SKRIPSI

PENGARUH VARIASI KOMPOSISI PVA/KITOSAN TERHADAP PERILAKU MEMBRAN KOMPOSIT PVA/KITOSAN/GRAFIN OKSIDA YANG TERIKAT SILANG TRISODIUM SITRAT

GLADIS AROS SAFITRI
NRP. 1412 100 072

Dosen Pembimbing
Drs. Eko Santoso, M.Si

JURUSAN KIMIA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA
2016
SCRIPT

INFLUENCE OF PVA/CHITOSAN VARIATION COMPOSITION ON BEHAVIOUR OF PVA/CHITOSAN/GRAPHENE OXIDE COMPOSITE MEMBRANE CROSSLINKED TRISODIUM CITRATE

GLADIS AROS SAFITRI
NRP. 1412 100 072

Supervisor
Drs. Eko Santoso, M.Si

CHEMISTRY DEPARTMENT
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA
2016

ii
LEMBAR PENGESAHAN

PENGARUH VARIASI KOMPOSISI PVA/KITOSAN TERHADAP PERILAKU MEMBRAN KOMPOSIT PVA/KITOSAN/GRAFIN OKSIDA YANG TERIKAT SILANG TRISODIUM SITRAT

SKRIPSI
Oleh:

GLADIS AROS SAFITRI
NRP. 1412 100 072

Surabaya, 29 Januari 2016
Dosen Pembimbing

Drs. Eko Santoso, M.Si
NIP. 19640115 1989101 1 001

Mengetahui
Ketua Jurusan Kimia,

Prof. Dr. Didik Prasetyoko, S.Si., M.Sc.
NIP. 19710616 199703 1 002
DAFTAR ISI

<table>
<thead>
<tr>
<th>HALAMAN JUDUL</th>
<th>...</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEMBAR PENGESAHAN</td>
<td>..</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>..</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>..</td>
<td>vi</td>
</tr>
<tr>
<td>KATA PENGANTAR</td>
<td>..</td>
<td>vii</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>..</td>
<td>ix</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>..</td>
<td>xii</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>..</td>
<td>xiv</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>..</td>
<td>xv</td>
</tr>
</tbody>
</table>

BAB I PENDAHULUAN

1.1 Latar Belakang .. 1
1.2 Permasalahan .. 4
1.3 Tujuan .. 4
1.4 Batasan Masalah .. 4
1.5 Manfaat .. 4

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Fuel Cell (Sel Bahan Bakar) ... 5
2.2 Direct Methanol Fuel Cells (DMFC) .. 7
2.3 Membran untuk DMFC ... 8
2.4 Poli(vinil alkohol) .. 10
2.5 Kitosan ... 12
BAB III METODOLOGI PENELITIAN

3.1 Alat dan Bahan

3.1.1 Alat

3.1.2 Bahan

3.2 Karakterisasi Grafit Oksida dengan Instrumen FTIR

3.3 Sintesis Membran Komposit PVA/Kitosan/Grafin Oksida

3.5 Karakterisasi Membran dengan TGA

3.6 Karakterisasi Membran dengan Uji Tarik

3.7 Uji Water Uptake dan Methanol Uptake

3.8 Pengukuran konduktivitas proton

BAB IV HASIL DAN PEMBAHASAN

4.1 FTIR Grafit dan Grafit Oksida

4.2 Sintesis Membran Komposit PVA/Kitosan/Grafin Oksida

4.3 Karakterisasi Membran dengan TGA

4.5 Karakterisasi Membran dengan Uji Tarik
4.6 Water Uptake dan Methanol Uptake42
4.7 Konduktivitas Proton Membran Komposit PVA/Kitosan/Grafin oksida...44
BAB V KESIMPULAN DAN SARAN47
 5.1 Kesimpulan...47
 5.2 Saran...47
DAFTAR PUSTAKA ..49
LAMPIRAN ...57
BIOGRAFI ...77
DAFTAR TABEL

Tabel 2.1 Klasifikasi membran polimer DMFC 10
Tabel 2.2 Hasil tensile strength dan break elongation dari membran .. 19
Tabel 4.1 Persentase weight loss membran PVA/kitosan/grafin oksida ... 36
Tabel 4.2 Break elongation, tensile strength, dan modulus elastisitas dari membran komposit PVA/kitosan/grafin oksida ... 39
Tabel 4.3 Persentase nilai water uptake dan methanol uptake membran komposit PVA/kitosan/grafin oksida 43
DAFTAR GAMBAR

Gambar 2.1 Skema kerja sel bahan bakar .. 6
Gambar 2.2 Skema dasar DMFC .. 7
Gambar 2.3 Jejak XRF pada Nafion® 117....................................... 9
Gambar 2.4 Struktur PVA ... 11
Gambar 2.5 Struktur kitosan ... 12
Gambar 2.6 Skema sintesis Grafin Oksida 14
Gambar 2.7 Skema FTIR ... 17
Gambar 2.8 Spektra FTIR Grafit (a) dan Grafit Oksida (b) 18
Gambar 2.9 Kurva TGA untuk film PVA murni, film Kitosan (CS) murni, dan film campuran CS/PVA......................... 21
Gambar 2.10 Plot Nyquist Sederhana .. 23
Gambar 3.1 Ilustrasi rangkaian sel konduktivitas two probes 28
Gambar 4.1 Spektra FTIR Grafit dan Grafit Oksida 30
Gambar 4.2 Ikat silang kitosan dengan trisodium sitrat 33
Gambar 4.3 Membran komposit PVA/kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e) setelah pengeringan selama 17 hari 34
Gambar 4.4 Membran komposit PVA/kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e) setelah pengikat silangan dengan trisodium sitrat ... 35
Gambar 4.5 Membran komposit PVA/kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e) yang
terikat silang trisodium sitrat setelah pengeringan selama 24 jam ... 35

Gambar 4.6 Kurva TGA membran komposit PVA/kitosan/grafin oksida dengan perbandingan persen massa (%wt) vs suhu (°C) ... 38

Gambar 4.7 Pengaruh variasi komposisi PVA/kitosan terhadap break elongation membran komposit PVA/kitosan/ grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e) ... 40

Gambar 4.8 Pengaruh variasi komposisi PVA/kitosan terhadap tensile strength membran komposit PVA/kitosan/ grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e) ... 41

Gambar 4.9 Pengaruh variasi komposisi PVA/kitosan terhadap modulus elastisitas membran komposit PVA/ kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e) ... 41

Gambar 4.10 Grafik methanol uptake dan water uptake membran komposit PVA/kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e) ... 42

Gambar 4.11 Kurva perbandingan konduktivitas proton pada membran komposit PVA/kitosan/grafin oksida (tipe 1, tipe 2, tipe 3, tipe 4, dan tipe 5) dengan variasi waktu hidrasi ... 45
DAFTAR LAMPIRAN

LAMPIRAN A .. 57
LAMPIRAN B .. 59
LAMPIRAN C .. 60
LAMPIRAN D .. 61
LAMPIRAN E .. 62
LAMPIRAN F .. 63
LAMPIRAN G .. 64
KATA PENGANTAR

Alhamdulillah segala puji syukur penulis ucapkan kepada Allah SWT atas curahan rahmat dan karuniaNya sehingga penulis dapat menyelesaikan Skripsi yang berjudul “Pengaruh Variasi Komposisi PVA/Kitosan Terhadap Perilaku Membran Komposit PVA/Kitosan/Grafin Oksida Yang Terikat Silang Trisodium Sitrat Terhadap Konduktivitas Proton”. Untuk itu penulis mengucapkan terima kasih kepada semua pihak yang telah membantu dan memberikan dukungan dalam penyusunan Skripsi ini. Ucapan terima kasih penulis sampaikan kepada:

1. Drs. Eko Santoso, M.Si selaku dosen pembimbing atas semua bimbingan, arahan, dan nasihat yang berharga dalam penyusunan Skripsi ini.
3. Prof. Didik Prasetyoko, S.Si, M.Sc. selaku Ketua Jurusan Kimia FMIPA ITS atas fasilitas yang telah diberikan.
4. Dr.rer.nat. Fredy Kurniawan, MSi selaku Ketua Laboratorium Instrumentasi dan Analitik atas izin, arahan, dan masukannya.
5. Adi Setyo Purnomo, S.Si, M.Sc, Ph.D., selaku dosen wali yang telah membimbing saya selama masa perkuliahan berlangsung.
6. Mama, Papa, Mas Effan, Mbak Lucky, Eyang Hardini, Tante Via, dan segenap keluarga atas dukungan yang tiada henti.
8. Retty, Mia, Cindy, First, Husnul, Vicha, Arfy, Gina, Dewi, Fita yang telah menemani saya melewati suka duka masa perkuliahan.
9. Teman-teman C-30 (SPECTRA) terutama yang tergabung dalam Laboratorium Kimia Material dan Energi.

10. Semua pihak yang telah membantu yang tidak mungkin penulis sebutkan satu persatu.

Penulis menyadari bahwa dalam Skripsi ini masih terdapat kekurangan, oleh karena itu kritik dan saran yang membangun sangat penulis harapkan. Semoga Skripsi ini dapat memberi manfaat untuk perkembangan ilmu pengetahuan.

Surabaya, 29 Januari 2016

Penulis
PENGARUH VARIASI KOMPOSISI PVA/KITOSAN TERHADAP PERILAKU MEMBRAN KOMPOSIT PVA/KITOSAN/GRAFIN OKSIDA YANG TERIKAT SILANG TRISODIUM SITRAT

Nama : Gladis Aros Safitri
NRP : 1412 100 072
Jurusan : Kimia ITS
Pembimbing : Drs. Eko Santoso, M.Si

ABSTRAK

Membran komposit PVA/kitosan/grafin oksida yang terikat silang trisodium sitrat untuk diaplikasikan pada Direct Methanol Fuel Cell (DMFC) telah berhasil disintesis. Membran dibuat dengan melakukan variasi komposisi massa PVA/kitosan (1:5; 2:4, 3:3; 4:2; dan 5:1) serta penambahan grafin oksida sebanyak 1,5% untuk menghasilkan membran komposit PVA/kitosan/grafin oksida tipe 1, tipe 2, tipe 3, tipe 4, dan tipe 5. Membran komposit tersebut kemudian dikarakterisasi untuk mengetahui sifat mekanik, sifat fisika dan kimia, serta kinerjanya menggunakan uji TGA, uji tarik, uji water uptake dan methanol uptake, serta pengukuran konduktivitas proton. Pada uji TGA diketahui bahwa membran tipe 1 memiliki kestabilan termal paling baik dengan persen massa yang hilang sebesar 23,29%. Membran tipe 2 memiliki kekuatan mekanik yang paling tinggi dengan nilai modulus elastisitasnya sebesar 2583,1 MPa. Water uptake dan methanol uptake cenderung meningkat seiring semakin besarnya komposisi PVA dalam membran komposit. Sedangkan konduktivitas proton paling tinggi dimiliki oleh membran tipe 2 dengan waktu hidrasi 90 menit yaitu sebesar 21,29 x 10^{-3} S.cm^{-1}.

