

TUGAS AKHIR-RC14-1501

DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM *MULTI-SPAN CABLE-STAYED* DENGAN *FISHBONE MODEL*

RIZKY NUGRAHA NRP. 3114 106 001

Dosen Pembimbing I Dr. Ir. Hidayat Soegihardjo M., MS.

Dosen Pembimbing II Prof.Tavio, ST., MT., Ph.D.

JURUSAN TEKNIK SIPIL Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2017

TUGAS AKHIR-RC14-1501

DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM *MULTI-SPAN CABLE-STAYED* DENGAN *FISHBONE MODEL*

RIZKY NUGRAHA NRP. 3114 106 001

Dosen Pembimbing I Dr. Ir. Hidayat Soegihardjo M., MS.

Dosen Pembimbing II Prof.Tavio, ST., MT., Ph.D.

JURUSAN TEKNIK SIPIL Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT-RC14-1501

ALTERNATIVE DESIGN OF MUSI III BRIDGE USING MULTI-SPAN CABLE-STAYED SYSTEM WITH FISHBONE MODEL

RIZKY NUGRAHA NRP. 3114 106 001

Lecture I Dr. Ir. Hidayat Soegihardjo M., MS.

Lecture II Prof.Tavio, ST., MT., Ph.D.

CIVIL ENGINEERING Faculty of Civil Engineering and Planning Sepuluh Nopember Institute of Technology Surabaya 2017

DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM *MULTI-SPAN CABLE-STAYED* DENGAN *FISHBONE MODEL*

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Lintas Jalur Jurusan Teknik Sipil

Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember

> Oleh : RIZKY NUGRAHA Nrp. 3114106001

SURABAYA JANUARI, 2017 "Halaman ini sengaja dikosongkan"

DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM *MULTI-SPAN CABLE-STAYED* DENGAN *FISHBONE MODEL*

Nama Mahasiswa	: Rizky Nugraha
NRP	: 3114106001
Jurusan	: Teknik Sipil FTSP-ITS
Dosen Pembimbing	:
1. Dr. Ir. Hidayat Soe	egihardjo M., MS
2. Prof.Tavio,ST,MT	,Ph.D

Abstrak

Pada Tugas Akhir ini membahas mengenai desain alternatif jembatan Musi III yang terdiri dari jembatan utama berupa Multi-span Cable-stayed. Jembatan ini memiliki panjang 960 m yang terbagi dalam 3 bentang utama dengan masing-masing panjang 240 m dan 2 bentang tepi dengan masing-masing panjang 120 m. Konfigurasi kabel jembatan menggunakan fan pattern dengan posisi kabel two inclined planes system. Jembatan memiliki lebar lantai kendaraan 20,5 m (4/UD), lantai kendaraan didesain lebar agar jembatan tahan terhadap efek aerodinamis.

Adapun hasil dari perencanaan ini dibatasi hanya pada elemen uperstructure. Dalam pembahasan ini lantai kendaraan di desain berupa plat beton dengan steeldeck, sedangkan gelagarnya menggunakan balok komposit dan box baja nonkomposit. Kemudian stay cable tersusun atas 7-wire strand berdiameter 15,2 mm. Sedangkan pylon didesain menggunakan material beton bertulang. Untuk permodelan struktur utama menggunakan analisa fishbone model dengan pembebanan statis dan dinamis, selanjutnya analisa metode pelaksanaan (staging analysis) menggunakan metode demolishing procedure melalui backward solution dengan menggunakan program bantu MIDAS/Civil. Pembebanan staging analysis adalah berupa reaksi perletakan form traveler akibat berat sendiri dan lantai kendaraan yang diangkat. Selanjutnya jembatan juga dianalisa stabilitas aerodinamis yang meliputi kontrol terhadap frekuensi alami, efek flutter, dan juga vortex-shedding.

Kata kunci : multi-span cable-stayed, fishbone model, balok komposit, box baja.

ALTERNATIVE DESIGN OF MUSI III BRIDGE USING MULTI-SPAN CABLE-STAYED SYSTEM WITH FISFBONE MODEL

Nama Mahasiswa	: Rizky Nugraha
NRP	: 3114106001
Jurusan	: Teknik Sipil FTSP-ITS
Dosen Pembimbing	:
1. Dr. Ir. Hidayat Soe	egihardjo M., MS
2. Prof. Tavio, ST, MT	Ph.D

Abstract

This final project aimed to discuss about the alternative design of Musi III bridge which consist of main bridge in the form of Multi-span Cable-stayed. This bridge has span of 960 m and it divided into 3 main spans with each length of 240 m and 2 side spans with each length of 120 m. Cable bridge configuration using fan pattern with two inclined planes system. The deck of bridge has width of 20,5 m (4/UD), deck was designed as wide deck, so the bridge can resist to aerodynamic effects.

The result of this final project was restricted to the uperstructure element. In this design, the deck of bridge consist of concrete slab with steeldeck, the girders wasusing composite beam and non-composite steel box. Then stay cable is made up of 7-wire strand with diameter of 15,2 mm. While the pylon designed using reinforced concrete material. For the main structure modeling was using fishbone model analysis with static load and dynamic load. Staging analysis was using demolishing procedure method through backward solution using MIDAS/Civil program. The load of staging analysis was taken from form-traveler joint reaction due to its self weight and the deck that lifted by formtraveler. Then, the bridge also analyzed aerodinamic stability which include control of natural frequency, flutter effect, and also vortex shedding effect. Keywords :multi-span cable-stayed, fishbone model, composite beam, steel box.

KATA PENGANTAR

Segala puji bagi Allah Tuhan Semesta Alam atas segala rahmat dan karunia-Nya lah sehingga penulis dapat menyelesaikan Tugas Akhir ini dengan judul : "Desain Alternatif Jembatan Musi III Menggunakan Sistem *Multi-Span Cable-Stayed* dengan *Fishbone Model*".

Pada perencanaan jembatan bentang panjang ini diuraikan perihal mengenai perencanaan untuk lantai kendaraan, gelagar jembatan, kabel, dan menara. Dalam penulisan Tugas Akhir ini penulis menyadari masih terdapat kekurangan, maka dari itu kritik dan saran yang membangun sangatlah diharapkan demi kesempurnaan dalam pembuatan Tugas Akhir ini.

Pada akhir kata, penulis ingin menyampaikan rasa terima kasih kepada :

- 1. Teristimewa kepada orang tua penulis Bapak Hasan dan Ibu Ade Hadijah.
- 2. Bapak Dr. Ir. Hidayat Soegihardjo Masiran, MS., selaku dosen pembimbing Tugas Akhir.
- 3. Bapak Prof. Tavio, ST., MT., Ph.D., selaku dosen pembimbing Tugas Akhir.
- 4. Rekan-rekan mahasiswa serta semua pihak yang telah membantu penyusunan Tugas Akhir ini.

Penulis berharap Tugas Akhir ini dapat membawa manfaat baik bagi penulis sendiri maupun umum.

Surabaya, 24 Januari 2017

(Penulis)

"Halaman ini sengaja dikosongkan"

DAFTAR ISI

JUDUL	TUGAS AKHIR	
LEMBA	R PENGESAHAN	i
ABSTRA	AK ID	iii
ABSTRA	AK EN	v
KATA P	ENGANTAR	vii
DAFTAI	R ISI	ix
DAFTAI	R GAMBAR	XV
DAFTAI	R TABEL	xxiii
BAB I P	ENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Perumusan Masalah	3
1.3	Batasan Masalah	3
1.4	Tujuan Tugas Akhir	4
1.5	Manfaat Tugas Akhir	4
BAB II S	STUDI PUSTAKA	7
2.1	Umum	7
2.2	Multi Span Cable-Stayed Bridges	10
2.3	Sistem Kabel	
2.3.	1 Tatanan Sistem Kabel	
2.3.	2 Posisi Kabel	14
2.3.	3 Tipe Kabel	
2.4	Gelagar (Girder)	19
2.4.	1 Material Gelagar	21
2.4.	2 Sistem Konstruksi Gelagar	23
2.5	Menara atau <i>Pylon</i>	
2.5.	1 Material <i>Pylon</i>	27
2.5.	2 Pengangkuran Kabel	27
2.5.	3 Tinggi <i>Pylon</i>	27
2.6	Perilaku Aerodinamik	
2.7	Cara <i>Erection</i>	

2.7.	1 Staging Method	.31
2.7.	2 Teknik Push-Out	.32
2.7.	3 Cara <i>Cantilever</i>	.34
BAB III	METODOLOGI	.37
3.1	Diagram Alir Perencanaan Jembatan Musi III	.37
3.2	Pengumpulan Data dan Studi Literatur	.38
3.3	Preliminary Desain	.38
3.3.	1 Konfigurasi Susunan Kabel	.38
3.3.	2 Dimensi Gelagar Melintang	. 39
3.3.	3 Dimensi Gelagar Arah Memanjang (Gelagar uta	ima
+ G	elagar memanjang)	.40
3.3.	4 Dimensi Kabel + Anker	.40
3.3.	5 Dimensi <i>Pylon</i>	.42
3.4	Desain Struktur Sekunder	.43
3.4.	1 Pelat Lantai Kendaraan	.43
3.4.	2 <i>Railing</i> Jembatan	.45
3.5	Gelagar Memanjang dan Gelagar Melintang	.45
3.6	Permodelan Fishbone	.48
3.6.	1 Analisa Statis dan Dinamis Struktur Utama	.48
3.6.	2 Staging Analysis	.52
3.7	Desain Kapasitas Gelagar Utama	.53
3.8	Analisa Stabilitas Aerodinamis	.53
3.8.	1 Frekuensi Alami	.53
3.8.	2 Efek Vortex-Shedding	.54
3.8.	3 Efek <i>Flutter</i>	. 59
3.9	Desain Kabel dan Anker di Gelagar	.62
3.10	Penulangan Str. Pylon dan Desain Anker pada Pylon	.63
3.11	Menyusun Gambar	.64
BAB IV	PRELIMINARY DESAIN	.65
4.1	Tatanan Sistem Kabel	.65
4.2	Dimensi Gelagar Memanjang	.68
4.3	Dimensi Gelagar Melintang	.69
4.4	Dimensi Gelagar Utama	.70
4.5	Dimensi Awal Kabel dan Anker	.72

4.6 D	imensi Struktur Pylon	79
BAB V STI	RUKTUR SEKUNDER	83
5.1 Pe	erencanaan Pelat Lantai Kendaraan	83
5.1.1	Pembebanan	84
5.1.2	Hasil Analisa	87
5.1.3	Perhitungan Steeldeck dan Penulangan Pelat	89
5.1.4	Kontrol Geser Pons	96
5.2 Pe	erencanaan Sandaran (Railing)	97
BAB VI GE	ELAGAR MEMANJANG DAN MELINTANG	105
6.1 G	elagar Memanjang Komposit	105
6.1.1	Pembebanan	106
6.1.2	Hasil Analisa Gaya Dalam	109
6.1.3	Analisa Kapasitas Gelagar	110
6.1.4	Kontrol Kapasitas Geser Gelagar Komposit	115
6.1.5	Kontrol Lendutan Gelagar Komposit	117
6.1.6	Shear Connector (STUD)	120
6.1.7	Sambungan Gelagar Memanjang	122
6.2 G	elagar Melintang Komposit	126
6.2.1	Pembebanan	127
6.2.2	Hasil Analisa Gaya Dalam	133
6.2.3	Analisa kapasitas	133
6.2.4	Kontrol Kapasitas Geser Gelagar Komposit	139
6.2.5	Kontrol Lendutan	141
6.2.6	Shear Connector (STUD)	143
6.2.7	Sambungan Gelagar Melintang	145
BAB VII PI	EMODELAN DAN ANALISA STRUKTUR	
UTAMA		153
7.1 Pe	emodelan Struktur	153
7.2 A	nalisa Statik	158
7.2.1	Pembebanan	159
7.2.2	Hasil Analisa Statis	166
7.3 A	nalisa Dinamik	166
7.3.1	Menghitung Koefisien Respons Gempa Elasti	k
(C_{sm})		169

