Santoso, Rahmat Arif (2025) Simulasi Kontrol PID Suspensi Aktif Seperempat Kendaraan Satu Roda dengan Evaluasi Variasi Titik Umpan Balik terhadap Kriteria ISO 2631 dan Gaya Kontak Roda pada Permukaan Jalan Sinusoidal. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
02111840000058-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Getaran vertikal yang ditransmisikan dari permukaan jalan ke tubuh pengemudi melalui struktur kendaraan dapat menurunkan tingkat kenyamanan dan bahkan memengaruhi kesehatan dalam jangka panjang. Berdasarkan standar ISO 2631, ambang batas kenyamanan ditetapkan pada nilai RMS percepatan sebesar 0,315 m/s². Penelitian ini bertujuan untuk menganalisis secara menyeluruh pengaruh variasi titik umpan balik terhadap efektivitas kontrol PID dalam sistem suspensi aktif seperempat kendaraan satu roda, dengan menitikberatkan pada aspek kenyamanan dan keselamatan berkendara. Simulasi dilakukan menggunakan MATLAB/Simulink dengan profil eksitasi berupa permukaan jalan bergelombang sinusoidal, sementara titik umpan balik divariasikan antara sinyal percepatan dan perpindahan pada sprung mass (Ys) dan frame kursi (Yfk). Hasil simulasi memperlihatkan bahwa umpan balik berbasis percepatan memberikan peningkatan performa yang signifikan dibandingkan sinyal perpindahan. Ketika menggunakan percepatan frame kursi (Y″fk) sebagai input, dan dengan parameter PID sebesar Kp = 10238.32, Ki = 34948.3, Kd = 718.82, sistem menghasilkan RMS percepatan pada kepala sebesar 0.1963 m/s² dan paha sebesar 0.1729 m/s², serta gaya kontak roda minimum sebesar 1856.3 N. Sementara itu, strategi dengan input percepatan sprung mass (Y″s) dan parameter PID Kp = 18593.61, Ki = 46639.26, Kd = 1833.63 menunjukkan performa terbaik, dengan RMS percepatan kepala 0.0446 m/s², paha 0.0396 m/s², dan gaya kontak minimum sebesar 1687 N. Kedua konfigurasi ini memberikan hasil jauh di bawah ambang batas kenyamanan ISO 2631, menandakan tingkat kenyamanan tinggi dan kestabilan sistem yang baik. Sebaliknya, strategi umpan balik berbasis perpindahan tidak mampu mereduksi getaran secara efektif, bahkan meningkatkan osilasi sistem, yang berdampak negatif terhadap kenyamanan dan kestabilan. Dari temuan ini dapat disimpulkan bahwa pemilihan titik umpan balik memainkan peran penting dalam keberhasilan sistem kendali suspensi aktif, dan bahwa sinyal percepatan merupakan input optimal untuk mencapai kombinasi maksimal antara kenyamanan dan keamanan dalam berkendara.
========================================================================================================================
Vertical vibrations transmitted from the road surface to the driver's body through the vehicle structure can significantly impact ride comfort and long-term health. ISO 2631 specifies a threshold RMS acceleration value of 0.315 m/s² as the upper limit for comfort. This study aims to comprehensively evaluate the influence of various feedback signal locations on the performance of PID control in an active suspension system modeled as a quarter-car with a single wheel. The investigation focuses on both comfort and safety aspects. Simulations were conducted using MATLAB/Simulink, with a sinusoidal road profile as the input excitation. The feedback signals were varied between acceleration and displacement at two critical locations: the sprung mass (Ys) and the seat frame (Yfk). The results demonstrate that acceleration-based feedback significantly outperforms displacement-based feedback. When using seat frame acceleration (Y″fk) with PID parameters Kp = 10238.32, Ki = 34948.3, and Kd = 718.82, the system achieved RMS head acceleration of 0.1963 m/s² and thigh acceleration of 0.1729 m/s², with a minimum wheel-road contact force of 1856.3 N. Even better performance was obtained using sprung mass acceleration (Y″s) with PID parameters Kp = 18593.61, Ki = 46639.26, and Kd = 1833.63, resulting in RMS head acceleration of 0.0446 m/s², thigh acceleration of 0.0396 m/s², and a minimum contact force of 1687 N. Both strategies yielded values well below the ISO 2631 comfort threshold, indicating high comfort levels and stable wheel-road contact. Conversely, displacement-based feedback strategies failed to effectively attenuate vibrations and led to increased oscillations, reducing both comfort and system stability. In conclusion, the choice of feedback signal location is critical to the success of active suspension control. Acceleration signals, particularly at the sprung mass or seat frame, offer the most effective solution for simultaneously optimizing ride comfort and safety.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Suspensi Aktif, Kendali PID, RMS Percepatan, ISO 2631, Gaya Kontak Roda, Active Suspension, PID Control, RMS Acceleration, ISO 2631, Wheel Contact Force |
Subjects: | T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL257 Springs and suspension |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering |
Depositing User: | Rahmat Arif Santoso |
Date Deposited: | 06 Aug 2025 07:40 |
Last Modified: | 06 Aug 2025 07:40 |
URI: | http://repository.its.ac.id/id/eprint/127815 |
Actions (login required)
![]() |
View Item |