Kata kunci: DMFC; grafin oksida; kitosan; membran komposit; PVA; trisodium sitrat; waktu hidrasi.
INFLUENCE OF PVA/CHITOSAN VARIATION COMPOSITION ON BEHAVIOUR PVA/CHITOSAN/GRAPHENE OXIDE COMPOSITE MEMBRANE CROSSLINKED TRI SODIUM CITRATE

Name : Gladis Aros Safitri
NRP : 1412 100 072
Department : Chemistry ITS
Advisor Lecture : Drs. Eko Santoso, M.Si

ABSTRACT

PVA/chitosan/graphene oxide composite membranes crosslinked with trisodium citrate for Direct Methanol Fuel Cell application have been synthesized. Membranes were prepared by varied the mass composition of PVA/chitosan (1:5, 2:4, 3:3, 4:2, 5:1) and added 1,5% of trisodium citrate to produced PVA/chitosan/graphene oxide composite membranes type 1, type 2, type 3, type 4, and type 5, respectively. The mechanical properties, physical-chemical properties, and membrane performance were investigated using various characterization methods like TGA characterization, tensile strength test, water uptake, methanol uptake, and proton conductivity measurements. Composite membrane type 1 showed the best thermal stability compared to others which has a lowest weight loss (23,29%). The best mechanical strength of composite membranes belongs to membrane type 2 which has the highest modulus of elasticity (2583,1 MPa). Water uptake and methanol uptake of composite membranes tend to increase along with the PVA addition. While the highest proton conductivity (21,29 x 10^{-3} S.cm^{-1}) occurred in membrane type 2 with 90 minutes hydration times.

Keywords: chitosan; composite membrane; DMFC; graphene oxide; hydration times; PVA; trisodium citrate.
BAB I
PENDAHULUAN

1.1 Latar Belakang
Perkembangan energi alternatif yang bersih menjadi prioritas utama di dunia saat ini. Sel bahan bakar (fuel cell) merupakan contoh dari perkembangan tersebut. Fuel cell sendiri telah banyak dipuji sebagai energi yang ramah lingkungan dan efisien untuk menggantikan bahan bakar fosil yang masih menjadi energi utama di kehidupan manusia. Fuel cell diharapkan mampu menjadi sumber energi alternatif untuk alat transportasi dan aplikasi bergerak lainnya. Hal itu disebabkan karena fuel cell menunjukkan efisiensi konversi yang cukup tinggi (~80%) akibat tidak adanya pembatasan dalam siklus Carnot (Pandey, dkk., 2014).

DMFC (Direct Methanol Fuel Cell) adalah salah satu dari jenis fuel cell. Dari segi aplikasi, DMFC sering digunakan sebagai sumber energi dari serentetan aplikasi bergerak. Contohnya adalah DMFC dengan penggunaan Nafion yang merupakan membran polimer penghantar proton dari asam perfluorosulfonat. Nafion dalam DMFC berfungsi sebagai elektrolit dan juga berperan sebagai pemisah yang bersifat fisika untuk mencegah metanol menyebrang (cross-over) dari anoda ke katoda. Nafion memiliki beberapa keunggulan seperti konduktivitas proton yang tinggi serta ketahanannya yang baik terhadap pengaruh mekanik, kimia, maupun termal. Dupont’s Nafion-117 memiliki konduktivitas proton yang tinggi yaitu sebesar 0,01-0,08 S.cm⁻¹. Disisi lain, Nafion memiliki kelemahan seperti adanya cross-over metanol, harganya yang mahal, dan aplikasinya yang terbatas pada sistem elektrokimia (Pandey, dkk., 2014).

Oleh karena itu, diperlukan alternatif lain untuk menggantikan Nafion, salah satunya adalah penggunaan elektrolit polimer padat dengan permeabilitas metanol rendah pada DMFC. Saat ini, peneliti semakin gencar melakukan penelitian mengenai elektrolit polimer padat dan pengembangan material membran alternatif yang lebih murah dan memenuhi persyaratan untuk digunakan dalam DMFC. Salah satu contoh material membran alternatif yang
dapat digunakan mengingat pentingnya material yang berharga murah adalah poli(vinil alkohol) (PVA). Hal tersebut karena adanya pertimbangan harga yang murah dan pengaruh material yang baik terhadap lingkungan. Selain itu, PVA dikenal mampu menyempurnakan konduktivitas proton dan cross-over dari metanol (Kakati, dkk., 2015).

Konduktivitas proton dari elektrolit polimer padat umumnya dapat ditingkatkan dengan melakukan pencegahan kristalisasi dari rantai polimer agar terjadi peningkatan mobilitas rantai polimer dan peningkatan konsentrasi pembawa di dalam elektrolit polimer tersebut (Kim, dkk., 2008). Yang dan Wang (2015) menjelaskan didalam penelitiannya bahwa PVA dapat dimodifikasi dengan berbagai macam metode seperti metode sol gel, metode radiasi UV, ataupun dicampur dengan berbagai macam hidrogel seperti kitosan dan sodium alginate guna meningkatkan konduktivitas proton dan performa pada aplikasi membran elektrolit polimer padat. Kitosan merupakan material yang memiliki toksisitas rendah dan paling banyak ditemukan di alam (Vaghari, dkk., 2013). Kitosan telah banyak diteliti sebagai material membran untuk filtrasi ultra, osmosis terbalik, pervaporasi, dan juga sel bahan bakar (Xiong, dkk., 2008).

Pada struktur kitosan tidak terdapat ion hidrogen yang dapat bergerak, sehingga kitosan dalam keadaan kering memiliki konduktivitas elektrik yang rendah. Oleh karena itu, dilakukan plastisasi untuk menambah jumlah muatan yang tidak beraturan sehingga dapat meningkatkan konduktivitas dari elektrolit polimer padat (Xiong, dkk., 2008). Disisi lain, kitosan memiliki kekurangan yaitu bersifat hidrofilik dan seringkali mengalami pembengkakan saat digunakan. Daya serap air yang tinggi tersebut akan mengakibatkan membran semakin rapuh dan membuat membran kurang tahan lama saat digunakan pada sel bahan bakar. Penurunan sifat mekanik pada keadaan basah tersebut dapat dikurangi dengan melakukan pencampuran, penambahan penguat organik, dan penambahan ikat silang. Ikat silang merupakan metode paling efektif untuk meningkatkan sifat membran seperti
daya tahan dan umur membran. Pengikat silang yang umumnya digunakan adalah trisodium sitrat, asam sulfat, dan tripolifosfat pentasodium (Czubenko dan Pieróg, 2010).

Grafin oksida (GO) merupakan suatu bahan yang sangat atraktif penggunaannya dikarenakan sifat mekanik dan termalnya yang sangat baik. Lembaran GO dapat dianggap sebagai material amipilik dengan daerah hidrofilik yang mengandung hidroksil, karboksil, dan epoksi serta daerah hidrofobik yang tersusun atas grafit sp². Adanya gugus epoksi tersebut yang mengakibatkan konduktivitas proton meningkatkan dikarenakan epoksi bertindak sebagai tempat berlangsungnya transfer proton. GO telah menunjukkan kemampuan kapasitansi yang sangat baik dan waktu pakai yang sangat panjang sebagai superkapasitor (Chien, dkk., 2013). GO dapat disintesis menggunakan metode Hummer (Hummers dan Offeman, 1958). Metode Hummer terkenal dengan keuntungannya yang sangat banyak, yaitu dapat menghasilkan grafin dengan kuantitas tinggi, sederhana, mudah digunakan, dan murah (Hanifah, dkk., 2015).

Enggita (2015) didalam penelitiannya telah membuat membran komposit PVA/kitosan/grafin oksida dengan perbandingan volume PVA/kitosan (5:1) dan variasi massa grafin oksida yang ditambahkan (0%; 0,5%; 1%; 1,5%, dan 2%). Massa grafit oksida yang diketahui memiliki konduktivitas proton paling baik adalah 1,5%. Pada penelitian ini, dibuat membran komposit PVA/kitosan/grafin oksida dengan adanya variasi komposisi PVA/kitosan dan penambahan 1,5% grafin oksida. Variasi komposisi yang digunakan didalam pembuatan membran komposit penelitian ini didasari pada perbandingan volume PVA/kitosan yaitu 1:5, 2:4, 3:3, 4:2, dan 5:1. Setelah itu, untuk menentukan komposisi PVA/kitosan yang baik pada sifat mekanik dari membran dilakukan karakterisasi uji tarik. Untuk mengetahui sifat fisika & sifat kimia dari membran maka dilakukan karakterisasi uji TGA, uji Water Uptake (WU), dan uji Methanol Uptake (MU). Sedangkan untuk mengetahui kinerja dari membran maka
dilakukan uji konduktivitas proton menggunakan EIS (Electrochemical Impedance Spectroscopy).

1.2 Permasalahan
Permasalahan dari penelitian ini adalah mengetahui pengaruh variasi komposisi PVA/kitosan dengan perlakuan penambahan grafin oksida pada membran komposit PVA/kitosan yang diikat silang dengan trisodium sitrat terhadap kestabilan termal, kekuatan mekanik, water uptake dan methanol uptake, serta konduktivitas proton dari membran dengan variasi waktu hidrasi.

1.3 Tujuan
Tujuan dari penelitian ini untuk mengetahui pengaruh variasi komposisi PVA/kitosan dengan perlakuan penambahan grafin oksida pada membran komposit PVA/kitosan yang diikat silang dengan trisodium sitrat terhadap kestabilan termal, kekuatan mekanik, water uptake dan methanol uptake, serta konduktivitas proton dari membran dengan variasi waktu hidrasi.

1.4 Batasan Masalah
Dalam pembuatan membran komposit PVA/kitosan/ grafin oksida dengan pengikat silang trisodium sitrat dan variasi komposisi PVA/kitosan dibatasi perilaku membran meliputi kestabilan termal, kekuatan mekanik, water uptake dan methanol uptake, serta konduktivitas proton pada suhu ruang dengan variasi waktu hidrasi.

1.5 Manfaat
Terlaksananya penelitian ini diharapkan dapat membantu mengembangkan aplikasi dari membran polimer berupa membran komposit PVA/kitosan/grafin oksida. Membran komposit PVA/kitosan/grafin oksida tersebut diharapkan memiliki kekuatan mekanik dan ketahanan termal yang baik serta memiliki nilai konduktivitas proton yang tinggi sehingga dapat diaplikasikan pada DMFC.
BAB II
TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Fuel Cell (Sel Bahan Bakar)

berdasarkan tipe elektrolit yang sering digunakan, diantaranya adalah Polymer Electrolyte Membrane Fuel Cells (PEMFC), Direct Methanol Fuel Cells (DMFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Molten Carbonate Fuel Cells (MCFC), dan Solid Oxide Fuel Cells (SOFC) (Zaidi dkk, 2009).

Fuel cell terdiri dari dua elektroda yaitu anoda dan katoda. Anoda berfungsi sebagai tempat masuknya bahan bakar, sedangkan katoda berfungsi sebagai pensuplai oksigen. Selain kedua elektroda tersebut, pada fuel cell terdapat elektrolit yang berfungsi sebagai penggerak ion-ion yang akan mengalir dari anoda ke katoda seperti yang dapat dilihat pada Gambar 2.1 (Zaidi dkk., 2009). Energi listrik yang dihasilkan dalam fuel cell berasal dari reaksi elektrokimia antara gas (misalnya hidrogen), metanol, ataupun etanol dengan oksigen, reaksi elektrokimia tersebut dapat dijelaskan sebagai berikut:

Anoda: \[2H_2 \rightarrow 4H^+ + 4\epsilon\] (2.1)

Katoda: \[O_2 + 4H^+ + 4\epsilon \rightarrow 2H_2O\] (2.2)

Total: \[2H_2 + O_2 \rightarrow 2H_2O\] (2.3)
Ion-ion hidrogen mengalir dari anoda ke katoda dengan perantara membran elektrolit yang menghasilkan energi listrik dan hasil samping berupa air (Kim, dkk., 2008).