7.3.	2 Kontrol Pengaruh Gempa Arah X (Longitudi	nal)
7.3.	3 Kontrol Pengaruh Gempa Arah Y (Transvers	172 al)
		173
7.3.4	4 Hasil Analisa Dinamis	175
7.4	Staging Analysis	176
7.4.	1 Backward Solution	182
7.4.	2 Pembebanan	184
7.4.	3 Hasil Analisa	189
7.5	Analisa Gelagar Utama	191
7.5.	1 Hasil Analisa Struktur	193
7.5.	2 Kontrol Kemampuan Penampang	194
7.5.	3 Analisa Jika Satu Kabel Putus	201
7.5.4	4 Sambungan Gelagar Utama (<i>Box Girder</i>)	209
7.5.	5 Kontrol Stabilitas Aerodinamis	215
7.5.	6 Frekwensi Alami	215
7.5.	7 Efek vortex-shedding	218
7.5.	8 Efek <i>Flutter</i>	224
7.6	Struktur Kabel	229
7.6.	1 Data Perencanaan	229
7.6.	2 Gaya Stressing Kabel	231
7.6.	3 Analisa Penampang Kabel A _{aktual}	234
7.6.4	4 Perhitungan Anker Pada Gelagar	235
7.7	Struktur Pylon	240
7.7.	1 Gaya pada <i>Pylon</i>	241
7.7.	2 Analisa Penampang <i>Pylon</i>	243
7.7.	3 Analisa Penampang Kaki <i>Pylon</i>	256
7.7.4	4 Analisa Top Cross Beam	266
7.7.	5 Analisa Lower Cross Beam	271
7.7.	6 Analisa Anker Pada <i>Pylon</i>	276
BAB VII	I KESIMPULAN	281
8.1	Ringkasan	281
8.2	Kesimpulan	283
8.3	Saran	284

DAFTAR PUSTAKA	
LAMPIRAN	

"Halaman ini sengaja dikosongkan"

DAFTAR GAMBAR

Gambar 2.1 Strömsund Bridge, Swedia, selesai pada tahun 1955. Bentang utama adalah 182.6 m (599 ft) dan kabel disusun menggunakan pure-fan system. Pylon dan stiffening girder terbuat **Gambar 2.2** Susunan *cable-staved* a) *Two-span*; b)*three-span*, dan c) multi-span cable-stayed bridge arrangements. Threespanmerupakan susunan yang paling umum. (Chen dan Duan, Gambar 2.3 Basic load transfer pada cable-stayed. (Chen dan Gambar 2.4 Gambar 2.4. Langkah-langkah agar jembatan multispan cable-stayed stabil: (a) rigid pylons; (b) additional tie-down piers; (c) introduce tie cables from the top of the central pylons to the girder-pylon intersection point at the adjacent pylons; (d) introduce a horizontal top stay; (e) crossover stay cables in the Gambar 2.5 The Rion-Antirion Bridge di Yunani, selesai pada tahun 2004. Jembatan memiliki tiga bentang utama dari 560 m Gambar 2.6 Jembatan multi-span cable-stayed pertama di Asia Tenggara, Nhat Tan Bridge, dengan empat bentang utama masing-masing 300 m. (Sumber: majalah Steel Construction, [Published Jointly by The Japan Iron and Steel Federation; Gambar 2.7 Konfigurasi kabel (a) Tipe Radiating; (b) Tipe Harp, (c) Tipe Fan; (d) Tipe Star. (Podolny dan Scalzi, 1976)...14 Gambar 2.8 Tatanan sistem kabel. (Troitsky, 1988)......14 Gambar 2.9 Transfer beban vertikal, lateral dan beban torsi sebagai fungsi konfigurasi gelagar dan sistem kabel. (Gimsing, N. J., dan Skråstagsbroer, 1983).....16 Gambar 2.10 Posisi kabel (a) Two vertical planes system; (b) *Two inclined planes system*; (c) *Single planes system*; (d)

Gambar 2.11 Konfigurasi Strand (Haldania R, 2007)	18
Gambar 2.12 Tipe-tipe gelagar utama. (Troitsky, 1988)	20
Gambar 2.13 Tipe-tipe gelagar stiffening truss (Troitsky, 198	8).
	21
Gambar 2.14 Orthotropic deck dengan sistem a) open ribs; b))
close ribs(Beneus dan Coc, 2014)	22
Gambar 2.15 Gelagar komposit pada jembatan <i>cable staved</i> .	
(Brockenbrough dan Merrit, 2011)	23
Gambar 2.16 Tiga sistem konstruksi gelagar (Gimsing, 1983)	.24
Gambar 2.17 Self Anchored (Soegihardio 2007)	24
Gambar 2.18 Fully Anchored (Soegihardio 2007)	25
Gambar 2.19 Partial Anchored (Soegihardio 2007)	25
Gambar 2.20 Hubungan antara stiffening girder dan pylon	
menggunakan <i>vertical sliding hearings</i> untuk transmisi gaya	
lateral (Gimsing 1983)	26
Gambar 2.21 Tipe-tipe menara jembatan <i>cable-staved</i>	
(Brockenbrough dan Merrit 2011)	27
Gambar 2 22 Tinggi ontimum <i>pylon</i> (Parke and Huson 2008	328
Gambar 2.23 Gerak torsi jembatan Tacoma sesaat sebelum)20
runtuh 7 Nonember 1940 (Soegihardio 2007)	29
Cambar 2 24 Keruntuhan jembatan Tacoma (Soegihardio 2)	
Gambal 2.24 Keruntuhan jembatan Tacoma. (Soegmarujo, 20	29
Cambar 2 25 Gaya T. N. dan M akibat angin (Walther, 1999)	30
Cambar 2.26 Ouyu 1, 11, dan Wi aktour angin (Watcher, 1999)	
(Soegihardio 2007)	32
Gambar 2 27 Prosedur nelaksanaan teknik <i>Push-Out</i>	
(Soegihardio 2007)	33
Cambar 2 28 Metode nelaksanaan kantilever (Parke and Huse	
2008)	л, 2∕I
Cambar 2 20 Matada palaksanaan kantilayar (Gimsing dan T	
Christos 2012)	31
Cambar 2 30 Ilustrasi arah berlawanan dari urutan analisis da	Jт n
Urutan nelaksanaan (Gimsing 1083)	 25
Cambar 3.1 Diagram alir perencanaan jambatan cable stayed	
Combar 3.1 Diagram am perencanaan jembaran cubie-siuyeu	20
Gambai 3.2 Susunan jenivalan <i>mulli-spun</i>	30

Gambar 3.3 Konfigurasi Kabel tipe fan	39
Gambar 3.4 Posisi kabel Two Inclined Planes System	39
Gambar 3.5 Tipe gelagar jenis twin rectangular box girder	40
Gambar 3.6 Bentuk pylon jembatan berupa A-Shaped	42
Gambar 3.7 Model gambar perhitungan (Irawan, 2016)	43
Gambar 3.8 Perhitungan Momen (Irawan, 2016)	44
Gambar 3.9 Model gambar perhitungan kontrol geser (Irawan,	
2016)	45
Gambar 3.10 Model gambar perhitungan beban mati balok	
memanjang (Irawan, 2016)	46
Gambar 3.11 Model gambar perhitungan beban lalu lintas balo	ok
memanjang (Irawan, 2016)	46
Gambar 3.12Fishbone model	48
Gambar 3.13 Analysis fishbone model composition pada	
jembatan Nhat Tan, di Hanoi Vietnam	48
Gambar 3.14 Perbandingan target hasil analisis fishbone mode	l
dan perpindahan (displacement) aktual yang terjadi saat	
cantilever erection pada jembatan Nhat Tan, di Hanoi Vietnam	.49
Gambar 3.15 Beban lajur "D"	50
Gambar 3.16 Koefisien C dari empat penampang berdasarkan	
sudut angin menerpa <i>deck</i> jembatan. (Walther, 1999)	56
Gambar 3.17 Klasifikasi efek psikologis berdasarkan amplitud	0
getaran (Walther, 1999)	57
Gambar 3.19 Representasi sederhana <i>flutter</i> pada lantai	
kendaraan jembatan (Walther, 1999)	.59
Gambar 3.20 Kecepatan kritis teroitis untuk <i>flutter</i> . (Walther,	
1999)	61
Gambar 3.21 Koefisien koreksi $\eta = V_{kritis aktual} / V_{kritis teoritis}$.	
(Walther, 1999)	61
Gambar 4.1 Jembatan rencana	.67
Gambar 4.2 Tatanan system kabel arah longitudinal berupa <i>fan</i>	
pattern	.67
Gambar 4.3 Tatanan system kabel arah lateral berupa <i>Two</i>	66
Inclined Planes System	.68
Gambar 4.4 Dimensi awal gelagar memanjang	.69

Gambar 4.5 Tampak melintang jembatan	70
Gambar 4.6 Tipe gelagar jenis twin rectangle box girder	71
Gambar 4.7 Preliminary twin I girder.	72
Gambar 4.8 Tatanan system kabel dan penamaan kabel	73
Gambar 4.9 Reaksi gelagar melintang yang dipikul kabel	74
Gambar 4.10 Pembebananpadakabel (Gimsing, 1987)	75
Gambar 4.11 Tatanan sistem kabel	77
Gambar 4.12 Preliminary pylon	81
Gambar 5.1 Potongan pelat lantai jembatan	83
Gambar 5.2 Pembebanan beban mati (qDL)	85
Gambar 5.3 Pembebanan beban truk model 1	85
Gambar 5.4 Pembebanan beban truk model 2	85
Gambar 5.5 Pembebanan beban truk model 3	85
Gambar 5.6 Pembebanan akibat pengaruh pelaksanaan	86
Gambar 5.7 Momen pelat sebelum komposit	88
Gambar 5.8 Momen pelat model 1	88
Gambar 5.9 Momen pelat model 2	88
Gambar 5.10 Momen pelat model 3	88
Gambar 5.11Penampang Lysaght Bondek 1.0 BMT	89
Gambar 5.12Desain penulangan yang disarankan dalam bro	sur90
Gambar 5.13 Desain penulangan yang disarankan dalam bro	osur
	93
Gambar 5.14Model gambar perhitungan kontrol geser (Iraw	van,
2016)	96
Gambar 5.15 Tiang sandaran (dalam mm)	98
Gambar 5.16 Profil sandaran (dalam mm)	98
Gambar 5.17 Penampang pipa sandaran	100
Gambar 5.18 Sambungan las (dalam mm)	102
Gambar 6.1 Potongan gelagar memanjang. (satuan mm)	106
Gambar 6.2 Model gambar perhitungan beban lalu lintas ba	lok
memanjang (Irawan, 2016)	107
Gambar 6.3 Distribusi tegangan plastis momen ⁺ . (satuan mr	n)
	114
Gambar 6.4 Pembebanan geser pada gelagar memanjang ak	ibat
beban BGT + BTR. (satuan mm)	115

Gambar 6.5 Pembebanan geser akibat beban Truk. (satuan mr	n) 115
Gambar 6.6 Penampang komposit transformasi. (satuan mm) Gambar 6.7 Penampang LYSAGHT BONDEK BMT 1.0. (satuan mm)	113 118 120
Gambar 6.8 Detail sambungan gelagar memanjang. (satuan m	m) 125
Gambar 6.9 Detail sambungan gelagar memanjang ke gelagar	
melintang. (satuan mm)	125
Gambar 6.10 Detail sambungan potongan A-A. (satuan mm).	126
Gambar 6.11 Potongan melintang jembatan. (satuan mm)	127
Gambar 6.12 Pembebanan beban DL. (satuan mm)	128
Gambar 6.13 Pembebanan beban SDL. (satuan mm)	128
Gambar 6.14 Beban lajur "D" (SNI 1725:2016)	129
Gambar 6.15 Pembebanan BTR. (satuan mm)	129
Gambar 6.16 Pembebanan BGT. (satuan mm)	130
Gambar 6.17 Pembebanan Truk model 1. (satuan mm)	130
Gambar 6.18 Pembebanan Truk model 2. (satuan mm)	131
Gambar 6.19 Pembebanan pejalan kaki. (satuan mm)	131
Gambar 6.20 Pembebanan qPL. (satuan mm)	132
Gambar 6.21 Distribusi tegangan plastis momen ⁺ . (satuan mm	ı)
	138
Gambar 6.22 Penampang komposit transformasi. (satuan mm)	1
	142
Gambar 6.23 Penampang LYSAGHT BONDEK BMT 1.0.	
(satuan mm)	144
Gambar 6.24 Sambungan gelagar melintang terhadap gelagar	
utama. (satuan mm)	146
Gambar 6.25 Sambungan gelagar melintang. (satuan mm)	151
Gambar 6.26 Detail potongan M-1 – M-1. (satuan mm)	152
Gambar 7.1 Perspektif gelagar utama	153
Gambar 7.2 Pembagian penampang untuk menghitung Ixx	
gabunganbox	154
Gambar 7.3 Permodelan I _{XX-A}	155
Gambar 7.4 Permodelan I _{XX-B}	156

