Analisis Dampak Fenomena Mesoscale Convective System terhadap Perubahan Angin dan Gelombang Laut Wilayah Perairan Indonesia

Setiawan, Fajar (2026) Analisis Dampak Fenomena Mesoscale Convective System terhadap Perubahan Angin dan Gelombang Laut Wilayah Perairan Indonesia. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6016241022-Master_Thesis.pdf] Text
6016241022-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Cuaca ekstrem berupa angin kencang dan gelombang tinggi di wilayah perairan seringkali disebabkan oleh terbentuknya sistem konvektif dalam skala meso (Mesoscale Convective System, MCS). Namun, studi mengenai dampak spesifik MCS terhadap kondisi perairan Indonesia masih belum memadai, penelitian sebelumnya cenderung berfokus pada aspek atmosferik daratan. Penelitian ini bertujuan untuk menganalisis dampak MCS terhadap perubahan kecepatan angin dan ketinggian gelombang wilayah perairan Indonesia dengan mengukur data angin dan kondisi perairan (gelombang dan Signal to Noise Ratio) pada area MCS dan penyangganya (Buffer Zone). Karakterisasi MCS dihitung berdasarkan data satelit Himawari-8/9, sedangkan produk luaran diestimasi dari satelit Cyclone-GNSS (CyGNSS) dan altimetri multimisi. Analisis hubungan non-linear antara karakteristik MCS (luas, intensitas, serta parameter lain) dengan variabel oseanografi dimodelkan menggunakan algoritma Random Forest. Hasil penelitian menunjukkan bahwa karakter MCS dapat menyebabkan peningkatan kecepatan angin dan kondisi perairan, namun model yang dibangun masih belum sepenuhnya menjawab dengan baik prediksi dampak yang ditimbulkan. Model regresi hanya menghasilkan nilai korelasi sebesar 0.37 terhadap dampak gelombang yang ditimbulkan, sedangkan model klasifikasi hanya menghasilkan F1-Score terbaik sebesar 42.4%. Pemodelan dampak terhadap Signal to Noise Ratio (SNR) juga memberikan gambaran bahwa parameter ini tidak hanya disebabkan oleh kondisi gelombang saja, namun juga faktor eksternal lain yang tidak diperhitungkan dalam model.
===================================================================================================================================
Extreme weather events such as high winds and significant wave heights in marine areas are frequently driven by the formation of Mesoscale Convective Systems (MCS). Despite their impact, specific studies on the influence of MCS on Indonesian waters remain limited, as previous research has predominantly focused on land-based atmospheric aspects. This study aims to analyze the impact of MCS on variations in wind speed and wave height within Indonesian waters by measuring wind data and marine conditions, specifically wave height and Signal-to-Noise Ratio (SNR) within the MCS area and its surrounding buffer zones. MCS characterization was derived from Himawari-8/9 satellite data, while output products were estimated using Cyclone Global Navigation Satellite System (CyGNSS) data and multi-mission altimetry. The non-linear relationships between MCS characteristics (area, intensity, and other parameters) and oceanographic variables were modeled using the Random Forest algorithm. The results indicate that MCS characteristics contribute to increased wind speeds and altered marine conditions. However, the developed models have not yet fully predicted these impacts with high precision. The regression model yielded a correlation value of only 0.37 regarding wave impacts, while the classification model achieved a peak F1-Score of 42.4%. Furthermore, modeling the impact on SNR suggests that this parameter is influenced not only by wave conditions but also by external factors which is not accounted for in the current model.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Mesoscale Convective System (MCS), angin, gelombang signifikan, Himawari-8/9, Cyclone-GNSS (CyGNSS), Altimetri multimisi, Random Forest, Mesoscale Convective System (MCS), wind, significant wave height, Himawari-8/9, Cyclone-GNSS (CyGNSS), Multimission altimetry, Random Forest
Subjects: G Geography. Anthropology. Recreation > G Geography (General) > G70.5.I4 Remote sensing
G Geography. Anthropology. Recreation > GC Oceanography > GC101.2 Seawater--Analysis
Q Science > Q Science (General) > Q325.5 Machine learning. Support vector machines.
Q Science > QC Physics > QC179 Gravitational waves--Measurement--Statistical methods
Q Science > QC Physics > QC871 Meteorology--Observations.
Divisions: Faculty of Civil Engineering and Planning > Geomatics Engineering > 29101-(S2) Master Thesis
Depositing User: Fajar Setiawan
Date Deposited: 27 Jan 2026 02:59
Last Modified: 27 Jan 2026 02:59
URI: http://repository.its.ac.id/id/eprint/130615

Actions (login required)

View Item View Item