Andika, Gregorius Kevin Krisna (2025) Pengaruh Lapisan Material Nano Au-WS2 pada Serat Optik Singlemode - Multimode - Singlemode (SMS) untuk Deteksi Gas Hidrogen (H2). Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6009221006-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Tungsten disulfida (WS2) monolayer terbukti dapat diproduksi melalui proses sonikasi serbuk WS2 menggunakan pelarut NMP, menghasilkan WS2 monolayer yang memiliki parameter kisi a = b = 3.17 Å dan c = 12.23 Å. Pencampuran partikel nano emas (AuNPs) ke dalam WS2 monolayer akan menyebabkan perubahan ukuran dari AuNPs dan WS2 monolayer yang didapatkan, menyebabkan sebagian permukaan WS2 monolayer teroksidasi menghasilkan senyawa Tungsten trioksida (WO3). Penggunaan AuNPs dan kemunculan WO3 terbukti mampu memperbaiki performa WS2 monolayer dalam mendeteksi gas H2 pada nilai konsentrasi gas H2 sebesar 210 ppm, 219 ppm, dan 236 ppm dengan meningkatkan stabilitas respon sistem, mempercepat waktu respon (tres) dan waktu pulih (trec) dari proses deteksi yang dilakukan pada suhu ruang. Penggunaan Au-WS2/WO3 sebagai material pelapis serat optik (FO) singlemode-multimode-singlemode (SMS) terbukti mampu meningkatkan sensitivitas FO SMS yang menggunakan coreless multimode fiber (coreless MMF) berbahan dasar silika untuk mendeteksi keberadaan gas H2 dengan nilai konsentrasi yang berbeda pada suhu ruang. Performa terbaik dimiliki oleh FO SMS berlapis Au-WS2/WO3 varian konsentrasi volumetrik AuNPs:WS2 monolayer 1:4 yang memiliki tres yaitu 9 – 268 ms dan trec yaitu 23 – 62 ms dengan Limit of Detection (LoD) 61 ppm untuk Au-WS2/WO3 hasil reduksi sitrat dan 196 ppm untuk Au-WS2/WO3 hasil reduksi NaBH4. Hasil yang didapatkan membuktikan bahwa struktur dan ukuran dari material nano sangat mempengaruhi performa deteksi gas H2 yang didapatkan.
======================================================================================================================================
A tungsten disulfide (WS₂) monolayer has been successfully produced through the sonication of WS₂ powder in NMP solvent, resulting in a WS₂ monolayer with lattice parameters of a = b = 3.17 Å and c = 12.23 Å. The addition of gold nanoparticles (AuNPs) into the WS₂ monolayer leads to changes in the size of both the AuNPs and the WS₂ monolayer, causing partial oxidation on the WS₂ monolayer's surface and caused the formation of tungsten trioxide (WO₃). The presence of AuNPs and the presence of WO₃ have been shown to enhance the performance of the WS₂ monolayer in detecting H₂ gas at concentrations of 210 ppm, 219 ppm, and 236 ppm by improving the system’s response stability and accelerating both of the response time (tres) and recovery time (trec) during detection at room temperature. The use of Au-WS₂/WO₃ as a coating material for singlemode-multimode-singlemode (SMS) optical fiber (FO) has been proven to enhance the sensitivity of SMS optical fibers utilizing silica-based coreless multimode fiber (coreless MMF) for detecting the presence of H₂ gas at different concentrations at room temperature. The best performance was achieved by the SMS optical fiber coated with Au-WS₂/WO₃ with an AuNPs:WS₂ monolayer ratio of 1:4 (v/v), exhibiting a tres of 9 – 268 ms and a trec of 23 – 62 ms, with a Limit of Detection (LoD) of 61 ppm for citrate-reduced Au-WS₂/WO₃ and 196 ppm for NaBH₄-reduced Au-WS₂/WO₃. These findings demonstrate that the structure and size of nanomaterials significantly influence the H₂ gas detection performance.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Au-WS2/WO3, serat optik, detektor gas, hidrogen, LPE, Au-WS2/WO3, optical fibre, gas detector, hydrogen, LPE |
Subjects: | Q Science Q Science > QC Physics > QC100.5 Measuring instruments (General) Q Science > QC Physics > QC162 Adsorption and absorption Q Science > QC Physics > QC173.4.C63 Composite materials Q Science > QC Physics > QC448 Fiber optics. Q Science > QC Physics > QC610.3 Electric conductivity Q Science > QD Chemistry > QD1 Oxidation-reduction reaction. Q Science > QD Chemistry > QD471 Chemical compounds - Structure and formulas |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Physics Engineering > 30101-(S2) Master Thesis |
Depositing User: | Gregorius Kevin Krisna Andika |
Date Deposited: | 04 Sep 2025 01:18 |
Last Modified: | 04 Sep 2025 01:18 |
URI: | http://repository.its.ac.id/id/eprint/128173 |
Actions (login required)
![]() |
View Item |