Gambar 7.5 Permodelan I _{XX-C}	157
Gambar 7.6. Analisis model jembatan dengan fishbone m	odel158
Gambar 7.7 Pemodelan elemen jembatan	158
Gambar 7.8 Reaksi perletakan akibat beban DL	159
Gambar 7.9 Reaksi perletakan akibat beban SDL	160
Gambar 7.10Tampak potongan pembebanan BTR. (satua	n mm)
	160
Gambar 7.11Tampak potongan pembebanan BGT. (satua	.n mm)
	161
Gambar 7.12 Tampak potongan pembebanan pejalan kaki	•
(satuan mm)	161
Gambar 7.13 Grafik Response Spectrum tanah lunak hasi	l desain
spektra Puskim	168
Gambar 7.14 Grafik Response Spectrum hasil desain MII	DAS169
Gambar 7.15 Vibration mode shape pada mode 1 menunj	ukan
lentur arah X	169
Gambar 7.16 Reaksi perletakan arah vertikal	170
Sehingga :	170
Gambar 7.17 Vibration mode shape pada mode 2 menunj	ukan
lentur arah Y	171
Gambar 7.19 Grafik Response Spectrum arah X	172
Gambar 7.20 Reaksi gaya geser dasar arah X	173
Gambar 7.22 Grafik Response Spectrum arah Y	174
Gambar 7.23 Reaksi gaya geser dasar arah Y	175
Gambar 7.24 Segmental deck untuk staging analysis pada	а
program bantu MIDAS	176
Gambar 7.25 Segmental pengangkatan deck (satuan dalar	m mm)
Gambar 7.26 Contoh form traveler tipe overhead	
Gambar 7.27 (a) tampak depan <i>form traveler</i> ; (b) detail po	otongan
A-A (dalam mm)	
Gambar 7.28 Contoh form traveler yang dipakai	187
Gambar 7.29 Permodelan dan input beban pada form tran	veler188
Gambar 7.30 Reaksi perletakan form traveler	
Gambar 7.31 Constuction Stages (Backward Solution)	
\mathbf{c}	

Gambar 7.32 Detail gelagar utama (satuan mm)	192
Gambar 7.33 Analisa section data dan section properties	193
Gambar 7.34 Penampang Box	198
Gambar 7.35 Asumsi 1 kabel putus	201
Gambar 7.36 Penampang Box	206
Gambar 7.37 Sambungan gelagar utama pada badan (satuan	mm)
	213
Gambar 7.38 Sambungan gelagar utama pada sayap (satuan	mm)
	214
Gambar 7.39 Tampak melintang sambungan gelagar utama	
(satuan mm)	214
Gambar 7.40 Mode1 – 6 frekwensi lentur (f_B)	216
Gambar 7.41 Mode 17-22 frekwensi torsi (fr)	217
Gambar 7.42 Macam penampang <i>deck</i>	220
Gambar 7.43 Koefisien C_N	221
Gambar 7.44 Klasifikasi efek psikologis berdasarkan amplit	udo
(Walther, 1999)	223
Gambar 7.45 Klasifikasi efek psikologis berdasarkan percer	oatan
getaran (Walther, 1999)	224
Gambar 7.46 Efek ayunan dengan beda fase $\pi/2$	225
(Walther, 1999)	225
Gambar 7.47 Kecepatan kritis teoritis untuk efek ayunan	227
(Walther, 1999)	227
Gambar 7.48 Grafik koefisien koreksi	228
(Walther, 1999)	228
Gambar 7.49 Tatanan system kabel dan penamaan kabel	230
Gambar 7.50 Cable force tuning	232
Gambar 7.51 Detail anker VSL SSI 2000 untuk deck	236
Gambar 7.52 Spesifikasi teknis anker VSL SSI 2000 untuk	deck
*	236
Gambar 7.53 Pelat anker tendon unit 6-61	238
Gambar 7.54 Tampak A-A pelat anker dan dimensi (satuan	
dalam mm)	239
Gambar 7.55 Struktur pylon(dalam mm)	241
Gambar 7.56 Section properties penampang pylon	243

Gambar 7.57 Desain penampang dan tulangan longitudina	l pylon
pada program bantu spColumn	247
Gambar 7.58 Grafik diagram interaksi SpColumn	248
Gambar 7.59 Daerah pengangkuran	254
Gambar 7.60 Desain penampang pylon	256
Gambar 7.61 Section properties penampang kaki pylon	257
Gambar 7.62 Desain penampang dan tulangan longitudina	l pylon
pada program bantu spColumn	260
Gambar 7.63 Grafik diagram interaksi SpColumn	260
Gambar 7.64 Desain penampang kaki pylon	265
Gambar 7.65 Desain penampang dan tulangan longitudina	l pylon
pada program bantu spColumn	267
Gambar 7.66 Grafik diagram interaksi SpColumn	267
Gambar 7.67 Desain penampang top cross beam	271
Gambar 7.68 Desain penampang dan tulangan longitudina	l pylon
pada program bantu spColumn	273
Gambar 7.69 Grafik diagram interaksi SpColumn	273
Gambar 7.70 Desain penampang lower cross beam	276
Gambar 7.71 Detail anker VSL SSI 2000 untuk pylon	277
Gambar 7.72 Spesifikasi teknis anker VSL SSI 2000 untu	k pylon
	278
Gambar 7.73 Dimensi anker	278
Gambar 7.74 Penerapan piramida terpancung untuk menc	ari A2
dalam tumpuan berundak atau miring.	279
Gambar 8.1 Perform analysis untuk fishbone model	
Gambar 8.2 Perform analysis untuk full model	

DAFTAR TABEL

Tabel 2.1 Nilai minimum Modulus Elastisitas Strand dan Ro	pe*
(Brockenbrough dan Merrit, 2011)	19
Tabel 3.1 dua jenis kabel parallelVSL 7-wire strand	41
Tabel 3.2 Pembebanan lantai kendaraan	44
Tabel 3.3 Konfigurasi pembebabanan ultimit	44
Tabel 3.4 Nilai V_0 dan Z_0 untuk berbagai kondisi permukaan	hulu
	51
Tabel 3.5 Tekanan angin dasar	52
Tabel 4.1 Dua jenis kabel parallel VSL 7-wire strand	73
Tabel 4.2 Perhitungan penampang dan jumlah strand kabel	76
Tabel 4.4 Perhitungan gaya aksial pada pylon	79
Tabel 5.1 Rekapitulasi pembebanan lantai kendaraan	86
Tabel 5.2 Kombinasi pembebanan	87
Tabel 5.3 Mmax pelat sesudah komposit	89
Tabel 6.1 Rekapitulasi beban	108
Tabel 6.2 Kombinasi pembebanan	109
Tabel 6.3 Hasil analisa struktur dengan SAP2000	109
Tabel 6.4 Hasil analisa gaya dalam	116
Tabel 6.5 Rekapitulasi beban	132
Tabel 6.6 Kombinasi pembebanan	133
Tabel 6.7 Hasil analisa struktur dengan SAP2000	133
Tabel 6.8 Hasil analisa lendutan gelagar melintang sebelum	
komposit	136
Tabel 6.9 Hasil analisa gaya dalam	139
Tabel 6.10 Lendutan gelagar melintang komposit	143
Tabel 7.1 Section Properties	153
Tabel 7.2 Nilai V ₀ dan Z ₀ untuk berbagai kondisi permukaan	hulu
	162
Tabel 7.3 Tekanan angin dasar	163
Tabel 7.4 Rekapitulasi beban	164
Tabel 7.5 Kasus pembebanan LL	165
Tabel 7.6 Gaya-gaya dalam akibat pembebanan statik	166
Tabel 7.7. Data gempa	167

Tabel 7.8 Nilai koefisien gempa	.167
Tabel 7.9 Konfigurasi pembebanan untuk analisa dinamik	.175
Tabel 7.10 Gaya-gaya dalam akibat pembebanan gempa	.175
Tabel 7.11 FT-S Series Form-Traveler (Overhead Model) Ma	ain
Specification	.185
Tabel 7.12 Konfigurasi pembebanan staging analysis	.186
Tabel 7.13 Konfigurasi pembebanan staging analysis	.191
Tabel 7.14 Gaya dalam hasil analisa menggunakan fishbone	
model	.194
Tabel 7.15 Gaya dalam untuk satu gelagar utama	.194
Tabel 7.16 Gaya dalam hasil analisa menggunakan fishbone	
model ketika satu kabel putus	.201
Tabel 7.17 Gaya dalam untuk satu gelagar utama ketika satu	
kabel putus	.202
Tabel 7.18 nilai f_B dan f_T	.218
Tabel 7.19 Jenis kabel dan anker	.229
Tabel 7.20 Perhitungan penampang dan jumlah strand kabel .	.230
Tabel 7.21 Gaya tarik awal masing-masing kabel	.232
Tabel 7.22 Kebutuhan luas penampang kabel akibat pretensio	on
	.233
Tabel 7.23 Gaya masing-masing kabel	.233
Tabel 7.24 Kebutuhan luas penampang kabel sebenarnya	.234
Tabel 7.25 Gaya kabel sebenarnya	.234
Tabel 7.26 Kontrol kemampuan kabel dari As _{pakai}	.235
Tabel 7.27Data anker yang dipakai	.237
Tabel 7.28 Perhitungan angker keseluruhan	.238
Tabel 7.29 Gaya dalam pada kolom pylon	.242
Tabel 7.30 Gaya dalam pada kaki pylon	.242
Tabel 7.31 Daerah Pengangkuran	.255
Tabel 7.32 Kebutuhan Tulangan Daerah Pengangkuran	.255
Tabel 7.33 Hasil analisa gaya tarik dari A _{pakai}	.277
Tabel 7.34 Data anker yang dipakai	.278
Tabel 7.35 Kontrol tegangan beton pada saat stressing	.280

BAB I PENDAHULUAN

1.1 Latar Belakang

Jembatan bentang panjang merupakan hal yang tidak asing lagi bagi Kota Palembang. Kota yang terletak di Provinsi Sumatra Selatan ini, merupakan salah satu kota metropolitan yang dilalui sungai besar, yang kita kenal sebagai Sungai Musi.Sungai tersebut membelah Kota Palembang menjadi dua bagian, yaitu Palembang Ulu dan Palembang Ilir. Selain itu, Sungai Musi juga berperan aktif sebagai media lalu lintas air seperti kapal-kapal kecil, hingga tongkang dan peti kemas. Sehingga jembatan bentang panjang merupakan solusi yang tepat menghubungkan dua bagian Kota Palembang tersebut. Ada beberapa tipe jembatan bentang panjang, yaitu jembatan gantung (*Suspension Bridge*), jembatan busur (*Arch Bridge*), dan jembatan kabel tetap (*Cable-Stayed*).

