TUGAS AKHIR - TM141585

STUDI EKSPERIMEN VARIASI ROLLER 7 GRAM, 10 GRAM, 11 GRAM DAN 12 GRAM PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) TERHADAP KINERJA TRAKSI DAN PERCEPATAN DARI KENDARAAN SCOOPY 110 CC

MUHAMMAD AKIF HABIBULLAH
NRP. 2110 100 159

Dosen Pembimbing
Prof. Ir. I. Nyoman Sutantra, M.Sc., Ph.D.

JURUSAN TEKNIK MESIN
Fakultas Teknologi Industri
Institut Teknologi Sepuluh Nopember
Surabaya 2016
FINAL PROJECT - TM141585

EXPERIMENTAL STUDY OF VARIATION 7 GRAM ROLLER, 10 GRAM ROLLER, 11 GRAM ROLLER AND 12 GRAM ROLLER ON CONTINUOUSLY VARIABLE TRANSMISSION (CVT) BASED ON TRACTION PERFORMANCE AND ACCELERATION OF SCOOPY 110 CC

MUHAMMAD AKIF HABIBULLAH
NRP. 2110 100 159

Advisor Lecture
Prof. Ir. I. Nyoman Sutantra, M.Sc., Ph.D.

Mechanical Engineering Department
Faculty of Industrial Technology
Surabaya Nopember Institute Of Technology
Surabaya 2016
TUGAS AKHIR- TM141585

STUDI EKSPERIMENT VARIASI ROLLER 7 GRAM, 10 GRAM, 11 GRAM DAN 12 GRAM PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) TERHADAP KINERJA TRAKSI DAN PERCEPATAN DARI KENDARAAN SCOOPY 110 CC

MUHAMMAD AKIF HABIBULLAH
NRP 2110 100 159

Dosen Pembimbing
Prof.Ir.I. Nyoman Sutantra,M.Sc.,Ph.D.

JURUSAN TEKNIK MESIN
Fakultas Teknologi Industri
Institut Teknologi Sepuluh Nopember
Surabaya 2016
STUDI EKSPERIMENT VARIASI ROLLER 7 GRAM, 10 GRAM, 11 GRAM DAN 12 GRAM PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) TERHADAP KINERJA TRAKSI DAN PERCEPATAN DARI KENDARAAN

SCOOPY 110 CC

TUGAS AKHIR
Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Bidang Studi Desain Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

Oleh:
Muhammad Akif Habibullah Nrp. 2110 100 159

Disetujui oleh Tim Penguji Tugas Akhir:

1. Prof. Ir. I Nyoman Sutantra, MSc.PhD (Pembimbing) (NIP. 195106051978031002)
2. Ir. Yusuf Kaelani, MSc.E (Penguji 1) (NIP. 196511031990021001)
3. Dr. Unggul Wasiwitono, ST. M.Eng.Sc (Penguji 2) (NIP. 197805102001121001)
4. Aida Annisa Amin Daman, ST. MI. (Penguji 3) (NIP. 198907052015042005)

SURABAYA
Januari, 2016
DAFTAR ISI

HALAMAN JUDUL
LEMBAR PENGESAHAN
ABSTRAK .. i
ABSTRACT .. iii
KATA PENGANTAR .. v
DAFTAR ISI ... vii
DAFTAR GAMBAR .. xi
DAFTAR TABEL ... xv

BAB 1 PENDAHULUAN
1.1 Latar Belakang ... 1
1.2 Rumusan Masalah ... 2
1.3 Tujuan Tugas Akhir .. 2
1.4 Batasan Masalah .. 3
1.5 Manfaat Tugas Akhir .. 4

BAB 2 TINJAUAN PUSTAKA
2.1 Penelitian Terdahulu ... 5
2.2 Transmisi Kendaraan ... 8
 2.2.1 Transmisi Manual ... 9
 2.2.1.1 Pengertian Transmisi Manual 9
 2.2.1.2 Cara Kerja Transmisi Manual 10
 2.2.2 Transmisi Otomatis ... 11
 2.2.2.1 Pengertian Transmisi Otomatis 11
 2.2.2.2 Cara Kerja Transmisi Otomatis 12
2.3 Karateristik CVT ... 13
2.4 Analisa Gaya Pada Roller .. 14
2.5 Analisa Gaya Pada Komponen CVT 16
2.6 Gaya Dorong Kendaraan ... 18
2.7 Rolling Resistance ... 19
2.8 Aerodynamic Resistance ... 20
2.9 Grade Resistance .. 21
2.10 Spin ... 22
2.11 SpesifikasiHOnda Scoopy 110 cc 23

vii
2.12 Dyno Test ... 24

Bab 3 Metodologi
3.1 Prosedur Penelitian .. 27
3.2 Peralatan yang Digunakan .. 28
3.3 Prosedur Pengujian Kendaraan 32
3.4 Skema Pengujian Percobaan 33
3.5 Prosedur Pengujian .. 36

BAB 4 ANALISA HASIL DAN PEMBAHASAN
4.1 Data Hasil Pengujian .. 41
 4.1.1 Data Hasil Spesifikasi Roller 41
 4.1.2 Data Hasil Pengujian Syno Test dan Digital Tachometer ... 41
 4.1.3 Data Hasil Pengukuran Luas Frontal 43
4.2 Analisa Data dan Pembahasan 45
 4.2.1 Grafik Perbandingan Gaya Dorong Kendaraan Setiap Roller ... 45
 4.2.2 Grafik Perbandingan Gaya Dorong Beserta Pengaruh Gaya Hambat dan Spin Kendaraan Setiap Roller .. 47
 4.2.3 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 20 Derajat .. 50
 4.2.4 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 15 Derajat 51
 4.2.5 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 10 Derajat 53
 4.2.6 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 5 Derajat 55
 4.2.7 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 5 Derajat 55
Roller Pada Jalani Datar................................. 57
4.2.8 Grafik Perbandingan Torsi Roda Terhadap
 Kecepatan Putaran Engine Kendaraan
 Setiap Roller .. 58
4.2.9 Grafik Perbandingan Daya Terhadap
 Kecepatan Putaran Engine Kendaraan
 Setiap Roller .. 58

BAB 5 KESIMPULAN DAN SARAN
 5.1 Kesimpulan ... 63
 5.2 Saran ... 63

DAFTAR PUSTAKA... 65
BIODATA PENULIS
"Halaman ini sengaja dikosongkan"
DAFTAR TABEL

Tabel 2.1 Koefisien Aerodynamic Resistance untuk Kendaraan [4] ... 21
Tabel 2.3 Spesifikasi Honda Scoopy 110 cc [10] 23
“Halaman ini sengaja dikosongkan”
DAFTAR GAMBAR

Gambar 2.1 Grafik Perbandingan Gaya Dorong Vario 125 PGM-FI dengan New Vario 110 FI [7] 5
Gambar 2.2 Grafik Perbandingan Gaya Dorong Vario 125 PGM-FI Roller 15 gram, 16 gram, 17 gram dan 18 gram [8] .. 6
Gambar 2.3 Grafik Perbandingan Percepatan Vario 125 PGM-FI Roller 15 gram, 16 gram, 17 gram dan 18 gram [8] .. 7
Gambar 2.4 Gaya Dorong yang dibutuhkan Kendaraan [4]... 8
Gambar 2.5 Konstruksi Transmisi Manual [1] 9
Gambar 2.6 Konstruksi CVT [3] ... 11
Gambar 2.7 Kurva Perbandingan RPM vs Kecepatan Kendaraan dengan Transmisi Manual dan CVT [3] .. 13
Gambar 2.8 Konstruksi Roller pada Primary Pulley [3]....... 15
Gambar 2.9 Analisa Roller [2] ... 15
Gambar 2.10 Gaya - gaya yang Bekerja Pada Pulley [11]..... 17
Gambar 2.11 FBD Gaya Dorong, Kecepatan, Percepatan dan Gaya Hambat [12] .. 18
Gambar 2.12 Pengaruh Tekanan Ban pada f_s dan f_o [4] 20
Gambar 2.13 Diagram Bodi Bebas Kendaraan Saat Menanjak [12] .. 21
Gambar 2.15 Dyno Test Honda Scoopy 110 cc pada Chassis Dyno .. 25
Gambar 3.1 Flowchart Penelitian ... 27
Gambar 3.2 Alat Dynotest dan Perlengkapannya 28
Gambar 3.3 Motor Scoopy 110 cc Karbulator 29
Gambar 3.4 Roller CVT ... 30
Gambar 3.5 Digital Tachometer [6] 30
Gambar 3.6 Timbangan Digital .. 31
Gambar 3.7 Jangka Sorong [7] ... 31
Gambar 3.8 Flowchart Pengujian Kendaraan 32
Gambar 3.9 Set Up Kendaraan Pada Alat Dynotest 33
Gambar 3.10 Skema Percobaan Pengukuran Torsi Roda
dan Putaran Engine Kendaraan 34
Gambar 3.11 Skema Percobaan Pengukuran Kecepatan
Putaran Transmisi Kendaraan 35
Gambar 3.12 Skema Percobaan Pengukuran Kecepatan
Putaran Transmisi Kendaraan 36
Gambar 3.13 Flowchart Perhitungan 36
Gambar 3.14 Flowchart Pengujian Kendaraan................. 36
Gambar 4.1 Data Hasil Pengujian Dyno Test 42
Gambar 4.2 Data Hasil Pengujian Digital Tachometer 42
Gambar 4.3 Kendaraan dan Pengendara Tampak Depan 43
Gambar 4.4 Kendaraan dan Pengendara di Software
Solidwork 2014 ... 44
Gambar 4.5 Hasil Pengukuran Luas Frontal di Software
Solidwork 2014 ... 44
Gambar 4.6 Grafik Perbandingan Gaya Dorong Kendaraan
Setiap Roller .. 45
Gambar 4.7 Grafik Perbandingan Gaya Dorong Beserta
Pengaruh Gaya Hambat dan Spin Kendaraan
Setiap Roller .. 47
Gambar 4.8 Grafik Perbandingan Percepatan Beserta Gaya
Hambat Kendaraan Setiap Roller Pada
Tanjakan 20 Derajat ... 50
Gambar 4.9 Grafik Perbandingan Percepatan Beserta Gaya
Hambat Kendaraan Setiap Roller Pada
Tanjakan 15 Derajat ... 52
Gambar 4.10 Grafik Perbandingan Percepatan Beserta Gaya
Hambat Kendaraan Setiap Roller Pada
Tanjakan 10 Derajat ... 54
Gambar 4.11 Grafik Perbandingan Percepatan Beserta Gaya
Hambat Kendaraan Setiap Roller Pada
Tanjakan 5 Derajat ... 55
Gambar 4.12 Grafik Perbandingan Percepatan Beserta Gaya
Hambat Kendaraan Setiap Roller Pada
Jalan Datar.. 57
Gambar 4.13 Grafik Perbandingan Torsi Roda Terhadap Kecepatan Putaran Engine Kendaraan Setiap Roller... 59
Gambar 4.14 Grafik Perbandingan Daya Terhadap Kecepatan Putaran Engine Kendaraan Setiap Roller 61
“Halaman ini sengaja dikosongkan”
KATA PENGANTAR

Puji syukur dihaturkan kehadirat Allah Subhanallahu Wa Ta’ala, hanya karena tuntunan-Nya penulis dapat menyelesaikan Tugas Akhir ini. Tugas Akhir ini disusun untuk memenuhi persyaratan kelulusan pendidikan Sarjana S-1 di Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember Surabaya.

