Studi Numerik Sistem Pengkondisian Udara Negative Pressure dengan Menggunakan Evaporate Cooling Pad (ECP) Pada Kandang Peternakan Ayam Close House

Lillahulhaq, Zain (2026) Studi Numerik Sistem Pengkondisian Udara Negative Pressure dengan Menggunakan Evaporate Cooling Pad (ECP) Pada Kandang Peternakan Ayam Close House. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 7007212001-Doctoral.pdf] Text
7007212001-Doctoral.pdf
Restricted to Repository staff only

Download (14MB) | Request a copy

Abstract

Pengembangan ternak dalam close house-cage bertujuan untuk menciptakan ruangan yang nyaman bagi ternak. Sirkulasi udara dalam Close house-cage harus memiliki temperature, kelembaban dan kecepatan. Penggunaan penggunaan Evaporative Cooling Pad (ECP) mampu menciptakan sirkulasi udara segar dengan kondisi temperature dan kecepatan yang uniform. Pengaturan system ventilasi close house-cage yang tepat dapat mengurangi kemungkinan munculnya heat stress dan mortality pada hewan. Penelitian ini menyajikan studi numerik 3 Dimensi sistem pengkondisian udara Negative Pressure pada close-house cage. Sistem ventilasi yang ditinjau mengkombinasikan perubahan ketebalan ECP, pola operasi Exhaust Fan, dan penambahan ekstra inlet. Simulasi numerik dilakukan dengan model 3 Dimensi kondisi steady menggunakan Finite Volume Method (FVM) dengan skema kopling tekanan–kecepatan SIMPLE untuk menyelesaikan persamaan Reynolds-averaged Navier–Stokes kompresibel. Terdapat 5 model turbulensi yang di uji meliputi k-ω standard, k-ω SST, k-ε standard, k-ε realizable, dan k-ε RNG. Model turbulensi yang digunakan diuji dengan membandingkan hasil simulasi numerik terhadap kecepatan dan temperatur aktual yang diukur. Pada penelitian ini persamaan Energi dan Multiphase diaktifkan. Variasi parameter yang ditinjau meliputi perubahan ketebalan ECP, jumlah Exhaust Fan yang dioperasikan serta penambahan ekstra inlet yang memengaruhi kestabilan pola aliran. Kombinasi parameter yang di uji diharapkan mampu mengontrol kecepatan udara, temperatur, dan akumulasi gas dalam close house cage agar sesuai dengan standar kenyamanan ternak. Perbedaan kombinasi parameter yang digunakan mampu menimbulkan perbedaan pola distribusi aliran fluida dalam close house-cage. Berbeda dengan penelitian lain, Penelitian ini menonjolkan pemetaan daerah dead zone dan damaging zone yang berbahaya bagi hewan. Penentuan pola operasi optimum pada studi ini dipilih dengan mempertimbangkan Temperatur Humidity Index (TVI) serta akumulasi gas CO2 dan NH3. Ketebalan Evaporative Cooling Pad (ECP) dan pola operasi Exhaust Fan memengaruhi distribusi aliran udara, temperatur, kelembaban, serta pembentukan dead zone pada closed-house cage. ECP tebal (300 mm) meningkatkan pressure drop sehingga aliran masuk melambat, suplai udara segar dan perpindahan panas menurun, serta dead zone di dekat Exhaust Fan meluas. Karena itu, ECP 200 mm direkomendasikan, terutama dengan pola operasi fan C 1-1-0. Pengoperasian multiple Exhaust Fan mampu mengompensasi pressure drop ECP dengan meningkatkan kecepatan aliran dan mass flow rate udara masuk, sehingga pertukaran panas lebih cepat, temperatur lebih rendah, dan kelembaban cenderung lebih tinggi. Sebaliknya, single Exhaust Fan (C 1-0-0) tidak cukup mengatasi pressure drop, menyebabkan aliran lebih lambat dan dead zone muncul di depan Exhaust Fan. Pada konfigurasi multiple fans, dead zone cenderung berada di sisi side wall dekat ECP dan mengecil seiring bertambahnya fan yang beroperasi. Penambahan extra inlet menurunkan kecepatan dan kelembaban, tetapi dapat menurunkan temperatur karena meningkatkan suplai udara segar. Kombinasi multiple Exhaust Fan dengan inlet atap paling efektif mengurangi akumulasi CO₂ dan NH₃ di bagian tengah closed-house cage.
=====================================================================================================================================