2.2 Direct Methanol Fuel Cells (DMFC)

Prinsip kerja dari DMFC adalah metanol dan air masuk ke dalam anoda dengan kecepatan konstan. Lalu tumbukan dengan katalis mengakibatkan metanol mengalami reaksi konversi menjadi proton (H\(^+\)), elektron dan gas CO\(_2\). Elektron yang dihasilkan dilewatkan melalui sirkuit sehingga listrik dapat terukur. Sedangkan proton bergerak melalui membran dari anoda ke katoda yang kemudian bereaksi dengan oksigen menghasilkan uap air. Reaksi yang terjadi pada anoda juga menghasilkan elektron yang akan melewati sirkuit luar menuju katoda. Pada saat di katoda, proton akan bereaksi dengan oksigen disempurnakan dengan pembentukan molekul air. Reaksi yang terjadi pada DMFC dapat disederhanakan sebagai berikut:

\[
\begin{align*}
\text{Katoda} & : 6H^+(aq) + 3/2O_2(aq) + 6\dot{e} & \rightarrow & 3H_2O(g) \quad (2.4) \\
\text{Anoda} & : CH_3OH(aq) + H_2O(l) & \rightarrow & 6H^+(aq) + 6\dot{e} + CO_2(g) \quad (2.5) \\
\text{Total} & : CH_3OH(aq) + 3/2O_2(g) & \rightarrow & CO_2+ 2H_2O(g) \quad (2.6)
\end{align*}
\]

(Im, 2011)

2.3 Membran untuk DMFC

Membran merupakan komponen utama yang terdapat pada DMFC. Syarat umum yang harus dipenuhi membran elektrolit polimer agar dapat digunakan pada DMFC adalah:

- dapat beroperasi pada suhu tinggi
- cross-over metanol rendah (<10\(^{-6}\) mol min\(^{-1}\) cm\(^{-1}\)) atau memiliki koefisien difusi metanol yang rendah dalam membran (<5.6 x 10\(^{-6}\) cm\(^2\) s\(^{-1}\) pada T = 25 °C)
- konduktivitas ionik yang tinggi (>80 mS cm\(^{-1}\))
- memiliki ketahanan mekanik dan ketahanan kimia yang tinggi khususnya pada T = 80 °C (terhadap peningkatan kadar GO)
- cross-over ruthenium rendah (dalam kasus katalis anoda mengandung Ru)
- rendah biaya (<$10 kW\(^{-1}\) dibandingkan dengan PMFC).

Membran yang umum digunakan pada DMFC adalah Nafion\(^{\circledR}\), akan tetapi Nafion kurang memenuhi syarat yang disebutkan
sebelumnya. Nafion diketahui memiliki kekurangan sebagai berikut:

- biaya tinggi ($600-1200 m^{-2}$)
- biaya tinggi untuk setiap unit power (300 € kW^{-1} dengan daya unit power 240 mW/cm²)
- *cross-over* metanol dan ruthenium yang tinggi (dalam kasus katalis anoda mengandung Ru).

Gambar 2.3 Jejak XRF pada Nafion® 117 (Piela, dkk., 2004)
Tabel 2.1 Klasifikasi membran polimer DMFC

<table>
<thead>
<tr>
<th>Tipe</th>
<th>Membran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Membran Nafion®</td>
</tr>
<tr>
<td>2</td>
<td>Membran terfluoronasi Non-Nafion®</td>
</tr>
<tr>
<td>3</td>
<td>Membran komposit terfluoronasi</td>
</tr>
<tr>
<td></td>
<td>Komposit organik-anorganik</td>
</tr>
<tr>
<td></td>
<td>Komposit asam-basa</td>
</tr>
<tr>
<td>4</td>
<td>Membran komposit non-terfluoronasi</td>
</tr>
<tr>
<td></td>
<td>Komposit organik-anorganik</td>
</tr>
<tr>
<td></td>
<td>Komposit asam-basa</td>
</tr>
</tbody>
</table>

2.4 Poli(vinil alkohol)

Poli(vinil alkohol) atau PVA merupakan suatu polimer yang paling banyak diminati karena PVA adalah polimer semi-kristalin hidrofilik yang berharga murah (Liao, dkk., 2015). Polimer tersebut juga memiliki kemampuan membentuk film yang sangat baik, stabilitas kimia yang bagus, hidrofilitas yang tinggi, dan kemampuan area-area ikat silangnya untuk menciptakan membran yang stabil dengan sifat mekanik yang baik dan memiliki permeabilitas yang selektif terhadap air. Disamping itu, PVA yang telah digunakan termasuk dalam kategori dapat terbiodegradasi, tidak berbahaya, dan ramah lingkungan (Kakati, dkk., 2015). Apabila PVA dioptimasi dalam membran komposit maka dapat dihasilkan alternatif membran penghantar proton yang potensial untuk digunakan pada aplikasi DMFC.

PVA sendiri memiliki struktur kimia yang relatif sederhana dengan tambahan senyawa hidroksilnya. Monomernya, vinil
alkohol, tidak dapat ditemukan di alam dalam bentuk yang stabil dikarenakan tautomernya yang berupa asetaldehid (Hassan dan Peppas, 2000). Meski begitu, PVA dapat diproduksi melalui polimerisasi vinil asetat membentuk poli(vinil asetat) atau (PVAc), yang lalu dilanjutkan dengan hidrolisis PVAc menjadi PVA. Hidrolisis yang tidak mencapai akhir dapat menghasilkan polimer dengan beberapa macam tingkat hidrolisis yang bergantung pada panjangnya reaksi. Struktur kimia dari PVA dapat dilihat pada Gambar 2.4.

![Struktur PVA](Costa-Junior, dkk., 2009)

Pada intinya, PVA merupakan kopolimer dari PVA dan PVAc. PVA komersil tersedia dengan kadar tingkat hidrolisis yang tinggi (diatas 98,5%). Tingkatan hidrolisis atau kadar asetat dalam polimer memiliki efek menyeluruh pada sifat kimia, kelarutan, kristabilitas dari PVA. Tingkat hidrolisis dan polimerisasi juga memengaruhi kelarutan PVA dalam air. PVA dengan tingkat hidrolisis tinggi diketahui memiliki kelarutan yang rendah dalam air. Dikarenakan PVA dihasilkan melalui reaksi polimerisasi radikal bebas dan hidrolisis berulang, maka mengakibatkan pula terdapatnya distribusi berat molekul yang cukup luas. Indeks polidispersitas yang umum untuk PVA komersil adalah 2 sampai 2,5. Distribusi berat molekul merupakan karakteristik penting pada PVA dikarenakan kemampuannya memengaruhi berbagai sifat
seperti kristabilitas, adesi, kekuatan mekanik, dan difusivitas (Hassan dan Peppas, 2000).

2.5 Kitosan

![Gambar 2.5 Struktur kitosan (Kaban, 2009)](image)

Kitosan dapat dibedakan dari kitin dengan melihat kelarutannya dalam asam asetat. Kitin yang terdeasetilasi kurang dari 60% umumnya tidak dapat larut dengan sempurna pada asam asetat. Sedangkan kitin yang terdeasetilasi > 60% akan menunjukkan kelarutan yang cukup baik pada asam asetat. Sehingga dapat disimpulkan bahwa kitin dikatakan sudah berubah menjadi kitosan apabila memiliki persen derajat deasetilasi (DD) > 60% atau semakin besar % DD maka akan semakin besar pula kelarutan kitosan pada asam asetat (Fahriansyah, 2008).
2.6 Grafit Oksida dan Grafin Oksida

Grafin oksida (GO) merupakan material nano yang didapat melalui proses oksidasi grafit sehingga menghasilkan grafit oksida. Proses oksidasi tersebut kemudian dilanjutkan dengan proses pengelupasan (eksfoliasi) lapisan sehingga menghasilkan grafin oksida (Garg, 2014). Skema pembentukan grafin oksida dapat dilihat pada Gambar 2.6. Proses dispersi dapat dilakukan dalam berbagai larutan, namun penelitian yang dilakukan Parades (2008) mengungkapkan bahwa grafit oksida terdispersi paling baik di dalam air dibandingkan N,N-dimethylformamide DMF, N-methyl-2-pyrrolidone NMP, tetrahydrofuran, etylene glycol, dan etanol dengan konsentrasi 0,5 mg mL$^{-1}$. Hal tersebut dikarenakan grafit oksida sangat teroksigenasi dan bersifat hidrofilik sehingga dapat terdispersi dengan baik dalam air (Garg, 2014). Grafin oksida merupakan material yang banyak digunakan dalam perkembangan material nanokomposit untuk berbagai macam aplikasi seperti kertas anti bakteri, pembawa obat baterai ion lithium, fotokatalis, biosensor, dan superkapasitor GO memiliki luas permukaan spesifik teoritis yang sangat luas yaitu hampir sama dengan 2620 m2/g dengan sejumlah gugus fungsi yaitu hidroksil, epoksi, dan karboksil yang dapat melumpuhkan pergerakan berbagai macam senyawa organik dan anorganik (Chia, dkk., 2013).

Sifat mekanik dan termal yang baik juga menjadikan GO sebagai material yang sangat diminati. Sifat fisika dan kimia yang baik dari GO juga diakibatkan dari banyaknya gugus fungsi yang teroksigenasi. Lembaran-lembaran GO tersebut dapat dianggap sebagai material amphifilk dengan daerah hidrofilik (mengandung gugus hidroksil, karboksil, dan epoksi) dan daerah hidrofobik yang tersusun atas grafit sp2. Gugus fungsi yang paling banyak teroksigenasi pada GO adalah epoksi. Gugus epoksi bertindak sebagai tempat untuk transfer proton setelah molekul air mengikat gugus epoksi tersebut, meskipun pada kelembaban relatif yang rendah dan pada suhu ruang. Konduktivitas proton yang relatif tinggi dibawah kondisi tersebut menyimpulkan bahwa lapisan GO
dapat bertindak sebagai elektrolit proton pada berbagai macam sel dan baterai (Tateishi, dkk., 2013).

Gambar 2.6 Skema sintesis Grafin Oksida (Ammar, dkk., 2015)

2.7 Karakterisasi Membran

Sifat mekanik, sifat fisika, sifat kimia, dan kinerja dari membran yang dihasilkan perlu diketahui, sehingga berbagai karakterisasi dilakukan pada membran. Sifat mekanik dari membran dapat diketahui dengan melakukan karakterisasi uji tarik. Untuk mengetahui sifat fisika & sifat kimia dari membran dapat dilakukan karakterisasi uji TGA, uji Water Uptake (WU), dan uji Methanol Uptake (MU). Sedangkan untuk mengetahui kinerja dari membran dilakukan karakterisasi konduktivitas proton menggunakan EIS (Electrochemical Impedance Spectroscopy).
2.8 Fourier Tranform Infra Red (FTIR)

a) sumber sinar, yang terbuat dari filamen Nerst atau globar yang dipanaskan menggunakan listrik hingga suhu 1000-1800 °C
b) beam splitter, berupa material transparan dengan indeks relatif, sehingga 50% radiasi akan direfleksikan dan 50% radiasi akan diteruskan
c) interferometer, merupakan bagian utama dari FTIR yang berfungsi untuk membentuk interferogram yang akan diteruskan menuju detektor
d) daerah cuplikan, dimana berkas acuan dan cuplikan masuk ke dalam daerah cuplikan dan masing-masing menembus sel acuan dan cuplikan secara bersesuaian
e) detektor, Merupakan piranti yang mengukur energi pancaran yang lewat akibat panas yang dihasilkan. Detektor yang sering digunakan adalah termokopel dan balometer.

