Putra, Brian Qaedi Laksono (2025) Forecasting Jumlah Pembelian Critical Spare Part Pada PLTGU Cikarang Dengan Metode Ensemble Learning. Masters thesis, Institut Teknologi Sepuluh Nopember.
|
Text
6032232061-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (4MB) | Request a copy |
Abstract
Pembangkit Listrik Tenaga Gas dan Uap (PLTGU) Cikarang merupakan salah satu pemasok listrik ke kawasan industri Cikarang. Karena peran krusial nya dalam memasok listrik ke banyak pelanggan industri , maka dibutuhkan keandalan operasional yang tinggi dari sistem pembangkit PLTGU Cikarang. Pengelolaan critical spare part memiliki peran penting dalam menjaga keandalan operasional sistem pembangkit, terutama dalam industri energi seperti PLTGU Cikarang. Permasalahan yang sering muncul adalah ketidaktepatan dalam estimasi kebutuhan pembelian critical spare part, yang dapat menyebabkan overstock atau understock. Overstock dapat menyebabkan dead stock atau slow moving stock sehingga biaya penyimpanan menjadi tinggi. Sementara understock dapat mempengaruhi keandalan operasional. Sedangkan keandalan operasional sangat lah penting bagi PLTGU Cikarang. Hal ini dikarenakan PLTGU Cikarang memiliki banyak pelanggan di kawasan industri yang membutuhkan keandalan operasional tinggi seperti industri Manufaktur bahkan juga Data Center. Penelitian ini bertujuan untuk membangun model peramalan pembelian critical spare part menggunakan algoritma Machine Learning – Ensemble Learning seperti Extreme Gradient Boosting (XGBoost) dan Random Forest, dengan memanfaatkan data historis pemakaian dan pengadaan selama tahun 2020 - 2024. Proses penelitian mencakup tahap pengolahan data, pemodelan sistem dengan pembagian data menjadi training dan testing set dengan rasio 80:20, serta evaluasi hasil. Hasil dari penelitian ini menunjukkan bahwa pemodelan menggunakan XGBoost meendapatkan hasil yang terbaik baik dari segi akurasi maupun kemampuan mempelajari pola mengikuti urutan waktu. Meskipun data critical spare part PLTGU Cikarang tidak linier dan sparse dengan proporsi nilai nol yang tinggi, metrik evaluasi dari XGBoost mampu mendapatkan nilai akurasi Mean Absolute Percentage Error (MAPE) sebesar 9,25% pada data testing tahun 2023 dan 2024. Dengan demikian pembuatan forecasting menggunakan Ensemble Learning mampu membantu pembelian critical spare part untuk lebih akurat sehingga dapat lebih efisien dalam biaya pembelian dan dapat menjaga keandalan operasional.
===================================================================================================================================
The Cikarang Gas and Steam Power Plant (PLTGU Cikarang) is one of the primary electricity suppliers for the Cikarang industrial area. Due to its crucial role in delivering power to numerous industrial customers, a high level of operational reliability is essential for PLTGU Cikarang's generation systems. The management of critical spare parts plays a vital role in ensuring this reliability, particularly in energy infrastructure such as PLTGU Cikarang. A recurring issue is the inaccuracy in forecasting the procurement needs of critical spare parts, which may lead to either overstock or understock conditions. Overstock situations can result in dead stock or slow-moving inventory, thereby increasing storage costs. Conversely, understock conditions can negatively affect operational reliability, which is of utmost importance for PLTGU Cikarang. This is especially critical given that many of its industrial clients—including manufacturing companies and data centers—require consistently high levels of reliability. This study aims to develop a forecasting model for the procurement of critical spare parts using Machine Learning – Ensemble Learning algorithms, such as Extreme Gradient Boosting (XGBoost) and Random Forest , based on historical data on usage and procurement from 2020 to 2024. The research process includes data preprocessing, system modeling with an 80:20 training-testing split, and model evaluation. The findings of this study indicate that the XGBoost model delivers the best overall performance in terms of both predictive accuracy and its ability to learn temporal patterns. Despite the non-linear and sparse nature of critical spare-part data at the Cikarang combined cycle power plant, which is characterized by a high proportion of zero values, XGBoost achieves a strong level of accuracy. The model records a Mean Absolute Percentage Error (MAPE) of 9.25% on the testing data for the 2023–2024 period, demonstrating its effectiveness in capturing usage dynamics under challenging demand conditions.
| Item Type: | Thesis (Masters) |
|---|---|
| Uncontrolled Keywords: | Critical Spare Part, Extreme Gradient Boosting, Pengelolaan Spare Part, Peramalan, Random Forest, Critical Spare Part, Extreme Gradient Boosting, Forecasting, Random Forest, Spare Part Management |
| Subjects: | Q Science > Q Science (General) > Q325.5 Machine learning. Support vector machines. |
| Divisions: | Interdisciplinary School of Management and Technology (SIMT) > 61101-Master of Technology Management (MMT) |
| Depositing User: | Brian Qaedi Laksono Putra |
| Date Deposited: | 09 Jan 2026 03:02 |
| Last Modified: | 09 Jan 2026 03:02 |
| URI: | http://repository.its.ac.id/id/eprint/129390 |
Actions (login required)
![]() |
View Item |
