MODEL REGRESI PROBIT SPASIAL PADA INDEKS PEMBANGUNAN MANUSIA (IPM) DI JAWA TIMUR

EL FAHMI, ELOK FAIZ FATMA (2016) MODEL REGRESI PROBIT SPASIAL PADA INDEKS PEMBANGUNAN MANUSIA (IPM) DI JAWA TIMUR. Masters thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
1313201205-Abstract.pdf - Published Version

Download (270kB) | Preview
[img]
Preview
Text
1313201205-Master Thesis.pdf - Published Version

Download (2MB) | Preview
[img]
Preview
Text
1313201205-Conclusion.pdf - Published Version

Download (366kB) | Preview

Abstract

Indeks Pembangunan Manusia (IPM) merupakan salah satu tolak ukur untuk melihat aspek-aspek yang relevan dengan pembangunan manusia. Pada penelitian ini, IPM di Jawa Timur dikategorikan menjadi dua berdasarkan rata-rata. Salah satu metode yang digunakan untuk analisis data kategorik adalah model regresi probit. Model regresi probit yang digunakan pada penelitian ini mempertimbangkan efek spasial yaitu disebut model regresi probit spasial. Untuk mengetahui kontribusi spasial, maka model regresi probit spasial dibandingkan dengan model probit. Pemodelan IPM menggunakan model regresi probit memberikan hasil bahwa faktor yang mempengaruhi IPM di Jawa Timur adalah persentase penduduk miskin. Sedangkan untuk model regresi probit spasial, faktor yang berpengaruh adalah tidak hanya persentase penduduk miskin, melainkan tingkat pengangguran terbuka, dan laju PDRB atas harga konstan juga signifikan. Ketepatan klasifikasi dari model probit sebesar 39,4%, sedangkan model probit spasial 44,7%. Berdasarkan persentase ketepatan klasifikasi masing-masing model, model yang lebih baik dalam mengklasifikasikan IPM dengan benar adalah model regresi probit spasial ===================================================================================================== Human Development Index (HDI) is a benchmark to see aspects that are relevant to human development. In this study, IPM at East Java are categorized into two based on the average. One of the methods used for analysis of categorical data is a probit regression model. Probit regression model used in this study consider the spatial effect is called spatial probit regression model. To determine the contribution of spatial, then the spatial probit regression model compared to the probit model. IPM modeling using probit regression model gives results that the factors that affect IPM in East Java is the percentage of poor people. As for the spatial probit regression model, factors that affect not only the percentage of the population is poor, but the open unemployment rate, and the rate of GDP at constant prices was also significant. The accuracy of the classification of probit model by 39.4%, while 44.7% of spatial probit model. Based on the percentage of classification accuracy of each model, a model that better classify correctly IPM is a spatial probit regression model.

Item Type: Thesis (Masters)
Additional Information: RTSt 619.536 Fah m
Uncontrolled Keywords: Indeks Pembangunan Manusia (IPM), Regresi Probit, Regresi Probit Spasial.
Subjects: Q Science > QA Mathematics
Q Science > QA Mathematics > QA278.2 Regression Analysis
Divisions: Faculty of Mathematics and Science > Statistics > (S2) Master Theses
Depositing User: Mr. Tondo Indra Nyata
Date Deposited: 09 Jan 2017 04:09
Last Modified: 26 Dec 2018 07:23
URI: http://repository.its.ac.id/id/eprint/1399

Actions (login required)

View Item View Item