Optimasi Integrasi Membran Mikrofiltrasi Terendam Dan Sedimentasi Untuk Pengolahan Air Minum

Marsono, Bowo (2025) Optimasi Integrasi Membran Mikrofiltrasi Terendam Dan Sedimentasi Untuk Pengolahan Air Minum. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 7014201004-Dissertation.pdf] Text
7014201004-Dissertation.pdf
Restricted to Repository staff only

Download (3MB) | Request a copy

Abstract

Sistem pengolahan air sungai menjadi air minum pada umumnya dilakukan secara konvensional, yang terdiri dari unit pengaduk cepat, pengaduk lambat, sedimentasi dan saringan pasir cepat. Salah satu kelemahan saringan pasir cepat adalah membutuhkan volume air untuk pencucian yang besar, kualitas yang tidak konsisten dan lolosnya mikroorganisme yang berukuran kurang dari 0,01 mm. Teknologi membrane dapat menyelesaikan masalah tersebut dengan kelebihannya antara lain unit lebih ringkas, luas permukaan per volume yang lebih besar. Penelitian ini merupakan yang pertama mengkaji integrasi membran mikrofiltrasi keramik terendam dengan sistem sedimentasi konvensional di instalasi nyata pengolahan air minum. Penelitian bertujuan terutama mengkaji pengaruh tekanan, baffle, air scouring, metoda pencucian pada sistem membran terendam terhadap kuantitas dan kualtas filtrat dan mengkaji model pemblokiran pori. Sedangkan parameter yang diukur adalah fluks, volume produksi, kekeruhan, TSS, zat Organik/permangganat value, E. coli, dan mikroplastik. Hasil penelitian menunjukkan bahwa tekanan dan baffle berpengaruh terhadap fluks tetapi tidak berpengaruh terhadap kualitas filtrat. Dengan membran seluas 0,153 m2 yang digunakan, tekanan operasional 0,6 – 0,9 bar menghasilkan fluks 43 – 392 L/m2 /jam. Perubahan tekanan tidak berpengaruh terhadap kualitas. Kualitas kekeruhan filtrat berada pada rentang 0,28 – 0,41 NTU, TSS 0 – 9,5 mg/L, mikroplastik 2-15 partikel/L, zat organik 11-16 mg/L dan E. coli 0 MPN/100 ml. Penambahan baffle dengan sudut 90o memberikan peningkatan volume filtrat 12 %, dan fluks mencapai 384 L/m2 /jam. Namun demikian, penambahan baffle tidak berpengaruh terhadap kualitas filtrat. Penambahan air scouring dengan tekanan 0,3 bar dan 0,6 bar dapat memberikan recovery volume filtrat 88%. Backwash selama 10 menit dan 20 menit menghasilkan recovery yang relatif sama yaitu mencapai 85%. Untuk menghasilkan filtrat dengan kuantitas dan kualitas terbaik, optimasi operasi sistem mikrofiltrasi dapat difokuskan pada tekanan operasional sekitar 0,7 bar, penambahan baffle pada sudut sejajar membran, serta penggunaan air scouring dengan tekanan 0,3 bar mampu mengembalikan volume filtrat secara signifikan. Pemblokiran pori mengikuti model intermediate di awal operasi, model total di pertengahan dan model cake diakhir operasi membrane.
=================================================================================================================================
River water treatment systems for drinking water are generally conventional, consisting of rapid agitation units, slow agitation units, sedimentation units, and rapid sand filters. One of the drawbacks of rapid sand filters is the large volume of water required for washing, inconsistent quality, and the passage of microorganisms smaller than 0.01 mm. Membrane technology can address these issues, offering advantages such as more compact units and a larger surface area per unit. This study is the first to examine the integration of submerged ceramic microfiltration membranes with conventional sedimentation systems in a real drinking water treatment plant. The primary objective of the study was to assess the effects of pressure, baffles, air scouring, and washing methods in the submerged membrane system on filtrate quantity and quality, as well as to assess pore blocking models. The parameters measured were flux, production volume, turbidity, TSS, organic matter/permanganate value, E. coli, and microplastics. The results showed that pressure and baffles affected flux but not filtrate quality. With a membrane area of 0.153 m2 used, an operational pressure of 0.6 – 0.9 bar will produce a flux of 43 – 392 L/m2 /hour. The quality of the filtrate turbidity is in the range of 0.28 – 0.41 NTU, TSS 0 – 9.5 mg/L, microplastics 2-15 particles/L, organic matter 11-16 mg/L and E. coli 0 MPN/100 ml. The addition of baffles affects the increase in flux, baffles with a 90o angle provide a 12% increase in filtrate volume, the flux reaches 384 L/m2 /hour. However, the addition of baffles does not affect the quality of the filtrate. The addition of scouring water with a pressure of 0.3 bar and 0.6 bar can provide a filtrate volume recovery of 88%. Backwashing for 10 minutes and 20 minutes produces relatively the same recovery, reaching 85%. To produce filtrate with the best quantity and quality, optimization of the microfiltration system operation can be focused on an operational pressure of around 0.7 bar. The addition of baffles at an angle parallel to the membrane, as well as the use of air scouring with a pressure of 0.3 bar can significantly restore the filtrate volume. Pore blocking follows an intermediate model at the beginning of the operation, a total model in the middle, and a cake model at the end of the membrane operation

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: air scouring, baffle, membran terendam, model pemblokiran pori.
Subjects: T Technology > TD Environmental technology. Sanitary engineering > TD259.2 Drinking water. Water quality
T Technology > TD Environmental technology. Sanitary engineering > TD433 Water treatment plants
Divisions: Faculty of Civil Engineering and Planning > Environment Engineering > 25001-(S3) PhD Thesis
Depositing User: Bowo Djoko Marsono
Date Deposited: 05 Aug 2025 08:45
Last Modified: 05 Aug 2025 08:47
URI: http://repository.its.ac.id/id/eprint/127376

Actions (login required)

View Item View Item