Fatigue Performance of Precast Steel Fiber Reinforced Concrete Slab Track

Setiamanah, Danny Triputra (2026) Fatigue Performance of Precast Steel Fiber Reinforced Concrete Slab Track. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 7012212002-Doctoral.pdf] Text
7012212002-Doctoral.pdf - Accepted Version
Restricted to Repository staff only

Download (9MB) | Request a copy

Abstract

Indonesia merencanakan perluasan jaringan kereta cepat yang diawali oleh koridor Jakarta–Bandung dan dilanjutkan dengan pengembangan jaringan yang lebih luas di Pulau Jawa. Kondisi ini mendorong kebutuhan sistem slab track (ballastless track) yang tahan lama, dapat diproduksi secara domestik, serta memiliki kinerja kelelahan yang andal terhadap beban berulang akibat operasi kereta. Disertasi ini membangun kerangka kerja terintegrasi berbasis eksperimen dan numerik untuk mengevaluasi respons statik dan kelelahan siklus tinggi pada spesimen slab-track beton bertulang yang ditujukan untuk aplikasi di Indonesia. Dua varian desain slab-track non-prategang (NC-0.0-1 dan NC-0.0-2) diteliti sebagai solusi kandidat yang merepresentasikan keseimbangan praktis antara ketahanan struktur dan efisiensi material. Pada skala material, campuran beton berserat disaring untuk mengidentifikasi kandidat yang sesuai untuk implementasi slab track. Beton bertulang serat baja (steel-fibre-reinforced concrete/SFRC) dikarakterisasi pada rentang fraksi volume serat 0–2,0% (termasuk variasi antara), sedangkan seri mortar/ECC berbasis serat polipropilena (PPFRM/ECC) dievaluasi pada beberapa kadar serat polipropilena hingga 2,0% dengan kehalusan silika yang konsisten dengan program disertasi. Program uji meliputi kuat tekan, kuat tarik belah, dan uji balok bertakik (notched beam test). Dibandingkan beton normal (f’c = 52,52 MPa), SFRC mencapai f’c = 58,72 MPa pada Vf = 1,0% dan 70,55 MPa pada Vf = 1,5% (peningkatan 11,80% dan 34,33%), dengan kuat tarik belah meningkat dari 3,45 MPa menjadi 4,76 MPa dan 5,30 MPa (sekitar 38% dan 54%). Beban puncak uji balok bertakik meningkat dari 36,01 kN (beton normal) menjadi 45,94 kN (Vf = 1,0%) dan 47,65 kN (Vf = 1,5%), yang mengonfirmasi peningkatan ketahanan pasca-retak. Pada seri polipropilena, campuran representatif terpilih (ECC2.0%200) mencapai kuat tekan 47,091 MPa dan kuat lentur rata-rata 6,05 MPa. Berdasarkan hasil tersebut serta pertimbangan kemudahan pelaksanaan, SFRC 1,0% dan 1,5% serta PPFRM 2,0% dipilih untuk verifikasi pada skala struktur, bersama dengan spesimen kontrol beton normal. Pada skala struktur, spesimen slab-track ukuran penuh diuji lentur tiga titik pada pembebanan monotonik dan pembebanan kelelahan siklus tinggi mengikuti BS EN 13230-2, menggunakan protokol sinusoidal pada frekuensi 5 Hz hingga 2×10^6 siklus, kemudian dilanjutkan dengan pengujian pasca-kelelahan hingga runtuh. Respons struktur dikuantifikasi melalui kurva beban–lendutan, evolusi lendutan sisa di tengah bentang, riwayat regangan tulangan, serta perkembangan lebar retak. Spesimen kontrol menyelesaikan 2×10^6 siklus tanpa kegagalan akibat kelelahan; pengaruh kelelahan terutama termanifestasi sebagai degradasi kekakuan dan kapasitas deformasi, bukan penurunan signifikan pada kapasitas ultimit. Untuk NC-0.0-1, beban puncak menurun dari 249,2 kN (statik) menjadi 220,8 kN (pasca-kelelahan), sementara lendutan tengah bentang pada beban puncak menurun dari 14,77 mm menjadi 9,77 mm (penurunan 33,9%). Untuk NC-0.0-2, beban puncak berubah dari 198,2 kN menjadi 196,2 kN (penurunan sekitar 1,0%), sedangkan kapasitas deformasi menurun dari 17,5 mm menjadi 15,4 mm (penurunan 12,0%). Perbedaan sensitivitas kelelahan yang dipengaruhi geometri tercermin pada beban retak sebesar 50,1 kN (NC-0.0-1) dan 35,5 kN (NC-0.0-2). Kinerja layan terkait pengendalian retak tetap memadai pada 2×10^6 siklus: NC-0.0-1 membentuk tiga retak dengan lebar rata-rata 