Sujono, Yasmin Putri (2025) Optimalisasi Pengelolaan Data Nasabah melalui Implementasi Dashboard Personal Data Privacy (PDP) sesuai UU PDP di Hongkong and Shanghai Banking Corporation (HSBC). Project Report. [s.n.], [s.l.]. (Unpublished)
|
Text
5025221273-Project_Report.pdf - Accepted Version Restricted to Repository staff only Download (1MB) | Request a copy |
Abstract
Bank HSBC (Hongkong Shanghai Banking Corporation) merupakan salah satu lembaga keuangan global yang berfokus pada layanan perbankan ritel, komersial, dan investasi. Dalam era digital saat ini, pengelolaan data pribadi (Personal Data Privacy) menjadi hal yang sangat penting bagi lembaga keuangan, terutama dalam memenuhi ketentuan dalam menjaga keamanan dan kepatuhan terhadap regulasi perlindungan data pribadi. Hal ini, keamanan data pribadi nasabah juga menjadi fondasi kepercayaan antara bank dan nasabah. Permasalahan yang sering dihadapi adalah kurangnya visibilitas terhadap kelengkapan dan validitas data nasabah yang tersebar di berbagai sistem internal, bahkan user sering kali kesusahan dalam memperbaiki data nasabah yang belum terupdate atau bermasalah karena belum terdapatnya aplikasi pemantauan data. Di sisi lain, regulasi nasional, Undang-undang Perlindungan Data Pribadi Undang undang Nomor 27 Tahun 2022 yang menegaskan bahwa terdapat 6 kategori data pribadi yang wajib dilindungi, meliputi: nama lengkap, jenis kelamin, kewarganegaraan, agama, status perkawinan, dan nomor telepon. Melalui kegiatan Kerja Praktik ini, dilakukan optimalisasi pengelolaan data dengan membangun Dashboard Personal Data Privacy (PDP) yang berfungsi untuk memantau tingkat kelengkapan dan validitas data nasabah secara real-time. Dashboard ini dikembangkan menggunakan QlikSense dan diintegrasikan dengan data warehouse melalui Google BigQuery (BQ) di ekosistem Google Cloud Platform (GCP). Dengan adanya dashboard ini, staff dapat dengan mudah melakukan analisis, mendeteksi ketidaksesuaian data, serta mempercepat proses data quality improvement.
====================================================================================================================================
HSBC Bank (Hong Kong Shanghai Banking Corporation) is a global financial institution focused on retail, commercial, and investment banking services. In today's digital era, managing personal data (Personal Data Privacy) is crucial for financial institutions, especially in meeting security requirements and complying with personal data protection regulations. Therefore, the security of customer personal data is also the foundation of trust between banks and their customers. A common problem is the lack of visibility into the completeness and validity of customer data scattered across various internal systems. Users often struggle to correct outdated or problematic customer data due to the lack of data monitoring applications. On the other hand, national regulations, Law Number 27 of 2022 on Personal Data Protection, stipulate that there are six categories of personal data that must be protected, including: full name, gender, nationality, religion, marital status, and telephone number. Through this internship, data management was optimized by developing a Personal Data Privacy (PDP) Dashboard, which monitors the completeness and validity of customer data in real time. This dashboard was developed using QlikSense and integrated with a data warehouse via Google BigQuery (BQ) within the Google Cloud Platform (GCP) ecosystem. This dashboard allows staff to easily perform analysis, detect data discrepancies, and accelerate data quality improvement processes.
| Item Type: | Monograph (Project Report) |
|---|---|
| Uncontrolled Keywords: | Data Privasi, Data Kualitas, PDP, Dashboard |
| Subjects: | T Technology > T Technology (General) > T57.5 Data Processing |
| Divisions: | Faculty of Industrial Technology > Informatics Engineering > 55201-(S1) Undergraduate Thesis |
| Depositing User: | Yasmin Putri Sujono |
| Date Deposited: | 09 Dec 2025 04:20 |
| Last Modified: | 09 Dec 2025 04:20 |
| URI: | http://repository.its.ac.id/id/eprint/128890 |
Actions (login required)
![]() |
View Item |