Seiring berkembangnya Kota Palembang yang pesat, maka berdampak juga pada perkembangan lalu lintas kendaraan yang semakin padat. Upaya Pemerintah Kota Palembang untuk jaringan meningkatkan jalan rava. terhambat dengan kurangnyajembatan yang menghubungkan dua bagian Kota Palembang tersebut. Jembatan Ampera dan Musi II yang sudah ada saat ini dinilai sudah semakin padat, kendaraan yang melewati jembatan sudah semakin berat dan jumlahnya jauh di atas normal, ditambah lagi kendaraan roda dua tidak lagi menggunakan lintasan jembatan melainkan melaju di atas trotoar (Antarasumsel, 2011). Jembatan Musi IV dan Musi VI yang sedang dibangun saat ini juga masih dianggap kurang sebagai upaya untuk memperluas akses jaringan jalan raya antara dua bagian Kota Palembang, khususnya pada bagian tengah kota yang saat ini hanya ada Jembatan Ampera.

Melihat hal tersebut maka sangat diperlukan pembangunan Jembatan Musi III yang sampai saat ini masih berbentuk konsep desain. Jembatan Musi III yang letaknya dekat dengan Jembatan Ampera diharapkan mampu mengurai kemacetan dan padatnya lalu lintas yang melintasi Jembatan Ampera atau khususnya pada daerah tengah kota Palembang.

Namun demikian, pembangunan Jembatan Musi III tidaklah bisa terwujud jika tidak dilakukan tahap perencanaan terlebih dahulu. Jembatan Musi III akan melewati profil sungai dengan lebar + 1700 m.Makadari itutimbul ide untuk merancang desain alternatif Jembatan Musi III berupa konstruksi multi-span cable staved, karena dengan pesatnya perkembangan rekayasa jembatan, multi-span cable stayed telah menjadi salah satu struktur utama jalan raya modern dan kereta api untuk menyeberangi sungai atau selat besar. Mereka memiliki keunggulan desain dan konstruksi, biaya yang lebih rendah, dan efek lanskap yang lebih baik (Virlogeux, 2001), selain itu multi-span cable staved menjadi populer karena memiliki estetika yang indah dan sebagai paniang bentang. sehingga memungkinkan pengurangan pengurangan ketinggian menara dan beban (S. Arnaud, N. Matsunaga, S. Nagano & J.-P. Ragaru, 2008), dengan spesifikasi sebagai berikut :

- ✓ Panjang 960 m yang terbagi dalam 3 bentang utama dengan masing-masing panjang 240 m dan 2 bentang tepi dengan masing-masing panjang 120 m.
- ✓ Struktur *pylon* dari beton bertulang berjumlah empat, masingmasing berada di badan Sungai Musi.
- ✓ Lebar perkerasan jalan di atas jembatan 14 m (4/2UD).
- ✓ Lebar jembatan 20,5 m.

Jika jembatan Musi III terwujud, hal ini akan menjadi daya tarik baru di Kota Palembang yang terkenal dengan makanan pempek-nya ini. Jembatan Musi III juga akan menjadi ikon baru yang akan membuat Kota Palembang menjadi semakin tersohor dan dikenal.

1.2 Perumusan Masalah

Secara umum berdasarkan latar belakang di atas, maka perlu perincian detail permasalahan supaya dapat diketahui skala prioritas dan urutan kerjanya, yang meliputi:

Permasalahan Utama :

Bagaimana mendisain jembatan Musi III berupa konstruksi *multi-span cable-stayed*?

Detail permasalahan :

- 1. Bagaimana *preliminary design* dari konfigurasi susunan kabel, gelagar utama (*box girder*), gelagar memanjang, dan melintang), kabel, dan struktur *pylon*.
- 2. Bagaimana mendesain struktur sekunder, diantaranya pelat lantai kendaraan (komposit) dan *railing* jembatan.
- 3. Bagaimana mendesain gelagar memanjang dan melintang, mulai dari pembebanan, analisa struktur, kontrol lendutan, kapasitas penampang dan sambungan.
- 4. Bagaimana memodelkan struktur utama *multi-spancable stayed* menggunakan program MIDAS dengan *fishbone model*.
- 5. Bagaimana menganalisa statis, dinamis dan *staging analysis* struktur jembatan.
- 6. Bagaimana menghitung kapasitas gelagar utama dan stabilitas aerodinamisnya.
- 7. Bagaimana menentukan kebutuhan tulangan untuk struktur *pylon*.
- 8. Bagaimana hasil akhir yang berupa gambar kerja.

1.3 Batasan Masalah

Dalam penyusunan Tugas Akhir ini, karena keterbatasan kemampuan dan waktu, maka lingkup bahasan yang akan dianalisa hanya mencakup perencanaan struktur atas *cable stayed*, tanpa membahas antara lain :

- 1. Jaringan jalan raya,
- 2. Volume lalu lintas kendaraan dan lalu lintas kapal,

- 3. Analisa dampak lingkungan,
- 4. Menghitung bangunan sub-structure,
- 5. Anggaran biaya, dan
- 6. Staging analysis pada pylon.

1.4 Tujuan Tugas Akhir

Tujuan tugas akhir ini adalah untuk merancang Jembatan Musi III yang berupa konstruksi *multi-spancable stayed*, agar syarat perencanaan terpenuhi adapun rincian sebagai berikut :

Tujuan Utama :

Mendisain jembatan Musi III berupa konstruksi *multi-span* cable-stayed.

Detail permasalahan :

- 1. Melakukan *preliminary design* dari konfigurasi susunan kabel, gelagar utama (*box girder*), gelagar memanjang, melintang), kabel, dan struktur *pylon*.
- 2. Mendesain struktur sekunder, diantaranya pelat lantai kendaraan (komposit) dan *railing* jembatan.
- 3. Mendesain gelagar memanjang dan melintang, mulai dari pembebanan, analisa struktur, kontrol lendutan, kapasitas penampang dan sambungan.
- 4. Memodelkan struktur utama *multi-span cable stayed* menggunakan program MIDAS dengan *fishbone model*.
- 5. Menganalisa statis, dinamis dan *staging analysis* struktur jembatan.
- 6. Menghitung kapasitas gelagar utama dan stabilitas aerodinamisnya.
- 7. Menentukan kebutuhan tulangan untuk struktur pylon.
- 8. Merealisasikan hasil akhir yang berupa gambar kerja.

1.5 Manfaat Tugas Akhir

Adapun manfaat yang dapat diberikan pada Tugas Akhir ini adalah sebagai berikut:

4

- 1. Memberikan alternatif desain atau perencanaan Jembatan Musi III yang berupa konstruksi *multi-span cable-stayed*.
- 2. Sebagai bahan sumbangan dan evaluasi bagi instansi terkait dalam memperluas akses jaringan jalan raya di Kota Palembang.

"Halaman ini sengaja dikosongkan"

BAB II STUDI PUSTAKA

2.1 Umum

Konstruksi suatu jembatan terdiri dari dua komponen utama yaitu bangunan atas dan bangunan bawah. Bangunan atas pada jembatan *cable-stayed* terdiri dari *girder, pylon*, kabel, lantai kendaraan, trotoar, dan sandaran. Sedangkan bangunan bawah berupa abutmen, pilar, dan pondasi.

Jembatan *cable stayed* sudah dikenal sejak lebih dari 200 tahun yang lalu (Walther, 1988) yang pada awal era tersebut umumnya dibangun dengan menggunakan kabel vertikal dan miring seperti Dryburgh Abbey Footbridge di Skotlandia yang dibangun pada tahun 1817. Jembatan seperti ini masih merupakan kombinasi dari jembatan *cable stayed* modern. Sejak saat itu jembatan *cable stayed* mengalami banyak perkembangan dan mempunyai bentuk yang bervariasi dari segi material yang digunakan maupun segi estetika. Jembatan *cable stayed* menjadi sangat terkenal sejak penyelesaian jembatan *modern cable-stayed* pertama, yaitu *Strömsund Bridge* di Swedia, pada 1955, yang dapat dilihat pada Gambar 2.1. (Chen and Duan, 2014).

Pada umumnya jembatan *cable-stayed* menggunakan gelagar baja, rangka, beton atau beton pratekan sebagai gelagar utama (Zarkasi dan Rosliansjah, 1995). Pemilihan bahan gelagar tergantung pada ketersediaan bahan, metode pelaksanaan dan harga konstruksi. Penilaian parameter tersebut tidak hanya tergantung pada perhitungan semata melainkan masalah ekonomi dan estetika lebih dominan. Kecenderungan sekarang adalah menggunakan gelagar beton, *cast in situ* atau *prefabricated (pre cast)*.

Gambar 2.1 Strömsund Bridge, Swedia, selesai pada tahun 1955. Bentang utama adalah 182.6 m (599 ft) dan kabel disusun menggunakan *pure-fan system*. *Pylon* dan *stiffening girder* terbuat dari baja. (Sumber: www.pwpeics.se [P.Wahlin].)

Tergantung pada rintangan yang akan diseberangi dan lokasi jembatan *cable-stayed*, bentang jembatan *cable-stayed* dapat di desain dalam *two-span*, *three-span* atau *multi-span* seperti yang ditunjukan pada Gambar 2.2. Susunan *two-span* terdiri dari bentang utama dan bentang dengan sisi lebih pendek (juga disebut *back span*). Susunan *three-span* merupakan susunan yang paling umum, terdiri dari bentang utama dan dua bentang samping, dimana panjang setiap bentang samping sama dengan setengah panjang bentang utama atau kurang. Sedangkan *multi-span* memiliki beberapa bentang utama dan bentang sisi dikedua ujung jembatan. (Chen dan Duan, 2014).

Gambar 2.2 Susunan *cable-stayed* a) *Two-span*; b)*three-span*, dan c) *multi-span cable-stayed bridge arrangements*. *Three-span* merupakan susunan yang paling umum. (Chen dan Duan, 2014)

Struktur dasar jembatan *cable-stayed* terdiri dari *pylon*, *stiffening girder* dan kabel. Jembatan utama menerima beban vertikal dan di transfer secara lokal oleh *stiffening girder* untuk mendukung elastisitas yang disediakan oleh kabel-kabel, kemudian tegangan tersalurkan dari kabel menuju *pylon* seperti pada Gambar 2.3.

Gambar 2.3 *Basic load transfer* pada *cable-stayed*. (Chen dan Duan, 2014)
2.2 Multi Span Cable-Stayed Bridges

Dalam susunan *multi-span* ada beberapa cara yang dapat diterapkan agar jembatan tetap stabil, yang dapat dilihat pada gambar 2.4.

Gambar 2.4 Gambar 2.4. Langkah-langkah agar jembatan *multi-span cable-stayed* stabil: (a) *rigid pylons*; (b) *additional tie-down piers*; (c) introduce *tie cables from the top of the central pylons to the girder-pylon intersection point at the adjacent pylons*; (d) *introduce a horizontal top stay; (e) crossover stay cables in the main spans.* (Chen dan Duan, 2014)

Gambar 2.5 The Rion-Antirion Bridge di Yunani, selesai pada tahun 2004. Jembatan memiliki tiga bentang utama dari 560 m (1837 ft). (Sumber : Photothtéque VINCI [C. Dupont].)

Gambar 2.6 Jembatan *multi-span cable-stayed* pertama di Asia Tenggara, Nhat Tan Bridge, dengan empat bentang utama masing-masing 300 m. (Sumber: majalah *Steel Construction, [Published Jointly by The Japan Iron and Steel Federation; Japanese Society of Steel Construction].*

2.3 Sistem Kabel

Sistem kabel merupakan salah satu hal mendasar dalam perencanaan jembatan *cable stayed*. Secara umum sistem kabel dapat dilihat sebagai tatanan kabel transversal dan tatanan kabel longitudinal. Pemilihan tatanan kabel tersebut didasarkan atas berbagai hal, karena akan memberikan pengaruh yang berlainan terhadap perilaku struktur terutama pada bentuk menara dan tampang gelagar. Selain itu akan berpengaruh pula pada metode pelaksanaan, biaya dan arsitektur jembatan. Jembatan *cable stayed* menggunakan kabel-kabel berkekuatan tinggi yang menghubungkan *pylon* dengan gelagar. Ada beberapa bentuk serta konfigurasi kabel berdasarkan susunannya.