Penyusunan Tugas Akhir ini dapat terlaksana dengan baik atas bantuan dan kerjasama dari berbagai pihak. Pada kesempatan ini penulis ingin mengucapkan terima kasih kepada:

1. Keluarga tersayang, khususnya kedua orangtua, yang telah menjadi orang-orang terbaik dalam hidup penulis dan selalu memberikan doa dan dorongan dalam segala kondisi.

3. Segenap dosen dan karyawan Jurusan Teknik Mesin FTI ITS, terima kasih atas ilmu yang disampaikan, semoga bermanfaat kedepannya bagi diri penulis dan bagi bangsa dan negara.

5. Danan Wiratmoko dan Oky Arfiansyah sebagai sahabat yang selalu memotivasi untuk mengerjakan Tugas Akhir ini.

6. Christopher Resza selaku partner yang menemani mengerjakan Tugas Akhir ini.

8. Para teman-teman Lab Desain yang senantiasa menemani dan menghibur penulis saat sedang penat dan lelah.

Dengan segala keterbatasan kemampuan serta pengetahuan penulis, tidak menutup kemungkinan Tugas Akhir ini jauh dari sempurna. Oleh karena itu, penulis bersedia menerima kritik dan saran dari berbagai pihak untuk penyempurnaan lebih lanjut. Semoga hasil penulisan Tugas Akhir ini dapat bermanfaat bagi semua pihak.

Surabaya, Januari 2016

Penulis
STUDI EKSPERIMENT VARIASI ROLLER 7 GRAM, 10 GRAM, 11 GRAM DAN 12 GRAM PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) TERHADAP KINERJA TRAKSI DAN PERCEPATAN DARI KENDARAAN SCOOPY 110 CC

Nama Mahasiswa : Muhammad Akif Habibullah
NRP : 2110100159
Jurusan : Teknik Mesin FTI-ITS
Dosen Pembimbing: Prof. Ir. I Nyoman Sutantra, Msc., PhD

ABSTRAK

Saat ini perkembangan dunia otomotif khususnya sepeda motor terus dikembangkan untuk mendapatkan kenyamanan dalam pengendalian. Produsen otomotif khususnya roda dua (sepeda motor) telah memproduksi kendaraan yang memakai sistem transmisi otomatis yang disebut dengan CVT (Continuously Variable Transmission) sistem. Sistem transmisi ini tidak menggunakan roda gigi namun memanfaatkan sistem pulley and belt. Banyaknya variasi massa roller yang dijual dipasaran dan memiliki variasi massa yang berbeda-beda mengindikasikan bahwa pemilihan massa roller yang sesuai, dapat memperbaiki performa dari kendaraan standart. Dan ini yang mendasari terlaksananya tugas akhir kali ini.

Pada tugas akhir ini data yang ingin diperoleh adalah gaya dorong, kecepatan, percepatan dan gaya hambat total kendaraan. Untuk mendapatkan gaya dorong, perlu dilakukan dynotest langsung pada roda belakang dengan variasi beberapa massa roller yang nantinya akan didapatkan data berupa besarnya torsi roda dan kecepatan putaran engine. Kecepatan didapatkan dari nilai torsi engine dan rasio transmisi. Percepatan dari variasi massa roller didapatkan dari gaya dorong, gaya hambat total dan total massa. Setelah didapatkan grafik gaya dorong, kecepatan dan percepatan maka akan dimasukkan nilai gaya hambat total yang terdiri dari gaya
hambat angin dan gaya hambat akibat tanjakan. Gaya hambat angin didapatkan dari nilai koefisien drag dan luas frontal kendaraan. Gaya hambat akibat tanjakan diperoleh dari massa total kendaraan yang berubah akibat variasi tanjakan yaitu sebesar 5 derajat, 10 derajat, 15 derajat dan 20 derajat. Pada tugas akhir ini massa roller standar sebesar 12 gram dan akan divariasikan dengan massa roller 7 gram, 10 gram dan 11 gram.

Kata Kunci : Transmisi Otomatius, Massa Roller, Continuously Variable Transmission
EXPERIMENTAL STUDY OF VARIATION 7 GRAM ROLLER, 10 GRAM ROLLER, 11 GRAM ROLLER AND 12 GRAM ROLLER ON CONTINUOUSLY VARIABLE TRANSMISSION (CVT) BASED ON TRACTION PERFORMANCE AND ACCELERATION OF SCOOPY 110 CC

Student Name : Muhammad Akif Habibullah
Student ID : 2110100159
Department : Mechanical Engineering
Academic Supervisor : Prof. Ir. I Nyoman Sutantra, Msc., PhD

ABSTRACT

Nowadays, the development of the automotive world, especially motorcycle, continues to be developed in order to get comfort in control. Automotive manufacturers, especially two-wells (motorcycle), has been producing vehicles that use automatic transmission system called Continuously Variable Transmission (CVT) system. This transmission system does not use gears, but the harness and belt pulley system. Many variations of mass sold in the market and has a mass that is different variation indicated that the selection of the appropriate roller mass corresponding roller can improve the standart vehicles performance. And this is the underlying implementation of the final assignment.

In this final assignment, the data tobe obtained is thrust, speed acceleration and drag of the totoal vehicle. To get the thrust, dynotest need to be done directly on the rear whell with same variation of the mass of a roller that will be obtained data such as the amount of torque and engine speed. Speed is obtainbed from the value of the engine torque and the transmission ratio. Acceleration of the mass variation roller obtained from thrust drag the total and the total mass. Having
obtained the graph of the trust, speed and acceleration, it will put a drag value of the total consisting of wind drag and drag due to the ramp. The wind drag is obtained from coefficient value of the drag and the frontal area of the vehicle. Drag due to the ramp obtained from the total mass of the vehicle has changed due to the variation of the incline at 5 degrees, 10 degrees, 15 degrees, and 20 degrees. In this final assignment, standard roller mass is 12 grams and will be varied with the mass roller 7 grams, 10 grams and 11 grams.

The results obtained in the form of highest thrust at low speed is generated by variation of roller 12 grams. While the roller 12 is more suitable for riding on a way that there are incline and flat also maximize acceleration and top speed. Because to pass through road conditions are needed a vehicle with value thrust and acceleration are big on speeds up high. Roller 10 and 11 grams also been appropriated used on equal conditions. Because roller was able to produce values thrust and acceleration a higher some level of certain speed although the value of flattened averaged flattened thrust and the vehicle on speed medium to maximum is not much greater than is produced a roller 12 grams. In the spin analysis is adviseble to use a roller 7 grams on wet asphalt conditions, snow and ice because of the value of the thrust on roller 7 grams is smaller when on the medium to high speed instead of the values of the other roller thrust.

Keywords: Automatic Transmission, Mass Roller, Continuously Variable Transmission
BAB I
PENDAHULUAN

1.1 Latar Belakang

Continuously Variable Transmission adalah sistem transmisi otomatis yang tidak menggunakan roda gigi namun dengan memanfaatkan sistem *pulley and belt* dalam proses menyalurkan tenaga dari mesin. *Pulley* memiliki beberapa komponen utama yaitu *roller*, *v belt*, pegas CVT. Dalam fokus pembahasan kali ini objek yang dianalisa adalah *roller* CVT dari Honda Scoopy 110 cc. Terdapat beberapa varian massa berat dari *roller* CVT yang diindikasikan bahwa dengan massa berat yang sesuai, akan didapatkan performa mesin yang lebih baik. Fungsi *roller* pada sepeda motor *matic* adalah untuk memberikan tekanan keluar pada variator hingga dimungkinkan variator dapat membuka dan memberikan sebuah perubahan lingkar diameter lebih besar terhadap *belt drive* sehingga motor dapat bergerak. Kinerja
variator ini sangat ditentukan oleh roller. Dikarenakan roller sangat berpengaruh terhadap perubahan variabel dari variator, tentu akan sangat berpengaruh terhadap performa motor matic. Maka dari itu perlu dilakukan analisa varian dari roller CVT Honda Scoopy 110 cc manakah yang memiliki performa mesin paling baik.

1.2 Rumusan Masalah

Adapun rumusan masalah yang terdapat dalam tugas akhir ini adalah sebagai berikut:

1. Bagaimana perbandingan dan analisa kinerja traksi (Ft) kendaraan Honda Scoopy 110 cc terhadap kecepatan berdasarkan variasi roller CVT.

2. Bagaimana perbandingan dan analisa percepatan terhadap kecepatan kendaraan Honda Scoopy 110 cc berdasarkan variasi roller CVT yang dianalisa dari segi CVT.

3. Bagaimana perbandingan dan analisa gaya dorong, percepatan dan kecepatan terhadap gaya hambat angin dan tanjakan yang mampu dilalui oleh kendaraan Honda Scoopy 110 cc berdasarkan variasi roller CVT yang dianalisa dari segi CVT.

4. Bagaimana analisa kondisi spin terhadap kinerja kendaraan Honda Scoopy 110 cc berdasarkan variasi roller CVT.

5. Bagaimana menentukan roller CVT yang cocok digunakan untuk berbagai kondisi jalan.

1.3 Tujuan Tugas Akhir

Dengan mengacu pada perumusan masalah di atas, maka tujuan dari tugas akhir ini adalah sebagai berikut:
1. Membandingkan dan menganalisa kinerja traksi (Ft) kendaraan Honda Scoopy 110 cc terhadap kecepatan berdasarkan variasi roller CVT.
2. Membandingkan dan menganalisa percepatan terhadap kecepatan kendaraan Honda Scoopy 110 cc berdasarkan varian roller CVT yang dianalisa dari segi CVT.
3. Membandingkan dan menganalisa gaya dorong, percepatan dan kecepatan terhadap gaya hambat angin dan tanjakan yang mampu dilalui oleh kendaraan Honda Scoopy 110 cc berdasarkan variasi roller CVT yang dianalisa dari segi CVT.
4. Menganalisa kondisi spin terhadap kinerja kendaraan Honda Scoopy 110 cc berdasarkan variasi roller CVT.
5. Menentukan roller CVT yang cocok digunakan untuk berbagai kondisi jalan.

1.4 Batasan Masalah

Adapun batasan masalah dalam tugas akhir kali ini adalah:
1. Keausan belt diabaikan.
2. Kinerja mesin tidak dipengaruhi oleh lingkungan.
3. Bahan bakar yang digunakan adalah premium.
4. Kendaraan yang digunakan adalah Honda Scoopy 110 cc karbulator.
5. Massa roller standar 12 gram.
7. Massa pengemudi 52 kg.
8. Efisiensi transmisi = 90%.
9. Menggunakan varian roller : 7 gram, 10 gram, 11 gram dan 12 gram karena pabrikan tidak
memproduksi massa *roller* yang menurunkan gaya dorong (dibawah massa *roller* standar).
10. Kondisi ban dalam keadaan bagus.
11. Komponen yang dianalisa dalam kondisi rigid.
12. Slip roda = 2%.
14. *Rolling resistance* (Rr) diabaikan karena sudah diperhitungkan saat *dyno test*.

