Galistya, Theresia Mutiara (2017) Kualitas hidup perempuan berdasarkan Dimensi Kesetaraan Gender di Indonesia dengan Pendekatan PLS Prediction-Oriented Segmentation (PLS-POS). Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
1315201711-Master-Theses.pdf - Published Version Download (5MB) | Preview |
Abstract
Berbagai penelitian di bidang sosial menyangkut kualitas hidup perempuan terus berkembang sejalan dengan peran penting perempuan dalam melahirkan dan mendidik generasi penerus bangsa. Upaya peningkatan kualitas hidup perempuan salah satunya ditempuh melalui pencapaian kesetaraan gender. Keterkaitan hubungan antar dimensi kesetaraan gender yang menyusun model kualitas hidup perempuan dapat diteliti dengan Structural Equation Modeling (SEM) berbasis varian atau disebut juga Partial Least Squares (PLS). Penelitian terkait kualitas hidup perempuan ini dilakukan dengan melibatkan beberapa variabel laten dan indikator, serta dikumpulkan dari data sekunder sehingga diduga terdapat heterogenitas tidak teramati (unobserved heterogeneity) pada data. Berdasarkan model persamaan struktural kualitas hidup perempuan yang dihasilkan dari analisis, dapat disimpulkan bahwa variabel kesetaraan pendidikan berpengaruh positif terhadap kesetaraan ketenagakerjaan dan pengaruh tersebut signifikan. Variabel kesetaraan pendidikan berpengaruh positif terhadap pemberdayaan perempuan dan pengaruh tersebut signifikan. Variabel kesetaraan ketenagakerjaan berpengaruh positif terhadap pemberdayaan perempuan dan pengaruh tersebut signifikan, serta variabel pemberdayaan perempuan berpengaruh positif terhadap kesehatan reproduksi dan pengaruh tersebut signifikan. Nilai goodness of fit (GoF) yang dihasilkan sebesar 0, 4429 (large) sehingga dapat disimpulkan bahwa model fit dan mempunyai kemampuan yang baik dalam menjelaskan data. Hasil pengolahan dengan PLS Prediction-Oriented Segmentation (PLS-POS) meyakinkan adanya heterogenitas tidak teramati pada model PLS awal (global model) dengan membentuk 2, 3, 4, dan 5 segmen. Penentuan hasil segmentasi terbaik dilihat berdasarkan nilai average weighted R-squares tertinggi yang dihasilkan dari model PLS-POS dengan 4 segmen.
====================================================================================
Various studies in social field as regards life quality of women continues to evolve in line with the important role of women in childbirth and educating the next generation. Efforts to improve life quality of women could be reached through achievement of gender equality. Inter-relationship between gender equality dimensions can be analyzed by Structural Equation Modeling (SEM) based variance or also known as Partial Least Squares (PLS). Research related to life quality of women is done by involving few of latent variables and indicators as well as collected from secondary data that are suspected unobserved heterogeneity. Based on structural equation model resulting from the analysis, it can be concluded that variable educational equality had positive effect on employment equality and the effect is significant. Variable educational equality had positive effect on women empowerment and the effect is significant. Variable employment equality had positive effect on women empowerment and the effect is significant. Variable women empowerment had positive effect on reproductive health and the effect is significant. Goodness of Fit produced by 0, 4429 (large) so it can be concluded that model fit in explaining data. Results of processing using PLS Prediction-Oriented Segmentation (PLS-POS) conclude that there was unobserved heterogeneity in initial PLS model (global model) to form 2, 3, 4, and 5 segments. Determining best segmentation results seen by the highest average weighted R-squares resulting from PLS-POS with 4 segments.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | kesetaraan gender; kualitas hidup perempuan; PLS-POS; SEM-PLS; gender equality; life equality of women |
Subjects: | H Social Sciences > HA Statistics H Social Sciences > HQ The family. Marriage. Woman |
Divisions: | Faculty of Mathematics and Science > Statistics > 49101-(S2) Master Thesis |
Depositing User: | - THERESIA MUTIARA GALISTYA |
Date Deposited: | 02 Mar 2017 07:32 |
Last Modified: | 06 Mar 2019 02:04 |
URI: | http://repository.its.ac.id/id/eprint/2258 |
Actions (login required)
View Item |