2.3.1 Tatanan Sistem Kabel

Tatanan sistem kabel dapat dilihat sebgai berikut :

1) Tatanan Sistem Kabel Tranversal

Tatanan kabel transversal terhadap area sumbu longitudinal jembatan dapat dibuat satu atau dua bidang dan sebaliknya ditempatkan secara simetri.

2) Tatanan Sistem Kabel Longitudinal

Tatanan kabel longitudinal jembatan mempunyai banyak tergantung pada pengalaman perencana variasi menentukan perbandingan antara bentang dengan tinggi menara. Untuk bentang yang lebih pendek, kabel tunggal mungkin sudah cukup untuk menahan beban rencana. Untuk bentang utama yang panjang dan bentang tidak simetris yang menggunakan anker, variasi tatanan kabel tidak cukup dengan kebutuhan secara teknis tetapi harus menghasilkan konfigurasi dasar tatanan kabel longitudinal vaitu, radial, harpa bentuk kipas dan bintang (Podolny dan Scalzi, 1976), sketsa dapat dilihat pada Gambar 2.7.

a. Tipe Radiating atau Converging Cable System

Merupakan sebuah susunan dimana kabel dipusatkan pada ujung atas menara dan disebar sepanjang bentang gelagar. Kelebihan tipe ini adalah kemiringan rata-rata kabel cukup besar sehingga komponen gaya horizontal tidak terlalu besar, namun kabel yang terkumpul diatas kepala menara menyulitkan dalam perencanaan dan pendetailan sambungan.

b. Tipe *Harp* atau *Parallel Cable System* Terdiri dari atas kabel-kabel penggantung yang dipasang sejajar dan disambungkan ke manara dengan ketinggian yang berbeda-beda satu terhadap lainnya. Susunan kabel yang sejajar memberikan efek estetika yang sangat indah namun terjadi lentur

yang besar pada menara.

c. Tipe *Fan* atau *Intermediate Cable System* Merupakan solusi tengah antara *radiating* dan tipe *harp*. Kabel disebar pada bagian atas menara dan pada bagian dek sepanjang bentang, menghasilkan kabel tidak sejajar. Penyebaran kabel pada menara akan memudahkan pendetalan tulangan.

d. Tipe Star

Memiliki bentuk berlawanan dengan tipe *radiating*, dimana kabel terpusat pada gelagar. Bentuk ini memberkan efek estetika yang baik namun menyulitkan pendetailan sambungan pada gelagar. Dukungan antara dua tumpuan tetap jembatan hanya ada pada pertemuan kabel, sehingga momen lentur akan menjadi lebih besar.

Gambar 2.7 Konfigurasi kabel (a) Tipe *Radiating*; (b) Tipe *Harp*, (c) Tipe *Fan*; (d) Tipe *Star*. (Podolny dan Scalzi, 1976).

	STAY	SINGLE	DOUBLE	TRIPLE	MULTIPLE	VARIABLE
SYSTEM		1	2	3	4	5
1	BUNDLE OR CONVERGING OR RADIAL	$ \land $				\rightarrow
2	HARP OR Parallel	- 1		A		
3	FAN					
4	STAR		\Rightarrow			

Gambar 2.8 Tatanan sistem kabel. (Troitsky, 1988).

2.3.2 Posisi Kabel

Menurut Haldania (2007)terdapat dua perencanaan yang mendasar dari beberapa bidang (*planes*) yang menentukan antara lain : *two-plane system* dan *single-plane systems*. *Two-plane systems* dapat dibagi menjadi dua tipe sebagai berikut :

- 1. *The Single Plane System / Central Cable Planes* Tipe ini memiliki sistem satu kabel yang diletakan di tengah gelagar dan segaris dengan *pylon*.
- 2. The Two Planes System
 - a) Two Vertical Planes System

Tipe ini memiliki sistem dua kabel parallel dan menara berada diatas masing-masing sisi jembatan, yang terletak di bidang vertikal yang sama. Berikut dua alternatif layout yang diadaptasi menggunakan sistem ini :

- i) Angkur kabel dapat terletak di luar struktur dek,
- ii) Kabel dan tower terletak melintang
- b) Two Inclined Planes System
 - i) Two Inclined Planes System, Inward
 - ii) Two Inclined Planes System, Outward

Gambar 2.9 Transfer beban vertikal, lateral dan beban torsi sebagai fungsi konfigurasi gelagar dan sistem kabel. (Gimsing, N. J., dan Skråstagsbroer, 1983)

Selain *two-plane system* dan *single-plane systems*, menurut Troitsky (1988) terdapat juga posisi kabel dengan bentuk *asymmetrical plane system* seperti terlihat pada Gambar 2.10 poin (d) :

Gambar 2.10 Posisi kabel (a) *Two vertical planes system*; (b) *Two inclined planes system*; (c) *Single planes system*; (d) *Asymmetrical plane system*. (Troitsky, 1988).

(d)

2.3.3 Tipe Kabel

Kabel dapat tersusun dari satu atau lebih *structural rope, structural strands, locked coil strands* atau *parallel wire strands. Strand* merupakan gabungan dari *wire* yang dibuat mengelilingi *centre wire* dalam satu atau banyak lapisan yang simetris. *Strand* baik digunakan untuk menerima beban secara individu, dimana radius atau lengkungan bukanlah persyaratan utama, atau sebagai komponen dalam pembuatan *structural rope*. (Haldania R, 2007)

Rope tersusun dari banyak *strand* yang mengelilingi *core*. Berbeda dengan *strand*, kapasitas *rope* dipengaruhi oleh lengkungan kabel yang dapat menjadi pertimbangan penting.

Ada tiga tipe konfigurasi strand:

- 1) Helically-wound strand
- 2) Parallel wire strand
- 3) Locked Coil strand

	(Brockenbrough dan	Merrit, 2011)
Tipe	Diameter, in	Modulus Elastisitas,ksi
Strand	$\frac{1}{2}$ sampai $\frac{29}{6}$	24.000
	$2\frac{5}{8}$ dan seterusnya	23.000
Rope	$\frac{5}{8}$ sampai 4	20.000

Tabel 2.1 Nilai minimum Modulus Elastisitas Strand dan Rope*(Brockenbrough dan Merrit, 2011)

*Untuk kelas B atau kelas C berat dari lapisan zinc di permukaan, mengurangi modulus 1000 ksi

2.4 Gelagar (Girder)

Bentuk gelagar jembatan *cable stayed* sangat bervariasi namun yang paling sering digunakan ada dua yaitu *stiffening truss* dan *solid web* (Podolny and Scalzi, 1976). *Stiffening truss* digunakan untuk struktur baja dan *solid web* digunakan untuk struktur baja atau beton baik beton bertulang maupun beton prategang. (Chen dan Duan, 2014)

Walther (1999) mengungkapkan bahwa bentuk profil gelagar jembatan dan pertimbangan bahannya tergantung dari beberapa faktor. Yang pertama dalah jarak antar kabel penggantung. Pada jembatan dengan jarak kabel yang relatif besar, secara otomatis akan diperlukan gelagar yang kaku, dan biasanya sifat seperti ini didapati pada gelagar dari baja. Seperti pada *cable-stayed* generasi pertama, pada umumnya jembatan seperti ini mempunyai rasio ketebalan gelagar dan bentang (h/L) antara 1/50 sampai 1/100. Sedangkan pada jembatan yang memiliki jarak antar kabel yang relatif kecil, rasio ini dapat direduksi sampai 1/500 dengan bahan dari beton, karena kebutuhan akan kekakuan gelagar menjadi berkurang.

Faktor lain yang mempengaruhi adalah konfigurasi kabel arah lateral serta lebar gelagar. Pada jembatan dengan satu kabel di tengah (*single-plane*), diperlukan gelagar dengan kekakuan torsi yang tinggi. Sifat ini dapat diberikan oleh gelagar berbentuk kotak (*box*) baik itu dari baja maupun dari beton. Sedangkan untuk jembatan dengan konfigurasi kabel di tepi (*double-planes*) memungkinkan dipakai gelagar yang lebih langsing karena kekakuan torsi tidak diperlukan.. Selain itu, alasan ekonomis dan pertimbangan metode konstruksi menjadi faktor yang tidak kalah penting.

Bentuk yang paling banyak digunakan adalah bentuk *solid web* karena memiliki kemudahan dalam pekerjaannya. Gelagar yang tersusun dari *solid web* yang terbuat dari baja atau beton cenderung terbagi atas dua tipe yaitu:

- 1. Gelagar pelat (*plate girder*), dapat terdiri atas dua atau banyak gelagar,
- 2. Gelagar box (*box girder*), dapat terdiri atas satu atau susunan box yang dapat berbentuk persegi panjang atau trapezium.

Gambar 2.12 Tipe-tipe gelagar utama. (Troitsky, 1988).

Gambar 2.13 Tipe-tipe gelagar *stiffening truss* (Troitsky, 1988).

2.4.1 Material Gelagar

Ada tiga kemungkinan material penyusun gelagar :

1. Gelagar baja

Salah satu keuntungan gelagar baja adalah dapat mengoptimalkan penggunaan material. Sehingga otomatis berat sendiri dapat dikurangi. Penggunaan gelagar baja *orthopropic* juga merupakan solusi yang baik untuk jembatan *cable-stayed*. Baja *orthoptopic* adalah pelat baja yang monolit dengan rusuk-rusuk (*ribs*) yang sejajar, defleksi *orthopropic* mencapai 1/6 dari defleksi pelat biasa (O'Connor. 1971)

Gambar 2.14 Orthotropic deck dengan sistem a) open ribs; b) close ribs(Beneus dan Coc, 2014)

2. Gelagar beton

Ada dua cara metode konstruksi gelagar beton, yaitu gelagar beton dapat dibuat di tempat (*cast in-place*) atau *precast*. Konstruksi cor di tempat dibuat dengan bantuan *form* traveler, yang merupakan pengembangan dari metode *free cantilever*, metode ini memungkinkan dipakainya gelagar beton massif daripada konstruksi *box* girder, sehingga mempunyai struktur yang tidak terlalu rumit sedangkan metode precast mengharuskan segmen-segmen gelagar berbentuk box agar lebih kaku dan mempermudah proses pendirian dan pengang-kutannya (Lin, 2000).

3. Gelagar komposit

Gelagar komposit menggabungkan antara beton dan baja secara monolit sehingga keduanya bekerja bersama-sama. Keuntungan dari gelagar ini adalah pengurangan dari berat sendiri gelagar (lebih berat dari gelagar baja namun jauh lebih ringan dari gelagar beton) serta kemudahan pendirian terutama pada bagian bajanya (Walther, 1999). Pada komposit girder, pelat beton digunakan untuk mentransfer gaya tekan aksial. Pelat beton terhubung dengan gelagar baja menggunakan *shear studs*. Pelat beton dapat dibuat ditempat (*cast in-situ*), namun pada umumnya dibuat dengan panel *precast*. (Chen dan Duan, 2014)

Gambar 2.15 Gelagar komposit pada jembatan *cable stayed*. (Brockenbrough dan Merrit, 2011)

2.4.2 Sistem Konstruksi Gelagar

Ada tiga kemungkinan sistem konstruksi gelagar menurut Gimsing (1983) :

Sistem A, gelagar memiliki *expansion joint* pada *pylon* dan terjepit di kedua tepinya. Ini mengakibatkan gelagar sepenuhnya menerima tarik. N = 0 di *pylon*.

Sistem B, gelagar menerus dengan perletakan rol dikedua tepi dan salah satu *pylon*-nya. Hal ini mengakibatkan gelagar sepenuhnya menerima tekan. N = 0 ditengah bentang utama.

Sistem C, gelagar menerus dengan perletakan rol di semua tepi dan *pylon*-nya. Hal ini mengakibatkan gelagar menerima tarik di tengah bentang utama dan tekan di tepi bentang utama serta bentang tepinya. N = O di perletakan akhir bentang tepi.

Cara transmisi beban struktur ke pondasi, mempengaruhi respons atau kekakuan struktur dan besarnya gaya aksial dalam gelagar. Untuk bentang yang besar, perlu dipikirkan penempatan *expansion joint* yang tepat, dilihat dari segi gaya-gaya yang harus diterima struktur. (Soegihardjo, 2007).

