Marcelino, Aldo (2025) The Modeling and Heat Transfer Analysis in RRAM Devices = Pemodelan dan Analisis Perpindahan Panas pada Perangkat Memori RRAM. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5007211116-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
This study presents a comprehensive thermal analysis of resistive random-access memory (RRAM) devices incorporating HfO2 and ZnO as insulator materials, conducted using ANSYS Thermal-Electric simulations. Under identical Joule heating conditions, HfO2-based RRAM exhibits extreme localized heating, reaching peak temperatures of up to 1441 K while ZnO-based counterparts maintain significantly lower temperatures below 480 K. This stark contrast stems from intrinsic disparities in thermal conductivity and the pronounced impact of thermal boundary resistance (TBR) at nanoscale interfaces. Furthermore, multi-filament configurations are shown to mitigate peak temperatures through distributed heat generation; however, thermal hotspots remain concentrated at the center especially in non-uniform filament arrangements. The superior thermal dissipation capabilities of ZnO highlight its potential for improved thermal stability and enhanced reliability in high-performance, scalable memory architectures.
=====================================================================================================================================
Studi ini menyajikan analisis termal yang komprehensif pada perangkat memori resistif
(RRAM) dengan menggunakan material HfO2 dan ZnO sebagai lapisan isolator yang dilakukan
melalui simulasi ANSYS Thermal-Electric. Di bawah kondisi pemanasan Joule yang identik,
perangkat RRAM berbasis HfO2 menunjukkan pemanasan lokal ekstrem dengan suhu puncak
mencapai 1441 K, sementara perangkat berbasis ZnO mempertahankan suhu yang jauh lebih
rendah yaitu di bawah 480 K. Kontras ini berasal dari perbedaan konduktivitas termal intrinsik
serta pengaruh resistansi batas termal (thermal boundary resistance/TBR) yang signifikan pada
antarmuka skala nano. Selain itu, konfigurasi multi-filamen terbukti dapat menurunkan suhu
puncak melalui penyebaran panas yang lebih merata; namun, titik panas tetap terkonsentrasi di
bagian tengah terutama pada pengaturan filamen yang tidak seragam. Kemampuan disipasi
panas yang lebih baik dari ZnO menyoroti potensinya untuk meningkatkan stabilitas termal dan
keandalan pada arsitektur memori berkinerja tinggi dan berskala kecil.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | heat transfer, Joule heating, multi-filament configuration, thermal boundary resistance, resistive random-access memory ======================================================================================================================== perpindahan panas, Joule heating, konfigurasi multi-filamen, thermal boundary resistance, resistive random-access memory |
Subjects: | Q Science Q Science > Q Science (General) Q Science > QC Physics Q Science > QC Physics > QC271 Temperature measurements Q Science > QC Physics > QC320 Heat transfer Q Science > QC Physics > QC 611.97.T46 Temperature effects. Including transition temperature |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis |
Depositing User: | Aldo Marcelino |
Date Deposited: | 05 Aug 2025 01:34 |
Last Modified: | 05 Aug 2025 01:34 |
URI: | http://repository.its.ac.id/id/eprint/127287 |
Actions (login required)
![]() |
View Item |