Analisis Pengaruh Doping Lithium Fluoride (LiF) dan Pelapisan Graphitic Carbon Nitride (g-C3N4) pada Katoda Bebas Kobalt (LiNi0.9Mn0.07Al0.03O2) Terhadap Kinerja Elektrokimia Baterai Ion-Litium

Rahman, Ude (2026) Analisis Pengaruh Doping Lithium Fluoride (LiF) dan Pelapisan Graphitic Carbon Nitride (g-C3N4) pada Katoda Bebas Kobalt (LiNi0.9Mn0.07Al0.03O2) Terhadap Kinerja Elektrokimia Baterai Ion-Litium. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6011241012_Master_Thesis.pdf] Text
6011241012_Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (5MB) | Request a copy

Abstract

Sintesis LiNi0.9Mn0.07Al0.03O2 (NMA) telah dilakukan untuk aplikasi katoda bebas cobalt baterai ion litium. Sintesis dilakukan menggunakan metode kopresipitasi dengan kontrol pH yang tepat dan dilakukan di bawah atmosfer nitrogen. Penelitian ini dilakukan untuk menganalisis kapasitas dan performa baterai yang baik melalui modifikasi katoda NMA dengan dopan ion florida (F) dan pelapisan permukaan (coating) menggunakan graphitic carbon nitride (g-C3N4). Proses doping dilakukan dengan mencampurkan litium florida sebanyak 0,0005, 0,005, dan 0,1 mol dengan 1 mol presipitat NMA (OH)2 dan 1 mol% LiOH kemudian dikalsinasi pada suhu 800 oC selama 12 jam. Proses pelapisan dilakukan dengan mencampur 5%, 10%, dan 15% melamin secara langsung dengan material katoda dan dipanaskan bertahap pada suhu 350 oC selama 2 jam dan 550oC selama 4 jam. Material yang telah didoping diberi kode NMA/0.0005F, NMA/0.005F, dan NMA/0.1F. Sedangkan material yang telah dicoating diberi kode NMA/g-C3N4 5%, NMA/g-C3N4 10%, dan NMA/g-C3N4 15%. Identifikasi struktur kristal dengan uji X-ray Diffraction (XRD), struktur mikro dengan Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX), dan keberadaan lapisan g-C₃N₄ dengan Fourier Transform Infrared Spectroscopy (FTIR). Untuk mengevaluasi kapasitas dan performa elektrokimia, dilakukan pengujian Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), dan Galvanostatic Charge-Discharge (GCD). Analisis struktur kristal menunjukkan doping LiF memperburuk tingkat kation mixing linear dengan kenaikan konsentrasi dopan. Sedangkan coating menggunakan g-C₃N₄ dengan kadar optimal meningkatkan stabilitas struktur dan mengurangi tingkat kation mixing. Hasil SEM menunjukkan proses coating meningkatkan rata-rata ukuran partikel dari 347.98 nm pada pristine NMA menjadi 466.08 nm pada NMA/g-C3N4 5%, 539.10 nm pada NMA/g-C3N4 10%, dan 579.39 nm pada NMA/g-C3N4 15%. Hasil analisis FTIR menunjukkan proses coating berhasil dilakukan. Hasil pengujian elektrokimia menunjukkan tidak tidak terjadi perubahan fase struktural selama proses interkalasi dan deinterkalasi. Selain itu, coating g-C3N4 dengan kadar 5 wt% melamin mampu menurunkan resistansi transfer muatan, meningkatkan kapasitas spesifik dari 57.74 mAh/g menjadi 87.35 mAh/g, kestabilan siklus dari 64% menjadi 76%, difusi ion litium menjadi 5.1 x 10-10 cm2.s-1, reversibilitas, dan mampu mempertahankan kapasitas pada arus tinggi. Coating dengan g-C3N4 pada kadar optimal menunjukkan peningkatan kinerja katoda, sedangkan doping dengan LiF justru memperburuk kinerja katoda.
======================================================================================================================================
The synthesis of LiNi₀.₉Mn₀.₀₇Al₀.₀₃O₂ (NMA) has been carried out for cobalt-free cathode applications in lithium-ion batteries. The synthesis was performed using the coprecipitation method with precise pH control and carried out under a nitrogen atmosphere. This study was conducted to analyse the capacity and performance of batteries through the modification of NMA cathodes with fluoride (F) ion doping and surface coating using graphitic carbon nitride (g-C3N4). The doping process was carried out by mixing 0.0005, 0.005, and 0.1 mol of lithium fluoride with 1 mol of NMA (OH)2 precipitate and 1 mol% LiOH, then calcined at 800 °C for 12 hours. The coating process was carried out by mixing 5%, 10%, and 15% melamine directly with the cathode material and gradually heated at 350 °C for 2 hours and 550 °C for 4 hours. The doped materials were coded NMA/0.0005F, NMA/0.005F, and NMA/0.1F. Meanwhile, the coated materials were coded NMA/g-C3N4 5%, NMA/g-C3N4 10%, and NMA/g-C3N4 15%. Identification of crystal structure using X-ray Diffraction (XRD) testing, microstructure using Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX), and the presence of g-C₃N₄ layers using Fourier Transform Infrared Spectroscopy (FTIR). To evaluate the electrochemical capacity and performance, Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), and Galvanostatic Charge-Discharge (GCD) tests were conducted. Crystal structure analysis showed that LiF doping worsened the linear cation mixing level with an increase in dopant concentration. Meanwhile, coating with g-C₃N₄ at an optimal concentration improved structural stability and reduced the level of cation mixing. SEM results showed that the coating process increased the average particle size from 347.98 nm in pristine NMA to 466.08 nm in NMA/g-C3N4 5%, 539.10 nm in NMA/g-C3N4 10%, and 579.39 nm in NMA/g-C3N4 15%. FTIR analysis results showed that the coating process was successful. Electrochemical testing results showed that no structural phase changes occurred during the intercalation and deintercalation processes. In addition, g-C3N4 coating with a 5 wt% melamine content was able to reduce charge transfer resistance, increase specific capacity from 57.74 mAh/g to 87.35 mAh/g, cycle stability from 64% to 76%, lithium ion diffusion to 5.1 x 10⁻¹⁰ cm²·s⁻¹, reversibility, and maintain capacity at high currents. Coating with g-C3N4 at optimal levels shows improved cathode performance, whereas doping with LiF actually worsens cathode performance.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Baterai ion-litium, Graphitic carbon nitride, Katoda NMA, Kopresipitasi, Lithium Fluoride, Lithium-Ion Battery, Graphitic carbon nitride, NMA Cathode, Coprecipitation, Lithium Fluoride.
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2921 Lithium cells.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2941 Storage batteries
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2943 Battery chargers.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Material & Metallurgical Engineering > 27101-(S2) Master Thesis
Depositing User: Ude Rahman
Date Deposited: 27 Jan 2026 07:59
Last Modified: 27 Jan 2026 08:01
URI: http://repository.its.ac.id/id/eprint/130588

Actions (login required)

View Item View Item