Analisis Interaksi Fasa CaZrO₃ Dengan Ca₂SiO₄ Sebagai Potensi Material Penangkap CO₂ Pada Temperatur Menengah

Masdya, Yoga (2026) Analisis Interaksi Fasa CaZrO₃ Dengan Ca₂SiO₄ Sebagai Potensi Material Penangkap CO₂ Pada Temperatur Menengah. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6001241005-Master_Thesis.pdf] Text
6001241005-Master_Thesis.pdf
Restricted to Repository staff only

Download (10MB) | Request a copy

Abstract

Penelitian ini bertujuan untuk menganalisis interaksi fasa CaZrO₃ dengan Ca₂SiO₄ serta dampaknya terhadap struktural dan kinerja material sebagai sorben penangkap CO₂ suhu tinggi. Studi ini mengevaluasi pengaruh kombinasi fasa Ca₂SiO₄–CaZrO₃ terhadap perilaku karbonasi–dekarbonasi, stabilitas termal, dan karakteristik pori, guna mendukung pengembangan material penangkap CO₂ yang berkelanjutan. Penelitian difokuskan pada tiga aspek utama, yaitu pengaruh proses karbonasi terhadap fasa Ca₂SiO₄, perubahan struktur kristal sebelum dan sesudah karbonasi akibat keberadaan fasa CaZrO₃, serta penentuan temperatur adsorpsi CO₂ yang optimal. Material disintesis melalui pemurnian zirkon menggunakan metode leaching HCl, diikuti proses milling dan kalsinasi pada temperatur 1000–1200 °C untuk menghasilkan sistem Ca₂SiO₄–CaZrO₃ dengan variasi rasio molar. Proses karbonasi dilakukan hingga 650 °C, dan karakterisasi material meliputi XRD (analisis Rietveld), SEM–EDX, BET, TGA, serta CO₂-TPD. Hasil penelitian menunjukkan bahwa keberadaan CaZrO₃ berperan sebagai fasa penstabil yang efektif dalam menekan sintering dan menjaga integritas struktur Ca₂SiO₄ selama siklus karbonasi–dekarbonasi, namun peningkatan fraksinya cenderung menurunkan kapasitas penyerapan CO₂ akibat berkurangnya situs basa Ca yang reaktif. Pada komposisi 1:1, kapasitas adsorpsi CO₂ maksimum mencapai 0,52 mmol CO₂ g⁻¹ pada temperatur adsorpsi 600 °C, sedangkan Ca₂SiO₄ murni menunjukkan temperatur adsorpsi optimum yang lebih rendah, yaitu 500 °C, akibat aktivasi efektif situs basa kuat sebelum terjadinya dekarbonasi. Peningkatan fraksi Ca₂SiO₄ pada sistem 9CSO/CZO menurunkan kapasitas adsorpsi menjadi sekitar 0,20 mmol CO₂ g⁻¹ pada 650 °C, namun meningkatkan kestabilan struktur dan porositas material. Hasil CO₂-TPD menegaskan bahwa mekanisme adsorpsi CO₂ pada sistem ini didominasi oleh pembentukan karbonat permukaan yang bersifat reversibel tanpa pembentukan karbonat bulk yang masif.
=================================================================================================================================
This study aims to analyze the phase interactions between CaZrO₃ and Ca₂SiO₄ and their impact on structural and material performance as high-temperature CO₂ sorbents. The effects of combining Ca₂SiO₄ and CaZrO₃ phases on carbonation–decarbonation behavior, thermal stability, and pore characteristics were evaluated to support the development of sustainable CO₂ capture materials. The investigation focused on three main aspects: the influence of carbonation on the Ca₂SiO₄ phase, changes in crystal structure before and after carbonation induced by the presence of CaZrO₃, and the determination of the optimal CO₂ adsorption temperature. The materials were synthesized through zircon purification via HCl leaching, followed by milling and calcination at temperatures of 1000–1200 °C to produce Ca₂SiO₄–CaZrO₃ systems with varying molar ratios. Carbonation was conducted at temperatures up to 650 °C, and the materials were characterized using XRD with Rietveld refinement, SEM–EDX, BET surface area analysis, TGA, and CO₂-TPD. The results demonstrate that CaZrO₃ acts as an effective stabilizing phase by suppressing sintering and preserving the structural integrity of Ca₂SiO₄ during carbonation–decarbonation cycles; however, increasing its fraction tends to reduce CO₂ uptake due to a decrease in reactive Ca-based basic sites. For the 1:1 composition, the maximum CO₂ adsorption capacity reaches 0.52 mmol CO₂ g⁻¹ at an adsorption temperature of 600 °C, whereas pure Ca₂SiO₄ exhibits a lower optimal adsorption temperature of 500 °C, attributed to the effective activation of strong basic sites prior to decarbonation. Increasing the Ca₂SiO₄ fraction in the 9CSO/CZO system reduces the adsorption capacity to approximately 0.20 mmol CO₂ g⁻¹ at 650 °C, while enhancing structural stability and porosity. CO₂-TPD results confirm that CO₂ adsorption in this system is predominantly governed by the formation of reversible surface carbonates without the development of extensive bulk carbonate phases.

Item Type: Thesis (Masters)
Uncontrolled Keywords: CaCO3, CaZrO₃, Ca₂SiO₄, penangkap CO₂,CaCO3, CaZrO₃, Ca₂SiO₄, CO₂ capture
Subjects: Q Science > QC Physics > QC162 Adsorption and absorption
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45101-(S2) Master Thesis
Depositing User: Yoga Masdya
Date Deposited: 02 Feb 2026 02:46
Last Modified: 02 Feb 2026 02:46
URI: http://repository.its.ac.id/id/eprint/131452

Actions (login required)

View Item View Item