Laporan Magang Badan Riset dan Inovasi Nasional

Muflihan, Raihan (2025) Laporan Magang Badan Riset dan Inovasi Nasional. Project Report. [s.n], [s.l.]. (Unpublished)

[thumbnail of 2043211084-Project_Report.pdf] Text
2043211084-Project_Report.pdf - Accepted Version
Restricted to Repository staff only

Download (3MB) | Request a copy

Abstract

Indeks Daya Saing Daerah (IDSD) merupakan indikator penting untuk menilai kapasitas dan kapabilitas suatu daerah dalam menciptakan nilai tambah, meningkatkan produktivitas, serta menarik investasi berkelanjutan. Ketimpangan skor IDSD antarprovinsi di Indonesia menunjukkan adanya kesenjangan daya saing yang signifikan, sehingga diperlukan pendekatan analitis untuk memahami karakteristik masing-masing wilayah. Penelitian ini bertujuan untuk mengelompokkan provinsi di Indonesia berdasarkan dua belas pilar IDSD menggunakan metode K-Means Clustering guna mengidentifikasi pola daya saing antarwilayah. Hasil analisis menunjukkan bahwa provinsi-provinsi di Indonesia terbagi ke dalam tiga kelompok, yaitu wilayah dengan daya saing rendah berisi enam provinsi yang terkonsentrasi di Papua, wilayah dengan daya saing menengah berisi dua puluh dua provinsi yang tersebar di Sumatera, Kalimantan, dan Sulawesi, serta wilayah dengan daya saing tinggi berisi sepuluh provinsi yang didominasi oleh provinsi di Pulau Jawa. Temuan ini memberikan gambaran mengenai disparitas daya saing antarwilayah dan dapat menjadi dasar bagi perumusan kebijakan pembangunan yang lebih terarah dan berbasis pada potensi serta tantangan khas masing-masing wilayah.
===================================================================================================================================
Regional Competitiveness Index (RCI) serves as a crucial indicator for assessing the capacity and capability of regions to create added value, enhance productivity, and attract sustainable investment. The disparity in RCI scores across Indonesian provinces highlights significant competitiveness gaps, necessitating an analytical approach to understand the unique characteristics of each region. This study aims to cluster Indonesian provinces based on the twelve RCI pillars using the K-Means Clustering method to identify patterns of regional competitiveness. The analysis reveals that Indonesia’s provinces can be grouped into three clusters: a low-competitiveness cluster comprising six provinces concentrated in Papua; a medium-competitiveness cluster with twenty-two provinces spread across Sumatra, Kalimantan, and Sulawesi; and a high-competitiveness cluster consisting of ten provinces, predominantly located in Java. These findings illustrate the disparity in regional competitiveness and may serve as a foundation for formulating more targeted development policies that align with each region’s specific potential and challenges.

Item Type: Monograph (Project Report)
Uncontrolled Keywords: indonesia, k-means clustering, rci, idsd, indonesia, k-means clustering
Subjects: H Social Sciences > HA Statistics > HA29 Theory and method of social science statistics
H Social Sciences > HD Industries. Land use. Labor > HD30.213 Management information systems. Dashboards. Enterprise resource planning.
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: Raihan Muflihan
Date Deposited: 06 Aug 2025 03:25
Last Modified: 06 Aug 2025 03:25
URI: http://repository.its.ac.id/id/eprint/127154

Actions (login required)

View Item View Item