1.5 Manfaat Tugas Akhir
Adapun manfaat dari Tugas Akhir ini sebagai berikut:
1. Mengetahui *roller* CVT mana yang sesuai dengan nilai Ft kendaraan Honda Scoopy 110 cc sebagai acuan perusahaan dalam mengembangkan produknya.
2. Mengetahui tingkat percepatan kendaraan sehingga masyarakat mengetahui *roller* CVT mana yang tepat digunakan di daerah menanjak maupun datar.
3. Mengetahui kecepatan maksimum yang dapat dilalui Honda Scoopy 110 cc sehingga menjadi pengetahuan untuk masyarakat dan perusahaan.
4. Sebagai saran bagi perusahaan pemilik kendaraan dalam menggunakan *roller* CVT yang tepat untuk kendaraan Honda Scoopy 110 cc.
5. Sebagai acuan dalam penelitian serta riset berikutnya.
BAB II
DASAR TEORI

2.1 Penelitian Terdahulu
Penelitian pada gambar 2.1 merupakan perbandingan gaya dorong Honda Vario 125 PGM-FI dan Honda New Vario 110 FI. Dari hasil analisa yang telah dilakukan, sistem transmisi otomatis atau *Continuously Variable Transmission* (CVT) pada Honda Vario 125 PGM-FI lebih efektif daripada Honda New Vario 110 FI. Hal ini ditinjau dari gaya dorong atau kinerja traksi yang dihasilkan kendaraan, besar sudut maksimal yang mampu dilewati kendaraan, dan percepatan maksimal yang dihasilkan kendaraan. Akan tetapi pada penelitian ini tidak dijelaskan secara rinci pengaruh dari komponen-komponen yang terdapat pada CVT.

Gambar 2.1 Grafik Perbandingan Gaya Dorong Vario 125 PGM-FI dengan New Vario 110 FI [7]

Selanjutnya pada penelitian selanjutnya mempelajari tentang pengaruh variasi *roller driver face* pada sistem transmisi otomatis atau *Continuously Variable Transmission* (CVT) Honda
Vario 125 PGM-FI. Ada 4 macam roller yang digunakan. Keempat roller tersebut memiliki massa yang berbeda. Masing-masing massa yang digunakan yaitu roller 15 gram, 16 gram, 17 gram, dan 18 gram. Dengan pengujian dynotest dari penelitian ini didapatkan nilai kinerja traksi kendaraan Vario 125 PGM-FI lebih baik pada penggunaan massa roller 15 gram dibandingkan dengan 3 variasi lainnya. Akan tetapi pada perhitungan penelitian ini perubahan pergeseran pulley driver dan driven (Δx) dianggap sama. Meskipun pada kenyataannya perubahan pergeseran pulley driver dan driven (Δx) berbeda. Perbandingan gaya dorong akibat dari perubahan massa roller pada penelitian ini dapat dilihat pada gambar 2.2. Sedangkan perbandingan percepatan dapat dilihat pada gambar 2.3.

![Grafik Perbandingan Gaya Dorong Vario 125 PGM-FI](image)

Gambar 2.2 Grafik Perbandingan Gaya Dorong Vario 125 PGM-FI Roller 15 gram, 16 gram, 17 gram, dan 18 gram [8]
Gambar 2.3 Grafik Perbandingan Percepatan Vario 125 PGM-FI
Roller 15 gram, 16 gram, 17 gram, dan 18 gram [8]

Dengan melihat penelitian yang telah dilakukan diatas, maka pada penelitian ini dilakukan pengembangan dengan melakukan pengujian dan analisa dengan menggunakan kendaraan baru yaitu Honda Scoopy 110 cc dan menggunakan alat digital tachometer untuk menentukan rasio transmisi agar lebih akurat dimana pada penelitian terdahulu rasio transmisi ditentukan dengan perubahan pergeseran pulley driver dan driven (Δx) yang dianggap sama. Meskipun pada kenyataannya perubahan pergeseran pulley driver dan driven (Δx) berbeda. Sehingga diharapkan dari penelitian ini diketahui pengaruh perubahan massa roller terhadap performa kendaraan Honda Scoopy 110 cc dilihat dari nilai gaya dorong dan percepatan terhadap berbagai variasi kecepatan dengan akurat. Serta didapatkan massa roller yang tepat pada kendaraan Honda Scoopy 110 cc.
2.2 Transmisi Kendaraan

Untuk menggerakkkan kendaraan dibutuhkan gaya dorong yang cukup untuk melawan semua hambatan yang terjadi pada kendaraan. Gaya dorong dari suatu kendaraan terjadi pada roda penggerak kendaraan. Gaya dorong ini ditransformasikan dari torsi mesin kendaraan ke roda penggerak yang terdiri dari kopling, transmisi, gigi diferensial, dan poros penggerak.

Berdasarkan kebutuhan gerak dari kendaraan, maka dapat dikatakan bahwa pada kecepatan rendah diperlukan gaya dorong yang besar untuk dapat menghasilkan percepatan yang cukup besar atau untuk dapat menanjak tanjakan yang cukup terjal. Dengan kebutuhan seperti diuraikan di atas, secara ideal kebutuhan gaya dorong dapat ditunjukkan seperti gambar 2.4

Gambar 2.4 Gaya Dorong yang dibutuhkan Kendaraan [4]

Gaya dorong pada roda yang ditransmisikan dari torsi engine kendaraan dirumuskan dengan rumus 2.1. Gaya dorong dipengaruhi oleh nilai torsi engine, rasio transmisi, rasio gardan, efisiensi transmisi dan jari-jari roda. Dengan melihat karakteristik torsi yang dihasilkan oleh mesin maka dibutuhkan sistem
transmisi agar dapat mentransformasikan torsi untuk menjadi gaya dorong yang diperlukan oleh kendaraan.

\[Ft = \frac{Te \cdot it \cdot ig \cdot \eta}{r} \quad (2.1) \]

2.2.1 Transmisi Manual
2.2.1.1 Pengertian Transmisi Manual

Transmisi manual adalah transmisi kendaraan yang pengoperasiannya dilakukan secara langsung oleh pengemudi. Transmisi manual dan komponen-komponennya merupakan bagian dari sistem pemindah tenaga dari sebuah kendaraan, yaitu sistem yang berfungsi mengatur tingkat kecepatan dalam proses pemindahan tenaga dari sumber tenaga (mesin) ke roda kendaraan. Pada gambar 2.5 dapat dilihat beberapa bagian dari transmisi manual.

Gambar 2.5 Konstruksi Transmisi Manual [1]

Komponen utama dari gigi transmisi pada sepeda motor terdiri dari susunan gigi-gigi yang berpasangan yang berbentuk

2.2.1.2 Cara Kerja Transmisi Manual

Garpu pemilih gigi dihubungkan dengan gigi geser (sliding gear). Gigi geser ini akan bergerak ke kanan atau ke kiri mengikuti gerak garpu pemilih gigi. Setiap pergerakannya berarti mengunci gigi kecepatan yang dikehendaki dengan bagian poros tempat gigi itu berada.

Gigi geser, baik yang berada pada poros utama (main shaft) maupun yang berada pada poros pembalik (counter shaft/output shaft), tidak dapat berputar bebas pada porosnya. Selain itu gigi kecepatan (1, 2, 3, 4, dan seterusnya), gigi-gigi ini dapat bebas berputar pada masing-masing porosnya. Jadi yang dimaksud gigi masuk adalah mengunci gigi kecepatan dengan poros tempat gigi itu berada, dan sebagai alat penguncinya adalah gigi geser.
2.2.2 Transmisi Otomatis

2.2.2.1 Pengertian Transmisi Otomatis

Transmisi otomatis adalah transmisi kendaraan yang pengoperasiannya dilakukan secara otomatis berdasarkan prinsip gaya sentrifugal dan gaya gesek yang terjadi pada komponen-komponennya. Transmisi otomatis umumnya digunakan pada sepeda motor jenis scooter (skuter). Transmisi otomatis atau Continuously Variable Transmission (CVT) merupakan mekanisme transmisi yang terdapat dua buah pulley yang dihubungkan dengan sabuk (v-belt) untuk memperoleh rasio gigi yang bervariasi. Perubahan rasio berlangsung secara otomatis dengan cara mengubah diameter puli primer dan puli sekunder. Dengan sendirinya perubahan kecepatan dapat berlangsung secara halus dan berkesinambungan dengan putaran mesin. Pada gambar 2.6 dijelaskan konstruksi dan beberapa komponen dari CVT.

Gambar 2.6 Konstruksi CVT [3]

Dimana :

1. Crankshaft
2. Primary sliding sheave
3. Roller
4. Secondary fixed sheave
5. Secondary sliding sheave
6. Primary drive gear shaft
7. Clutch housing
8. Clutch carrier
9. V-belt
10. Primary fixed sheave

2.2.2.2 Cara Kerja Transmisi Otomatis
Cara kerja transmisi otomatis adalah sebagai berikut:
- Pada Saat Putaran Idle
 Putaran dari crankshaft akan diteruskan ke primary pulley kemudian ke secondary pulley melalui perantara v-belt. Karena putaran belum mampu mengembangkan kopling sentrifugal maka hanya sampai di clutch carrier.
- Pada Saat Putaran Rendah
 Putaran dari crankshaft akan diteruskan ke primary pulley kemudian ke secondary pulley melalui perantara v-belt. Karena putaran telah mampu mengembangkan kopling sentrifugal maka putaran akan diteruskan dari clutch carrier ke clutch housing, sehingga putaran dapat diteruskan ke final gear dan berakhir di roda.
- Pada Saat Putaran Menengah
- Pada Saat Putaran Tinggi
 Putaran dari crankshaft akan diteruskan ke primary pulley kemudian ke secondary pulley melalui perantara v-belt. Karena putaran telah mampu mengembangkan kopling sentrifugal maka putaran akan diteruskan dari clutch carrier ke clutch housing, sehingga putaran dapat diteruskan ke final gear dan berakhir di roda.
gear dan berakhir di roda. Pada saat putaran tinggi, lintasan belt di primary pulley sedikit lebih besar daripada secondary pulley.

- Pada Saat Putaran Beban

2.3 Karakteristik CVT
Pada gambar 2.7 merupakan kurva perbandingan rpm vs kecepatan kendaraan dengan transmisi manual dan CVT. Kendaraan dengan sistem transmisi otomatis atau Continuously Variable Transmission (CVT) memiliki kelebihan dan kekurangan jika dibandingkan dengan sistem transmisi manual. Berikut ini akan dijelaskan kelebihan dan kekurangan dari transmisi otomatis atau CVT.

Kelebihan :
1. CVT memberikan perubahan torsi tanpa adanya hentakan
2. CVT memberikan kenyamanan lebih karena tidak perlu memindah gigi
3. CVT memiliki konstruksi yang lebih sederhana
4. Perawatan CVT tergolong lebih mudah
5. CVT memberikan perubahan kecepatan dengan lembut

Kekurangan :
1. Putaran awal membutuhkan putaran mesin yang tinggi untuk mengubah rasio dan roda agar dapat bergerak
2. Penggunaan bahan bakar tidak efisien
3. Komponen mesin relatif lebih cepat aus karena sering bekerja pada putaran tinggi

4. *Engine brake* sangat kecil sehingga penggunaan rem lebih dominan dan kemungkinan kampas rem lebih cepat aus

5. Saat melewati jalan menurun kendaraan relatif sulit dikendalikan karena *engine brake* kecil.

Gambar 2.7 Kurva Perbandingan RPM vs Kecepatan Kendaraan dengan Transmisi Manual dan CVT [3]

Pada transmisi manual terlihat percepatan kendaraan dimulai saat kecepatan putaran *engine* mulai dari awal. Pada transmisi otomatis berbeda dengan transmisi manual dimana percepatan kendaraan dimulai saat rpm tertentu. Pada transmisi manual terjadi perpindahan gigi sehingga saat putaran *engine* mulai tinggi terjadi penurunan rpm akibat perpindahan gigi. Terlihat pada gambar 2.7 kecepatan putaran *engine* selalu naik atau konstan karena tidak ada perpindahan gigi yang menyebabkan penurunan rpm.