0,10 mm (0,06–0,18 mm), dan NC-0.0-2 membentuk lima retak dengan lebar rata-rata 0,19 mm (0,08–0,24 mm), tetap berada di bawah batas 0,3 mm berbasis Eurocode. Evolusi lendutan sisa memberikan indikator kuantitatif kerusakan kelelahan: NC-0.0-1 menunjukkan respons dua tahap (sekitar 0,072 mm hingga 4×10^5 siklus, kemudian stabil pada kisaran 0,40–0,45 mm), sedangkan NC-0.0-2 stabil pada tingkat yang lebih tinggi (sekitar 0,78–0,80 mm), dengan lendutan sisa pasca 2×10^6 siklus sekitar 0,40 mm dan 0,80 mm. Riwayat regangan tulangan tetap berada pada rentang respons siklik elastis yang stabil dan konsisten dengan mekanisme lentur-dominan. Kerangka analisis elemen hingga nonlinier tiga dimensi (3D-NLFEA) yang dikembangkan secara internal dikalibrasi terhadap hasil eksperimen untuk menginterpretasikan lokalisasi retak, redistribusi regangan, serta degradasi kekakuan akibat kelelahan. Model numerik mampu mereproduksi pola retak dominan dan tren global kurva beban–lendutan pada kondisi statik maupun pasca-kelelahan, namun cenderung mengestimasi lendutan tengah bentang lebih kecil sekitar 0,05–0,12 mm sepanjang umur kelelahan. Alur kerja yang tervalidasi ini menyediakan dasar mekanistik dan kuantitatif untuk membandingkan geometri slab-track dan campuran beton berserat, serta mendukung penyusunan pedoman desain slab-track yang kompatibel dengan kondisi lokal dan pengembangan standardisasi berbasis kinerja di Indonesia.
====================================================================================================================================
Indonesia’s planned extension of high-speed rail—starting with the Jakarta–Bandung line and expanding into a wider network across Java—creates demand for a long-lasting, domestically producible ballastless slab-track system with dependable fatigue resistance under repeated train loads. This dissertation develops an integrated experimental–numerical approach to assess the static and high-cycle fatigue response of reinforced-concrete slab-track specimens intended for Indonesian applications. Two non-prestressed slab-track configurations (NC-0.0-1 and NC-0.0-2) were evaluated as candidate solutions that balance structural robustness with material economy. At the material level, fibre-reinforced mixtures were screened for slab-track suitability. Steel-fibre-reinforced concrete (SFRC) was investigated over a 0–2.0% fibre volume fraction range (including intermediate dosages), while a polypropylene-fibre-based mortar/ECC series (PPFRM/ECC) was assessed at several polypropylene contents up to 2.0%, using silica with fineness consistent with the dissertation framework. The screening program comprised compressive strength, splitting tensile strength, and notched beam tests. Relative to plain concrete (f’c = 52.52 MPa), SFRC achieved f’c = 58.72 MPa at Vf = 1.0% and 70.55 MPa at Vf = 1.5% (increases of 11.80% and 34.33%), while splitting tensile strength increased from 3.45 MPa to 4.76 MPa and 5.30 MPa (approximately 38% and 54%). The notched-beam peak load rose from 36.01 kN (plain) to 45.94 kN (Vf = 1.0%) and 47.65 kN (Vf = 1.5%), confirming improved post-cracking performance. Within the polypropylene series, the selected representative mixture (ECC2.0%200) recorded a compressive strength of 47.091 MPa and an average flexural strength of 6.05 MPa. Considering these results and constructability, SFRC 1.0% and 1.5% and PPFRM 2.0% were selected for structural-scale testing alongside normal-concrete controls. At the structural level, full-scale slab-track specimens were tested in three-point bending under monotonic loading and high-cycle fatigue loading in accordance with BS EN 13230-2. Fatigue tests used a 5 Hz sinusoidal regime up to 2 × 10^6 cycles, followed by monotonic loading to failure. Response was quantified using load–deflection behaviour, residual mid-span deflection