Pengaplikasian Material Piezokomposit Berbahan Dasar Semen dan Limbah Kaca sebagai Alternatif Elemen Sensor Terintegrasi pada Struktur Beton

Hayu, Gati Annisa (2026) Pengaplikasian Material Piezokomposit Berbahan Dasar Semen dan Limbah Kaca sebagai Alternatif Elemen Sensor Terintegrasi pada Struktur Beton. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 7012221008-Dissertation.pdf] Text
7012221008-Dissertation.pdf - Accepted Version
Restricted to Repository staff only

Download (8MB) | Request a copy

Abstract

Integrasi sensor piezoelektrik konvensional ke dalam beton sering terkendala oleh ketidaksesuaian sifat mekanik dan terbentuknya interfacial transition zone (ITZ) yang lemah, sehingga membatasi keandalan pemantauan kesehatan struktur. Untuk mengatasi permasalahan ini, penelitian ini mengembangkan sensor piezoelektrik berbasis semen, yaitu Cement-based Piezoelectric Composite (CPC) dan Cement–Glass Powder-based Piezoelectric Composite (CPCGP), yang dirancang sebagai sensor tertanam dengan kompatibilitas mekanik yang lebih baik terhadap mortar. Sensor diproduksi menggunakan medan listrik polarisasi rendah sebesar 250 dan 375 V/mm dengan durasi 40 dan 60 menit, kemudian dievaluasi berdasarkan karakteristik piezoelektriknya dan kinerjanya sebagai sensor SHM. Koefisien piezoelektrik (d₃₃) digunakan untuk menilai efektivitas polarisasi, sedangkan kinerja pemantauan kondisi struktural dianalisis melalui pendekatan Electromechanical Impedance (EMI) dengan memantau perubahan konduktansi dan G-RMSD selama pengujian kuat tekan dan lentur. Hasil penelitian menunjukkan bahwa kombinasi medan listrik 375 V/mm dan durasi polarisasi 60 menit menghasilkan nilai d₃₃ tertinggi pada kedua sistem. CPCGP menghasilkan nilai d₃₃ yang sebanding dengan CPC terbaik, namun dengan sebaran yang lebih homogen dan stabil seiring pertambahan umur akibat peningkatan densifikasi dan kualitas ITZ oleh glass powder. Respons EMI yang dihasilkan, berupa perubahan konduktansi dan G- RMSD, berkorelasi kuat dengan perkembangan kuat tekan hingga umur 90 hari serta dengan inisiasi dan pertumbuhan kerusakan pada pengujian lentur. Sensor terbaik pada masing-masing sistem (C4 dan GP4) mampu merepresentasikan hubungan antara G-RMSD, kuat tekan, dan regangan secara konsisten, dengan CPCGP menunjukkan respons yang lebih stabil, sensing sensitivity dan recovery ratio yang lebih tinggi. Secara keseluruhan, penambahan glass powder meningkatkan sensing performance melalui perbaikan densifikasi dan kopling elektromekanis sensor–struktur, sehingga CPCGP yang dipolarisasi pada medan listrik rendah berpotensi menjadi sensor tertanam yang andal untuk aplikasi Structural Health Monitoring pada infrastruktur beton.
========================================================================================================================
he integration of conventional piezoelectric sensors into concrete structures is often limited by mechanical incompatibility and the formation of a weak interfacial transition zone (ITZ), which reduces the reliability of structural health monitoring (SHM). To address this limitation, this study develops cement-based piezoelectric sensors, namely Cement-based Piezoelectric Composite (CPC) and Cement–Glass Powder-based Piezoelectric Composite (CPCGP), designed as embedded sensors with improved mechanical compatibility with mortar. The sensors were fabricated under low electric-field poling conditions of 250 and 375 V/mm with poling durations of 40 and 60 minutes, and their piezoelectric properties and SHM performance were evaluated. The piezoelectric strain coefficient (d₃₃) was used to assess poling effectiveness, while the sensing performance was investigated using the Electromechanical Impedance (EMI) method by monitoring conductance and G-RMSD during compressive strength development and flexural loading. The results show that the combination of a 375 V/mm electric field and a 60-minute poling duration produces the highest d₃₃ values in both CPC and CPCGP systems. Although CPCGP exhibits d₃₃ values comparable to the best- performing CPC, it demonstrates a more homogeneous and stable response with aging due to improved densification and ITZ quality provided by the glass powder. Variations in conductance and G-RMSD correlate strongly with compressive strength development up to 90 days and with crack initiation and propagation during flexural loading. The best-performing sensors in each system (C4 and GP4) consistently represent the relationships between G-RMSD, compressive strength, and strain, with CPCGP showing more stable responses, higher sensing sensitivity, and better recovery ratio. Overall, the incorporation of glass powder enhances sensing performance through improved densification and electromechanical coupling between the sensor and the host structure, making CPCGP polarized under low electric fields a promising embedded sensor for concrete structural health monitoring.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: limbah kaca, piezoelektrik, piezokomposit, sensor, structural health monitoring system glass waste, piezoelectricity, piezocomposite, sensor, structural health monitoring system
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA1573 Detectors. Sensors
T Technology > TA Engineering (General). Civil engineering (General) > TA418.16 Materials--Testing.
T Technology > TD Environmental technology. Sanitary engineering > TD794.5 Recycling (Waste, etc.)
T Technology > TH Building construction > TH880 Sustainable buildings. Sustainable construction. Green building
Divisions: Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Civil Engineering > 22001-(S3) PhD Thesis
Depositing User: Gati Annisa Hayu
Date Deposited: 30 Jan 2026 03:02
Last Modified: 30 Jan 2026 03:02
URI: http://repository.its.ac.id/id/eprint/131221

Actions (login required)

View Item View Item