2.4 Analisa Gaya Pada *Roller*

Roller merupakan bagian dari *primary pulley* yang mendorong *sliding sheave* karena adanya gaya sentrifugal yang bekerja. Saat *roller* terlempar karena adanya gaya sentrifugal, *v*-

```
belt akan berubah posisi ke lintasan terluar puli primer. Semakin tinggi putaran mesin akan menghasilkan gaya sentrifugal yang besar maka roller juga akan semakin menekan primary sliding sheave. Pada gambar 2.8 terlihat konstruksi dari roller pada primary pulley. Pada gambar tersebut kondisi pulley saat tidak terjadi putaran engine sehingga roller belum menimbulkan gaya sentrifugal. Pada gambar 2.9 menjelaskan gaya-gaya yang terjadi pada pulley saat roller bekerja termasuk gaya gesek, gaya normal dan gaya sentrifugal yang terjadi.

Gambar 2.8 Konstruksi Roller pada Primary Pulley [3]

Gambar 2.9 Analisa Roller [2]
\[ \Sigma F_c = 0 \]
\[ R_c - m_y \omega^2 \cos \delta = 0 \]
\[ R_c = m_y \omega^2 \cos \delta \]

\[ \Sigma F_b = 0 \]
\[ R_b - m_y \omega^2 \sin \delta = 0 \]
\[ R_b = m_y \omega^2 \sin \delta \]

\[ \Sigma F_x = 0 \]
\[ F_d + \mu_c R_c \cos \gamma - R_c \sin \delta - \mu_b R_b \sin \delta + R_b \cos \gamma = 0 \]
\[ F_d = R_c (\sin \delta \mu_c \cos \gamma ) + R_b (\cos \gamma - \mu_b \sin \delta ) \]
\[ F_d = m_y \omega^2 [\cos \delta \sin \delta (1 - \mu_c) + \sin \delta \cos \gamma - \mu_b \sin \delta ] \]
\[ F_d = m_y \omega^2 [\cos \delta \sin \delta (1 - \mu_c) + \sin \delta \cos \gamma - \mu_b \sin \delta ] \]

Dimana :
\[ F_d = \text{gaya axial pada sleding sheave driver puli yang disebabkan oleh roller sentrifugal (N)} \]
\[ \mu_b = \text{koefisien gesek antara roller dan plat penahan belakang}\]
\[ \mu_c = \text{koefisien gesek antara roller dengan rumah roller sentrifugal}\]
\[ m = \text{total massa dari roller sentrifugal (kg)} \]
\[ \delta = \text{sudut yang terbentuk antara plat penahan belakang roller sentrifugal dengan garis sumbu poros (°)} \]
\[ \gamma = \text{sudut yang terbentuk antara garis axial dan titik singgung antara roller sentrifugal dan rumahnya (°)} \]
\[ \omega = \text{kecepatan sudut masukan (rad / s)} \]
\[ R_c = \text{gaya normal oleh rumah roller sentrifugal (N)} \]
\[ R_b = \text{gaya normal oleh plat penahan roller sentrifugal (N)} \]

2.5 Analisa Gaya Pada Komponen CVT

Pada gambar 2.10 terlihat gaya-gaya yang bekerja pada pulley primer dan pulley sekunder. Gaya tekan dari roller (Fp)
terjadi akibat gaya sentrifugal akibat putaran engine. Gaya tekan tersebut menimbulkan roller menekan rumah pulley primer sehingga diamter v-belt pada pulley primer melebar. Setelah diameter v-belt pada pulley primer melebar, maka v-belt akan mengakibatkan pulley sekunder merenggang. Saat pulley sekunder merenggang akan ditahan oleh gaya tekan akibat pegas (Fp). Kondisi ini akan menyebabkan perubahan rasio transmisi secara otomatis.


dimana :
Tp : Torsi input pada primary pulley
Ts : Torsi output dari secondary pulley
Fp : Gaya tekan oleh roller pada primary pulley
Fs : Gaya tekan oleh pegas pada secondary pulley
xp : Perpindahan primary pulley
xs : Perpindahan secondary pulley
d : Lebar belt
β : Sudut groove pulley
a : Jarak antar pusat pulley
b : Jarak antar pulley statis

2.6 Gaya Dorong Kendaraan

Gaya dorong kendaraan didefinisikan sebagai kemampuan kendaraan untuk dipercepat, dan mengatasi hambatan-hambatan yang terjadi, diantaranya hambatan rolling ban (rolling resistance), hambatan aerodinamis, dan hambatan tanjakan. Kemampuan kendaraan tersebut sangat dipengaruhi oleh kemampuan mesin kendaraan dan pemilihan tingkat serta rasio transmisi. Gaya-gaya tersebut secara free body diagram akan dijelaskan pada gambar 2.11.

Gambar 2.11 FBD Gaya Dorong, Kecepatan, Percepatan dan Gaya Hambat [12]

\[ Ft = \frac{T_e \cdot i_t \cdot i_g \cdot \eta_t}{r} \quad (2.2) \]
\[ i_t = \frac{n_e}{n_{tr}} \quad (2.3) \]

\[
V = \frac{ne \cdot 2\pi \cdot r}{it \cdot ig \cdot 60} (1 - S)
\]  
\(2.4\)

Semakin mudah kendaraan dipercepat pada setiap kecepatan maka semakin bagus gaya dorong kendaraan tersebut. Kendaraan yang mudah dipercepat akan sangat mudah mendahului kendaraan lainnya. Besarnya percepatan tergantung pada besarnya gaya dorong kendaraan \((F_t)\), hambatan aerodinamis \((R_a)\), dan hambatan rolling \((R_r)\). Besarnya percepatan kendaraan pada jalan datar dirumuskan pada persamaan 2.5.

\[
a = \frac{F_t - R_a - R_r}{M}
\]  
\(2.5\)

2.7 **Rolling Resistance**


\[
R_r = f_r \cdot m \cdot g
\]  
\(2.6\)

\[
f_r = f_0 + f_s \left( \frac{V}{100} \right)^{2.5}
\]  
\(2.7\)
Koefisien rolling resistance juga dipengaruhi oleh koefisien yang tergantung pada tekanan ban kendaraan. Pada gambar 2.12 terlihat bahwa semakin besar tekanan ban maka nilai koefisien $f_0$ dan $f_s$ akan semakin mengecil. Hal ini membuktikan bahwa semakin tinggi tekanan ban, maka semakin kecil haya hambat rolling yang terjadi.

### 2.8 Aerodynamic Resistance


\[
Ra = \frac{1}{2} \cdot \rho \cdot C_d \cdot V^2 \cdot A_f
\]  

(2.8)

Pada tabel 2.1 merupakan nilai koefisien hambat aerodynamic untuk berbagai macam kendaraan. Terlihat pada kendaraan seperti bus, truck dan tractor memiliki nilai koefisien hambat yang bernilai tinggi diakibatkan luas permukaan pada kendaraan tersebut lebih besar daipada kendaraan yang lain.
seperti kendaraan balap. Bentuk body kendaraan juga berpengaruh pada nilai koefisien hambat.

Tabel 2.1 Koefisien Aerodynamic Resistance untuk Kendaraan

<table>
<thead>
<tr>
<th>Jenis Kendaaraan</th>
<th>Koefisien Hambat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kendaraan penumpang</td>
<td>0,3 - 0,6</td>
</tr>
<tr>
<td>Kendaraan convertible</td>
<td>0,4 - 0,65</td>
</tr>
<tr>
<td>Kendaraan balap</td>
<td>0,25 - 0,3</td>
</tr>
<tr>
<td>Bus</td>
<td>0,6 - 0,7</td>
</tr>
<tr>
<td>Truck</td>
<td>0,8 - 1,0</td>
</tr>
<tr>
<td>Tractor - trailer</td>
<td>0,8 - 1,3</td>
</tr>
</tbody>
</table>

2.9 Grade Resistance

Gaya hambat akibat sudut tanjak adalah gaya hambat yang terjadi karena adanya sudut pada lintasan kendaraan sehingga terjadi perubahan gaya pada kendaraan. Perubahan sudut lintasan ini menyebabkan rolling resistance berubah maupun berat kendaraan. Perubahan gaya – gaya tersebut dapat dilihat pada gambar 2.13

Gambar 2.13 Diagram Bodi Bebas Kendaraan Saat Menanjak

[12]
\[ Ft = Rr + Ra + W\sin\theta_{\text{max}} \] (2.9)

\[ Rr = f_r \cdot W\cos\theta_{\text{max}} \] (2.10)

\[ Ra = \frac{1}{2} \cdot \rho \cdot C_d \cdot V^2 \cdot A_f \] (2.11)

\[ Ft = \frac{Me_{\text{max}} \cdot it \cdot ig \cdot \eta t}{r} \] (2.12)

\[ Rr + W\sin\theta_{\text{max}} = Ft - Ra \] (2.13)

\[ (f_r\cos\theta_{\text{max}} + \sin\theta_{\text{max}}) = 2 \cdot it \cdot ig \cdot Me \cdot \eta t - r \cdot \rho \cdot C_d \cdot V^2 \cdot A_f \] (2.14)

\[ \frac{2 \cdot W \cdot r}{2} \]

2.10 Spin

Spin merupakan kondisi dimana nilai gaya dorong melebihi nilai koefisien gesek dikalikan gaya normalnya. Pada saat kondisi ini roda kendaraan akan berputar dan bergesekan dengan jalan, namun banyak terjadi losses pada percepatan. Secara matematis dapat ditulis dengan \( Ft > \mu \cdot N \). Pada saat kondisi jalan tidak menanjak atau jalan datar nilai gaya normal merupakan nilai berat atau \( N = W \). Berikut tabel 2.2 menjelaskan nilai koefisien gesek ban pada bermacam jenis jalan.

Tabel 2.2 Koefisien Gesek Ban Pada Bermacam Jenis Jalan [4]

<table>
<thead>
<tr>
<th>Permukaan Jalan</th>
<th>Koefisien Gesek Tertinggi (( \mu ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspal dan beton (kering)</td>
<td>0,8 – 0,9</td>
</tr>
<tr>
<td>Aspal (basah)</td>
<td>0,5 – 0,7</td>
</tr>
<tr>
<td>Beton (basah)</td>
<td>0,8</td>
</tr>
<tr>
<td>Gravel</td>
<td>0,6</td>
</tr>
<tr>
<td>Jalan tanah (kering)</td>
<td>0,68</td>
</tr>
<tr>
<td>Jalan tanah (basah)</td>
<td>0,55</td>
</tr>
<tr>
<td>Snow</td>
<td>0,2</td>
</tr>
<tr>
<td>Ice</td>
<td>0,1</td>
</tr>
</tbody>
</table>
2.11 Spesifikasi Honda Scoopy 110 cc

Berikut ini adalah spesifikasi dari Honda Scoopy 110 cc. Spesifikasi pada tabel 2.3 merupakan data dari produsen kendaraan Honda Scoopy 110 cc. Spesifikasi ini khusus untuk Honda Scoopy 110 cc karbulator.

Tabel 2.3 Spesifikasi Honda Scoopy 110 cc [10]

<table>
<thead>
<tr>
<th>Spesifikasi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopling</td>
<td>Otomatis</td>
</tr>
<tr>
<td>Transmisi</td>
<td>Otomatis, V-Matic</td>
</tr>
<tr>
<td>Perbandingan Drive Belt</td>
<td>2,52 : 1 – 0,82 : 1</td>
</tr>
<tr>
<td>Rasio Final Drive</td>
<td>10,625 : 1</td>
</tr>
<tr>
<td>Panjang x lebar x tinggi</td>
<td>1844 x 699 x 1070 mm</td>
</tr>
<tr>
<td>Jarak sumbu roda</td>
<td>1240 mm</td>
</tr>
<tr>
<td>Jarak terendah ke tanah</td>
<td>150 mm</td>
</tr>
<tr>
<td>Berat kosong</td>
<td>94 kg</td>
</tr>
<tr>
<td>Tipe rangka</td>
<td>Tulang punggung</td>
</tr>
<tr>
<td>Tipe suspensi depan</td>
<td>Teleskopik</td>
</tr>
<tr>
<td>Tipe suspensi belakang</td>
<td>Shockbreaker, Tunggal</td>
</tr>
<tr>
<td>Ukuran ban depan</td>
<td>80/90 - 14 M/C 40P</td>
</tr>
<tr>
<td>Ukuran ban belakang</td>
<td>90/90 - 14 M/C 46P</td>
</tr>
<tr>
<td>Rem Depan</td>
<td>Cakram hidrolik + piston tunggal</td>
</tr>
<tr>
<td>Rem Belakang</td>
<td>Tromol</td>
</tr>
<tr>
<td>Kapasitas tangki bahan bakar</td>
<td>3,5 liter</td>
</tr>
<tr>
<td>Kapasitas minyak pelumas mesin</td>
<td>0,7 liter</td>
</tr>
<tr>