Mekanisme yang terjadi pada alat FTIR dapat dijelaskan sebagai berikut yaitu sinar yang datang dari sumber sinar akan diteruskan dan kemudian akan dipecah oleh pemecah sinar menjadi dua bagian sinar yang saling tegak lurus. Sinar tersebut kemudian dipantulkan oleh dua cermin yaitu cermin diam dan cermin bergerak. Sinar hasil pantulan kedua cermin akan dipantulkan kembali menuju pemecah sinar untuk saling berinteraksi. Dari pemecah sinar, sebagian sinar akan diarahkan menuju cuplikan dan sebagian menuju sumber. Gerakan cermin yang maju mundur akan
menyebabkan sinar yang sampai pada detektor akan berfluktuasi. Sinar akan saling menguatkan ketika kedua cermin memiliki jarak yang sama terhadap detektor, dan akan saling melemahkan jika kedua cermin memiliki jarak yang berbeda. Fluktuasi sinar yang sampai pada detektor ini akan menghasilkan sinyal pada detektor yang disebut interferogram. Interferogram ini akan diubah menjadi spektra IR dengan bantuan computer berdasarkan operasi matematika (Tahid, 1994). Spektroskopi FTIR pada umumnya digunakan untuk:

a) mendeteksi sinyal lemah
b) menganalisis sampel dengan konsentrasri rendah
c) analisis getaran.

Pada penelitian ini FTIR diigunakan untuk mengetahui sintesis dari grafit menjadi grafit oksida dengan mengidentifikasi gugus fungsi yang telah terbentuk. Spektra FTIR pada Gambar 2.8 merupakan spektra FTIR dari grafit (a) dan grafit oksida (b). Dari spektra tersebut terlihat puncak air yang lebar pada panjang gelombang 3442 cm\(^{-1}\), puncak tersebut menunjukkan adanya vibrasi ulur dari air O-H. Grafit oksida sendiri dilaporkan memiliki gugus hidroksil, epoksi, dan karboksil dan gugus-gugus tersebut terlihat di spektra FTIR berupa puncak pada panjang gelombang 1383 cm\(^{-1}\), 1062 cm\(^{-1}\), dan 869 cm\(^{-1}\) secara berturut-turut, disertai dengan adanya puncak air yang kedua yang berada disekitar 1625 cm\(^{-1}\) (Joonsuk, dkk., 2014).
Gambar 2.7 Skema FTIR (Silverstein dan Bassler, 1967)
Gambar 2.8 Spektra FTIR Grafit (a) dan Grafit Oksida (b) (Kim, dkk., 2010)

2.9 Uji Tarik

Untuk menentukan sifat mekanik dari membran maka perlu dilakukan uji tarik. Sifat mekanik dari membran yang dapat diketahui melalui uji tarik adalah tensile strength (max stress), break elongation, dan modulus elastisitas. Dari sifat mekanik tersebut maka dapat dapat diketahui membran yang mempunyai keelastisan dan kekuatan yang baik ketika diaplikasikan sebagai membran pada DMFC.

Penelitian sebelumnya melaporkan perbandingan antara tensile strength (TS) dan elongation (break elongation) untuk film campuran PVA/kitosan sebagai salah satu karakterisasi dari hasil penelitiannya (Srinivasa, dkk., 2003). Adapun hasil karakterisasinya dapat dilihat pada Tabel 2.2.
<table>
<thead>
<tr>
<th>Chitosan-PVA (% perbandingan, w/v)</th>
<th>Tensile Strength (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-0</td>
<td>55,56</td>
<td>8</td>
</tr>
<tr>
<td>80-20</td>
<td>46,99</td>
<td>26,84</td>
</tr>
<tr>
<td>60-40</td>
<td>31,95</td>
<td>28,9</td>
</tr>
<tr>
<td>40-60</td>
<td>37,23</td>
<td>60,58</td>
</tr>
<tr>
<td>20-80</td>
<td>32,0</td>
<td>70,55</td>
</tr>
<tr>
<td>0-100</td>
<td>25,64</td>
<td>105,47</td>
</tr>
</tbody>
</table>

Dari Tabel 2.2. tersebut dapat terlihat bahwa film dengan PVA murni memiliki nilai elongation yang lebih tinggi bila dibandingkan dengan film kitosan murni, dimana dengan semakin banyak PVA yang terdapat dalam film campuran maka akan semakin besar nilai elongation. Sedangkan untuk tensile strength dari film campuran menunjukkan kecenderungan menurun dengan adanya penambahan konsentrasi PVA. Film dengan perbandingan konsentrasi PVA-kitosan 60-40, menunjukkan TS yang lebih rendah dibandingkan dengan film campuran dengan perbandingan konsentrasi 80-20 dan 40-60. Kecenderungan yang sama untuk campuran kitosan-PVA dengan variasi yang berbeda sebelumnya sudah pernah diteliti.

Blair (1987) mengungkapkan bahwa adanya PVA dapat menurunkan nilai TS dimungkinkan karena PVA mereduksi kristalinitas dari kitosan dalam campuran. Penelitian yang lain juga telah memelajari campuran yang sama dan mendapati bahwa molekul PVA dalam campuran cenderung mengganggu proses

2.10 Thermogravimetric Analysis (TGA)

Film PVA murni terlihat memiliki tiga tahap dari proses dekomposisi. Tahapan pertama dimulai pada sekitar suhu 40 °C sampai 79 °C dengan persen massa yang hilang mencapai 3%. Tahap yang kedua terjadi pada rentang suhu 260 °C sampai 430 °C dengan persen massa yang hilang adalah 73%. Kemudian terdapat persen massa yang hilang sebanyak kurang lebih 17% pada tahap ketiga proses dekomposisi yaitu pada rentang suhu sekitar 430 °C sampai 480 °C. Tahapan pertama dekomposisi dimungkinkan menandakan adanya penguapan air yang terikat secara bebas. Tahap yang kedua kemungkinan besar dikarenakan adanya dekomposisi akibat panas yang merusak struktur polimer. Sedangkan adanya pemanasan berlanjut setelah tahap dekomposisi kedua mengakibatkan struktur utama dari polimer rusak (Sharma, dkk., 2015).

2.11 Spektroskopi Impedansi dan Konduktivitas Proton
Impedansi merupakan sebuah konsep yang lebih umum dari resistansi karena juga memperhitungkan mengenai perbedaan fasa
antara arus dan tegangan. Oleh karena itu, impedansi dapat didefinisikan sebagai nilai resistansi kompleks dari suatu rangkaian listrik sebagai respon terhadap tegangan listrik AC yang diberikan pada rangkaian tersebut. Spektroskopi impedansi merupakan peralatan analitik yang populer di dalam penelitian dan pengembangan ilmu material dikarenakan mampu memberikan pengukuran listrik yang relatif sederhana, otomatis, dan hasilnya seringkali dihubungkan dengan banyak variabel-variabel material yang kompleks seperti: transportasi massa, laju reaksi kimia, korosi, sifat dielektrik, cacat mikrostruktur, dan pengaruh komposisi terhadap sifat konduktansi dalam zat padat (Macdonald, 2005).

Pada plot Nyquist, rangkaian ekivalen dapat diwakili oleh model-model yang ditampilkan dalam inset angka-angka. Setiap setengah lingkaran diwakili oleh rangkaian paralel RC yang ekivalen dengan komponen individu dari material bulk dan grain boundary. Resistansi dari tiap-tiap elemen langsung dihasilkan dari titik potong dengan sumbu x yaitu bagian real dari impedansi. Kapasitansi dapat dihitung melalui persamaan 2.11 sebagai berikut:

\[C = \frac{1}{2\pi f R} \]

(2.11)

dengan f adalah frekuensi puncak atau frekuensi relaksasi dan R adalah tahanan (Srinivas, dkk., 2003).
Konduktivitas proton merupakan faktor penentu kinerja dari membran pada sel bahan bakar. Konduktivitas proton sendiri merupakan kemampuan membran dalam menghantarkan proton. Semakin besar nilai konduktivitas proton dari suatu membran menandakan semakin baiknya kinerja dari membran untuk diaplikasi di sel bahan bakar (Fahriansyah, 2008). Pengukuran konduktivitas membran menggunakan metode two probes diperoleh dengan mengolah nilai tahanan yang terukur dari instrumen. Konduktivitas proton tersebut dapat dihitung melalui persamaan 2.12 sebagai berikut:

\[
\sigma = \frac{L}{R \cdot A}
\]

(2.12)

dengan \(\sigma\) adalah konduktivitas proton (S cm\(^{-1}\)), \(L\) adalah ketebalan membran (cm), \(A\) adalah luas permukaan elektroda (cm\(^2\)), dan \(R\) adalah tahanan membran (Ω) (Shuhua, dkk., 2012)

2.12 Water Uptake dan Methanol Uptake

Pengujian water uptake (WU) dan methanol uptake (MU) dalam penelitian ini bertujuan untuk mengetahui seberapa besar kemampuan membran dalam menyerap air dan metanol. Water uptake dan methanol uptake juga merupakan salah satu parameter untuk melihat apakah suatu membran baik digunakan pada DMFC. Water uptake dikenal memiliki efek yang cukup besar pada

Membran elektrolit polimer yang baik digunakan pada DMFC adalah membran yang memiliki water uptake tinggi dan memiliki methanol uptake yang rendah. Hal itu sehubungan dengan selektivitas terhadap air yang lebih tinggi untuk matriks PVA/kitosan (Palani, dkk., 2014). Perhitungan water uptake dan methanol uptake dari membran dapat menggunakan Persamaan 2.12 dan Persamaan 2.13. dengan M_{wet} adalah massa membran setelah perlakuan dan M_{dry} adalah massa membran sebelum dilakukannya perlakuan.

\[
\text{Water uptake} (\%) = \frac{M_{wet} - M_{dry}}{M_{dry}} \times 100\% \quad (2.12)
\]

\[
\text{Methanol uptake} (\%) = \frac{M_{wet} - M_{dry}}{M_{dry}} \times 100\% \quad (2.13)
\]
BAB III
METODOLOGI PENELITIAN

3.1 Alat dan Bahan

3.1.1 Alat
Peralatan yang digunakan dalam penelitian ini adalah gelas beker (2 L; 50 mL; 100 mL; 25 mL; dan 10 mL), magnetic stirrer, spatula, gelas ukur, pipet volume, botol semprot, propipet, kertas saring, kaca arloji, pH meter, pipet tetes, thermometer, instrumen DSC-TGA (Mettler Toledo), alat preparasi spesimen uji tarik ASTM D-412, ultimate tensile strength (stograph VG10-E), Fourier Transform Infra Red (8400S Shimadzu), dan potensiostat autolab (Metrohm AUT84948).

3.1.2 Bahan
Bahan yang digunakan dalam penelitian ini adalah kitosan (LIPI), PoliVinil alcohol (PVA) (Merck), grafit oksida, asam asetat (Merck), serbuk grafit sintetis (Merck), NaNO₃ (Merck), H₂SO₄ (Merck), KMnO₄ (Merck), H₂O₂ (Merck), HCl (Merck), tri-sodium (Merck), dan air demineralisasi.

3.2 Karakterisasi Grafit Oksida dengan Instrumen FTIR
Pengujian sampel grafit dan grafit oksida bertujuan untuk mengetahui adanya gugus fungsi pada grafit dan grafit oksida. Sebelum dilakukan analisis, sampel terlebih dahulu dicampur dengan KBr lalu dihaluskan dan setelah itu dibentuk menjadi pelet. Analisis FTIR dilakukan pada bilangan gelombang 500-4000 cm⁻¹ untuk mengetahui adanya gugus fungsi –OH, karbonil, karboksilat, dan C=C (Lin dan Lu, 2013).