Gambar 2.17 Self Anchored. (Soegihardjo, 2007)

Gambar 2.19 Partial Anchored. (Soegihardjo, 2007)

Pada jembatan suspension dan multi-cable stayed dimana stiffening girder adalah kontinyu yang di dukung oleh sistem kabel dari ujung satu ke yang lainnya, vertical supports dapat dihilangkan. Lateral support gelagar pada pylon dapat dicapai dengan menerapkan vertical sliding bearings antara girder dan masing-masing kaki pylon, seperti pada Gambar 2.20. Untuk memastikan lateral support yang efisien, sliding bearings harus di pre-stressed oleh pegas. (Gimsing, 1983)

Gambar 2.20 Hubungan antara *stiffening girder* dan *pylon* menggunakan *vertical sliding bearings* untuk transmisi gaya lateral. (Gimsing, 1983)

2.5 Menara atau Pylon

Pylon merupakan elemen struktur yang paling penting pada jembatan *cable stayed* karena bentuk *pylon* direncanakan berdasarkan susunan kabelnya. Oleh karena itu, pertimbangan estetika juga termasuk hal yang dipehitungkan dan cermat dalam mendetailkan sangat penting dalam kesuksesan keseluruhan tampilan jembatan. (Chen dan Duan, 2014)

Pylon (menara) jembatan cable stayed berfungsi untuk menahan beban mati dan hidup yang bekerja pada struktur, menara dapat terbuat dari baja atau beton bertulang. Ada beberapa bentuk menara yang dapat diterapkan pada jembatan cable stayed, seperti H-frame, Single, Double towers, Portal dan A-Shaped. Bentuk-bentuk menara tersebut dipilih berdasarkan susunan kabel, estetika, pertimbangan biaya, kebutuhan perencanaan dan parameter lainnya. Kebanyakan tower memiliki struktur kolom berongga (hollow) agar dapat mengakomodir adanya tangga, kerekan dan jaringan listrik.

Gambar 2.21 Tipe-tipe menara jembatan *cable-stayed*. (Brockenbrough dan Merrit, 2011)

2.5.1 Material Pylon

Walaupun pada awalnya jembatan *cable stayed* dibangun menggunakan *pylon* baja, namun beton menjadi alternatif pilihan yang lebih ekonomis. Beton saat ini umumnya dipilih sebagai material *pylon* untuk jembatan *cable-stayed* yang besar dan selalu menggunakan perancah yang dapat bergerak ke atas dalam konstruksinya. Bagaimanapun, *pylon* baja masih menjadi opsi yang lebih baik untuk area yang memiliki gempa tinggi. (Chen dan Duan, 2014)

2.5.2 Pengangkuran Kabel

Kabeldapat diangkur pada *pylon* atau melewati *pylon* dengan bantuan *cable saddle. Cable saddles* digunakan pada bentang yang pendek dan menengah, juga pada daerah yang memiliki geometri sederhana. Bagaimanapun, biaya dan tegangan tambahan pada kabel yang menjadi pertimbangan dalam pembatasan penggunaan *saddle.* (Chen dan Duan, 2014)

2.5.3 Tinggi Pylon

Perencanaan untuk tinggi *pylon* dapat dilakukan dengan membandingkan antara tinggi rencana (H) dengan panjang bentang deck (L) dengan range nilai 0,2 - 0,25 (Parke and Huson, 2008), lihat Gambar 2.21.

Gambar 2.22 Tinggi optimum *pylon*. (Parke and Huson, 2008)

Atau juga dapat dihitung berdasarkan persamaan berikut : $h \ge L/6$ sampai L/8 (Troitsky 1977 hal 33) $h \ge 0,465 \text{ x n x } \lambda$ (Troitsky 1977 hal 181)

2.6 Perilaku Aerodinamik

Pada jembatan *cable-stayed*, bentang utama biasanya memiliki bentang yang besar, angin yang menabrak *deck* jembatan menyebabkan struktur mengalami osilasi lentur dan torsi. Angin lateral yang terjadi membuat sudut terhadap horizontal sehingga menimbulkan efek angkat, maka dari itu jembatan *cable –stayed* tidak boleh terlalu ramping. Tacoma *Bridge* adalah contoh kegagalan struktur *cable-stayed* dimana struktur nya terlalu langsing dengan bentang L=853 m dan lebar kendaraan B=12 m. (Soegihardjo, 2007)

Gambar 2.23 Gerak torsi jembatan Tacoma sesaat sebelum runtuh, 7 Nopember 1940. (Soegihardjo, 2007)

Gambar 2.24 Keruntuhan jembatan Tacoma. (Soegihardjo, 2007)

Akibat penampang lantai kendaraan (LK) mengalami g gaya static.

- 1. Gaya horizontal T
- 2. Gaya vertikal N
- 3. Momen torsi M

Dimana gaya-gaya tersebut besarnya tergantung faktor-faktor :

- 1. Tekanan angin, q
- 2. Bentuk penampang (koefisien : C_T , C_N , C_M)

Gambar 2.25 Gaya T, N, dan M akibat angin (Walther, 1999)

$$T = CT. q. h. l$$
(2-1)

$$N = CN. q. h. l$$
(2-2)

$$M = CM. q. B. h. l$$
(2-3)

Dimana :

L = Panjang struktur

h = tinggi total lantai kendaraan

B = lebar lantai kendaraan.

2.7 Cara Erection

Ada tiga cara yang umum dipakai untuk *stiffening girder* (Soegihardjo, 2007), yaitu :

- a. *Staging method*,
- b. Push out method,
- c. *Cantilever method.*

2.7.1 Staging Method

Dipakai bila ruang bebas di bawah jembatan rendah dan pemasangan penyokongan sementara tidak akan mengganggu lalu lintas dibawah jembatan.

Keuntungannya adalah :

- ✓ teliti dalam mengikuti bentuk geometrik dan tanjakan yang dipersyaratkan pada *erection*.
- ✓ biaya rendah pada ruang bebas yang rendah.

Urutan pelaksanaannya :

- ✓ setelah tembok pangkal dan pilar selesai dibuat, mulai dibuat pilar penolong sementara.
- ✓ gelagar dipasang dengan sistem *cantilevering*, sampai pada pilar penolong.
- ✓ pada saat itu pilar penolong berikutnya sudah selesai dan gelagar dapat dipasang terus sampai pada pilar penolong kedua.
- ✓ dan seterusnya, sampai keseberang.
- ✓ berat tiap bagian gelagar dapat mencapai : 27,5 ton ; dengan panjang : 20m.
- ✓ *pylon* diselesaikan pemasangannya.
- ✓ kabel kabel dipasang.
- ✓ pada pilar penolong dapat dipasang *jack*, untuk memberi bentuk geometrik yang ditentukan, pada tahap *erection*.

Gambar 2.26 Prosedur pelaksanaan *Staging Method*. (Soegihardjo, 2007)

2.7.2 Teknik Push-Out

Dipakai terutama bila lalulintas di bawah jembatan tidak boleh diganggu oleh adanya sistem *erection* jembatan; sedangkan pemakaian cara *cantilever* dinilai tidak praktis pada situasi yang ada di tempat jembatan.

Pada metode ini, bagian-bagian bangunan atas dirangkai di tepian sungai, kemudian secara bertahap didorong maju melintas bentangan-bentangan antara pilar-pilar yang telah dibuat lebih dahulu, termasuk rol atau perletakan geser teflon diatasnya. Gelagar ini dapat didorong dari dua sisi, masing-masing tepian, atau hanya dari satu tepian saja.

Pylon (dengan kabelnya) saat didorong maju, duduk diatas gelagar; setelah sampai ke tempat *pylon* yang direncanakan, *pylon* dihubungkan dengan pilarnya. Berat yang dapat didorong kedepan mencapai 1500 ton.

Gambar 2.27 Prosedur pelaksanaan teknik *Push-Out*. (Soegihardjo, 2007)

2.7.3 Cara Cantilever

Dipakai pada *cable stayed*, dimana mungkin dipasang penyokong sementara. Bedanya dengan *staging method* adalah : bila pada *staging method* yang memikul beban saat *erection* bangunan atasnya adalah pilar dan penyokong sementara; maka pada *cantilever method*, pilar, *pylon* dan kabelnya sudah dimanfaatkan untuk memikul beban saat *erection*.

Gambar 2.28 Metode pelaksanaan kantilever (Parke and Huson, 2008)

Gambar 2.29 Metode pelaksanaan kantilever (Gimsing dan T. Christos , 2012).

Dalam kenyataannya urut-urutan antara analisis dan pelaksanaan jembatan pada sistem kantilever berlawanan arah, seperti terlihat pada contoh ilustrasi jembatan dengan enam kabel pada bentang utama di bawah :

Gambar 2.30 Ilustrasi arah berlawanan dari urutan analisis dan urutan pelaksanaan. (Gimsing, 1983)

"Halaman ini sengaja dikosongkan"

BAB III METODOLOGI

3.1 Diagram Alir Perencanaan Jembatan Musi III

Diagram alir perencanaan jembatan *multi-span cable stayed* dapat dilihat pada Gambar 3.1 berikut ini :

Gambar 3.1 Diagram alir perencanaan jembatan cable-stayed

3.2 Pengumpulan Data dan Studi Literatur

Dalam hal studi literatur penulis menggunakan beberapa referensi terkait, berupa jurnal, modul kuliah, buku, majalah, peraturan, maupun internet.

Data perencanaan yang dibutuhkan antara lain :

1.	Nama dan Lokasi	: Jembatan Musi III-Palembang,
2	Deniene Dentene	Sungai Musi
2.	Panjang Bentang	: 960 m (<i>cable-stayed</i>)
3.	Lebar Perkerasan	: 14 meter (4/2 UD)
4.	Lebar jembatan	: 20,5 meter
5.	Tinggi Bebas	: 30 meter
6.	Material Utama	: Pelat beton, Box Girder,
		kabel baja 7-wire strand dan
		struktur <i>pylon</i> beton bertulang.

7. Data-data sekunder.

3.3 Preliminary Desain

3.3.1 Konfigurasi Susunan Kabel

Susunan kabel arah memajang seperti pada Gambar 3.3 berupa *fan Pattern*, sedangkan susunan arah memanjang seperti Gambar 3.4 berupa *Two Inclined Planes System*. Susunan ini lebih menguntungkan karena desain *pylon* dapat lebih pendek dan pemasangan kabel tidak akan serumit *radiating pattern*. *Plan design* sebagai berikut :

1. Susunan jembatan *cable-stayed* menggunakan susunan *multi-span* seperti pada Gambar 3.2.

Gambar 3.2 Susunan jembatan multi-span

2. Konfigurasi kabel menggunakan *fan pattern* dengan posisi kabel *Two Incined Planes System* seperti pada Gambar 3.3 dan Gambar 3.4.

Gambar 3.3 Konfigurasi Kabel tipe fan

Gambar 3.4 Posisi kabel Two Inclined Planes System

Untuk mencari dimensi awal digunakan rumus-rumus sebagai berikut :

- ✓ Jarak kabel pada gelagar (Whalter, 1999)
 - a. Gelagar baja (15 m 25 m)
 - b. Gelagar beton (5 10 m)

$$\lambda = \frac{\left[\left(l - CL\right)/2\right]}{4}$$

Dimana :

 λ = jarak angker kabel pada gelagar

n = jumlah kabel

3.3.2 Dimensi Gelagar Melintang

Tinggi gelagar melintang dapat ditentukan dengan persamaan berikut :

Tinggi balok (d) $\ge \frac{L}{9}$ Dimana L = panjang balok

3.3.3 Dimensi Gelagar Arah Memanjang (Gelagar utama + Gelagar memanjang)

Menurut Podolny (1976) dalam bukunya "*Contruction & Design of Cable-Stayed Bridges*", nilai perbandingan antara tinggi gelagar dengan bentang jembatan bervariasi antara (1/40) s.d. (1/100).