<td>Tipe mesin</td>
<td>4 langkah, SOHC</td>
</tr>
<tr>
<td>Sistem pendingin</td>
<td>Pendinginan udara dengan kipas</td>
</tr>
<tr>
<td>Diameter x langkah</td>
<td>50 x 55 mm</td>
</tr>
<tr>
<td>Volume langkah</td>
<td>108 cc</td>
</tr>
<tr>
<td>Perbandingan kompresi</td>
<td>9,2 : 1</td>
</tr>
<tr>
<td>Daya maksimum</td>
<td>6,09 kW (8.28 PS) / 8000 rpm</td>
</tr>
<tr>
<td>Torsi maksimum</td>
<td>8,32 N.m. 0.85 kgf.m / 5500 rpm</td>
</tr>
<tr>
<td>Starter</td>
<td>Electric starter &amp; kick starter</td>
</tr>
<tr>
<td>Lampu depan</td>
<td>12 V 32 W x 1</td>
</tr>
<tr>
<td>Lampu senja</td>
<td>12 V 5 W x 1</td>
</tr>
</tbody>
</table>
Tabel 2.3 Spesifikasi Honda Scoopy 110 cc Lanjutan [10]

<table>
<thead>
<tr>
<th>Aki</th>
<th>12 V - 3 A.h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busi</td>
<td>ND U24EPR9, NGK CPR8EA-9</td>
</tr>
<tr>
<td>Sistem pengapian</td>
<td>DC - CDI, Battery</td>
</tr>
<tr>
<td>Karburator</td>
<td>VK22 x 1</td>
</tr>
</tbody>
</table>

2.12 Dyno Test


Gambar 2.14 Dinamometer Mesin- Engine Dyno [3]
Kedua adalah sebuah dyno yang dapat mengukur daya dan torsi tanpa memindahkan mesin kendaraan dari rangka kendaraan yang dikenal sebagai sebuah Dinamometer rangka – chassis dyno. Dinamometer rangka adalah suatu alat uji otomotif yang digunakan untuk mengukur daya sebenarnya yang diberikan motor kepada roda–roda penggerak. Dalam tugas akhir ini akan digunakan dyno test dengan jenis dinamometer rangka / chassis dyno dimana mesin tidak dipisahkan oleh chasis sepeda motor. Berikut gambar 2.15 yang merupakan dyno test honda scoopy 110 cc pada chassis dyno di banyuwangi motor:

Gambar 2.15 Dyno Test Honda Scoopy 110 cc pada Chassis Dyno
“Halaman ini sengaja dikosongkan”
BAB III
METODOLOGI

3.1 Prosedur Penelitian

Langkah awal dalam penelitian ini adalah melakukan studi literatur, yaitu merumuskan permasalahan yang terjadi dan...
mengkaji permasalahan tersebut. Kajian bisa dilakukan melalui buku, jurnal, dan penelitian-penelitian terdahulu. Tahap kedua adalah penentuan jenis kendaraan dan spesifikasi kendaraan yang akan dijadikan obyek penelitian. Tahap ketiga yaitu setelah diperoleh data kendaraan melalui pengujian, maka akan dilakukan analisa pengaruh dari keempat macam roller continuously variable transmission (CVT) beserta pengaruh sudut \( \theta \) terhadap gaya dorong dan kondisi spin pada beberapa kondisi jalan terhadap performa kendaraan.

3.2 Peralatan yang Digunakan

Dalam tugas akhir ini digunakan alat dan bahan sebagai berikut:

1. Alat dynotest dan perlengkapannya

   Alat dynotest ini digunakan untuk mengukur torsi roda dan putaran engine berupa grafik yang disimpan dalam komputer. Pada saat melakukan dynotest, torsi roda kendaraan memutar roller pada alat dyno yang akan direkam oleh komputer dan putaran engine direkam oleh komputer melalui kabel merah yang disambungkan ke kabel busi. Data – data yang terekam pada komputer akan diolah oleh software sport devices. Berikut pada gambar 3.2 merupakan alat dan perlengkapan dynotest di banyuwangi motor.

Gambar 3.2 Alat Dynotest dan Perlengkapannya
2. Sepeda motor scoopy 110 cc karbulator

   Gambar 3.3 Motor Scoopy 110 cc Karbulator

3. Roller CVT
   Pada gambar 3.4 dimulai dari sebelah kiri menggunakan varian roller 7 gram, 10 gram, 11 gram dan 12 gram (standar). Roller 7 gram memiliki diameter luar sebesar 16 mm, diameter dalam sebesar 9,7 mm dan tinggi 13 mm. Roller 10 gram memiliki diameter luar sebesar 16 mm, diameter dalam sebesar 6,1 mm dan tinggi 13 mm. Roller 11 gram memiliki diameter luar sebesar 16 mm, diameter dalam sebesar 4,8 mm dan tinggi 13 mm. Roller 12 gram memiliki diameter luar sebesar 16 mm, diameter dalam sebesar 3,2 mm dan tinggi 13 mm.
4. Digital Tachometer

Alat ini berfungsi sebagai pendeteksi kecepatan suatu benda yang berputar dalam satuan kecepatan (rpm). Cara kerja alat ini yaitu dengan cara benda yang akan diuji harus diberi stiker yang fungsinya sebagai pemantul dari cahaya digital tachometer. Digital tachometer akan menangkap pantulan cahaya tersebut ketika benda sudah berputar dan akan mengkonversi kedalam satuan kecepatan (rpm). Dalam gambar 3.5 ini digital tachometer digunakan sebagai pendeteksi kecepatan putaran pulley primer dan rumah kopling pulley sekunder.
5. Timbangan *Digital*

Pada gambar 3.6, timbangan *digital* digunakan sebagai penimbang berat penumpang. Timbangan *digital* ini akan memberikan hasil berupa berat dalam satuan kilogram (kg). Alat ini hanya dapat mengukur sampai satu angka dibelakang koma, contoh: 51,2 kg.

[Image: Gambar 3.6 Timbangan Digital]

6. Jangka sorong

Alat ini digunakan sebagai pengukur panjang dengan ketelitian yang cukup baik. Pada tugas akhir ini, jangka sorong digunakan sebagai alat pengukur dimensi *roller*. Dimesi yang diukur berupa diameter luar *roller*, diameter dalam *roller* dan tinggi *roller*. Berikut gambar 3.7 adalah jangka sorong yang digunakan pada tugas akhir ini.

[Image: Gambar 3.7 Jangka Sorong [7]]
3.3 Prosedur Pengujian Kendaraan

Gambar 3.8 Flowchart Pengujian Kendaraan
Berikut tahapan pengujian antara lain:
1. Menyiapkan kendaraan, alat *dyno, roller* serta *tools* yang dibutuhkan.
2. Mengeset kendaraan ke alat dyno seperti mengeset ban depan dengan tali dan mengatur sumbu ban belakang agar segaris dengan sumbu putar alat dyno.
3. Menyalakan kendaraan sampai bukaan gas *stationer* langsung *full throttle* hingga *rpm* maksimum.
4. Mengulangi langkah 3 dengan mengganti variasi *roller* CVT yang lain (7 gram, 10 gram, 11 gram dan 12 gram).
5. Data torsi dan putaran mesin yang dihasilkan keempat *roller* CVT dapat dilihat pada layar alat *dynotest*.

3.4 Skema Pengujian Percobaan

*Set up* kendaraan ini digunakan untuk setiap variasi dari *roller* CVT yang dapat dilihat dari gambar 3.9 dimana pengujian dilakukan langsung pada roda. Proses pengujian *dynotest* ini dengan menahan ban depan serta sisi kanan dan kiri dari kendaraan sebagai sistem keamanan pengujian. Kondisi ban diharapkan dalam keadaan masih bagus dan tekanan ban standar.

![Set Up Kendaraan Pada Alat Dynotest](image-url)
Diharapkan tidak terjadi slip antara roda dengan roller alat uji dynotest. Pada pengujian ini nilai yang diukur adalah torsi roda (Tp) dalam satuan kgf.m dan putaran engine (ne) dalam satuan rpm.

Gambar 3.10 Skema Percobaan Pengukuran Torsi Roda dan Putaran Engine Kendaraan

Skema percobaan pengukuran torsi roda dan putaran engine kendaraan bisa dilihat pada gambar 3.10. Awalnya kendaraan diset pada alat pengujian dynotest, kemudian diikat dengan tali pengaman yang sudah menjadi standar operasional prosedur. Selanjutnya melakukan set up alat uji dengan menentukan parameter - parameter yang akan ditampilkan dalam grafik dan data hasil dynotest. Kemudian kendaraan dinyalakan dan throttle dibuka 100% hingga kendaraan telah mencapai limiter dan hasil dynotest yang didapat adalah torsi roda (Tp) sebagai fungsi dari putaran engine (ne).

Setelah didapatkan grafik hasil dynotest, maka langkah selanjutnya adalah mengukur kecepatan putaran transmisi (ntr) dengan alat digital tachometer. Digital tachometer merupakan
alat pendeteksi kecepatan suatu benda yang berputar dalam satuan kecepatan putaran (rpm).

Gambar 3.11 Skema Percobaan Pengukuran Kecepatan Putaran Transmisi Kendaraan

Pada saat pengukuran kecepatan putaran transmisi (ntr) dilakukan mulai dari putaran engine (ne) bernilai 1500 rpm hingga 9500 rpm secara bertahap. Peningkatan tersebut bernilai 250 rpm setiap tahap pengukuran. Pada tahap ini sering terjadi fluktuasi pada putaran engine, sehingga terjadi sedikit error pada pengukuran kecepatan putaran transmisi. Pengambilan hasil kecepatan putaran transmisi (ntr) dilakukan secara rata-rata dari beberapa percobaan yang telah dilakukan.

Skema percobaan pengukuran kecepatan putaran transmisi (ntr) kendaraan bisa dilihat pada gambar 3.12. Awalnya kendaraan diset pada alat pengujian dynotest, kemudian diikat dengan tali pengaman yang sudah menjadi standar operasional prosedur. Selanjutnya melakukan set up alat uji. Kemudian
kendaraan dinyalakan dan *throttle* dibuka pada kondisi stasioner. Kemudian dilakukan pengukuran kecepatan putaran transmisi (ntr) setiap kenaikan 250 rpm dari kecepatan putaran *engine* (ne) dan hasil pengukuran yang didapatkan adalah nilai kecepatan putaran transmisi (ntr) sebagai fungsi dari kecepatan putaran *engine* (ne).

Gambar 3.12 Skema Percobaan Pengukuran Kecepatan Putaran Transmisi Kendaraan

3.5 Prosedur Perhitungan

Gambar 3.13 Flowchart Perhitungan
Gambar 3.13 Flowchart Perhitungan Lanjutan 1

\[ Te = \frac{T_p}{it \cdot ig} \]

\[ Ft = \frac{Te \cdot it \cdot ig \cdot \eta t}{r} \]

\[ V = \frac{ne \cdot 2\pi \cdot r}{it \cdot ig \cdot 60} (1 - S) \]

\[ Ra = \frac{1}{2} \cdot \rho \cdot Cd \cdot V^2 \cdot A_f \]

\[ W = m \cdot g \]

\[ Rg = W \sin \theta \]

\[ Spin = \mu \cdot W \]

\[ a = \frac{Ft - Ra - Rg}{M} \]

Plot grafik \( Ft - V \)

B
Gambar 3.13 Flowchart Perhitungan Lanjutan 2

Kesimpulan

Selesai

Membandingkan nilai $F_t$, $V$, kondisi spin dan $a$ yang dihasilkan keempat roller CVT

Plot nilai $R_a$ dan $R_g$ ke grafik $F_t - V$

Plot nilai spin ke grafik $F_t - V$

Plot grafik $a - V$

Plot nilai $R_a$ dan $R_g$ ke grafik $a - V$
Adapun tahap-tahap perhitungan antara lain:
