Maulana, Irkham (2022) Early Warning System Pada Smart PJU Menggunakan Metode Fuzzy Logic. Other thesis, Institut Teknologi Sepuluh Nopember.
|
Text
10311810003019-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Pada laboratorium Electric Drive and Power Electronics System Departemen Teknik Elektro Otomasi terdapat sebuah permasalahan pada Smart Lighting Penerangan Jalan Umum (PJU) dalam proses menentukan kondisi komponen utama Smart Lighting PJU dalam kondisi rusak atau maintenance. Early Warning System pada Smart Lighting PJU menggunakan metode Fuzzy Logic dirancang untuk membantu proses maintenance Smart Lighting PJU. Sensor yang digunakan pada proyek akhir ini yaitu sensor tegangan, sensor arus, sensor lument dan sensor temperatur yang berfungsi sebagai pembacaan kondisi pada smart Lighting PJU. Metode Fuzzy Logic yang disematkan pada mikrokontroller berguna untuk klasifikasi dan identifikasi dini. Output yang diberikan dari proses tersebut berupa peringatan kondisi Smart PJU dikatakan normal, perlu maintenance dan rusak. Pada hasil pengujian Early Warning System dengan metode fuzzy logic dalam skala uji pada laboratorium dapat berjalan sesuai dengan rule yang sudah ditektukan. Output dari Early Warning System berupa peringatan 3 kondisi yaitu berupa Normal, Perlu Maintenance dan Rusak. Pada pengujian Early Warning System dengan metode fuzzy logic pada smart PJU belum dapat dilakukan implementasi secara langsung namun pada skala laboratorium bisa dikatakan berhasil dengan melihat persentase nilai error dari hasil EWS secara langsung dibandingkan dengan nilai pada simulasi Matlab. Didapatkan rata-rata nilai error sebesar 2% pada bagian photovoltaic, pada bagian baterai rata-rata nilai error 0% dan pada bagian lampu mendapatkan nilai error 1%
========================================================================================================================================
In the Electric Drive and Power Electronics System laboratory, the Department of Electrical Automation Engineering, there is a problem with the Smart Lighting for Public Street Lighting (PJU) in the process of determining the condition of the main components of the Smart Lighting PJU in a damaged or maintenance condition. Early Warning System on PJU Smart Lighting using Fuzzy Logic method is designed to assist the PJU Smart Lighting maintenance process. The sensors used in this final project are voltage sensors, current sensors, lumen sensors and temperature sensors that function as condition readings on PJU smart lighting. The Fuzzy Logic method embedded in the microcontroller is useful for early classification and identification. The output given from the process is a warning that the Smart PJU condition is said to be normal, needs maintenance and is damaged. On the results of testing the Early Warning System with the fuzzy logic method in a test scale in the laboratory, it can run according to the rules that have been determined. The output of the Early Warning System is in the form of warnings for 3 conditions, namely Normal, Required Maintenance and Damaged. In testing the Early Warning System using the fuzzy logic method on smart PJUs, it cannot be directly implemented but on a laboratory scale it can be said to be successful by looking at the percentage of error values from the EWS results directly compared to the values in the Matlab simulation. An average error value of 2% is obtained in the photovoltaic section, in the battery section the average error value is 0% and in the lamp section an error value of 1%
| Item Type: | Thesis (Other) |
|---|---|
| Additional Information: | RSEO 629.89 Mau e 2022 3100022097278 |
| Uncontrolled Keywords: | Penerangan jalan umum, Early warning system, Fuzzy logic, Maintenance |
| Subjects: | Q Science > QA Mathematics > QA9.64 Fuzzy logic |
| Divisions: | Faculty of Vocational > 36304-Automation Electronic Engineering |
| Depositing User: | ansi aflacha |
| Date Deposited: | 15 Dec 2025 08:15 |
| Last Modified: | 15 Dec 2025 08:15 |
| URI: | http://repository.its.ac.id/id/eprint/128983 |
Actions (login required)
![]() |
View Item |