Tinggi gelagar utama (h) = $\frac{1}{40}L \ge h \ge \frac{1}{100}L$ Tinggi gelagar memanjang (d) $\ge \frac{L}{12}$

Bentuk gelagar jembatan di desain menggunakan *twin rectangular box* seperti pada Gambar 3.5.

Gambar 3.5 Tipe gelagar jenis twin rectangular box girder.

3.3.4 Dimensi Kabel + Anker

Menurut RSNI T-03-2005 pasal 12.6 kabel pemikul utama yang dipergunakan untuk struktur-struktur jembatan kabel dan jembatan gantung harus dibuat dari material mutu tinggi dengan kuat tarik minimum 1800 N/mm2.

Ada dua jenis kabel *parallel VSL 7-wire strand* yang dapat digunakan untuk jembatan kabel, lihat table 3.1 :

Standard	ASTM A 416-06 Grade 270	Euronorme 138-3
Ø (mm)	15,2	15,7
$A_{s} (mm^{2})$	140	150
$f_u (f_{ijin}=0,7f_u)(Mpa)$	1860 (1302)	1770 (1239)
Ukuran anker	7, 12, 19, 31, 37,	61, dan 91 strand

Tabel 3.1 dua jenis kabel parallelVSL 7-wire strand

Dimensi awal kabel didekatkan dengan persamaan berikut (Gimsing, 1983):

$$Asc = \frac{(W\lambda + P)\cos\theta}{(0,45f_u)\sin 2\theta/2 - \gamma.a}$$

Dimana :

Asc= Luas penampang kabel

W = Beban mati dan hidup merata

P = Beban terpusat

- λ = Jarak antar angker kabel pada gelagar
- θ = Sudut kabel terhadap horisontal
- γ = Berat jenis kabel
 - $= 77.01 \text{ kN/m}^3$
- f_u = Tegangan putus kabel
 - = 1860 Mpa
- a = jarak mendatar dari *pylon* ke angker kabel pada gelagar (*girder*)

Jumlah kabel (n) = $\frac{Asc}{As}$, As = luas penampang kabel

Dalam pelaksanaan, kabel akan mengalami lendutan akibat berat sendiri. Tetapi dalam analisa dapat digunakan kabel yang lurus dengan koreksi pada nilai modulus elastisitasnya, sebagai berikut (H-J Ernst):

$$E_{eq} = \frac{E}{1 + \frac{(\gamma . l)^2}{12\sigma^3}E}$$

Dimana :

 $E_{eq} = Modulus elastisitas ekivalen$ E = Modulus elastisitas kabel= 200000 MPa $<math display="block">\gamma = Berat jenis kabel$ = 77.01 kN/m³ = 77.01 x 10⁻⁶ N/mm³l = jarak titik gantung kabel $= <math>\sqrt{a^2 + b^2 + c^2}$

3.3.5 Dimensi Pylon

Preliminary pylon berdasarkan besarnya gaya aksial tekan dan momen lentur (akibat lentur diasumsikan 50% dari pengaruh aksial) dari gaya aksial pada kabel untuk satu sisi kolom vertikal *pylon* tersebut.

- 1. Material : Beton bertulang
- f°c : 50 Mpa
 fy : 400 Mpa
 Bentuk : A-shaped dengan posisi l
- 4. Bentuk : *A-shaped* dengan posisi kabel *two inclined planes system*

Gambar 3.6 Bentuk pylon jembatan berupa A-Shaped

Tinggi pylon dapat dicari dengan persamaan berikut :

 $h \ge L/6$ sampai L/8 (Troitsky 1977 hal 33) Atau $h \ge 0,465 \text{ x n x } \lambda$ (Troitsky 1977 hal 181)

Luas penampang *pylon* dapat dicari dengan persmaan berikut:

$$A_{perlu} = \frac{T}{f'_{c}}$$

Dimana :
$$A_{perlu} = Luas penampang pylon$$

T = Gaya aksial total pada pylon
(Asumsi b = lebar penampang ; h = tinggi penampang = 2b)

3.4 Desain Struktur Sekunder

Desain struktur sekunder jembatan *cable-stayed* terdiri dari pelat lantai kendaraan dan *railing* jembatan.

3.4.1 Pelat Lantai Kendaraan

Pelat lantai kendaraan berupa beton komposit antara beton bertulang dengan *compodeck*.

Gambar 3.7 Model gambar perhitungan (Irawan, 2016)

Jenis Beban	Nilai	LF	
Beban mati (DL)			
Beban pelat beton	$d_3 \propto \gamma_{beton} (kN/m')$	1.3	
Beban steeldeck	0.081 kN/m'	1.1	
Beban superimpose (SDL)			
Beban aspal	$d_4 \propto \gamma_{aspal} (kN/m')$	1.4	
Beban pelaksanaan (PLL)			
Beban pelaksanaan	2.5 kN/m'	1.0	
Beban hidup (LL)			
Beban truk	112.5 kN	2 DLA=30%	

Tabel 3.2 Pembebanan lantai kendaraan

Untuk mendapatkan pengaruh yang paling menentukan, beban dikonfigurasi dalam keadaan ultimit seperti berikut :

Model	Kombinasi	Gambar
1	DL+PL+LL	
2	DL+PL+LL	
4	DL+PL+LL	

 Tabel 3.3 Konfigurasi pembebabanan ultimit

=PL =DL \downarrow = LL (Beban "T")

Gambar 3.8 Perhitungan Momen (Irawan, 2016)

Kontrol Geser Pons Gaya geser (Vu) = $K^{U}_{TT} \times 112,5 \times (1+0.3)$ Kemampuan Geser (Vn₀) = $u.d(f_{cv} + 0.3f_{pe})$

Gambar 3.9 Model gambar perhitungan kontrol geser (Irawan, 2016)

3.4.2 Railing Jembatan

Railing jembatan direncanakan menerima beban w = 0.75 kN/m' yang bekerja sepanjang sandaran paling atas (RSNI T-02-2005 ps.12.5).

3.5 Gelagar Memanjang dan Gelagar Melintang

Gelagar memanjang berfungsi menyalurkan beban kendaraan pada pelat beton ke gelagar melintang. Sedangkan gelagar
melintang berfungsi menyalurkan beban-beban lantai kendaraan dan beban gelagar memanjang ke gelagar utama Pembebanan pada gelagar mengacu pada SNI 1725:2016. Pembebanan pada gelagar memanjang :

Gambar 3.10 Model gambar perhitungan beban mati balok memanjang (Irawan, 2016)

A dan B adalah tumpuan yang diasumsikan *simple connection* ke balok melintang.

Beban Mati (q_{MU}) :

Aspal $= d_4 x \gamma_{aspal} x b_1 x LF$ Pelat beton $= d_3 x \gamma_{beton} x b_1 x LF$ Steeldeck= 0.081 kN/m'x LFBerat Sendiri $= W_{profil} x LF$

Momen akbat beban mati: $M_{D} = 1/8 x q_{MU} x \lambda^{2}$ q_{KEL} q_{UDL} λ λ

 $\begin{array}{l} q_{\text{UDL}} &= 9 \text{ kPa x } b_1 \text{ x LF (untuk L < 30 m)} \\ &= 9 (0.5 + 15/\text{L}) \text{ x } b_1 \text{ x LF (untuk L > 30 m)} \end{array}$

$$q_{KEL} = 49 \text{ Kn/m' x } b_1 \text{ x } LF \text{ x } (1+DLA)$$

Momen akibat beban hidup : $M_{L1} = \frac{1}{4} q_{KEL} x \lambda + \frac{1}{8} q_{UDL} x \lambda^2$ Beban Hidup Truk Terpusat "T" = 112,5 KN Tu = 112.5 x 2 x (1+DLA) Momen akibat Tu : $M_{L2} = \frac{1}{4} x Tu x \lambda$

Kemudian gelagar yang merupakan profil-I canai panas ini di kontrol dengan mengacu pada SNI 1729-2015.

Kontrol Kapasitas Lentur

 $\phi Mn > Mu$

Kontrol Kapasitas Geser

 $V_n = 0,6F_yA_wC_v$

Berdasarkan SNI 1729-2015 G2.1 (b) untuk badan dari semua profil simetris ganda dan profil simetris tunggal serta kanal lainnya, kecuali PSB bundar, koefisien geser badan, C_v , ditentukan sebagai berikut :

(i) Bila $h/t_w \le 1,10\sqrt{k_v E/F_y}$ $C_v = 1.0$

(ii) Bila
$$1,10\sqrt{k_v E/F_y} < h/t_w \le 1,37\sqrt{k_v E/F_y}$$

$$C_v = \frac{1.10\sqrt{k_v E/F_y}}{h/t_w}$$

(iii) Bila $h/t_w > 1,37\sqrt{k_v E/F_y}$

$$C_{v} = \frac{1.51k_{v}E}{(h/t_{w})^{2}F_{v}}$$

Kontrol Lendutan

Menurut RSNI T-03-2005 ps. 4.7.2 lendutan maksimum gelagar diatas dua tumpuan L/800.

3.6 Permodelan Fishbone

3.6.1 Analisa Statis dan Dinamis Struktur Utama

Struktur utama terdiri dari gelagar utama (*Steel Plate Girder*), Kabel dan Struktur *Pylon*. Analisa menggunakan program MIDAS/Civil. Selain menggunakan *Full Model Analysis*, permodelan juga dapat dimodelkan menggunakan *fishbone model* seperti yang dilakukan pada perencanaan jembatan Nhat Tan di Hanoi Vietnam, sehingga jumlah *Degree of Freedom* (DOF) pada permodelan dapat dikurangi, seperti yang terlihat pada Gambar 3.13. Selain itu pembebanan akan menjadi lebih sederhana dan waktu analisis pada program MIDAS menjadi lebih efektif.

Gambar 3.12Fishbone model

Gambar 3.13 Analysis fishbone model composition pada jembatan Nhat Tan, di Hanoi Vietnam

Gambar 3.14 Perbandingan target hasil analisis *fishbone model* dan perpindahan (*displacement*) aktual yang terjadi saat *cantilever erection* pada jembatan Nhat Tan, di Hanoi Vietnam.

Analisa Statis

Beban statis terdiri dari :

- 1. Beban tetap
 - a) Berat sendiri

Berat sendiri merupakan berat elemen bahan dari struktur, ditambah dengan elemen bahan non struktur yang dianggap tetap. Untuk berat sendiri dari beberapa bahan menurut **SNI 1725:2016 Pasal 7.1.**

b) Beban mati tambahan

Beban mati tambahan merupakan berat seluruh bahan yang membentuk suatu beban pada struktur yang merupakan elemen non struktural, dan besarnya dapat berubah seiring dengan bertambahnya umur struktur.

2. Beban Lalu Lintas SNI 1725:2016 Pasal 8

1) Beban lajur "D"

Beban lajur "D" terdiri dari beban tersebar merata (UDL) yang digabung dengan beban garis (KEL), lihat Gambar 3.14 berikut :

Beban terbagi rata (UDL) mempunyai intensitas q kPa, dengan besarnya q tergantung pada panjang total : L <= 30m : q = 9.0 kPaL >= 30m : q = 9.0 (0.5 + 15/L) kPa

Panjang yang dibebankan L adalah panjang total UDL yang bekerja pada jembatan. Beban garis (KEL) dengan intensitas p kN/m harus ditempatkan tegak lurus arah lalu-lintas pada jembatan. Besarnya intensitas p adalah 49.0 kN/m.

3. Beban lingkungan

Beban lingkungan dapat terjadi karena pangaruh temperatur, angin, banjir, gempa, dan penyebab lainnya.

A) Beban angin

Beban angin dihitung berdasarkan SNI 1725-2016 Ps 9.6. Pada perencanaan jembatan ini, arah angin diasumsikan tegak lurus terhadap jembatan.