1. Mengumpulkan data hasil *dynotest* yaitu torsi roda dan putaran engine ($n_e$)
2. Mengumpulkan data $n_t$ dari hasil percobaan menggunakan *tachometer digital*
3. Menghitung gaya dorong kendaraan $F_t = \frac{r}{\text{te} \cdot \text{it} \cdot \text{ig} \cdot \eta_t}$
4. Menghitung kecepatan kendaraan $V = \frac{n_e \cdot 2 \pi \cdot r}{\text{it} \cdot \text{ig} \cdot 60} (1 - S)$
5. Menghitung gaya hambat akibat angin $R_a = \frac{1}{2} \cdot \rho \cdot C_d \cdot V^2 \cdot A_f$
6. Menghitung Rg (*rolling grade*) = $W \sin \theta (\theta = 5^\circ, 10^\circ, 15^\circ, 20^\circ)$
7. Menghitung Kondisi Spin pada jalan aspal kering ($\mu = 0,8$), aspal basah ($\mu = 0,5$), *snow* ($\mu = 0,2$) dan *ice* ($\mu = 0,1$)
8. Menghitung percepatan kendaraan $a = \frac{F_t - Ra}{m}$
9. Melakukan plot grafik $F_t - V$
10. Melakukan plot nilai $R_a$ dan $R_g$ ke grafik $F_t - V$
11. Melakukan plot nilai spin ke grafik $F_t - V$
12. Melakukan plot grafik $a - V$
13. Melakukan plot nilai $R_a$ dan $R_g$ ke grafik $a - V$
14. Membandingkan nilai gaya dorong ($F_t$), kecepatan ($V$), dan percepatan ($a$) kendaraan terhadap gaya hambat angin dan tanjakan yang dihasilkan keempat *roller CVT*
15. Melakukan analisa dan menarik kesimpulan.
“Halaman ini sengaja dikosongkan”
BAB IV
HASIL DAN PEMBAHASAN

4.1 Data Hasil Pengujian
4.1.1 Data Hasil Spesifikasi Roller
Pada tabel 4.1 merupakan data hasil spesifikasi roller yang telah dilakukan. Dari data hasil pengukuran tersebut terlihat perbedaan massa dan diameter dalam dari masing – masing roller. Semakin bertambahnya massa roller maka diameter dalam akan semakin mengecil. Pada tabel 4.1 terlihat tinggi dan diameter luar memiliki dimensi yang sama pada setiap variasi massa.

<table>
<thead>
<tr>
<th>Massa (gram)</th>
<th>Tinggi (mm)</th>
<th>Diameter Luar (mm)</th>
<th>Diameter Dalam (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>13</td>
<td>16</td>
<td>0,97</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>16</td>
<td>0,61</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>16</td>
<td>0,48</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>16</td>
<td>0,35</td>
</tr>
</tbody>
</table>

4.1.2 Data Hasil Pengujian Dyno Test dan Digital Tachometer
Berikut ini adalah data hasil pengujian kendaraan (dynotest) yang telah dilakukan di bengkel Banyuwangi Motor Surabaya. Pada gambar 4.1, kecepatan putaran engine (ne) dan torsi roda (Tp) merupakan hasil dari mesin dyno. Gambar 4.2, putaran transmisi (ntr) diperoleh dari pengujian menggunakan alat tachometer digital yang dapat menghitung kecepatan secondary pulley dalam satuan rpm.
Gambar 4.1 Data Hasil Pengujian Dyno Test


Gambar 4.2 Data Hasil Pengujian Digital Tachometer
Terlihat pada gambar 4.2 massa roller 12 gram memiliki nilai rata-rata putaran transmisi yang paling baik daripada massa roller yang lain. Pada gambar 4.2 didapatkan nilai putaran transmisi yang berbeda-beda. Saat pengujian dilakukan beberapa kali pengambilan data setiap macam roller. Data hasil pengujian tersebut merupakan rata-rata dari beberapa kali pengambilan data setiap macam roller.

4.1.3 Data Hasil Pengukuran Luas Frontal
Berikut ini adalah data hasil pengukuran luas frontal kendaraan beserta pengendara. Pada gambar 4.3 disimulasikan saat kendaraan berhenti. Kondisi pengendara kendaraan juga disimulasikan menggunakan helm sesuai standar peraturan lalu lintas.

Gambar 4.3 Kendaraan dan Pengendara Tampak Depan
Luas frontal kendaraan dan pengendara diperoleh dengan cara mengambil gambar tampak depan. Kemudian gambar tersebut dimasukkan ke dalam software Solidwork 2014. Pada
software tersebut terdapat fitur Measure yang berfungsi untuk mengetahui luas permukaan suatu benda. Dari gambar 4.5 terlihat bahwa luas frontal kendaraan dan pengendara adalah senilai 0,49 m².

4.2 Analisa Data dan Pembahasan

4.2.1 Grafik Perbandingan Gaya Dorong Kendaraan Setiap Roller

Berikut ini adalah data hasil grafik perbandingan gaya dorong kendaraan setiap roller. Pada gambar 4.6 menggunakan 4 macam varian massa roller yaitu 7 gram, 10 gram, 11 gram dan 12 gram. Gaya dorong awal dimulai pada kecepatan 8 km/jam dan 84 km/jam pada akhir kecepatan.

Gambar 4.6 Grafik Perbandingan Gaya Dorong Kendaraan Setiap Roller

Pada gambar 4.6 dapat dilihat trendline grafik perbandingan gaya dorong kendaraan yang dihasilkan keempat roller sebagai fungsi kecepatan kendaraan. Roller 7 gram menghasilkan nilai gaya dorong kendaraan senilai 621,46 N pada kecepatan 8,62 km/jam. Nilai gaya dorong kendaraan tersebut meningkat hingga mencapai nilai gaya dorong maksimum senilai 624,56 N pada kecepatan 9,5 km/jam. Setelah melewati kecepatan...
9,5 km/jam, nilai gaya dorong kendaraan mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan 79,96 km/jam. *Roller* 10 gram menghasilkan nilai gaya dorong maksimum kendaraan senilai 703,31 N pada kecepatan 8,62 km/jam. Nilai gaya dorong kendaraan tersebut menurun hingga mencapai nilai gaya dorong minimum yang bernilai 71,67 N saat kecepatan 81,54 km/jam. *Roller* 11 gram menghasilkan nilai gaya dorong maksimum kendaraan senilai 707,47 N pada kecepatan 8,79 km/jam. Nilai gaya dorong kendaraan tersebut menurun hingga mencapai nilai gaya dorong minimum yang bernilai 73,61 N saat kecepatan 82,33 km/jam. *Roller* 12 gram menghasilkan nilai gaya dorong maksimum kendaraan senilai 719,09 N pada kecepatan 8,41 km/jam. Nilai gaya dorong kendaraan tersebut menurun hingga mencapai nilai gaya dorong minimum yang bernilai 85,23 N saat kecepatan 83,2 km/jam. Secara umum karakteristik trendline grafik nilai gaya dorong kendaraan yang dihasilkan keempat *roller* adalah sama. Tetapi nilai gaya dorong pada kecepatan tertentu yang dihasilkan masing-masing *roller* tidak sama. Hal ini dikarenakan masing-masing *roller* memiliki rasio transmisi yang berbeda. Perbedaan rasio transmisi tersebut diakibatkan karena masing-masing *roller* memiliki massa yang berbeda. Semakin besar massa *roller* maka semakin besar pula gaya yang diberikan *primary pulley* terhadap *belt* untuk merenggangkan *secondary pulley*, sehingga rasio transmisi cenderung berubah. Teori ini dapat dibuktikan dari dasar teori bab II tentang analisa gaya pada *roller*. Terlihat pada rumus $R_c = my_m\omega^2\cos \delta$, $R_b = my_m\omega^2\sin \delta$ dan $F_d = R_c(\sin \delta - \mu_c \cos \gamma) + R_b(\cos \gamma - \mu_b \sin \delta)$ jika massa (m) bertambah maka gaya normal $R_b$ dan $R_c$ akan meningkat, sehingga gaya axial yang di sebabkan oleh gaya sendrifugal juga akan bertambah.

Dari keempat *roller*, nilai gaya dorong maksimum kendaraan terbesar mampu dihasilkan oleh *roller* 12 gram yaitu senilai 719,09 N dan nilai gaya dorong tersebut menurun secara perlahan hingga bernilai 85,23 N pada kecepatan 83,2 km/jam. Pada saat kecepatan menengah sampai akhir, *roller* 12 gram
memiliki nilai gaya dorong yang optimal karena nilai gaya dorong roller 12 gram memiliki nilai rata-rata lebih tinggi dari nilai gaya dorong roller lainnya. Roller 7 gram, 10 gram dan 11 gram menghasilkan gaya dorong yang nilainya masih dibawah roller 12 gram. Pada trenline grafik terlihat bahwa gaya dorong roller 7 gram menurun drastis dikarenakan nilai torsi roda yang juga menurun. Nilai torsi roda ini dapat dilihat saat kecepatan 8,62 km/jam sampai 79,96 km/jam yang bernilai 157,29 Nm sampai 11,27 Nm untuk roller 7 gram. Sedangkan untuk roller yang lain bernilai 182,01 Nm sampai 18,14 Nm. Hal ini merupakan sebab nilai gaya dorong roller 7 gram menurun drastis

4.2.2 Grafik Perbandingan Gaya Dorong Beserta Pengaruh Gaya Hambat dan Spin Kendaraan Setiap Roller

Berikut ini adalah data hasil grafik perbandingan gaya dorong beserta pengaruh gaya hambat dan spin kendaraan setiap roller. Pada gambar 4.7 menggunakan 4 macam varian massa roller yaitu 7 gram, 10 gram, 11 gram dan 12 gram. Gaya dorong awal dimulai pada kecepatan 8 km/jam dan 84 km/jam pada akhir kecepatan.

Gambar 4.7 Grafik Perbandingan Gaya Dorong Beserta Pengaruh Gaya Hambat dan Spin Kendaraan Setiap Roller
Pada gambar 4.7 dapat dilihat trendline grafik gaya dorong kendaraan yang dihasilkan berbagai massa *roller* sebagai fungsi kecepatan kendaraan beserta gaya hambat yang terjadi. Gaya hambat yang terjadi adalah *rolling resistance*, *grade resistance* dan *aerodynamic resistance*. Karena pada saat proses dynotest nilai torsi dan putaran mesin merupakan hasil kalkulasi yang telah memperhitungkan gaya hambat rolling, maka gaya hambat yang diperhitungkan pada gambar 4.7 hanya gaya hambat udara dan gaya hambat akibat sudut tanjat. Nilai gaya hambat udara dipengaruhi oleh densitas udara, koefisien drag, luas frontal kendaraan dan pengendara, serta kecepatan relatif udara dan kendaraan yang secara rumus dapat dilihat pada pada persamaan 2.8. Karena pada saat proses dynotest udara dianggap tidak bergerak, maka kecepatan udara yang menerpa kendaraan dianggap sama dengan kecepatan kendaraan. Gaya hambat akibat sudut tanjat pada gambar 4.7 divariasikan dalam beberapa sudut yaitu 5°, 10°, 15° dan 20°. Semakin besar sudut tanjat pada lintasan maka semakin besar pula gaya hambat akibat sudut tanjat. Kondisi spin juga diperhitungkan dalam grafik gaya dorong ini. Nilai koefisien gesek yang akan digunakan yaitu \( \mu = 0.8 \) untuk kondisi jalan aspal kering, \( \mu = 0.5 \) untuk kondisi jalan aspal basah, \( \mu = 0.2 \) untuk kondisi jalan snow dan \( \mu = 0.1 \) untuk kondisi jalan ice.

