Fathoni, Falih Musyaffa' (2025) Sistem Monitoring dan Prediksi Konsumsi Energi Listrik Berbasis Sistem Otomasi Bangunan Menggunakan Metode Regresi Linear. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
2040211078_Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (8MB) | Request a copy |
Abstract
Konsumsi energi listrik yang terus meningkat menuntut adanya strategi efisiensi energi, terutama di lingkungan akademik seperti kampus. Salah satu pendekatan yang dapat diterapkan adalah konsep kampus hijau yang mencakup efisiensi penggunaan energi listrik serta pemanfaatan sumber energi terbarukan. Beberapa institusi akademik telah menerapkan panel surya sebagai sumber energi listrik terbarukan. Namun, hingga saat ini belum terdapat sistem yang dapat melakukan monitoring serta prediksi konsumsi energi listrik. Selain itu, belum diketahui apakah panel surya yang tersedia mampu mengakomodasi kebutuhan energi listrik kedepannya. Penelitian ini bertujuan untuk merancang dan mengembangkan sistem monitoring serta prediksi konsumsi energi listrik berbasis sistem otomasi bangunan. Sistem ini juga bertujuan untuk mengintegrasikan sensor pemantauan energi listrik, Internet of Things (IoT), dan metode regresi linear dan polinomial untuk memprediksi konsumsi energi di masa mendatang. Sistem juga bertujuan untuk menentukan skenario harian yang memiliki tingkat efisiensi konsumsi energi listrik tertinggi. Hasil penelitian menunjukkan bahwa implementasi metode regresi linear dan polinomial, menghasilkan nilai R2 pada regresi linear yang lebih lemah daripada regresi polinomial dengan selisih sebesar 0,1. Selisih persentase MAE dan RMSE regresi linear juga lebih rendah yang secara berturut-turut sebesar 0,72% dan 0,91%. Hal tersebut menunjukkan bahwa metode regresi linear kurang mampu dalam menjelaskan variasi data per menit, namun cukup baik dalam memperkirakan total harian. Melalui pengujian dari beberapa skenario konsumsi energi listrik, diperoleh skenario yang paling efisien dengan total konsumsi energi sebesar 15,99 kWh.
========================================================================================================================================
The continuous increase in electricity consumption requires energy efficiency strategies, especially in academic environments such as campuses. One approach that can be applied is the concept of a green campus, which includes efficient use of electricity and utilization of renewable energy sources. Some academic institutions have implemented solar panels as a source of renewable electricity. However, to date, there is no system capable of monitoring and predicting electricity consumption. Additionally, it is unclear whether the available solar panels can accommodate future electricity needs. This study aims to design and develop a system for monitoring and predicting electricity consumption based on a building automation system. This system also aims to integrate electricity monitoring sensors, the Internet of Things (IoT), and linear and polynomial regression methods to predict future energy consumption. The system also aims to determine daily scenarios with the highest level of electricity consumption efficiency. The research results show that the implementation of linear and polynomial regression methods yields an R² value in linear regression that is weaker than polynomial regression, with a difference of 0.1. The percentage difference in MAE and RMSE for linear regression is also lower, at 0.72% and 0.91%, respectively. This data shows that the linear regression method is less capable of explaining the variation in data per minute, but is sufficient for estimating the daily total. Through testing of several electricity consumption scenarios, the most efficient scenario was obtained with a total energy consumption of 15.99 kWh.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Efisiensi Energi, Kampus Hijau, Monitoring Energi Listrik, Prediksi Konsumsi Energi Listrik, Sistem Otomasi Bangunan |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1001 Production of electric energy or power |
Divisions: | Faculty of Vocational > 36304-Automation Electronic Engineering |
Depositing User: | Falih Musyaffa' Fathoni |
Date Deposited: | 05 Aug 2025 06:22 |
Last Modified: | 05 Aug 2025 06:22 |
URI: | http://repository.its.ac.id/id/eprint/127412 |
Actions (login required)
![]() |
View Item |