Simulasi Mekanisme Penguatan Ketangguhan Sambungan Struktur Metamaterial Dengan Variasi Bentuk Interlock Menggunakan Metode Elemen Hingga (FEM): Beban Impak Dan Bending

Sari, Theresa Pradipta (2026) Simulasi Mekanisme Penguatan Ketangguhan Sambungan Struktur Metamaterial Dengan Variasi Bentuk Interlock Menggunakan Metode Elemen Hingga (FEM): Beban Impak Dan Bending. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5011221183-Undergraduate_thesis.pdf] Text
5011221183-Undergraduate_thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (10MB) | Request a copy

Abstract

Penelitian ini bertujuan menganalisis mekanisme penguatan ketangguhan Penelitian ini menganalisis pengaruh variasi bentuk dan jumlah elemen interlock terhadap ketangguhan sambungan struktur metamaterial pada pembebanan lentur dan impak ekuivalen kuasistatik. Desain interlock terinspirasi dari struktur elytra Diabolical Ironclad Beetle dan dibandingkan dengan geometri trapesium serta geometri T. Material yang digunakan adalah Acrylonitrile Butadiene Styrene (ABS). Analisis dilakukan menggunakan metode elemen hingga (Finite Element Method/FEM) dengan ANSYS Static Structural untuk simulasi uji bending dan pendekatan impak ekuivalen kuasistatik. Variasi jumlah interlock dirancang dengan sistem skala sehingga luas permukaan kontak total tetap konstan. Hasil simulasi uji bending menunjukkan bahwa peningkatan jumlah interlock secara umum meningkatkan gaya maksimum dan kekakuan lentur, dengan nilai flexural strength berada pada kisaran 900–1200 N/mm dan kekakuan lentur maksimum mencapai sekitar 1100 N/mm. Nilai strain energy berada pada rentang 60–80 mJ, dipengaruhi oleh stabilitas deformasi dan distribusi tegangan. Geometri elytra menunjukkan keseimbangan terbaik antara kekuatan dan ketangguhan, sedangkan geometri trapesium menghasilkan kekakuan tinggi namun lebih rentan terhadap konsentrasi tegangan lokal pada jumlah interlock besar. Pada pengujian impak ekuivalen hingga 300 N dan 12000 N, konfigurasi dengan jumlah interlock menengah menunjukkan distribusi tegangan paling merata, dengan tegangan maksimum berkisar 27–55 MPa dan deformasi maksimum 0,01–0,05 mm. Perbandingan dengan uji eksperimental menunjukan keselarasan hasil antara simulasi dan eksperimen meskipun terdapat perbedaan kondisi antara simulasi dan uji langsung. Secara umum, penambahan jumlah interlock meningkatkan kekakuan, kekuatan lentur, kapasitas penyerapan energi, serta menurunkan deformasi global Penambahan interlock berlebih menurunkan efektivitas penguatan akibat peningkatan konsentrasi tegangan dan ketidakstabilan deformasi.
======================================================================================================================================
This study aims to analyze the mechanism of toughness enhancement and the influence of variations in the shape and number of interlock elements on the toughness of metamaterial structural joints under bending and quasi-static equivalent impact loading. The interlock designs were inspired by the elytra structure of the Diabolical Ironclad Beetle and compared with trapezoidal and T-shaped geometries. The material used in this study was Acrylonitrile Butadiene Styrene (ABS). The analysis was conducted using the Finite Element Method (FEM) with ANSYS Static Structural to simulate bending tests and a quasi-static equivalent impact approach. Variations in the number of interlocks were designed using a scaling system to maintain a constant total contact surface area. The bending simulation results show that increasing the number of interlocks generally enhances the maximum force and flexural stiffness, with flexural strength values ranging from 900 to 1200 N/mm and a maximum flexural stiffness of approximately 1100 N/mm. The strain energy values ranged between 60 and 80 mJ, influenced by deformation stability and stress distribution. The elytra geometry exhibited the best balance between strength and toughness, while the trapezoidal geometry produced high stiffness but was more susceptible to local stress concentration at higher interlock numbers. Under quasi-static equivalent impact loading up to 300 N and 12,000 N, configurations with a moderate number of interlocks showed the most uniform stress distribution, with maximum stress values ranging from 27 to 55 MPa and maximum deformation between 0.01 and 0.05 mm. Comparison with experimental results indicates good agreement between simulation and experimental data, despite differences in testing conditions between numerical simulations and physical experiments. Overall, increasing the number of interlocks improves stiffness, flexural strength, and energy absorption capacity while reducing global deformation. However, excessive interlock addition reduces strengthening effectiveness due to increased stress concentration and deformation instability.

Item Type: Thesis (Other)
Uncontrolled Keywords: Metamaterial,Interlock,Manufaktur aditif, Penguatan ketangguhan, Additive manufacturing,Toughening enhance
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA347 Finite Element Method
T Technology > TA Engineering (General). Civil engineering (General) > TA433 Strength of materials.
T Technology > TS Manufactures
T Technology > TS Manufactures > TS161 Materials management.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Material & Metallurgical Engineering > 28201-(S1) Undergraduate Thesis
Depositing User: Theresa Pradipta Sari
Date Deposited: 31 Jan 2026 04:27
Last Modified: 31 Jan 2026 04:27
URI: http://repository.its.ac.id/id/eprint/131344

Actions (login required)

View Item View Item