Desain dan Analisis Chasis Electric Screw Propeller Vehicle untuk Alat Angkut Tandan Buah Segar Sawit di Lahan Tanah Gambut dengan Finite Element Method

Fahada, Muhammad Ghazy Rizqi (2026) Desain dan Analisis Chasis Electric Screw Propeller Vehicle untuk Alat Angkut Tandan Buah Segar Sawit di Lahan Tanah Gambut dengan Finite Element Method. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6007241075-Master_Thesis.pdf] Text
6007241075-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (10MB) | Request a copy

Abstract

Kendaraan berbasis baling-baling ulir (screw propeller vehicle) merupakan sistem transportasi inovatif yang dirancang untuk melintasi medan ekstrem seperti lumpur, rawa, maupun pasir. Sistem ini menggunakan baling-baling ulir sebagai mekanisme propulsi utama, yang menimbulkan tantangan struktural pada rangka kendaraan akibat gaya dinamis dan tekanan dari karakteristik medan operasional. Untuk mendukung performa kendaraan, digunakan rangka dengan struktur rectangular section beam (RHS) sebagai dasar karena memiliki desain yang kuat dan sederhana, kemudian dimodifikasi agar sesuai dengan kebutuhan spesifik sistem propulsi ulir. Penelitian ini bertujuan untuk merancang dan menganalisis performa rangka hasil modifikasi dengan struktur balok berongga guna memastikan kekuatan, durabilitas, dan efisiensi dalam kondisi operasi ekstrem.
Metodologi penelitian menggunakan perangkat lunak ANSYS R1 2023 dengan pendekatan metode elemen hingga (Finite Element Method/FEM). Pengujian dilakukan melalui analisis statis untuk mengevaluasi distribusi tegangan dan deformasi akibat beban konstan, serta analisis dinamis untuk memahami respons rangka terhadap gaya yang dihasilkan oleh rotasi baling-baling ulir dan tekanan dari interaksi medan. Standar beban dan kondisi pengujian didasarkan pada spesifikasi operasional kendaraan screw propeller untuk menjamin validitas simulasi. Material ASTM A283 Grade D dipilih dalam simulasi guna meningkatkan ketahanan rangka terhadap kondisi abrasi. Hasil penelitian ini menunjukkan bahwa chassis berbahan ASTM A283 Grade D memiliki kekuatan struktur yang memadai dengan tegangan von-Mises maksimum 50,55 MPa dan maksimum deformasi sebesar 0,377 mm, jauh di bawah batas luluh material. Analisis dinamis mengonfirmasi struktur aman dari resonansi, di mana frekuensi alami sebesar 73,15 Hz berada signifikan di atas frekuensi eksitasi operasional lahan gambut (1–30 Hz). Berdasarkan kriteria Soderberg, desain ini dinyatakan aman dengan Life Safety Factor 2,39 dan estimasi umur pakai (fatigue life) lebih dari 15 tahun. Kondisi ini dicapai ketika screw propeller sudah terpasang di sistem chassis e-SPV. Berdasarkan hasil penelitian ini, telah mengkonfirmasi bahwa desain chassis dengan profil RHS secara efektif dapat menyeimbangkan kekuatan, berat, dan daya tahan, memenuhi semua kriteria keselamatan dan fungsional untuk pengoperasian di lahan gambut yang lunak dan tidak beraturan. Oleh karena itu, desain yang diusulkan dapat dianggap kokoh secara struktural dan praktis layak untuk aplikasi electric screw propeller vehicle di dunia nyata.
=================================================================================================================================
Screw propeller-based vehicles represent an innovative transportation system designed to traverse challenging terrains such as mud, swamps, or sand. This system employs screw propellers as the primary propulsion mechanism, imposing structural challenges on the vehicle frame due to dynamic forces and operational terrain pressures. To support the vehicle's performance, the frame with hollow beam structural was selected as the base due to its robust and simple design, which was subsequently modified to meet the specific requirements of the screw propeller system. This study aims to design and analyze the performance of the modified frame using hollow beam structure to ensure strength, durability, and efficiency under extreme operational conditions. The research methodology utilized ANSYS R1 2023 software with a finite element method (FEM) approach. The testing involved static analysis to evaluate stress distribution and deformation under constant loads, as well as dynamic analysis to understand the frame's response to forces generated by the screw propeller's rotation and terrain-induced pressures. The load standards and testing conditions were based on the operational specifications of screw propeller vehicles to ensure simulation validity. ASTM A283 Grade D was selected as the simulation material to enhance the frame's resilience to abrasive conditions. The results of this study indicate that the ASTM A283 Grade D chassis exhibits adequate structural strength, with a maximum von Mises stress of 50.55 MPa and a maximum deformation of 0.377 mm, both of which are well below the material’s yield limit. Dynamic analysis confirms that the structure is safe from resonance, as its natural frequency of 73.15 Hz is significantly higher than the operational excitation frequency range encountered in peatland environments (1–30 Hz). Based on the Soderberg fatigue criterion, the design is classified as safe, with a life safety factor of 2.39 and an estimated fatigue life exceeding 15 years. These conditions are achieved when the screw propeller is fully installed in the e-SPV chassis system. Overall, the results confirm that the proposed RHS-profile chassis design effectively balances strength, weight, and durability, meeting all safety and functional requirements for operation on soft and uneven peatland terrain. Therefore, the proposed design can be considered structurally robust and practically viable for real-world electric screw propeller vehicle applications.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Chassis, Electric Screw Propelled Vehicle, Metode Elemen Hingga, Chassis, Electric Screw Propelled Vehicle, Finite Element Method
Subjects: T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL262 Automobiles--Transmission devices--Design and construction.
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21101-(S2) Master Thesis
Depositing User: Muhammad Ghazy Rizqi Fahada
Date Deposited: 02 Feb 2026 05:01
Last Modified: 02 Feb 2026 05:02
URI: http://repository.its.ac.id/id/eprint/131490

Actions (login required)

View Item View Item