evolution, reinforcement strain histories, and crack-width development. The reference specimens completed 2 × 10^6 cycles without fatigue-induced collapse; fatigue effects were dominated by stiffness and deformation degradation rather than substantial reductions in ultimate capacity. For NC-0.0-1, peak load decreased from 249.2 kN (static) to 220.8 kN (post-fatigue), while the mid-span deflection at peak load reduced from 14.77 mm to 9.77 mm (33.9% decrease). For NC-0.0-2, peak load changed from 198.2 kN to 196.2 kN (about 1.0% reduction), whereas deformation capacity decreased from 17.5 mm to 15.4 mm (12.0% reduction). Geometry-related differences in fatigue sensitivity were reflected in cracking loads of 50.1 kN (NC-0.0-1) and 35.5 kN (NC-0.0-2). Serviceability cracking remained acceptable at 2 × 10^6 cycles: NC-0.0-1 developed three cracks with a mean width of 0.10 mm (0.06–0.18 mm) and NC-0.0-2 developed five cracks with a mean width of 0.19 mm (0.08–0.24 mm), both below the 0.3 mm Eurocode-based limit. Residual deflection provided a clear fatigue-damage indicator: NC-0.0-1 showed a two-phase response (about 0.072 mm up to 4 × 10^5 cycles, stabilising at roughly 0.40–0.45 mm), whereas NC-0.0-2 stabilised at a higher level (about 0.78–0.80 mm), with residual mid-span deflections after 2 × 10^6 cycles of approximately 0.40 mm and 0.80 mm, respectively. Reinforcement strain remained in a stable elastic cyclic range, consistent with a flexure-controlled mechanism. Finally, an in-house three-dimensional nonlinear finite element analysis (3D-NLFEA) framework was calibrated against the experiments to explain crack localisation, strain redistribution, and fatigue-related stiffness loss. The model reproduced the dominant cracking patterns and overall load–deflection behaviour for both static and post-fatigue states, but underestimated mid-span fatigue deflection by about 0.05–0.12 mm over the fatigue life. The validated procedure provides a mechanistic basis for comparing slab-track geometries and fibre-reinforced mixtures, supporting context-specific design recommendations and future performance-based standardisation for Indonesian slab-track systems.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: ballastless track, fatik, beton bertulang, slab track, serat baja, serat polipropilen, 3D-NLFEA ballastless track, fatigue, reinfored concrete, slab track, steel fiber, polypropylene fibres, 3D-NLFEA
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA169.5 Failure analysis
T Technology > TA Engineering (General). Civil engineering (General) > TA347 Finite Element Method
T Technology > TA Engineering (General). Civil engineering (General) > TA418.16 Materials--Testing.
T Technology > TA Engineering (General). Civil engineering (General) > TA418.38 Materials--Fatigue.
T Technology > TA Engineering (General). Civil engineering (General) > TA418.9 Composite materials. Laminated materials.
T Technology > TA Engineering (General). Civil engineering (General) > TA433 Strength of materials.
T Technology > TA Engineering (General). Civil engineering (General) > TA440 Concrete--Cracking.
T Technology > TA Engineering (General). Civil engineering (General) > TA444 Reinforced concrete
T Technology > TA Engineering (General). Civil engineering (General) > TA658 Structural design
T Technology > TA Engineering (General). Civil engineering (General) > TA681 Concrete construction
T Technology > TA Engineering (General). Civil engineering (General) > TA683 Precast concrete construction. Prestressed concrete construction.
Divisions: Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Civil Engineering > 22001-(S3) PhD Thesis
Depositing User: Danny Triputra Setiamanah
Date Deposited: 02 Feb 2026 02:11
Last Modified: 02 Feb 2026 02:11
URI: http://repository.its.ac.id/id/eprint/131472

Actions (login required)

View Item View Item