Casita, Cintantya Budi (2026) Seismic Response Enhancement Of Steel Beam–Column RBS Connection Through Optimized Cover-Plate Integration. Doctoral thesis, Institut Teknologi Sepuluh Nopember.
|
Text
7012221012-DOCTORAL.pdf - Accepted Version Restricted to Repository staff only Download (21MB) | Request a copy |
Abstract
The implementation of seismically resilient construction methods is essential to mitigate casualties and structural damage resulting from earthquakes, as highlighted by post-Northridge research. Previous investigations have shown that most Reduced Beam Section (RBS) connection’s initial yield still occurs near from the column’s face. To address this limitation, an experimental investigation is proposed to evaluate the performance of the Reduced Beam Section with Cover Plate (RBSCP) connection, which incorporates cover plates on the top and bottom flanges of the RBS beam. While previous RBS modification studies have primarily focused on failure mechanisms and plastic hinge formation, this study systematically evaluates the integration of cover plates into RBS connections by identifying the effective cover plate thickness under cyclic loading and quantitatively assessing stress redistribution, stiffness–ductility balance, and overall seismic performance through combined numerical and experimental investigations. This approach fills an important research gap by clarifying how cover plate thickness influences cyclic response and performance balance A combined numerical–experimental approach was employed. Detailed finite element simulations were performed to evaluate the cyclic behavior of RBSCP connection against Steel Conventional (NRBS), Cover Plate (CP), and RBS configurations. The analyses examined key seismic performance indicators, including plastic strain distribution, Von Mises stress, energy dissipation, and hysteresis behavior. In parallel, four-point bending experimental tests were conducted and analyzed using Digital Image Correlation (DIC) to capture the flexural response and evaluated using numerical analysis with ABAQUS. A parametric investigation was also conducted to determine the optimal cover plate thickness for RBSCP configurations. Results from both analyses consistently demonstrated that RBSCP connections achieved the best balance between stiffness and ductile deformation, characterized by moderate stiffness, effective curvature, and sustained energy absorption. Among the parameters studied, cover plate thickness has the most significant influence on seismic behavior. The most effective thickness is approximately equal to the beam flange thickness, as this configuration yields substantial improvement in overall performance. It promotes stable plastic hinge formation, efficient stress transfer, and balanced stiffness–ductility interaction, offering about 3–6% higher moment capacity, 3–5% greater energy dissipation, and 2–5% lower risk of local buckling compared with RBS designs. This condition also satisfies and exceeds the Strong Column–Weak Beam (SCWB) requirement, confirming proper strength and cyclic stability. Further increases in cover plate thickness enhance overall strength but contribute marginally to seismic performance.
=======================================================================================================================
Penerapan metode konstruksi tahan gempa diperlukan untuk mengurangi korban jiwa dan kerusakan struktural akibat gempa bumi, sebagaimana ditunjukkan oleh berbagai penelitian pasca-gempa Northridge. Studi terdahulu mengungkapkan bahwaleleh awal masih terjadi di dekat muka kolom pada sebagian besar sambungan Reduced Beam Section (RBS), yang berpotensi meningkatkan kerentanan struktur. Untuk meningkatkan kapasitas seismik sambungan RBS dan mengurangi risiko kegagalan, penelitian ini melakukan investigasi eksperimental terhadap sambungan Reduced Beam Section with Cover Plate (RBSCP), yaitu sambungan RBS yang dilengkapi cover plate pada sayap atas dan bawah balok, dengan tujuan meningkatkan kinerja struktur terhadap beban gempa. Tidak seperti modifikasi RBS sebelumnya yang umumnya hanya menitikberatkan pada mekanisme kegagalan dan pembentukan sendi plastis, studi ini secara sistematis dan komprehensif mengevaluasi pengembangan sambungan RBS menggunakan integrasi cover plates dengan mengidentifikasi ketebalan cover plate yang efektif di bawah pembebanan siklik serta menilai secara kuantitatif redistribusi tegangan, keseimbangan kekakuan–daktilitas, dan kinerja seismik secara keseluruhan melalui investigasi numerik dan eksperimental terpadu. Penelitian ini mengintegrasikan pendekatan numerik dan eksperimental untuk mengevaluasi respons siklik sambungan RBSCP dan membandingkannya dengan sambungan baja konvensional (NRBS), sambungan dengan cover plate (CP), serta sambungan RBS. Parameter kinerja seismik yang dianalisis meliputi distribusi regangan plastis, tegangan Von Mises, disipasi energi, dan perilaku histeresis. Secara paralel, pengujian eksperimental four-point bending dilakukan dan dianalisis menggunakan Digital Image Correlation (DIC) untuk menangkap respons lentur secara rinci, serta divalidasi melalui pemodelan numerik menggunakan ABAQUS. Studi parametrik selanjutnya dilakukan untuk menentukan ketebalan cover plate yang paling efektif pada sambungan RBSCP. Hasil analisis menunjukkan bahwa sambungan RBSCP memberikan kombinasi kinerja terbaik antara kekakuan dan daktilitas, serta distribusi energi yang efisien. Di antara parameter yang diteliti, ketebalan cover plate menjadi faktor paling berpengaruh terhadap perilaku seismik sambungan. Ketebalan yang paling efektif berada pada kisaran yang setara dengan ketebalan sayap balok, karena konfigurasi ini menghasilkan peningkatan kinerja yang signifikan melalui pembentukan sendi plastis yang stabil, transfer tegangan yang lebih merata, serta keseimbangan optimal antara kekakuan dan daktilitas. Konfigurasi tersebut menghasilkan peningkatan kapasitas momen sekitar 3–6%, disipasi energi 3–5% lebih besar, serta penurunan risiko tekuk lokal sebesar 2–5% dibandingkan sambungan RBS konvensional. Selain itu, sambungan RBSCP memenuhi dan melampaui persyaratan Strong Column–Weak Beam (SCWB), yang menegaskan kestabilan dan ketahanan siklik yang baik. Sebaliknya, penambahan ketebalan cover plate diatas ketebalan sayap balok memang meningkatkan kekuatan, namun hanya memberikan kontribusi terbatas terhadap peningkatan kinerja seismik.
Actions (login required)
![]() |
View Item |
