Aaqilah, Daariin Marwaa (2025) Analysis of Human Development Index Disparities Across Regions in Indonesia. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5003211167-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
This project examines the gaps in the Human Development Index (HDI) across regions in Indonesia, utilizing five variables: life expectancy at birth, mean years of education, expected educational years, adjusted real per capita expenditures, and distance. HDI data from the Central Statistics Agency of Indonesia (BPS) and geometry data are utilized. The analysis, incorporating descriptive statistics, correlation, and geospatial analysis, highlights HDI disparities between regencies and cities. The machine learning method, specifically Classification and Regression Trees (CART), is applied to classify the HDI, achieving an accuracy of 90%. Findings indicate considerable differences, especially between the eastern and western regions of the country. Recommendations are also given to the Indonesian government to implement policy adjustments to elevate per capita expenditure in the very high, high, and medium categories and improve the quantity and quality of educational facilities in the low category.
===================================================================================================================================
Proyek ini mengkaji kesenjangan Indeks Pembangunan Manusia (IPM) di berbagai wilayah di Indonesia, dengan menggunakan lima variabel: umur harapan hidup saat lahir, rata-rata lama sekolah, harapan lama sekolah, pengeluaran riil per kapita yang telah disesuaikan , dan jarak. Data yang digunakan adalah data IPM didapatkan dari Badan Pusat Statistik (BPS) dan data geometri. Analisis yang menggabungkan statistik deskriptif, korelasi, dan analisis geospasial ini menyoroti disparitas IPM antar kabupaten dan kota. Metode machine learning, khususnya Classification dan Regression Tree (CART), diterapkan untuk mengklasifikasikan IPM, dengan akurasi mencapai 90%. Hasil yang ditemukan menunjukkan adanya perbedaan IPM yang cukup besar, terutama antara wilayah timur dan barat Indonesia. Rekomendasi juga diberikan kepada pemerintah Indonesia untuk menerapkan penyesuaian kebijakan untuk meningkatkan pengeluaran per kapita pada kategori sangat tinggi, tinggi, dan sedang serta meningkatkan kuantitas dan kualitas fasilitas pendidikan pada kategori rendah.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | HDI, disparities, CART, IPM, disparitas |
Subjects: | Q Science > QA Mathematics > QA278 Cluster Analysis. Multivariate analysis. Correspondence analysis (Statistics) |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Daariin Marwaa Aaqilah |
Date Deposited: | 05 Aug 2025 02:15 |
Last Modified: | 05 Aug 2025 02:15 |
URI: | http://repository.its.ac.id/id/eprint/126599 |
Actions (login required)
![]() |
View Item |