Patimah, Zulfa Zahra (2026) Pemetaan Risiko Kekeringan di Wilayah Pertanian Kawasan Transmigrasi Kantisa Menggunakan Regional Frequency Analysis pada Data Curah Hujan Harian. Other thesis, Institut Teknologi Sepuluh Nopember.
|
Text
5006221044-Undergraduate-Thesis.pdf - Accepted Version Restricted to Repository staff only Download (5MB) | Request a copy |
Abstract
Sektor pertanian merupakan sektor strategis dalam perekonomian Indonesia yang tidak luput dari risiko, utamanya risiko kekeringan. Kawasan Transmigrasi Kantisa, sebagaimana daerah pedesaan lainnya, menjadikan sektor pertanian sebagai kegiatan utama sehingga perlu adanya identifikasi risiko berbasis wilayah agar kebijakan mitigasi kekeringan dapat lebih tepat sasaran. Oleh karena itu, Penelitian ini bertujuan untuk memetakan risiko kekeringan dengan mengelompokkan desa-desa di Kawasan Transmigrasi Kantisa dengan metode Regional Frequency Analysis (RFA). Penelitian ini menggunakan data yang bersumber dari CHIRPS dengan harian periode pengamatan 1 Januari 2015 hingga 31 Desember 2024. Dalam penelitian ini, tiap dessa di Kawasan Transmigrasi Kantisa dikelompokkan menggunakan metode nonhierarchical clustering, yaitu K-Means dan Fuzzy C-Means, sehingga menghasilkan tiga cluster optimal berdasarkan lokasi dan karakteristik curah hujan. Selanjutnya, analisis Discordancy menunjukkan hasil yang dapat diterima setelah merelokasi satu titik data dari cluster 3 ke cluster 1 sehingga tidak ada lagi nilai discordant dan cluster yang terbentuk menjadi homogen. Berdasarkan hasil analisis L-Moment untuk setiap cluster, distribusi PE3 dipilih sebagai distribusi representatif meskipun nilai Z berada jauh di atas batas penerimaan, namun distribusi tersebut lebih sesuai dengan data dibanding dengan distribusi wakeby. Perhitungan return period untuk skema kekeringan 50%, 40%, 30%, 20%, dan 10% dari curah hujan normal menunjukkan pola konsisten: kekeringan 50% terjadi setiap 1,6 – 1,7 tahun, 40% setiap 1,7 – 1,8 tahun, 30% sekitar 1,9 – 2 tahun, 20% sekitar 2,1 – 2,2 tahun, dan ekstrem 10% setiap 2,5 – 2,6 tahun. Ditemukan bahwa setiap cluster memiliki perbedaan return period yang tidak terlalu signifikan dengan cluster 2 sebagai cluster dengan return period yang sedikit lebih panjang. Hasil ini menyediakan gambaran risiko kekeringan pada masing-masing wilayah sehingga dapat menjadi dasar perencanaan mitigasi risiko dan pengembangan skema asuransi indeks untuk mendukung keberlanjutan pertanian di Kawasan Transmigrasi Kantisa.
====================================================================================================================================
The agricultural sector is a strategic component of Indonesia’s economy and is inherently exposed to various risks, particularly drought. The Kantisa Transmigration Area, like many rural regions, relies heavily on agriculture as its primary economic activity, making spatially based risk identification essential to ensure that drought mitigation policies are effectively targeted. Therefore, this study aims to map drought risk by clustering villages in the Kantisa Transmigration Area using the Regional Frequency Analysis (RFA) approach. This study utilizes daily rainfall data sourced from CHIRPS for the observation period from January 1, 2015, to December 31, 2024. Villages within the Kantisa Transmigration Area were grouped using non-hierarchical clustering methods, namely K-Means and Fuzzy C-Means, resulting in three optimal clusters based on spatial location and rainfall characteristics. Subsequently, the Discordancy analysis produced acceptable results after relocating one data point from cluster 3 to cluster 1, eliminating discordant values and ensuring cluster homogeneity. Based on the L-Moment analysis for each cluster, the Pearson Type III (PE3) distribution was selected as the most representative distribution. Although the Z-statistic values exceeded the formal acceptance threshold, the PE3 distribution demonstrated a better fit to the rainfall data compared to the Wakeby distribution. Return period calculations for drought scenarios corresponding to 50%, 40%, 30%, 20%, and 10% of normal rainfall exhibit a consistent pattern across clusters. Drought events at the 50% level occur approximately every 1.6–1.7 years, 40% drought every 1.7–1.8 years, 30% drought around 1.9–2.0 years, 20% drought around 2.1–2.2 years, and extreme 10% drought events every 2.5–2.6 years. The differences in return periods among clusters are relatively small, with cluster 2 exhibiting slightly longer return periods, indicating a comparatively lower drought risk. These findings provide a spatial overview of drought risk across the Kantisa Transmigration Area and can serve as a foundation for drought risk mitigation planning as well as the development of index-based insurance schemes to support agricultural sustainability in the region.
| Item Type: | Thesis (Other) |
|---|---|
| Uncontrolled Keywords: | CHIRPS, Kekeringan, L-Moment, Regional Frequency Analysis, Return Period CHIRPS, Drought, L-Moment, Regional Frequency Analysis, Return Period |
| Subjects: | Q Science > QA Mathematics > QA276 Mathematical statistics. Time-series analysis. Failure time data analysis. Survival analysis (Biometry) Q Science > QA Mathematics > QA278.55 Cluster analysis Q Science > QA Mathematics > QA614.58 Catastrophes |
| Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Actuaria > 94203-(S1) Undergraduate Thesis |
| Depositing User: | Zulfa Zahra Patimah |
| Date Deposited: | 13 Jan 2026 01:40 |
| Last Modified: | 13 Jan 2026 01:40 |
| URI: | http://repository.its.ac.id/id/eprint/129519 |
Actions (login required)
![]() |
View Item |
