Putra, Yoggy Harisusilo (2026) Pengembangan Convolutional Neural Network untuk Steganalisis Citra dengan Arbitrary Size dalam Mengatasi Cover-Source Mismatch. Masters thesis, Institut Teknologi Sepuluh Nopember.
|
Text
6025231037-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Steganalisis berbasis pembelajaran mendalam telah menunjukkan kemajuan signifikan dalam deteksi pesan tersembunyi pada gambar digital. Namun, dua tantangan utama masih membatasi penerapannya di dunia nyata, yaitu ukuran yang sewenang-wenang dan ketidaksesuaian sumber sampul (CSM). Arsitektur CNN konvensional umumnya dirancang dengan ukuran input tetap, sehingga kurang adaptif terhadap gambar dengan ukuran yang bervariasi. Selanjutnya, perbedaan distribusi data antar domain sering kali menyebabkan penurunan drastis dalam kinerja deteksi. Studi ini mengusulkan arsitektur CNN-SPP-MHA yang menggabungkan spatial pyramid pooling (SPP) untuk menangani input berukuran arbitrer dan multi-head attention (MHA) untuk meningkatkan sensitivitas terhadap sinyal embedding. Selanjutnya, pendekatan adaptasi domain berbasis LMMD diterapkan untuk meminimalkan perbedaan distribusi fitur antara domain sumber dan target. Hasil eksperimen menunjukkan bahwa model yang diusulkan dapat mempertahankan kinerja tinggi dalam berbagai skenario ukuran gambar, terutama pada gambar kecil dengan peningkatan akurasi seiring dengan peningkatan muatan. Dalam skenario CSM, model menunjukkan kemampuan generalisasi yang kuat di berbagai domain BOSSBase 1.01 ↔ Alaska#2 dengan akurasi di atas 97%, disertai stabilitas dalam kerugian klasifikasi dan kerugian LMMD selama pelatihan. Namun, akurasi menurun dalam skenario intra-domain Alaska#2 → Alaska#2 karena heterogenitas kamera yang tinggi dalam dataset. Secara keseluruhan, metode yang diusulkan menunjukkan efektivitas dalam mengatasi dua tantangan utama steganalisis modern, sambil membuka peluang untuk penelitian lebih lanjut guna meningkatkan ketahanan dalam kondisi dunia nyata yang lebih kompleks. =================================================================================================================================
Deep learning-based steganalysis has shown significant progress in the detection of hidden messages in digital images. However, two major challenges still limit its application in the real world, namely arbitrary size and cover-source mismatch (CSM). Conventional CNN architectures are generally designed with fixed input sizes, making them less adaptive to images of varying sizes. Furthermore, differences in data distribution between domains often cause a drastic decline in detection performance. This study proposes a CNN-SPP-MHA architecture that combines spatial pyramid pooling (SPP) to handle arbitrary-sized inputs and multi-head attention (MHA) to improve sensitivity to embedding signals. Furthermore, an LMMD-based domain adaptation approach is applied to minimize the difference in feature distribution between the source and target domains. The experimental results show that the proposed model can maintain high performance in various image size scenarios, especially in small images with increased accuracy as the payload increases. In the CSM scenario, the model demonstrates strong generalization capabilities across domains BOSSBase 1.01 ↔ Alaska#2 with an accuracy above 97%, accompanied by stability in classification loss and LMMD loss during training. However, accuracy decreases in the intra domain scenario Alaska#2 → Alaska#2 due to the high camera heterogeneity in the dataset. Overall, the proposed method demonstrates effectiveness in addressing two major challenges of modern steganalysis, while opening opportunities for further research to improve robustness in more complex real-world conditions.
| Item Type: | Thesis (Masters) |
|---|---|
| Uncontrolled Keywords: | Information Hiding, Infrastruktur TIK, Keamanan Informasi, Keamanan Komunikasi, Keamanan Siber, Multi-head Attention, Spatial Pyramid Pooling, Subdomain Adaptation. |
| Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques. Image analysis--Data processing. |
| Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55101-(S2) Master Thesis |
| Depositing User: | Yoggy Harisusilo Putra |
| Date Deposited: | 26 Jan 2026 09:34 |
| Last Modified: | 26 Jan 2026 09:34 |
| URI: | http://repository.its.ac.id/id/eprint/130579 |
Actions (login required)
![]() |
View Item |
