Setiawan, Hanifi (2026) Penerapan Fullstack Web Application dengan REST API dan Klasifikasi Machine Learning untuk Verifikasi Sertifikasi Produk Halal. Project Report. [s.n.], [s.l.]. (Unpublished)
|
Text
5025211066-Project_Report.pdf - Accepted Version Restricted to Repository staff only Download (978kB) | Request a copy |
Abstract
Kerja Praktik ini berfokus pada menggabungkan sistem informasi berbasis web dengan teknologi machine learning untuk membuat sebuah product management system (PMS) sebagai bagian dari proyek penelitian yang dipimpin oleh Ibu Dr. Adhatus Solichah Ahmadiyah, S.Kom, M.Sc. Tujuan utama proyek adalah membantu proses verifikasi dan klasifikasi produk halal, dengan tujuan meningkatkan efisiensi dalam proses sertifikasi halal untuk UMKM. Metodologi yang diterapkan adalah menggabungkan pendekatan pengembangan perangkat lunak berbasis framework Laravel dengan integrasi REST API untuk menghubungkan sistem web dengan model machine learning TensorFlow. Pendekatan ini diterapkan untuk menciptakan sistem manajemen produk halal yang terintegrasi dan efisien, dengan pengujian dan validasi pada setiap tahap pengembangan. Fitur-fitur utama yang dikembangkan meliputi: integrasi klasifikasi otomatis menggunakan TensorFlow, manajemen UMKM, sistem otentikasi multi-level dengan role-based access control, dashboard khusus untuk user dan admin, serta real-time verification status sertifikasi produk melalui REST API integration.). Keberhasilan proyek ini memberikan fondasi situs web PMIS (Product Management Information System) yang stabil dan siap untuk pengembangan fungsionalitas lanjutan.
===================================================================================================================================
This internship focuses on integrating a web-based information system with machine learning technology to develop a Product Management System (PMS) as part of a research project led by Dr. Adhatus Solichah Ahmadiyah, S.Kom., M.Sc. The main objective of the project is to support the verification and classification process of halal products, aiming to improve the efficiency of halal certification for Micro, Small, and Medium Enterprises (MSMEs). The methodology employed combines a framework-based software development approach using Laravel with REST API integration to connect the web system with a TensorFlow-based machine learning model. This approach is implemented to create an integrated and efficient halal product management system, with testing and validation conducted at each stage of development. The main features developed include automated product classification using TensorFlow, MSME management, a multi-level authentication system with role-based access control, dedicated dashboards for users and administrators, and real-time verification of product certification status through REST API integration. The successful completion of this project provides a stable foundation for the PMIS (Product Management Information System) website, which is ready for further functional development.
| Item Type: | Monograph (Project Report) |
|---|---|
| Uncontrolled Keywords: | Machine Learning, REST API, Laravel, Classification, UMKM, Halal, Product Management System (PMS) |
| Subjects: | T Technology > T Technology (General) > T58.6 Management information systems |
| Divisions: | Faculty of Information and Communication Technology > Informatics > 55201-(S1) Undergraduate Thesis |
| Depositing User: | Hanifi Abrar Setiawan |
| Date Deposited: | 13 Jan 2026 04:14 |
| Last Modified: | 13 Jan 2026 04:14 |
| URI: | http://repository.its.ac.id/id/eprint/129532 |
Actions (login required)
![]() |
View Item |
