Wigananto, Muhammad Fadhil (2026) Kompensasi Gangguan Angin Dalam Perencanaan Jalur Dan Penghindaran Rintangan Menggunakan Pendekatan AVO-IFDS Terintegrasi. Other thesis, Institut Teknologi Sepuluh Nopember.
|
Text
5022221094-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Sistem kontrol dan navigasi UAV, terutama jenis quadcopter terus menjadi fokus riset, khususnya untuk membuat penerbangan otonom pada lingkungan yang kompleks dan dinamis. Permasalahan yang ditemukan tidak hanya terbatas pada penentuan jalur menuju ke tujuan, tetapi juga mencakup kebutuhan untuk menghasilkan jalur yang aman terhadap rintangan, cukup halus untuk diikuti, dan tetap andal ketika terdapat rintangan dinamis maupun gangguan angin. Pada Tugas Akhir ini, dikembangkan sistem navigasi untuk quadcopter yang mampu melakukan perencanaan jalur global, pelacakan lintasan, dan penghindaran rintangan dinamis di lingkungan berangin. Perencanaan jalur global dilakukan menggunakan Interfered Fluid Dynamical System (IFDS) pada lingkungan 3D berukuran 60×30×30 m. Pelacakan lintasan dilakukan menggunakan Vector Field Guidance (VFG), sedangkan penghindaran rintangan dinamis dilakukan menggunakan Adaptive Velocity Obstacle (AVO). Ketahanan sistem dievaluasi dengan penambahan gangguan angin berbasis model Dryden. Hasil simulasi menunjukkan bahwa konfigurasi IFDS terbaik menghasilkan panjang lintasan 85,174 m dengan minimum clearance 3,204 m pada ρ=1,5. Pada pengujian VFG, parameter τ=1,0 menghasilkan mean Cross-Track Error (CTE ) 0,248 m dan max CTE 0,493 m. Pada skenario pengujian rintangan dinamis, AVO mampu mempertahankan jarak minimum 1,380 m dengan switching duration 12,950 sekon sehingga batas aman tetap terpenuhi. Pada pengujian gangguan angin, performa pelacakan posisi cenderung stabil, namun performa attitude menurun, ditunjukkan oleh peningkatan mean RMSE orientasi sekitar 28%. Pada tingkat turbulensi tertinggi, dengan kecepatan angin sekitar 12 m/s, ditemukan bahwa quadcopter tidak berhasil mencapai titik tujuan.
=================================================================================================================================
UAV control and navigation systems, particularly quadcopters, continue to be an active research focus, especially to enable autonomous flight in complex and dynamic environments. The challenges are not limited to finding a path to the destination but also include generating a trajectory that is safe with respect to obstacles, sufficiently smooth to be followed, and robust when dynamic obstacles and wind disturbances are present. This Final Project develops a quadcopter navigation system capable of global path planning, trajectory tracking, and dynamic obstacle avoidance in windy environments. Global path planning was performed using the Interfered Fluid Dynamical System (IFDS) in a 3D environment sized 60×30×30 m. Trajectory tracking was implemented using Vector Field Guidance (VFG), while Dynamic obstacle avoidance was carried out using the Adaptive Velocity Obstacle (AVO) method. System robustness was evaluated by introducing wind disturbances based on the Dryden model. Simulation results show that the best IFDS configuration produced a path length of 85.174 m with a minimum clearance of 3.204 m at ρ = 1.5. In the VFG evaluation, τ = 1.0 yielded a mean Cross-Track Error (CTE) of 0.248 m and a maximum CTE of 0.493 m. In the dynamic-obstacle scenario, AVO maintained a minimum distance of 1.380 m with a switching duration of 12.950 s, ensuring the safety constraint was satisfied. Under wind disturbance tests, position tracking performance remained relatively stable, but attitude performance degraded, indicated by an increase in mean orientation RMSE of about 28%. At the highest turbulence level, with wind velocity reaching approximately 12 m/s, the quadcopter was unable to reach the goal.
| Item Type: | Thesis (Other) |
|---|---|
| Uncontrolled Keywords: | Quadcopter, IFDS, VFG, AVO, Dryden Wind. |
| Subjects: | T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL152.8 Vehicles, Remotely piloted. Autonomous vehicles. T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL776 .N67 Quadrotor helicopters--Automatic control |
| Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis |
| Depositing User: | Muhammad Fadhil Wigananto |
| Date Deposited: | 21 Jan 2026 07:01 |
| Last Modified: | 21 Jan 2026 07:01 |
| URI: | http://repository.its.ac.id/id/eprint/129962 |
Actions (login required)
![]() |
View Item |