Dari kedua trendline grafik pada gambar 4.7 diperoleh nilai kecepatan maksimum yang mampu dicapai kendaraan. Nilai kecepatan maksimum diperoleh akibat adanya titik potong antara trendline grafik gaya dorong kendaraan dan gaya hambat udara ditambah gaya akibat sudut tanjat. Titik potong ini berarti nilai gaya dorong kendaraan sama dengan gaya hambat udara ditambahkan gaya akibat sudut tanjat terhadap kendaraan. Sehingga pada kecepatan dimana terdapat titik potong tersebut merupakan kecepatan maksimum kendaraan (percepatan kendaraan sama dengan nol). Pada gambar 4.7 terlihat kecepatan maksimum kendaraan dengan massa *roller* 7, 10, 11 dan 12 gram senilai 11,55 ; 13,74 ; 13,48 dan 15,05 km/jam untuk Ra+Rg(20°).
satu nilai gaya dorong sebesar 513,36 N, 16,59 ; 26,12 ; 24,12 dan 27,26 km/jam untuk Ra+Rg(15°) saat nilai gaya dorong sebesar 258,03 ; 285,15 ; 280,12 dan 287,87 N, 55,41 ; 69,28 ; 70,47 dan 71,25 km/jam untuk Ra+Rg(10°) saat nilai gaya dorong sebesar 166,98 ; 180,54 ; 182,48 dan 181,32 N dan 77,76 ; 81,54 ; 82,33 dan 83,2 km/jam untuk Ra saat nilai gaya dorong sebesar 72,45 ; 71,67 ; 73,61 dan 85,23 N. Setelah melewati titik potong, percepatan kendaraan bernilai negatif. Hal ini menyebabkan gaya dorong yang dihasilkan kendaraan tidak mampu melawan gaya hambat udara dan gaya hambat akibat sudut tanjakan. Sehingga, kendaraan tidak dapat dipercepat lagi setelah melewati titik potong tersebut.

4.2.3 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 20 Derajat

Berikut ini adalah data hasil grafik perbandingan percepatan beserta pengaruh gaya hambat kendaraan setiap roller pada tanjakan 20 derajat. Pada gambar 4.8 menggunakan 4 macam varian massa roller yaitu 7 gram, 10 gram, 11 gram dan 12 gram. Percepatan awal dimulai pada kecepatan 8 km/jam dan 84 km/jam pada akhir kecepatan.

Pada gambar 4.8 dapat dilihat trendline grafik percepatan kendaraan yang dihasilkan semua massa roller sebagai fungsi kecepatan kendaraan. Nilai percepatan kendaraan tersebut dipengaruhi oleh nilai gaya dorong kendaraan, gaya hambat rolling, gaya hambat akibat sudut tanjakan, gaya hambat udara, massa kendaraan dan pengemudi yang secara rumus dapat dilihat pada pada persamaan 2.5. Pada pembahasan sebelumnya, nilai gaya dorong kendaraan merupakan konversi dari torsi roda yang dihasilkan dari proses dynotest. Karena pada saat proses dynotest nilai torsi roda dan putaran mesin merupakan hasil kalkulasi yang telah memperhitungkan gaya hambat rolling, maka gaya hambat yang diperhitungkan pada gambar 4.8 hanya gaya hambat udara.
dan gaya hambat akibat sudut tanjakan. Sedangkan nilai kecepatan kendaraan tersebut dipengaruhi oleh putaran mesin, radius roda, rasio transmisi, dan rasio final drive) yang secara rumus dapat dilihat pada pada persamaan 2.4.

Roller 7 gram menghasilkan nilai percepatan kendaraan senilai 0,89 m/s² pada kecepatan 8,62 km/jam. Nilai percepatan kendaraan tersebut meningkat hingga mencapai nilai percepatan maksimum senilai 0,91 m/s² pada kecepatan 9,5 km/jam. Setelah melewati kecepatan 9,5 km/jam, nilai percepatan kendaraan mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum (V = 11,55 km/jam). Roller 10, 11 dan 12 gram menghasilkan nilai percepatan maksimum senilai 1,45 ; 1,48 dan 1,56 m/s² pada kecepatan 8,62 ; 8,79 dan 8,41 km/jam. Nilai percepatan kendaraan tersebut mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum (V maks = 13,74 ; 13,48 dan 15,05 km/jam).

Dari keempat roller, nilai percepatan maksimum kendaraan terbesar mampu dihasilkan oleh roller 12 gram yaitu senilai 1,56 m/s² pada kecepatan 8,41 km/jam. Roller 10 dan 11 gram mampu menghasilkan nilai rata-rata percepatan yang nilainya masih di atas roller 7 gram. Sedangkan roller 7 gram menghasilkan nilai percepatan terendah pada kecepatan awal sampai maksimum.

4.2.4 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 15 Derajat

Berikut ini adalah data hasil grafik perbandingan percepatan beserta pengaruh gaya hambat kendaraan setiap roller pada tanjakan 15 derajat. Pada gambar 4.9 menggunakan 4 macam varian massa roller yaitu 7 gram, 10 gram, 11 gram dan 12 gram. Percepatan awal dimulai pada kecepatan 8 km/jam dan 84 km/jam pada akhir kecepatan.
Pada gambar 4.9 dapat dilihat trendline grafik percepatan kendaraan yang dihasilkan semua massa roller sebagai fungsi kecepatan kendaraan. Nilai percepatan kendaraan tersebut dipengaruhi oleh nilai gaya dorong kendaraan, gaya hambat rolling, gaya hambat akibat sudut tanjak, gaya hambat udara, massa kendaraan dan pengemudi yang secara rumus dapat dilihat pada persamaan 2.5. Pada pembahasan sebelumnya, nilai gaya dorong kendaraan merupakan konversi dari torsi roda yang dihasilkan dari proses dynotest. Karena pada saat proses dynotest nilai torsi roda dan putaran mesin merupakan hasil kalkulasi yang telah memperhitungkan gaya hambat rolling, maka gaya hambat yang diperhitungkan pada gambar 4.8 hanya gaya hambat udara dan gaya hambat akibat sudut tanjak. Sedangkan nilai kecepatan kendaraan tersebut dipengaruhi oleh putaran mesin, radius roda, rasio transmisi, dan rasio final drive yang secara rumus dapat dilihat pada pada persamaan 2.4.

Gambar 4.9 Grafik Perbandingan Percepatan Beserta Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 15 Derajat

Roller 7 gram menghasilkan nilai percepatan kendaraan senilai 1,71 m/s² pada kecepatan 8,62 km/jam. Nilai percepatan kendaraan tersebut meningkat hingga mencapai nilai percepatan maksimum senilai 1,73 m/s² pada kecepatan 9,5 km/jam. Setelah melewati kecepatan 9,5 km/jam, nilai percepatan kendaraan
mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum \( (V = 16,59 \text{ km/jam}) \). Roller 10, 11 dan 12 gram menghasilkan nilai percepatan maksimum senilai 2,27 ; 2,3 dan 2,38 m/s\(^2\) pada kecepatan 8,62 ; 8,79 dan 8,41 km/jam. Nilai percepatan kendaraan tersebut mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum \( (V_{\text{maks}} = 26,12 ; 24,14 \text{ dan } 27,26 \text{ km/jam}) \).

Dari keempat roller, nilai percepatan maksimum kendaraan terbesar mampu dihasilkan oleh roller 12 gram yaitu senilai 2,38 m/s\(^2\) pada kecepatan 8,41 km/jam. Roller 10 dan 11 gram mampu menghasilkan nilai rata-rata percepatan yang nilainya masih di atas roller 7 gram. Sedangkan roller 7 gram menghasilkan nilai percepatan terendah pada kecepatan awal sampai maksimum.

4.2.5 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 10 Derajat

Berikut ini adalah data hasil grafik perbandingan percepatan beserta pengaruh gaya hambat kendaraan setiap roller pada tanjakan 10 derajat. Pada gambar 4.10 menggunakan 4 macam varian massa roller yaitu 7 gram, 10 gram, 11 gram dan 12 gram. Percepatan awal dimulai pada kecepatan 8 km/jam dan 84 km/jam pada akhir kecepatan.

Pada gambar 4.10 dapat dilihat trendline grafik percepatan kendaraan yang dihasilkan semua massa roller sebagai fungsi kecepatan kendaraan. Nilai percepatan kendaraan tersebut dipengaruhi oleh nilai gaya dorong kendaraan, gaya hambat rolling, gaya hambat akibat sudut tanjak, gaya hambat udara, massa kendaraan dan pengemudi yang secara rumus dapat dilihat pada pada persamaan 2.5. Pada pembahasan sebelumnya, nilai gaya dorong kendaraan merupakan konversi dari torsi roda yang dihasilkan dari proses dyno\text{test}. Karena pada saat proses dyno\text{test} nilai torsi roda dan putaran mesin merupakan hasil kalkulasi yang
telah memperhitungkan gaya hambat rolling, maka gaya hambat yang diperhitungkan pada gambar 4.8 hanya gaya hambat udara dan gaya hambat akibat sudut tanjakan. Sedangkan nilai kecepatan kendaraan tersebut dipengaruhi oleh putaran mesin, radius roda, rasio transmisi, dan rasio final drive) yang secara rumus dapat dilihat pada pada persamaan 2.4.

Gambar 4.10 Grafik Perbandingan Percepatan Beserta Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 10 Derajat

Roller 7 gram menghasilkan nilai percepatan kendaraan senilai 2,54 m/s² pada kecepatan 8,62 km/jam. Nilai percepatan kendaraan tersebut meningkat hingga mencapai nilai percepatan maksimum senilai 2,56 m/s² pada kecepatan 9,5 km/jam. Setelah melewati kecepatan 9,5 km/jam, nilai percepatan kendaraan mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum (V = 28,53 km/jam). Roller 10, 11 dan 12 gram menghasilkan nilai percepatan maksimum senilai 3,1 ; 3,13 dan 3,21 m/s² pada kecepatan 8,62 ; 8,79 dan 8,41 km/jam. Nilai percepatan kendaraan tersebut mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum (V maks = 44,81 ; 49,87 dan 50,19 km/jam).

Dari keempat roller, nilai percepatan maksimum kendaraan terbesar mampu dihasilkan oleh roller 12 gram yaitu
senilai 3,21 m/s² pada kecepatan 8,41 km/jam. *Roller* 10 dan 11 gram mampu menghasilkan nilai rata-rata percepatan yang nilainya masih di atas *roller* 7 gram. Sedangkan *roller* 7 gram menghasilkan nilai percepatan terendah pada kecepatan awal sampai maksimum.

4.2.6 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 5 Derajat

Berikut ini adalah data hasil grafik perbandingan percepatan beserta pengaruh gaya hambat kendaraan setiap *roller* pada tanjakan 5 derajat. Pada gambar 4.11 menggunakan 4 macam varian massa *roller* yaitu 7 gram, 10 gram, 11 gram dan 12 gram. Percepatan awal dimulai pada kecepatan 8 km/jam dan 84 km/jam pada akhir kecepatan.