The development of livestock production in a closed-house cage aims to provide a thermally comfortable environment for animals. Air circulation in a closed-house cage must be controlled in terms of temperature, humidity, and air velocity. The use of an Evaporative Cooling Pad (ECP) can generate fresh-air circulation with more uniform temperature and velocity fields. Proper configuration of the closed-house ventilation system can reduce the risk of heat stress and mortality in animals. This study presents a three-dimensional numerical investigation of a negative-pressure air-conditioning system in a closed-house cage. The evaluated ventilation system combines variations in ECP thickness, exhaust- fan operating patterns, and the addition of extra inlets. Numerical simulations were performed using a three-dimensional steady- state model based on the Finite Volume Method (FVM) and the SIMPLE pressure– velocity coupling scheme to solve the compressible Reynolds-averaged Navier– Stokes (RANS) equations. Five turbulence models were examined: standard k–ω, k–ω SST, standard k–ε, realizable k–ε, and RNG k–ε. The selected turbulence model was validated by comparing numerical results with measured air velocity and temperature data. In this work, the Energy and Multiphase equations were enabled. The investigated parameters include ECP thickness, the number of operating exhaust fans, and the addition of extra inlets, all of which influence the stability of the flow pattern. The tested parameter combinations are expected to regulate air velocity, temperature, and gas accumulation within the closed-house cage to meet animal comfort standards. Different parameter combinations produce distinct airflow distribution patterns within the enclosure. Unlike many previous studies, this research emphasizes the mapping of dead zones and damaging zones that may be hazardous to animals. The optimum operating strategy was determined by considering the Temperature–Humidity Index (THI) and the accumulation of CO₂ and NH₃. ECP thickness and exhaust-fan operating patterns significantly affect airflow distribution, emperature, humidity, and dead-zone formation in the closed- house cage. A thicker ECP (300 mm) increases the pressure drop, which slows the incoming flow, reduces the supply of fresh air and heat transfer rates, and enlarges the dead zone near the exhaust fans. Therefore, an ECP thickness of 200 mm is recommended, particularly under the C 1-1-0 fan operating pattern. Operating multiple exhaust fans compensates for the ECP-induced pressure drop by increasing airflow velocity and the inlet air mass flow rate, thereby enhancing heat exchange, lowering temperature, and tending to increase humidity. In contrast, a single exhaust fan (C 1-0-0) is insufficient to overcome the pressure drop, resulting in lower airflow velocity and the formation of a dead zone in front of the exhaust fan. Under multiple-fan configurations, the dead zone tends to shift toward the side wall near the ECP and decreases as more fans are activated. Adding an extra inlet reduces air velocity and humidity, but it can decrease temperature by increasing the supply of fresh air. The combination of multiple exhaust fans with a roof inlet is the most effective in reducing CO₂ and NH₃ accumulation in the central region of the closed- house cage.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: Close House cage, Negative Pressure, Exhaust Fan, Evaporate Cooling Pad, ekstra inlet, dead zone, damaging zone
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers
T Technology > TJ Mechanical engineering and machinery > TJ762.E93 Exhaust systems
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21001-(S3) PhD Thesis
Depositing User: Zain Lillahulhaq
Date Deposited: 05 Feb 2026 09:57
Last Modified: 05 Feb 2026 09:57
URI: http://repository.its.ac.id/id/eprint/132201

Actions (login required)

View Item View Item