3.3 Sintesis Membran Komposit PVA/Kitosan/Grafin Oksida
Membran komposit PVA/kitosan/grafin oksida dibuat dengan mendispersikan grafit oksida sebanyak 1,5% dari berat total PVA dan kitosan ke dalam air demineralisasi (0,1%) (m/v) yang
diletakkan pada alat *ultrasonic bath* berdaya 100 W selama 6 jam agar seluruh grafit oksida terdispersi ke dalam air sehingga menghasilkan grafin oksida (Chien, dkk., 2013). Variasi perbandingan volume PVA/kitosan yang digunakan dalam penelitian ini adalah 1:5, 2:4, 3:3, 4:2, dan 5:1 untuk menghasilkan membran komposit PVA/kitosan/grafin oksida tipe 1, tipe 2, tipe 3, tipe 4, dan tipe 5 (Enggita, 2015). Serbuk PVA dilarutkan ke dalam air demineralisasi sebanyak 4% m/v dan diaduk menggunakan *magnetic stirrer* selama 2 jam pada suhu 70 °C menghasilkan larutan PVA (Susilowati, dkk., 2013). Serbuk kitosan dilarutkan ke dalam asam asetat sebanyak 2% m/v yang kemudian dilanjutkan dengan pengadukan menggunakan *magnetic stirrer* selama 2 jam pada suhu 70 °C menghasilkan larutan kitosan (Kaban, 2009).

Grafin oksida kemudian ditambahkan ke dalam larutan PVA lalu diaduk kembali selama 15 menit pada suhu 70 °C sehingga menghasilkan campuran PVA/grafin oksida. Setelah itu, ke dalam campuran PVA/grafin oksida ditambahkan larutan kitosan yang dilanjutkan dengan pengadukan menggunakan *magnetic stirrer* selama 3 jam pada suhu 70 °C (Enggita, 2015). Campuran PVA/kitosan/grafin oksida lalu dituang ke dalam cetakan membran dan dibiarkan mengering (±17 hari). Setelah membran mengering dan mengelupas, membran diikat silang dengan merendam membran ke dalam larutan trisodium sitrat pada suhu 4 °C selama 90 menit. Sebelumnya, trisodium sitrat dilarutkan ke dalam air demineralisasi sebanyak 5% (m/v) lalu diatur pH nya menjadi 5 (Czubenko dan Pieróg, 2010). Membran yang telah terikat silang dengan trisodium sitrat kemudian dikarakterisasi menggunakan uji tarik, uji TGA, *water uptake* dan *methanol uptake*, serta konduktivitas proton.

3.5 Karakterisasi Membran dengan TGA

Membran komposit PVA/kitosan/grafin oksida tipe 1, tipe 2, tipe 3, tipe 4, dan tipe 5 yang telah terikat silang dengan trisodium sitrat diuji menggunakan instrumen DSC-TGA Mettler Toledo
untuk mengetahui ketahanan termalnya. Membran ditimbang sebanyak 1-5 mg sebelum dikarakterisasi dengan laju kenaikan suhu 10 °C per menit. Rentang suhu yang digunakan adalah 20 °C sampai 500 °C dengan pengaliran gas nitrogen.

3.6 Karakterisasi Membran dengan Uji Tarik

Sifat mekanik dari membran diketahui melalui uji tarik menggunakan alat stograph VG10-E. Sebelum dilakukan uji tarik, membran yang akan diuji terlebih dahulu digunting membentuk ukuran yang sesuai dengan syarat ASTM D-412 (140 mm x 25 mm). Uji tarik dilakukan dengan pengaturan kecepatan pengujian 10 mm/ menit dan kuat tarik 100 N pada suhu ruang. Ketebalan dari membran adalah 0,1 mm.

3.7 Uji Water Uptake dan Methanol Uptake

Membran yang di uji water uptake dan methanol uptake sebelumnya harus dikeringkan terlebih dahulu selama 24 jam pada suhu ruang, kemudian ditimbang dan dicatat massanya (M\text{dry}). Membran tersebut kemudian direndam ke dalam air demineralisasi dan metanol 5M selama 24 jam pada suhu ruang. Setelah itu, permukaan membran yang basah dilap dengan kertas saring atau tisu lalu segera ditimbang dan dicatat massanya (M\text{wet}). Persentase water uptake dan methanol uptake dapat dihitung menggunakan persamaan 3.1 dan 3.2.

\[
Water \ uptake \ (%) = \frac{M_{\text{wet}} - M_{\text{dry}}}{M_{\text{dry}}} \times 100\% \quad (3.1)
\]

\[
Methanol \ uptake \ (%) = \frac{M_{\text{wet}} - M_{\text{dry}}}{M_{\text{dry}}} \times 100\% \quad (3.2)
\]

3.8 Pengukuran konduktivitas proton

Kondutivitas proton dari membran komposit PVA/kitosan/grafin oksida pada arah melintang diukur menggunakan sel konduktivitas dengan bantuan potensiostat
autolab (Metrohm AUT84948). Sel konduktivitas tersebut dirancang sendiri berdasarkan metode two probes, dimana 2 PCB dengan kawat platina sepanjang 0,5 cm ditumpuk bersebrangan. Membran yang akan diuji sebelumnya dicelup ke dalam air demineralisasi agar terjadi proses hidrasi. Pada penelitian ini dilakukan variasi waktu hidrasi yaitu 1 menit; 1,5 menit; 2 menit; 3 menit; 5 menit; 15 menit; 30 menit; 60 menit; 90 menit; dan 120 menit. Setelah itu, membran langsung diukur dalam keadaan basah (terhidrasi) pada suhu ruang. Pengukuran dilakukan pada frekuensi 0,1 Hz sampai 10^5 Hz. Kemudian konduktivitas proton membran (σ, S cm$^{-1}$) dapat dihitung menggunakan persamaan 3.3 sebagai berikut:

$$\sigma = \frac{d}{R \times s \times L} \quad (3.3)$$

dengan L (cm) adalah ketebalan membran, s adalah lebar elektroda (0,5 cm), dan d adalah jarak elektroda (1,5 cm), sedangkan R adalah tahanan membran yang didapatkan dari pengukuran (Ramadhan dkk, 2012).

Gambar 3.1 Ilustrasi rangkaian sel konduktivitas two probes
BAB IV
HASIL DAN PEMBAHASAN

Pada penelitian ini dibuat membran komposit polimer elektrolit yang berdasar polivinil alkohol (PVA) dan kitosan dengan perlakuan variasi komposisi PVA/kitosan dan penambahan grafin oksida sebanyak 1,5%. Membran komposit polimer elektrolit tersebut lalu diikat silang dengan trisodium sitrat sebelum dikarakterisasi. Pembuatan membran dilakukan dalam beberapa tahap yaitu karakterisasi grafit oksida dengan instrumen FTIR, sintesis membran komposit PVA/kitosan/grafin oksida, karakterisasi membran menggunakan TGA dan uji tarik, penentuan water uptake dan methanol uptake dari membran, serta pengukuran konduktivitas proton.

4.1 FTIR Grafit dan Grafit Oksida

Pada penelitian ini digunakan grafit oksida yang telah disintesis sebelumnya menggunakan metode Hummers dan Offeman’s (Enggita, 2015). Untuk memastikan keberhasilan dari sintesis tersebut, maka grafit oksida hasil sintesis dikarakterisasi menggunakan FTIR. Sebelum dilakukan karakterisasi, grafit dan grafit oksida yang akan dianalisis dipreparasi dengan cara dihaluskan dan dicampur dengan KBr kemudian dibentuk menjadi pelet. Analisis FTIR dilakukan pada bilangan gelombang 500-4000 cm\(^{-1}\).

Spektra FTIR yang didapat dari hasil analisis menunjukkan perbedaan antara grafit dan grafit oksida hasil sintesis. Spektra FTIR tersebut dapat dilihat pada Gambar 4.1. Untuk spektra FTIR grafit, terlihat puncak di bilangan gelombang 1581 cm\(^{-1}\) yang menandakan adanya vibrasi ulur searah bidang dari hibridisasi C=C \(sp^2\). Sedangkan pada grafit oksida muncul puncak baru yaitu pada 3404 cm\(^{-1}\) sehubungan dengan gugus OH. Pada 1708 cm\(^{-1}\) dan 1627 cm\(^{-1}\) muncul puncak yang berturut-turut menandakan adanya vibrasi ulur dari C=O dan vibrasi ulur C=C. Kemudian puncak
pada 1234 cm\(^{-1}\) dan 1053 cm\(^{-1}\) secara berturut-turut menunjukkan adanya gugus epoksi dan alkoksi. Puncak-puncak tersebut menguatkan bahwa grafit telah mengalami proses oksidasi dimana gugus-gugus yang terbentuk tersebut nantinya dapat berikatan dengan matriks dari polimer.

Gambar 4.1 Spektra FTIR Grafit dan Grafit Oksida

Puncak-puncak dari spektra FTIR grafit oksida yang didapat tersebut terbukti mirip dengan spektra FTIR grafit oksida pada penelitian sebelumnya. Ramos-Galicia (2013) pada penelitiannya mengungkapkan bahwa grafit oksida memiliki puncak pada ~1500-1600 cm\(^{-1}\) yang menandakan adanya gugus C=C. Pada 3162 cm\(^{-1}\) muncul puncak yang menandakan adanya gugus OH dan pada 1710 cm\(^{-1}\) muncul puncak yang menandakan adanya gugus C=O. Sedangkan puncak pada 1220 cm\(^{-1}\) dan 1050 cm\(^{-1}\) menandakan adanya gugus epoksi dan alkoksi.
4.2 Sintesis Membran Komposit PVA/Kitosan/Grafin Oksida

Membran komposit PVA/kitosan/grafin oksida dibuat dengan terlebih dahulu mendispersikan 1,5% grafit oksida ke dalam air demineralisasi selama 6 jam dengan bantuan ultrasonic bath untuk menghasilkan grafin oksida. Grafit oksida terdiri atas grafit yang terfungsionalisasi dengan oksigen sehingga mengandung berbagai gugus fungsi, yaitu hidroksil dan epoksi pada dasar bidang serta tambahan gugus fungsi karbonil dan karboksil pada tepi bidang (Morimune, dkk., 2012). Adanya gugus fungsi tersebut menyebabkan grafit oksida sangat hidrofilik sehingga memudahkannya untuk swelling dan berdispersi dalam air, menghasilkan suspensi grafin oksida (Dikin, dkk., 2007). Grafin oksida tersebut itulah yang memiliki luas permukaan yang besar dan gugus fungsi yang mampu menyediakan platform untuk modifikasi lebih lanjut maupun sebagai tempat berikatannya senyawa organik/anorganik lain. Grafin oksida tersebut dapat secara kimia berdispersi ke dalam matriks polimer untuk menghasilkan komposit baru (Stankovich, dkk., 2006).

PVA dilarutkan ke dalam air demineralisasi pada suhu 70 °C dikarenakan PVA diketahui dapat larut dalam air panas (Susilowati, dkk., 2013). Di samping itu, kitosan dilarutkan ke dalam asam asetat 2% pada suhu 70 °C dikarenakan kitosan dapat larut dalam media asam encer (Kaban, 2009). Penggunaan magnetic stirrer bertujuan untuk mempercepat proses pelarutan yang terjadi. Pelarutan PVA dan kitosan bertujuan agar keduaunya dapat dengan mudah membentuk komposit ketika dicampur. Larutan PVA kemudian dicampur dengan suspensi grafin oksida
dengan bantuan magnetic stirrer selama 15 menit untuk membentuk campuran PVA/grafin oksida. Setelah itu, ditambahkan larutan kitosan ke dalam campuran dan dilanjutkan pengadukan dengan magnetic stirrer selama 3 jam pada suhu 70 °C sampai larutan campuran PVA/kitosan/grafin oksida mengental (Enggita, 2015). Campuran PVA/kitosan/grafin oksida dituang ke dalam cetakan lalu di biarkan menger ing sampai mengelupas dari cetakan.

