Menghadapi Ketidakpastian Harga dan Mendukung Penambangan Berkelanjutan

Muttaqin, Benazir Imam Arif (2025) Optimasi Pengambilan Keputusan pada Eksplorasi Bijih Laterit dalam Menghadapi Ketidakpastian Harga dan Mendukung Penambangan Berkelanjutan. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 7010221001-Doctoral.pdf] Text
7010221001-Doctoral.pdf - Accepted Version
Restricted to Repository staff only

Download (8MB) | Request a copy

Abstract

Permintaan baterai dan teknologi energi baru mendorong kenaikan dan ketidakpastian harga nikel, sehingga eksplorasi perlu dikendalikan sejak tahap pemilihan lokasi dan pengambilan keputusan terkait kualitas dan kuantitas bijih yang akan ditambang. Penelitian ini mengembangkan model integrasi antara penentuan nilai cut-off grade optimal dan pemilihan lokasi tambang bijih laterit, dengan mempertimbangkan ketidakpastian harga dan prinsip penambangan berkelanjutan. Model pertama memanfaatkan pendekatan analitik untuk optimasi cut-off grade, sedangkan model kedua menggunakan metode STEM–MAUT untuk pemilihan lokasi berbasis multi-kriteria. Hasil eksperimen numerik menunjukkan bahwa pendekatan harga jual stokastik menghasilkan estimasi profit yang lebih tinggi dibanding deterministik, yakni sebesar $ 6.41 B (skenario pesimis), $ 7.58 B (most likely), dan $ 8.74 B (optimis), atau berubah masing-masing sebesar -2.44%, 15.37%, dan 33.04% dari profit pada kondisi harga jual deterministik sebesar $ 6.57 Billion. Peningkatan ini dipengaruhi oleh nilai price drift positif dalam simulasi harga menggunakan Geometric Brownian Motion. Sementara itu, pada model pemilihan lokasi, relaksasi salah satu obyektif sebesar 20% meningkatkan bobot relatif obyektif lainnya dan mengubah hasil optimasi, yang menunjukkan terjadinya trade-off antar tujuan. Sistem pendukung keputusan “High Ground” yang dibangun dari integrasi kedua model ini memperoleh skor usability sebesar 68.84 dan dinilai layak digunakan untuk mendukung keputusan eksplorasi tambang terbuka yang adaptif dan berkelanjutan.
=====================================================================================================================================
The growing demand for batteries and emerging energy technologies has driven both an increase and heightened uncertainty in nickel prices. As a result, exploration activities must be managed from the early stages, including site selection and decision-making related to the quantity and quality of ore to be mined. This study develops an integrated model combining optimal cut-off grade determination and mining site selection for laterite ore, considering price uncertainty and sustainable mining principles. The first model employs an analytical approach to cut-off grade optimization, while the second model applies the STEM–MAUT method for multi-criteria site selection. From the numerical example results show that the stochastic pricing approach yields higher profit estimates than the deterministic one: $ 6.41 B (pessimistic), $ 7.58 B (most likely), and $ 8.74 B (optimistic), representing decreases/increases of -2.44%, 15.37%, and 33.04%, respectively, compared to the deterministic result of $ 6.57 B. These increases are primarily driven by the positive price drift incorporated in the Geometric Brownian Motion simulation. In the site selection model, relaxing one objective by 20% increases the relative weight of the remaining objectives and alters the optimization outcome, highlighting the inevitable trade-offs between competing criteria. The decision support system "High Ground", which integrates both models, achieved a usability score of 68.84, indicating its feasibility for supporting adaptive and sustainable open-pit exploration decisions.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: nikel, bijih laterit, penambangan terbuka, penambangan berkelanjutan, nickel, laterite ore, open pit mining, sustainable mining
Subjects: T Technology > T Technology (General) > T57.6 Operations research--Mathematics. Goal programming
T Technology > TS Manufactures > TS176 Manufacturing engineering. Process engineering (Including manufacturing planning, production planning)
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26001-(S3) PhD Thesis
Depositing User: Benazir Imam Arif Muttaqin
Date Deposited: 05 Aug 2025 04:53
Last Modified: 05 Aug 2025 04:53
URI: http://repository.its.ac.id/id/eprint/126572

Actions (login required)

View Item View Item