Arizona, Romadhon Helmi (2025) Sistem Pengendali Tekanan Udara Pada Air Compressor Menggunakan Metode Fuzzy Logic. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
2040211021-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (5MB) | Request a copy |
Abstract
Industri minyak dan gas lepas pantai memerlukan pasokan udara yang stabil untuk memastikan proses pengeboran berlangsung aman dan kontinuitas produksi terjaga. Sistem konvensional berbasis pressure limit switch menyebabkan kompresor beroperasi dengan pola start-stop yang cepat sehingga arus awal motor melonjak melebihi arus nominal, memicu voltage drop. Sebagai contoh, pada proyek SCADA pemantauan sumur, lonjakan arus starting menyebabkan drop tegangan sehingga beberapa sensor dan perangkat komunikasi mengalami reset singkat dan kehilangan data kritis. Penelitian ini merancang prototipe sistem pengendali tekanan udara pada kompresor udara satu fasa dengan metode Fuzzy Logic Controller (FLC) yang mengatur frekuensi motor melalui Variable Frequency Drive (VFD). Dua variabel input tekanan tangki yang diukur menggunakan sensor tekanan udara dan kecepatan aliran udara yang diukur menggunakan sensor flow YF-B1 diproses oleh FLC pada Arduino Mega 2560 keluaran berupa set point frekuensi dikirim ke VFD melalui antarmuka RS-485. Data proses dipantau secara real-time melalui platform Blynk berbasis Internet of Things (IoT). Hasil pengujian menunjukkan FLC mampu mempertahankan tekanan tangki pada rentang 50-90 psi dan mengeliminasi siklus start-stop. Arus starting maksimum turun dari 7,2 A menjadi 4,9 A, sedangkan arus steady-state stabil pada kisaran 2,2 A. Akurasi sensor cukup tinggi rata-rata error sensor tekanan 1,32% dan sensor flow 1,36%, serta akurasi keputusan FLC tercermin dari nilai MAPE 0,55% terhadap simulasi MATLAB. Integrasi IoT berhasil menampilkan data tekanan, aliran, dan frekuensi secara online tanpa kehilangan data. Dengan demikian, prototipe sistem kendali tekanan udara yang dikembangkan efektif mengurangi lonjakan arus, menstabilkan tekanan, serta dapat diadopsi untuk meningkatkan keandalan pasokan udara pada operasi pengeboran minyak lepas pantai.
====================================================================================================================================
The offshore oil and gas industry requires a stable air supply to ensure safe drilling processes and maintain production continuity. Conventional systems based on pressure limit switches cause compressors to operate in a rapid start-stop pattern, causing the motor's initial current to surge above the nominal current and trigger a voltage drop. For example, in a SCADA well monitoring project, the surge in starting current caused a voltage drop, resulting in some sensors and communication devices experiencing a brief reset and losing critical data. This study designed a prototype air pressure control system for a single-phase air compressor using a Fuzzy Logic Controller (FLC) method that regulates motor frequency through a Variable Frequency Drive (VFD). Two input variables tank pressure measured using an air pressure sensor and air flow rate measured using a YF-B1 flow sensor are processed by the FLC on an Arduino Mega 2560, with the output being a frequency set point sent to the VFD via an RS-485 interface. Process data is monitored in real-time through the Blynk platform based on the Internet of Things (IoT). Test results show that the FLC can maintain tank pressure within the range of 50-90 psi and eliminate start-stop cycles. The maximum starting current decreased from 7.2 A to 4.9 A, while the steady-state current remained stable at around 2.2 A. Sensor accuracy is sufficiently high, with an average error of 1.32% for the pressure sensor and 1.36% for the flow sensor. The accuracy of the FLC's decisions is reflected in the MAPE value of 0.55% compared to the MATLAB simulation. IoT integration successfully displays pressure, flow, and frequency data online without data loss. Thus, the developed air pressure control system prototype effectively reduces current surges, stabilizes pressure, and can be adopted to enhance the reliability of air supply in offshore oil drilling operations.
Actions (login required)
![]() |
View Item |