Membran yang telah menger ing kemudian diikat silang menggunakan trisodium sitrat selama 90 menit dengan pengondisian pH dan suhu agar proses ikat silang berlangsung optimum. Setelah diikat silang, membran menjadi lebih keras dari sebelumnya karena adanya ikatan kovalen yang terbentuk ketika salah satu ujung gugus karboksilat pada trisodium sitrat bereaksi dengan gugus amina dari kitosan. Pengikat silangan membran sendiri bertujuan agar membran tidak mudah mengalami swelling (pembengkakan) dan untuk meningkatkan ketahanan dari membran dengan mencegah pem plastik tanpa mengurangi selektivitas maupun permeabilitas membran (Hunger, dkk., 2012). Setelah proses ikat silang selesai dilakukan, membran dicuci dengan air demineralisasi sampai pH netral untuk menghilangkan sisa trisodium sitrat yang masih menempel pada membran. Ilustrasi dari reaksi ikat silang membran kitosan dengan trisodium sitrat dapat dilihat pada Gambar 4.2.
Gambar 4.2 Ikat silang kitosan dengan trisodium sitrat
Hasil dari sintesis membran komposit PVA/kitosan/grafin oksida dapat dilihat pada Gambar 4.3. Membran tipe 5 dengan kadar PVA paling tinggi merupakan membran yang paling lentur, sedangkan penambahan kitosan ke dalam membran membuat membran semakin getas. Hal itu disebabkan PVA memberikan efek plastis yang tinggi terhadap membran.

Gambar 4.3 Membran komposit PVA/kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e) setelah pengeringan selama 17 hari

Hasil dari pengikat silangan membran dengan trisodium sitrat dapat dilihat pada Gambar 4.4 dan Gambar 4.5. Membran yang telah terikat silang dengan trisodium sitrat kemudian dikarakterisasi menggunakan uji tarik, TGA, water uptake dan methanol uptake, serta konduktivitas proton sehingga dapat diketahui sifat mekanik, sifat fisik & sifat kimia, serta kinerja dari membran tersebut.
Karakterisasi termogravimetri dari membran dilakukan menggunakan instrumen DSC-TGA (Mettler Toledo) pada atmosfer nitrogen. Sebelum membran diuji, membran terlebih dahulu dipotong kecil dan ditimbang sebanyak 1-5 mg. Rentang suhu yang digunakan adalah 20 °C sampai 500 °C dengan laju kenaikan suhu 10 °C/menit. Persentase weight loss dari membran PVA/kitosan dapat dilihat pada Tabel 4.1.
Tabel 4.1 Persentase weight loss membran PVA/kitosan/graFIN oksida

<table>
<thead>
<tr>
<th>Tipe Membran</th>
<th>Total weight loss (%wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipe 1</td>
<td>23,27</td>
</tr>
<tr>
<td>Tipe 2</td>
<td>44,83</td>
</tr>
<tr>
<td>Tipe 3</td>
<td>42,58</td>
</tr>
<tr>
<td>Tipe 4</td>
<td>55,10</td>
</tr>
<tr>
<td>Tipe 5</td>
<td>68,67</td>
</tr>
</tbody>
</table>

Membran tipe 1 dengan penambahan kitosan paling banyak menunjukkan % weight loss yang paling kecil yaitu 23,29%, sedangkan persentase weight loss yang paling besar terjadi pada membran tipe 5 yaitu 68,67%. Dari data tersebut dapat diasumsikan bahwa membran tipe 1 memiliki kestabilan termal paling tinggi pada rentang suhu mencapai 500 °C dibandingkan dengan membran komposit tipe 2, tipe 3, tipe 4, dan tipe 5. Hasil tersebut sesuai dengan penelitian sebelumnya dimana semakin sedikit massa kitosan pada membran maka akan semakin besar weight loss dari membran tersebut (El-Hefian, dkk., 2010).

Hasil termogravimetri dari membran komposit PVA/kitosan/graFIN oksida dapat dilihat pada Gambar 4.6. Membran komposit tipe 1 menunjukkan dua tahap dekomposisi. Tahapan pertama terjadi pada suhu onset 189,23 °C dengan puncak dekomposisi pada suhu 218,80 °C yang menandakan adanya degradasi termal membran komposit. Tahapan kedua terjadi pada suhu onset 295,60 °C dengan puncak dekomposisi pada 306,86 °C yang menunjukkan pemutusan rantai utama matriks membran komposit PVA/kitosan/graFIN oksida. Akan tetapi, membran komposit tipe 1 mengalami kenaikan massa pada suhu onset 50,42
37

°C yang dapat disebabkan karena sampel tidak melekat sempurna pada dasar crucible. Membran komposit tipe 2 menunjukkan tiga tahap dekomposisi. Tahapan pertama terjadi pada suhu onset 204,68 °C dengan puncak dekomposisi pada suhu 206,77 °C yang merujuk pada proses degradasi termal membran komposit. Tahapan kedua terjadi pada suhu onset 238,01 °C dengan puncak dekomposisi pada 239,85 °C yang menunjukkan masih terjadinya degradasi termal dari membran komposit. Tahapan ketiga terjadi pada suhu onset 286,38 °C dengan puncak dekomposisi pada suhu 384,01 °C yang menunjukkan pemutusan rantai utama matriks memran komposit.

Membran komposit tipe 5 menunjukkan empat tahap dekomposisi. Tahapan pertama terjadi pada suhu onset 134,15 °C dengan puncak pada suhu 139,22 °C yang menandakan adanya penguapan pelarut yaitu air demineralisasi dan asam asetat yang masing-masing memiliki titik didih 100 °C dan 118,1 °C. Membran tipe 5 memiliki komposisi PVA (hidrofilik) tertinggi sehingga pelarut dapat lebih banyak terikat dibandingkan pada membran komposit PVA/kitosan/grafin oksida tipe lainnya. Tahapan kedua
terjadi pada suhu \textit{onset} 326,94 °C dengan puncak dekomposisi pada suhu 360,46 °C yang menandakan adanya degradasi termal membran komposit. Tahapan ketiga terjadi pada suhu \textit{onset} 420,92 °C dengan puncak dekomposisi pada suhu 424,68 °C yang masih menunjukkan adanya degradasi termal membran komposit. Tahapan keempat terjadi pada suhu \textit{onset} 461,17 °C dengan puncak dekomposisi pada suhu 462,59 °C yang menunjukkan pemutusan rantai utama matriks membran komposit.

Gambar 4.6 Kurva TGA membran komposit PVA/kitosan/grafin oksida dengan perbandingan persen massa (%wt) vs suhu (°C)

4.5 Karakterisasi Membrane dengan Uji Tarik

Sifat mekanik dari memran perlu diketahui, maka dilakukan karakterisasi dengan uji tarik. Uji tarik memran dilakukan menggunakan instrumen \textit{ultimate tensile strength} (stograph VG 10-E). Sebelum dilakukan uji tarik, memran terlebih dahulu dipreparasi dengan memotong memran sesuai dengan ASTM D-412 (140 mm x 25 mm). Setelah itu, uji tarik dilakukan dengan
mengatur kecepatan pengujian 10 mm/menit dan kuat tarik 100 N pada suhu ruang. Dari data-data yang diperoleh saat uji tarik, diambil nilai *break elongation*, *max stress* (*tensile strength*), dan modulus elastisitas untuk melihat sifat mekanik dari membran. Nilai *break elongation*, *tensile strength*, dan modulus elastisitas dari membran dapat dilihat pada Tabel 4.2.

Tabel 4.2 *Break elongation*, *tensile strength*, dan modulus elastisitas dari membran komposit PVA/kitosan/grafin oksida

<table>
<thead>
<tr>
<th>Tipe Membran</th>
<th>Break elongation (%)</th>
<th>Tensile strength (MPa)</th>
<th>Modulus elastisitas (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipe 1</td>
<td>6,43</td>
<td>105,7</td>
<td>1144,2</td>
</tr>
<tr>
<td>Tipe 2</td>
<td>4,98</td>
<td>101,6</td>
<td>2583,1</td>
</tr>
<tr>
<td>Tipe 3</td>
<td>15,88</td>
<td>99,6</td>
<td>1207,7</td>
</tr>
<tr>
<td>Tipe 4</td>
<td>30,68</td>
<td>74,1</td>
<td>1672,2</td>
</tr>
<tr>
<td>Tipe 5</td>
<td>87,18</td>
<td>76,6</td>
<td>1207,7</td>
</tr>
</tbody>
</table>

Dari data hasil uji tarik tersebut, pengaruh variasi komposisi PVA/kitosan terhadap nilai *break elongation*, *max stress*, dan modulus elastisitas dari membran dapat dilihat pada Gambar 4.7, Gambar 4.8, dan Gambar 4.9. Pada Gambar 4.7 terlihat bahwa semakin banyak PVA yang terdapat pada membran komposit maka nilai *break elongation* semakin besar. Hal ini dikarenakan PVA memberi efek pemlastikan pada membran sehingga membran menjadi lebih fleksibel. Sedangkan pada Gambar 4.8 dapat dilihat bahwa *tensile strength* dari membran dengan komposisi PVA lebih banyak justru semakin kecil. Hal itu dapat diakibatkan karena
derajat polimerisasi dari PVA yang rendah dan adanya PVA menjadikan kristalinitas kitosan pada campuran berkurang (Srinivasa, dkk., 2003).

Gambar 4.7 Pengaruh variasi komposisi PVA/kitosan terhadap break elongation membran komposit PVA/kitosan/ grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e)
Gambar 4.8 Pengaruh variasi komposisi PVA/kitosan terhadap *tensile strength* membran komposit PVA/kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e)

Gambar 4.9 Pengaruh variasi komposisi PVA/kitosan terhadap modulus elasitisas membran komposit PVA/kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e)
4.6 Water Uptake dan Methanol Uptake

Water uptake dan methanol uptake merupakan parameter yang penting didalam transport ion membran elektrolit polimer maupun crossover dari bahan bakar pada DMFC. Pada Gambar 4.10 terlihat sangat jelas bahwa persentase water uptake lebih tinggi dibandingkan persentase methanol uptake sehubungan dengan selektivitas air yang lebih tinggi pada membran komposit. Grafin oksida pada membran komposit juga mempengaruhi water uptake dari membran akibat adanya grafin oksida menyebabkan meningkatnya interaksi gugus amina pada kitosan dengan gugus hidroksil pada PVA. Persentase nilai water uptake dan methanol uptake dari membran komposit PVA/kitosan/grafin oksida dapat dilihat pada Tabel 4.3.

Gambar 4.10 Grafik methanol uptake dan water uptake membran komposit PVA/kitosan/grafin oksida tipe 1 (a), tipe 2 (b), tipe 3 (c), tipe 4 (d), dan tipe 5 (e)
Tabel 4.3 Persentase nilai water uptake dan methanol uptake membran komposit PVA/kitosan/grafin oksida

<table>
<thead>
<tr>
<th>Tipe Membran</th>
<th>Water uptake (%)</th>
<th>Methanol uptake (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipe 1</td>
<td>38,78</td>
<td>20,54</td>
</tr>
<tr>
<td>Tipe 2</td>
<td>91,86</td>
<td>34,58</td>
</tr>
<tr>
<td>Tipe 3</td>
<td>130,43</td>
<td>53,57</td>
</tr>
<tr>
<td>Tipe 4</td>
<td>96,19</td>
<td>45,30</td>
</tr>
<tr>
<td>Tipe 5</td>
<td>152,17</td>
<td>69,75</td>
</tr>
</tbody>
</table>

Dari Tabel 4.4 terlihat bahwa persentase water uptake yang terbesar terdapat pada membran tipe 5, namun pada tipe 5 tersebut pula persentase methanol uptake terlihat paling besar. Hal itu menandakan bahwa membran tipe 5 kurang sesuai dengan syarat DMFC yaitu memiliki nilai water uptake tinggi dan methanol uptake rendah (Palani, dkk., 2014). Persentase water uptake pada membran komposit terlihat meningkat seiring dengan bertambahnya komposisi PVA. Hal tersebut disebabkan PVA memiliki gugus hidroksil yang mampu menahan banyak molekul air sehingga adanya ikatan hidrogen yang terjadi. PVA juga merupakan membran yang bersifat hidrofilik dan diketahui dapat menyerap air hampir menyamai beratnya sendiri.