![Grafik Perbandingan Percepatan Beserta Gaya Hambat Kendaraan Setiap Roller Pada Tanjakan 5 Derajat](image)

Gambar 4.11 Grafik Perbandingan Percepatan Beserta Gaya Hambat Kendaraan Setiap *Roller* Pada Tanjakan 5 Derajat

Pada gambar 4.11 dapat dilihat trendline grafik percepatan kendaraan yang dihasilkan semua massa *roller* sebagai fungsi kecepatan kendaraan. Nilai percepatan kendaraan tersebut dipengaruhi oleh nilai gaya dorong kendaraan, gaya hambat rolling, gaya hambat akibat sudut tanjakan, gaya hambat udara, massa kendaraan dan pengemudi yang secara rumus dapat dilihat...
pada pada persamaan 2.5. Pada pembahasan sebelumnya, nilai gaya dorong kendaraan merupakan konversi dari torsi roda yang dihasilkan dari proses dynotest. Karena pada saat proses dynotest nilai torsi roda dan putaran mesin merupakan hasil kalkulasi yang telah memperhitungkan gaya hambat rolling, maka gaya hambat yang diperhitungkan pada gambar 4.8 hanya gaya hambat udara dan gaya hambat akibat sudut tanjak. Sedangkan nilai kecepatan kendaraan tersebut dipengaruhi oleh putaran mesin, radius roda, rasio transmisi, dan rasio final drive) yang secara rumus dapat dilihat pada pada persamaan 2.4.

Roller 7 gram menghasilkan nilai percepatan kendaraan senilai 3,39 \( \text{m/s}^2 \) pada kecepatan 8,62 km/jam. Nilai percepatan kendaraan tersebut meningkat hingga mencapai nilai percepatan maksimum senilai 3,41 \( \text{m/s}^2 \) pada kecepatan 9,5 km/jam. Setelah melewati kecepatan 9,5 km/jam, nilai percepatan kendaraan mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum (\( V = 55,41 \) km/jam). Roller 10, 11 dan 12 gram menghasilkan nilai percepatan maksimum senilai 3,95 ; 3,98 dan 4,06 \( \text{m/s}^2 \) pada kecepatan 8,62 ; 8,79 dan 8,41 km/jam. Nilai percepatan kendaraan tersebut mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum (\( V_{\text{max}} = 69,28 ; 70,47 \) dan 71,25 km/jam).

Dari keempat roller, nilai percepatan maksimum kendaraan terbesar mampu dihasilkan oleh roller 12 gram yaitu senilai 4,06 \( \text{m/s}^2 \) pada kecepatan 8,41 km/jam. Roller 10 dan 11 gram mampu menghasilkan nilai rata-rata percepatan yang nilainya masih di atas roller 7 gram. Sedangkan roller 7 gram menghasilkan nilai percepatan terendah pada kecepatan awal sampai maksimum.
4.2.7 Grafik Perbandingan Percepatan Beserta Pengaruh Gaya Hambat Kendaraan Setiap Roller Pada Jalan Datar

Berikut ini adalah data hasil grafik perbandingan percepatan beserta pengaruh gaya hambat kendaraan setiap roller pada jalan datar. Pada gambar 4.12 menggunakan 4 macam varian massa roller yaitu 7 gram, 10 gram, 11 gram dan 12 gram. Percepatan awal dimulai pada kecepatan 8 km/jam dan 84 km/jam pada akhir kecepatan.

Gambar 4.12 Grafik Perbandingan Percepatan Beserta Gaya Hambat Kendaraan Setiap Roller Pada Jalan Datar

Pada gambar 4.12 dapat dilihat trendline grafik percepatan kendaraan yang dihasilkan semua massa roller sebagai fungsi kecepatan kendaraan. Nilai percepatan kendaraan tersebut dipengaruhi oleh nilai gaya dorong kendaraan, gaya hambat rolling, gaya hambat akibat sudut tanjak, gaya hambat udara, massa kendaraan dan pengemudi yang secara rumus dapat dilihat pada pada persamaan 2.5. Pada pembahasan sebelumnya, nilai gaya dorong kendaraan merupakan konversi dari torsi roda yang dihasilkan dari proses dynotest. Karena pada saat proses dynotest nilai torsi roda dan putaran mesin merupakan hasil kalkulasi yang telah memperhitungkan gaya hambat rolling, maka gaya hambat yang diperhitungkan pada gambar 4.8 hanya gaya hambat udara dan gaya hambat akibat sudut tanjak. Sedangkan nilai kecepatan
kendaraan tersebut dipengaruhi oleh putaran mesin, radius roda, rasio transmisi, dan rasio final drive) yang secara rumus dapat dilihat pada persamaan 2.4.

Roller 7 gram menghasilkan nilai percepatan kendaraan senilai 4,25 m/s² pada kecepatan 8,62 km/jam. Nilai percepatan kendaraan tersebut meningkat hingga mencapai nilai percepatan maksimum senilai 4,27 m/s² pada kecepatan 9,5 km/jam. Setelah melewati kecepatan 9,5 km/jam, nilai percepatan kendaraan mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum (V = 77,76 km/jam). Roller 10, 11 dan 12 gram menghasilkan nilai percepatan maksimum senilai 4,81 ; 4,8 dan 4,92 m/s² pada kecepatan 8,62 ; 8,79 dan 8,41 km/jam. Nilai percepatan kendaraan tersebut mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga kecepatan maksimum (V maks = 81,54 ; 82,33 dan 83,2 km/jam).

Dari keempat roller, nilai percepatan maksimum kendaraan terbesar mampu dihasilkan oleh roller 12 gram yaitu senilai 4,92 m/s² pada kecepatan 8,41 km/jam. Roller 10 dan 11 gram mampu menghasilkan nilai rata-rata percepatan yang nilainya masih di atas roller 7 gram. Sedangkan roller 7 gram menghasilkan nilai percepatan terendah pada kecepatan awal sampai maksimum.

4.2.8 Grafik Perbandingan Torsi Roda Terhadap Kecepatan Putaran Engine Kendaraan Setiap Roller

Pada gambar 4.13 dapat dilihat trendline grafik perbandingan torsi roda kendaraan yang dihasilkan keempat roller sebagai fungsi kecepatan putaran engine kendaraan. Roller 7 gram menghasilkan nilai torsi roda kendaraan senilai 228,36 Nm pada putaran engine 1500 rpm. Nilai torsi roda kendaraan tersebut meningkat hingga mencapai nilai torsi roda maksimum senilai 237,51 Nm pada putaran engine 1833 rpm. Setelah melewati putaran engine 1833 rpm, nilai torsi roda kendaraan
mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga putaran engine 9500 rpm.

**Gambar 4.13 Grafik Perbandingan Torsi Roda Terhadap Kecepatan Putaran Engine Kendaraan Setiap Roller**

*Roller* 10 gram menghasilkan nilai torsi roda kendaraan senilai 227,22 Nm pada putaran *engine* 1500 rpm. Nilai torsi roda kendaraan tersebut meningkat hingga mencapai nilai torsi roda maksimum senilai 235,65 Nm pada putaran *engine* 1842 rpm. Setelah melewati putaran *engine* 1842 rpm, nilai torsi roda kendaraan mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga putaran *engine* 9500 rpm. *Roller* 11 gram menghasilkan nilai torsi roda kendaraan senilai 226,23 Nm pada putaran *engine* 1500 rpm. Nilai torsi roda kendaraan tersebut meningkat hingga mencapai nilai torsi roda maksimum senilai 231,63 Nm pada putaran *engine* 1781 rpm. Setelah melewati putaran *engine* 1781 rpm, nilai torsi roda kendaraan mengalami penurunan dimana trendline pada grafik terlihat menurun secara perlahan hingga putaran *engine* 9500 rpm. *Roller* 12 gram menghasilkan nilai torsi roda kendaraan senilai 222,41 Nm pada putaran *engine* 1500 rpm. Nilai torsi roda kendaraan tersebut meningkat hingga mencapai nilai torsi roda maksimum senilai 230,35 Nm pada putaran *engine* 1731 rpm.

4.2.9 Grafik Perbandingan Daya Terhadap Kecepatan Putaran Engine Kendaraan Setiap Roller
Gambar 4.14 Grafik Perbandingan Daya Terhadap Kecepatan Putaran Engine Kendaraan Setiap Roller


Secara umum, karakteristik trendline grafik nilai daya kendaraan yang dihasilkan keempat roller adalah sama. Tetapi nilai daya pada kecepatan tertentu yang dihasilkan masing-masing roller tidak sama. Hal ini dikarenakan masing-masing roller memiliki rasio transmisi yang berbeda. Perbedaan rasio transmisi tersebut diakibatkan karena masing-masing roller memiliki massa yang berbeda. Semakin besar massa roller maka semakin besar...
pula gaya yang diberikan *primary pulley* terhadap *belt* untuk merenggangkan *secondary pulley*, sehingga rasio transmisi cenderung mengecil.
BAB V
KESIMPULAN DAN SARAN

5.1 Kesimpulan
Dari analisa yang telah dilakukan menggunakan kendaraan Honda Scoopy 110 cc dengan massa kendaraan dan pengendara sebesar 146 kg dapat ditarik kesimpulan antara lain:

1. *Roller* 7 gram, *roller* 10 gram, *roller* 11 gram dan *roller* 12 gram menghasilkan nilai gaya dorong maksimum kendaraan masing-masing sebesar 624,56 N; 703,31 N; 707,47 N dan 719,09 N.
2. *Roller* 7 gram, *roller* 10 gram, *roller* 11 gram dan *roller* 12 gram menghasilkan kecepatan maksimum kendaraan masing-masing sebesar 77,761 km/jam; 81,5453 km/jam; 82,337 km/jam dan 83,2079 km/jam. Pada saat kendaraan mengalami kecepatan maksimum maka tidak akan terjadi percepatan.
3. *Roller* 12 gram merupakan *roller* paling baik serta cocok digunakan untuk berkendara di jalan yang terdapat tanjakan maupun datar juga memaksimalkan *acceleration* dan *top speed*.
4. Pada analisa spin disarankan menggunakan *roller* 7 gram pada kondisi jalan aspal basah, *snow* dan *ice*.

5.2 Saran
Adapun saran dari tugas akhir ini sehingga bisa menjadi pertimbangan untuk penelitian selanjutnya antara lain:

1. Dari pembahasan sebelumnya telah dibahas bahwa *roller* 12 gram menghasilkan nilai rata-rata gaya dorong terbesar pada kecepatan rendah sampai tinggi. Sehingga, *roller* 12 gram merupakan *roller* paling baik serta cocok digunakan untuk berkendara di jalan yang terdapat tanjakan maupun datar juga memaksimalkan *acceleration*
DAFTAR PUSTAKA


BIO DATA PENULIS

Muhammad Akif Habibullah


Motto hidup penulis “All Is Well” menjadikan penulis lebih tegar dalam menghadapi masalah. Untuk semua informasi dan masukan terkait tugas akhir ini dapat menghubungi penulis melalui email akif_sbc_8@yahoo.com
“Halaman ini sengaja dikosongkan”