Sebaliknya, membran dengan komposisi kitosan lebih banyak memiliki nilai water uptake yang kecil dikarenakan kitosan sendiri dikenal tidak dapat larut dalam air karena adanya ikatan hidrogen yang terlalu kuat antara gugus amina (-NH₂) dan gugus hidroksil (-OH) (Salgado, 2007). Oleh karena itu, penambahan PVA yang bersifat hidrofilik ke dalam membran komposit PVA/kitosan/grafin oksida dapat meningkatkan persentase water uptake (Ariyaskul, dkk., 2006). Sedangkan persentase water
uptake dan methanol uptake dari membran tipe 4 yang tidak sesuai dengan kecenderungan tipe lainnya dimungkinkan karena proses pencampuran yang kurang homogen sehingga interaksi antara gugus amina pada kitosan dan gugus hidroksil pada PVA kurang maksimal. Dari Tabel 4.4 tersebut dapat disimpulkan bahwa membran tipe 2 memiliki nilai water uptake dan methanol uptake yang paling baik dikarenakan nilai methanol uptake yang cukup rendah yaitu 34,58% sedangkan nilai water uptake yang masih cukup tinggi yaitu 91,86%. Persentase water uptake dan methanol uptake dari membran komposit PVA/kitosan/grafin oksida secara keseluruhan lebih baik dibandingkan membran Nafion yang memiliki persentase water uptake sebesar 20% dan methanol uptake sebesar 70% (Miyake, dkk., 2001).

4.7 Konduktivitas Proton Membran Komposit PVA/Kitosan/ Grafin oksida

Uji konduktivitas proton dari penelitian ini dilakukan menggunakan sel konduktivitas dan potensiostat autolab (Metrohm AUT84948). Data yang didapat dari potensiostat autolab tersebut langsung diolah dalam software Nova 1.11 sehingga didapatkan nilai tahanan dari membran. Nilai tahanan yang diperoleh tersebut kembali diolah menggunakan persamaan 3.3 untuk mendapat nilai konduktivitas proton membran. Pada penentuan konduktivitas proton membran, digunakan variasi waktu hidrasi yaitu 1 menit; 1,5 menit; 2 menit; 3 menit; 5 menit; 15 menit; 60 menit; 90 menit; dan 120 menit. Proses hidrasi dilakukan dengan mencelupkan membran ke dalam air demineralisasi. Membran dibuat dalam keadaan terhidrat karena membran hanya dapat menghantarkan proton dalam keadaan terhidrat (Salgado, 2007).

Pada Gambar 4.11 dapat dilihat perbandingan konduktivitas proton dari membran komposit PVA/kitosan/grafin oksida dengan adanya variasi waktu hidrasi. Gambar 4.11 menunjukkan bahwa semakin lama waktu hidrasi cenderung meningkatkan konduktivitas proton dari membran. Konduktivitas proton yang paling tinggi dimiliki oleh membran tipe 2 dengan waktu hidrasi
90 menit, yaitu sebesar 21.29×10^{-3} S.cm$^{-1}$. Pada waktu hidrasi terlama yaitu 120 menit dapat dilihat bahwa membran tipe 1 dengan komposisi kitosan paling tinggi memiliki nilai konduktivitas lebih tinggi dibandingkan membran tipe 5 dengan komposisi PVA paling tinggi. Dari hal tersebut dapat disimpulkan bahwa waktu hidrasi berpengaruh terhadap konduktivitas dari membran, tetapi untuk membran yang mengandung komposisi PVA paling tinggi mengakibatkan air yang terserap ke dalam membran terlalu banyak sehingga pergerakan proton menjadi kurang efisien (Danwanichakul dan Sirikhajornnam, 2013).

Gambar 4.11 Kurva perbandingan konduktivitas proton pada membran komposit PVA/kitosan/grafin oksida (tipe 1, tipe 2, tipe 3, tipe 4, dan tipe 5) dengan variasi waktu hidrasi.
BAB V
KESIMPULAN DAN SARAN

5.1 Kesimpulan
Dari penelitian dan pembahasan yang telah dilakukan, maka dapat disimpulkan bahwa:

1. Penambahan kitosan dalam membran cenderung meningkatkan kekuatan mekanik dari membran. Kekuatan mekanik paling baik diperoleh oleh membran tipe 2 yang memiliki modulus elatisitas tertinggi yaitu 2583,1 MPa.

2. Kestabilan termal dari membran komposit PVA/kitosan/grafin oksida cenderung meningkat dengan adanya penambahan kitosan ke dalam membran. Kestabilan termal paling baik diperoleh oleh membran tipe 1 dengan % weight loss terkecil yaitu 23,29%.

3. Water uptake dan methanol uptake dari membran komposit PVA/kitosan/grafin oksida cenderung meningkat dengan adanya penambahan komposisi PVA. Water uptake dan methanol uptake paling tinggi yaitu 152,17% dan 69,75% yang diperoleh oleh membran tipe 5.

4. Membran komposit PVA/kitosan/grafin oksida tipe 2 menunjukkan nilai konduktivitas proton paling tinggi yaitu $21,29 \times 10^{-3} \text{ S.cm}^{-1}$ dengan waktu hidrasi 90 menit.

5.2 Saran
Membran komposit PVA/kitosan/grafin oksida memiliki nilai konduktivitas proton yang berbeda dengan adanya variasi waktu hidrasi. Untuk penelitian selanjutnya maka perlu dilakukan penambahan material yang dapat mengendalikan water uptake dari membran agar konduktivitas proton dapat stabil setelah mencapai kondisi optimum.
LAMPIRAN

LAMPIRAN A: SKEMA KERJA

Sintesis membran komposit PVA/kitosan/grafin oksida

1. GO 1,5% dan H₂O
 - Di ultrasonik selama 6 jam
 - Suspensi

2. PVA* dan H₂O
 - Diaduk selama 2 jam (70 °C)
 - Larutan PVA*

3. Kitosan* dan Asam asetat
 - Diaduk selama 2 jam (70 °C)
 - Larutan Kitosan*

4. Larutan PVA* dan Larutan Kitosan*
 - Diaduk selama 15 menit (70 °C)
 - PVA/GO

5. PVA/GO
 - Diaduk selama 3 jam (70 °C)
 - PVA/Kitosan/GO

6. PVA/Kitosan/GO
 - Dikeringkan pada suhu ruang
 - Membran
Membran → Larutan Na-Sitrat
-Di ikat silang 90 menit (4 °C)

Membran →

1) TGA/DSC
2) Uji tarik
3) Water uptake
4) Methanol uptake
5) Konduktivitas proton

Data

*Variasi perbandingan volume PVA/kitosan yang digunakan adalah (1/5; 2/4; 3/3; 4/2; dan 5/1)
LAMPIRAN B: PEMBUATAN LARUTAN

Pembuatan larutan asam asetat 2%

Teoritis:
Konsentrasi larutan asam asetat awal 99,7 %

\[M_1 \times V_1 = M_2 \times V_2 \]
\[99,7\% \times V_1 = 2\% \times 500 \text{ mL} \]
\[V_1 = 10,03 \text{ mL} \]

Praktik:
Larutan asam asetat 99,7% yang diambil sebanyak 10,05 mL.
LAMPIRAN C: PERHITUNGAN DENSITAS PVA DAN KITOSAN

Diketahui:
Massa pikno = 24, 2865 gram
Volume pikno = 25 mL
Massa kitosan =0,1 gram
Massa PVA = 0,2 gram
Massa pikno + massa non pelarut (n-heksana) = 40, 7824 gram
Massa pikno + non pelarut + kitosan = 40, 8224 gram
Massa pikno+ non pelarut + PVA = 40,8720 gram

Perhitungan densitas PVA dan kitosan:
Massa non pelarut = 40,7824 gram – 24,2865 gram
= 16,4959 gram

\[\rho_{\text{non pelarut}} = \frac{16,4959 \text{ gram}}{25 \text{ mL}} = 0,66 \text{ gram} \]

Massa pikno + non pelarut + kitosan = 40,8224 gram
Massa non pelarut = (40,8224 – 0,1 – 24,2865) gram
= 16,4359 gram

Volume non pelarut = \(\frac{16,4359 \text{ gram}}{0,66 \text{ gram/mL}} \) = 24, 9028 mL

Volume kitosan = (25-24,9028) mL
= 0,0971 mL

\[\rho_{\text{kitosan}} = \frac{0,1 \text{ gram}}{0,0971 \text{ mL}} = 1,029 \text{ gram/mL} \]

\[\rho_{\text{PVA}} = 1,1534 \text{ gram/mL} \]
LAMPIRAN D: PERHITUNGAN MASSA PVA DAN KITOSAN DALAM MEMBRAN

Diketahui:
Volume membran = (16 x 8 x 0,025) cm³ = 3,2 cm³
Tebal membran = 0,025 cm

Contoh perhitungan perbandingan volume PVA:Kitosan (2:4):
Massa = pebandingan x volume x densitas
Massa PVA = $\frac{2}{6} \times 3,2 \text{ mL} \times 1,1534 \text{ gram/mL} = 1,230 \text{ gram}$
Massa kitosan = $\frac{4}{6} \times 3,2 \text{ mL} \times 1,029 \text{ gram/mL} = 2,195 \text{ gram}$

<table>
<thead>
<tr>
<th>Perbandingan PVA/KITOSAN</th>
<th>PVA</th>
<th>KITOSAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5</td>
<td>0,615 gram</td>
<td>2,744 gram</td>
</tr>
<tr>
<td>2/4</td>
<td>1,230 gram</td>
<td>2,195 gram</td>
</tr>
<tr>
<td>3/3</td>
<td>1,845 gram</td>
<td>1,646 gram</td>
</tr>
<tr>
<td>4/2</td>
<td>2,460 gram</td>
<td>1,098 gram</td>
</tr>
<tr>
<td>5/1</td>
<td>3,076 gram</td>
<td>0,549 gram</td>
</tr>
</tbody>
</table>
LAMPIRAN E: PERHITUNGAN MASSA GRAFIT OXSIDA DALAM MEMBRAN

Contoh komposisi PVA:kitosan yang digunakan dalam pembuatan membran adalah 2:4 dengan massa total (PVA+kitosan) sebanyak 3,4259 gram.

Perhitungan massa Grafit oksida dalam membran:
Massa grafit oksida= \(\frac{\% \times \text{massa total}}{100} \)

Contoh:
Massa grafit oksida= \(\frac{1,5 \% \times 3,4259 \text{ gram}}{100} \) = 0,05138 gram

<table>
<thead>
<tr>
<th>Membran</th>
<th>Massa total (PVA+kitosan)</th>
<th>Massa GO (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipe 1</td>
<td>3,3598</td>
<td>0,05039</td>
</tr>
<tr>
<td>Tipe 2</td>
<td>3,4259</td>
<td>0,05138</td>
</tr>
<tr>
<td>Tipe 3</td>
<td>3,4911</td>
<td>0,05236</td>
</tr>
<tr>
<td>Tipe 4</td>
<td>3,5580</td>
<td>0,05337</td>
</tr>
<tr>
<td>Tipe 5</td>
<td>3,6260</td>
<td>0,05430</td>
</tr>
</tbody>
</table>
LAMPIRAN F: DATA IR GRAFIT OKSIDA

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>Peak Intensity</th>
<th>Cor. Area</th>
<th>Base (Å)</th>
<th>Base (Å)</th>
<th>Base (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>320</td>
<td>15</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>1200</td>
<td>310</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>1400</td>
<td>300</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>1600</td>
<td>290</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>1800</td>
<td>280</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2000</td>
<td>270</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2200</td>
<td>260</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2400</td>
<td>250</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2600</td>
<td>240</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2800</td>
<td>230</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3000</td>
<td>220</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3200</td>
<td>210</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3400</td>
<td>200</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3600</td>
<td>190</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3800</td>
<td>180</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: The table and graph depict the infrared spectra of graphite oxide data.
LAMPIRAN G: DATA UJI TGA/DSC

A. Membran Komposit Tipe 1

B. Membran Komposit Tipe 2
C. Membran Komposit Tipe 3

D. Membran Komposit Tipe 4
E. Membran Komposit Tipe 5
LAMPIRAN H: DATA UJI TARIK

A. Membran Komposit Tipe 1

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Elong. %</th>
<th>Yield Stress (MPa)</th>
<th>Yield Energy Stress (MPa)</th>
<th>Elong. %</th>
<th>Yield Stress (MPa)</th>
<th>Yield Energy Stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.43</td>
<td>7.54</td>
<td>114.2</td>
<td>105.7</td>
<td>6.2</td>
<td>105.7</td>
</tr>
<tr>
<td>Ave.</td>
<td>6.43</td>
<td>7.54</td>
<td>114.2</td>
<td>105.7</td>
<td>6.2</td>
<td>105.7</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

B. Membran Komposit Tipe 2

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Elong. %</th>
<th>Yield Stress (MPa)</th>
<th>Yield Energy Stress (MPa)</th>
<th>Elong. %</th>
<th>Yield Stress (MPa)</th>
<th>Yield Energy Stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.96</td>
<td>7.82</td>
<td>99.5</td>
<td>101.9</td>
<td>4.3</td>
<td>101.9</td>
</tr>
<tr>
<td>Ave.</td>
<td>4.96</td>
<td>7.82</td>
<td>99.5</td>
<td>101.9</td>
<td>4.3</td>
<td>101.9</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
C. Membran Komposit Tipe 3

D. Membran Komposit Tipe 4
E. Membran Komposit Tipe 5

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.18</td>
<td>9.99</td>
<td>1987.7</td>
<td>76.6</td>
<td>83.5</td>
<td>76.6</td>
<td>192.70</td>
<td>57.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Ave.</td>
<td>57.18</td>
<td>9.99</td>
<td>1987.7</td>
<td>76.6</td>
<td>83.5</td>
<td>76.6</td>
<td>192.70</td>
<td>57.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Std dev.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
LAMPIRAN I: PERHITUNGAN WATER UPTAKE DAN METHANOL UPTAKE

1. Water uptake

Persentase water uptake dihitung menggunakan persamaan:

\[
\text{Water uptake (\%)} = \frac{M_{\text{wet}} - M_{\text{dry}}}{M_{\text{dry}}} \times 100\%
\]

Dimana \(M_{\text{wet}}\) merupakan massa membran basah dan \(M_{\text{dry}}\) adalah massa membran kering

Contoh perhitungan water uptake membran tipe 2:

\[
\text{Water uptake (\%)} = \frac{0,0165 - 0,0086}{0,0086} \times 100\% = 91,86 \%
\]

<table>
<thead>
<tr>
<th>Membran</th>
<th>(M_{\text{dry}}) (gram)</th>
<th>(M_{\text{wet}}) (gram)</th>
<th>Water uptake (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipe 1</td>
<td>0,0098</td>
<td>0,0136</td>
<td>38,78</td>
</tr>
<tr>
<td>Tipe 2</td>
<td>0,0086</td>
<td>0,0165</td>
<td>91,86</td>
</tr>
<tr>
<td>Tipe 3</td>
<td>0,0092</td>
<td>0,0212</td>
<td>130,43</td>
</tr>
<tr>
<td>Tipe 4</td>
<td>0,0105</td>
<td>0,0206</td>
<td>96,19</td>
</tr>
<tr>
<td>Tipe 5</td>
<td>0,0092</td>
<td>0,0232</td>
<td>152,17</td>
</tr>
</tbody>
</table>
2. Methanol uptake

Persentase methanol uptake dihitung menggunakan persamaan:

\[
\text{Methanol uptake (\%)} = \frac{M_{\text{wet}} - M_{\text{dry}}}{M_{\text{dry}}} \times 100\%
\]

Dimana \(M_{\text{wet}} \) merupakan massa membran basah dan \(M_{\text{dry}} \) adalah massa membran kering.

Contoh perhitungan methanol uptake membran tipe 2:

\[
\text{Methanol uptake (\%)} = \frac{0,0144 - 0,0107}{0,0107} \times 100\% = 34,58\%
\]

<table>
<thead>
<tr>
<th>Membran</th>
<th>(W_{\text{dry}}) (gram)</th>
<th>(W_{\text{wet}}) (gram)</th>
<th>Methanol uptake (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipe 1</td>
<td>0,0112</td>
<td>0,0135</td>
<td>20,54</td>
</tr>
<tr>
<td>Tipe 2</td>
<td>0,0107</td>
<td>0,0144</td>
<td>34,58</td>
</tr>
<tr>
<td>Tipe 3</td>
<td>0,0140</td>
<td>0,0215</td>
<td>53,57</td>
</tr>
<tr>
<td>Tipe 4</td>
<td>0,0117</td>
<td>0,0170</td>
<td>45,30</td>
</tr>
<tr>
<td>Tipe 5</td>
<td>0,0119</td>
<td>0,0202</td>
<td>69,75</td>
</tr>
</tbody>
</table>
LAMPIRAN J: PERHITUNGAN KONDUKTIVITAS PROTON

Konduktivitas proton dihitung dengan menggunakan persamaan:

\[\sigma = \frac{d}{R \times s \times L} \]

Di mana \(L \) (cm) adalah ketebalan membran, \(s \) adalah lebar elektroda (0,5 cm), dan \(d \) adalah jarak elektroda (1,5 cm), sedangkan \(R \) adalah tahanan membran (\(\Omega \)).

1. Membran Komposit Tipe 1

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>R ((\Omega))</th>
<th>(\sigma \times 10^{-3}) (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15798000</td>
<td>0.018617398</td>
</tr>
<tr>
<td>1.5</td>
<td>3338000</td>
<td>0.088111937</td>
</tr>
<tr>
<td>2</td>
<td>1232600</td>
<td>0.238615647</td>
</tr>
<tr>
<td>3</td>
<td>399300</td>
<td>0.736583138</td>
</tr>
<tr>
<td>5</td>
<td>88959</td>
<td>3.306215752</td>
</tr>
<tr>
<td>15</td>
<td>43140</td>
<td>6.817747961</td>
</tr>
</tbody>
</table>
2. Membran Komposit Tipe 2

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>R (Ω)</th>
<th>$\sigma \times 10^{-3}$ (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5613800</td>
<td>0.053439738</td>
</tr>
<tr>
<td>1.5</td>
<td>2930500</td>
<td>0.102371609</td>
</tr>
<tr>
<td>2</td>
<td>1362900</td>
<td>0.220118864</td>
</tr>
<tr>
<td>3</td>
<td>12930000</td>
<td>0.023201856</td>
</tr>
<tr>
<td>5</td>
<td>138820</td>
<td>2.161071892</td>
</tr>
<tr>
<td>15</td>
<td>33020</td>
<td>9.085402786</td>
</tr>
<tr>
<td>30</td>
<td>36282</td>
<td>8.268562924</td>
</tr>
<tr>
<td>60</td>
<td>30689</td>
<td>9.775489589</td>
</tr>
<tr>
<td>90</td>
<td>14094</td>
<td>21.28565347</td>
</tr>
<tr>
<td>120</td>
<td>15631</td>
<td>19.19263003</td>
</tr>
</tbody>
</table>
3. Membran Komposit Tipe 3

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>R (Ω)</th>
<th>$\sigma \times 10^{-3}$ (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8379700</td>
<td>0.033458696</td>
</tr>
<tr>
<td>1.5</td>
<td>1352100</td>
<td>0.207361757</td>
</tr>
<tr>
<td>2</td>
<td>1041900</td>
<td>0.2690986</td>
</tr>
<tr>
<td>3</td>
<td>191810</td>
<td>1.461726874</td>
</tr>
<tr>
<td>5</td>
<td>141810</td>
<td>1.977109032</td>
</tr>
<tr>
<td>15</td>
<td>50389</td>
<td>5.564187259</td>
</tr>
<tr>
<td>30</td>
<td>22126</td>
<td>12.67169085</td>
</tr>
<tr>
<td>60</td>
<td>38898</td>
<td>7.207924103</td>
</tr>
<tr>
<td>90</td>
<td>33466</td>
<td>8.377871027</td>
</tr>
<tr>
<td>120</td>
<td>21090</td>
<td>13.29415988</td>
</tr>
</tbody>
</table>
4. Membran Komposit Tipe 4

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>R (Ω)</th>
<th>σ x 10^-3 (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6518400</td>
<td>0.045121141</td>
</tr>
<tr>
<td>1.5</td>
<td>2899100</td>
<td>0.101451363</td>
</tr>
<tr>
<td>2</td>
<td>1556100</td>
<td>0.189009477</td>
</tr>
<tr>
<td>3</td>
<td>522900</td>
<td>0.562473986</td>
</tr>
<tr>
<td>5</td>
<td>208610</td>
<td>1.409892369</td>
</tr>
<tr>
<td>15</td>
<td>109920</td>
<td>2.675742786</td>
</tr>
<tr>
<td>30</td>
<td>71967</td>
<td>4.086840455</td>
</tr>
<tr>
<td>60</td>
<td>38783</td>
<td>7.583674472</td>
</tr>
<tr>
<td>90</td>
<td>35889</td>
<td>8.195203184</td>
</tr>
<tr>
<td>120</td>
<td>30913</td>
<td>9.514367647</td>
</tr>
</tbody>
</table>
5. Membran Komposit Tipe 5

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>R (Ω)</th>
<th>σ x 10^{-3} (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7980200</td>
<td>0.035802898</td>
</tr>
<tr>
<td>1.5</td>
<td>4003200</td>
<td>0.071371474</td>
</tr>
<tr>
<td>2</td>
<td>2003300</td>
<td>0.142621817</td>
</tr>
<tr>
<td>3</td>
<td>908160</td>
<td>0.314607873</td>
</tr>
<tr>
<td>5</td>
<td>400180</td>
<td>0.713964443</td>
</tr>
<tr>
<td>15</td>
<td>165580</td>
<td>1.72553621</td>
</tr>
<tr>
<td>30</td>
<td>96761</td>
<td>2.952783515</td>
</tr>
<tr>
<td>60</td>
<td>98382</td>
<td>2.904131708</td>
</tr>
<tr>
<td>90</td>
<td>49457</td>
<td>5.777024197</td>
</tr>
<tr>
<td>120</td>
<td>19606</td>
<td>14.57279841</td>
</tr>
</tbody>
</table>

Keterangan:
DAFTAR PUSTAKA

direction of thickness. Technical Development Headquarters, Espec Corp.

BIOGRAFI