Menentukan kecepatan angin rencana (V_{DZ})

Untuk jembatan atau bagian jembatan dengan elevasi lebih tinggi dari 10 m diatas permukaan tanah atau permukaan air, kevepatan angin rencana, V_{DZ} , harus dihitung dengan persamaan berikut :

$$V_{DZ} = 2.5 V_0 \left(\frac{V_{10}}{V_B}\right) \ln \left(\frac{Z}{Z_0}\right)$$

Dimana :

 V_{DZ} = kecepatan angin rencana pada elevasi rencana (km/jam)

 V_{10} = kecepatan angin pada elevasi 10 m di atas permukaan tanah atau di atas permukaan air rencana (km/jam)

 V_B = kecepatan angin rencana yaitu 90 hingga 126 km/jam pada elevasi 1 m

Z = elevasi struktur diukur dari permukaan tanah atau dari permukaan air dimana beban angin dihitung (Z > 10 m)

 V_0 = kecepatan gesekan angin, yang merupakan karakteristik meteorologi, sebagaimana ditentukan dalam Tabel 7.2, untuk berbagai macam tipe permukaan di hulu jembatan (km/jam)

 Z_0 = panjang gesekan di hulu jembatan, yang merupakan karakteristik meteorologi, ditentukan pada Tabel 3.4 (mm)

Tabel 3.4 Nilai V0 dan Z0 untuk berbagai kondisipermukaan hulu

P				
Kondisi	Lahan Terbuka	Sub Urban	Kota	
V ₀ (km/jam)	13,2	17,6	19,3	
$Z_0 (mm)$	70	1000	2500	

Beban angin pada struktur (EW_S)

Berdasarkan SNI 1725-2016 Ps 9.9.1.1 beban angin pada struktur dihitung menggunakan rudmus :

$$P_D = P_B \left(\frac{V_{DZ}}{V_B}\right)^2$$

Dimana :

PB = tekanan angin dasar seperti yang ditentukan dalam Tabel 3.5 (MPa)

Komponen	Angin tekanan	Angin hisap
bangunan atas	(MPa)	(MPa)
Rangka, kolom, dan pelengkung	0,0024	0,0012
Balok	0,0024	N/A
Permukaan datar	0,0019	N/A

Tabel 3.5 Tekanan angin dasar

Gaya total beban angin tidak boleh diambil kurang dari 4,4 kN/m pada bidang tekan dan 0,385 kPa pada bidang hisap pada struktur rangka dan pelengkung, serta tidak kurang dari 4,4 kN/m pada balok atau gelagar.

Gaya angin pada kendaraan (EW_L)

Berdasarkan SNI 1725-2016 Ps 9.9.1.2 tekanan angin rencana harus dikerjakan baik pada struktur jembatan maupun pada kendaraan yang melintasi jembatan. Jembatan harus direncanakan memikul gaya akibat tekanan angin pada kendaraan, dimana tekanan tersebut harus diasumsikan sebagai tekanan menerus sebesar 1,46 N/mm, tegak lurus dan bekerja 1800 mm diatas permukaan jalan

Analisa Dinamis (Gempa)

Beban gempa dianalisa dinamis dengan *response spectrum analysis* menggunakan bantuan program MIDAS/Civil, zona gempa ditentukan menurut RSNI 2833-201X.

3.6.2 Staging Analysis

Metode pelaksanaan/*Staging Analysis* konstruksi jembatan *cable stayed* ini didesain dengan *cantilever erection* dan dipengaruhi langsung oleh beban *form traveler*.

Metode analisis struktur dibuat dengan metode *demolishing procedure* melalui *backward solution*. Dimulai dari keadaan final jembatan dilanjutkan dengan melepas bagian per bagian hingga sampai pada keadaan awal pada metode pelaksanaan. Semua tahapan tersebut di-input-kan kedalam program MIDAS/Civil sehingga didapat hasil gaya per tahapan analisa.

3.7 Desain Kapasitas Gelagar Utama

Analisa ini dimaksudkan untuk mengetahui kemampuan *box girder* terhadap gaya yang bekerja dari berbagai kasus. Desain kapasitas mengacu pada SNI 1729-2015.

Kontrol akibat aksial dapat digunakan persamaan berikut :

 $\phi Pn > Pu_{\text{max}}$

Kontrol akibat kombinasi lentur + aksial

Jika
$$\frac{P_r}{P_c} \ge 0,2$$
 maka digunakan persamaan interaksi berikut :
 $\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rz}}{M_{cz}} + \frac{M_{ry}}{M_{cy}} \right) \le 1,0$
Jika $\frac{P_r}{P_c} \ge 0,2$ maka digunakan persamaan interaksi berikut :
 $P_r = \left(M_r - M_r \right)$

$$\frac{P_r}{2P_c} + \left(\frac{M_{rz}}{M_{cz}} + \frac{M_{ry}}{M_{cy}}\right) \le 1,0$$

3.8 Analisa Stabilitas Aerodinamis

3.8.1 Frekuensi Alami

Frekuensi alami yang diperhitungkan adalah frekuensi lentur $(f_{\rm B})$ dan frekuensi torsi $(f_{\rm T})$. (Walther, 1999)

$$f_B = \frac{1}{2\pi} \left(\frac{g}{v_{maks}} \right)^{1/2}$$

Dimana :

 $g = \text{percepatan gravitasi m/dt}^2$ $v_{maks} = \text{representasi maksimum deformasi statis karena}$ berat sendiri dalam arah yang ditinjau

Untuk *cable-stayed* ada koreksi 10% (karena alas an distribusi masaa sepanjang gelagar dan kabel dan bentuk ragam getaran), sehingga rumus diatas menjadi :

$$f_B = \frac{1.1}{2\pi} \left(\frac{g}{v_{maks}}\right)^{1/2}$$

Perhitungan frekuensi alam torsi f_T (Untuk lantai kendaraan kaku (penampang tertutup, misal plate) dihitung dengan rumus:

$$f_T = \frac{1}{2L} \left(\frac{GJ_t}{J_P} \right)^{1/2}$$

Dimana :

Jp = inersia polar per satuan panjang lantai kendaraan.

Jt = konstanta torsi.

GJt = kekakuan torsi penampang lantai kendaraan.

L = Bentang utama jembatan.

Untuk pradesain dianjurkan (untuk bentang kecil) :

$$\frac{f_T}{f_B} \cong 2,5 \,(\text{Mathivat})$$

3.8.2 Efek Vortex-Shedding

Pada kecepatan angin tertentu atau yang biasa disebut kecepatan kritis akan menimbulkan osilasi gaya akibat pusaran angin atau turbulensi, efek yang terjadi disebut *vortex-shedding*, maka dari itu efek ini perlu diperhitungkan. Untuk mendapatkan kecepatan kritis yang akan menyebabkan *vortex-shedding* digunakan persamaan angka Strouhal (S) :

$$S = \frac{f_B x h}{V} S$$

Dimana :

S = Angka Strouhal

= 0,20 untuk silinder dengan diameter h

= 0,10 - 0,20 untuk lantai kendaraan dengan tinggi h

= 0,10 jika udara mengalir pada satu sisi

 f_B = Frekuensi alami akibat lentur

h = Tinggi lantai kendaraan

V = Kecepatan angin yang dihitung berdasarkan angka Strouhal

Kecepatan angin V dicari dengan menggunakan persamaan angka Strouhal.

$$V = \frac{f_B x h}{S}$$

Kemudian dicek dengan menggunakan persamaan angka Reynold (untuk mengevaluasi efek pusaran) harus memenuhi persyaratan dan besarnya, $R_e = 10^5$ sampai 10^7 (Walther, 1999)

$$R_e = \frac{VB}{\overline{v}}$$

Dimana :

V = kecepatan angin yang dihitung berdasarkan angka Strouhal

B = lebar lantai kendaraan.

 \bar{v} = viskositas kinematik udara (0,15 cm²/detik)

Akibat terpaan angin, akan terjadi gaya *uplift* atau gaya angkat yang besarnya:

$$F_o = \rho \frac{V^2}{2} Cxh$$

Dimana :

 $F_0 = gaya angkat$

 ρ = density/kerapatan udara =1,3 kg/m³

h = tinggi lantai kendaraan

C = koefisien gaya angkat penampang, tergantung f & V

dapat ditentukan melalui grafik berikut

Gambar 3.16 Koefisien C dari empat penampang berdasarkan sudut angin menerpa *deck* jembatan. (Walther, 1999)

Grafik diatas adalah hasil percobaan dari empat bentuk penampang lantai kendaraan jembatan-jembatan yang sudah berdiri. Penampang yang ditandai sudah cukup merepresentasikan bentuk penampang lantai kendaraan yang dipakai. pada kenyataannya, angin tidak selalu menabrak jembatan dalam arah horisontal sempurna. Terkadang terdapat sudut α yang berkisar antara 3° sampai 9° (rata-rata 6°) (Walther, 1999).

Gaya ini menimbulkan osilasi pada gelagar dengan nilai amlitudo yang dapat dihitung sebagai berikut :

$$\begin{split} \widehat{v} &= \frac{\pi}{\delta} x \frac{F_o}{m} v_{maks} \\ \text{Dimana :} \\ \widehat{v} &= \text{Amplitudo osilasi} \\ \delta &= \text{Penurunan logaritmik (koefisien peredaman)} \\ \text{F}_o &= \text{Gaya angkat} \\ \text{v}_{maks} &= \text{Deformasi statis maksimum struktur karena} \\ & \text{berat sendiri dalam arah yang ditinjau} \\ \text{m} &= \text{Berat sendiri lantai kendaraan per meter lari} \end{split}$$

Penurunan logaritmik (koefisien peredaman) ditentukan berkisar 0.05 (Walther, 1999). Fleksibilitas lantai kendaraan didefinisikan sebagai rasio antara beban dan deformasi yang dihasilkan. Berat sendiri lantai kendaraan yaitu terdiri dari berat pelat, gelagar melintang dan gelagar memanjang.

Gambar 3.17 Klasifikasi efek psikologis berdasarkan amplitudo getaran (Walther, 1999).

Bila perlu, perhitungan dapat dilanjutkan dengan mencari nilai percepatan getaran yang dihasilkan dengan persamaan sebagai berikut

 $\hat{\vec{v}} = 4.\pi.f^2.\hat{v}$

Dimana :

 $\hat{\vec{v}}$ = Percepatan akibat isolasi

Gambar 3.18 Klasifikasi efek psikologis berdasarkan percepatan getaran (Walther, 1999)

 $\hat{\vec{v}}$ adalah kecil Diharapkan nilai \widehat{v} dan agar tidak menimbulkan physiological effects. Untuk meminimalisasi vortex-shedding ini, beberapa langkah dapat diambil (Walther, 1999).

- Memberikan lantai kendaraan penampang yang lancip di tepinya untuk membelah angin. Dengan begitu, tidak terjadi turbulensi. Akan tetapi sistem lantai kendaraan jembatan ini dengan *twin plate girder*.
- ✓ Memasang *deflector* atau pengarah angin di sudut-sudut penampang

3.8.3 Efek Flutter

Flutter terjadi jika muncul ayunan lentur dan ayunan torsi akibat terpaan angin pada kecepatan kritis. Gabungan antara ayunan lentur dan ayunan torsi ini semakin lama akan semakin besar walaupun kecepatan kritis tetatp dan akan menyebabkan runtuhnya struktur. (Walther, 1999).

Yang harus dihindari amplitude akibat lentur dan torsi tidak terjadi bersamaan, yang ideal berjarak $t = \frac{\pi}{2} = 1,57$ detik, seperti

gambar berikut :

Gambar 3.19 Representasi sederhana *flutter* pada lantai kendaraan jembatan (Walther, 1999)

Untuk mendapatkan kecepatan kritis teoritis, digunakan metode Klöppel, yang didasarkan pada teori Theodorsen yang meneliti efek *flutter* pada sayap pesawat. Dimana besarnya V_{kritis} teoritis dapat dicari dengan grafik berikut dengan tergantung dari 3 besaran (Walther, 1999) :

1.
$$\mu = \frac{m}{\pi . \rho . b^2}$$

2.
$$\varepsilon = \frac{f_T}{f_B}$$

3.
$$\frac{\delta}{b}$$

$$V_{kritis-teoritis} = 2.\pi f_B.b$$

Dimana :

b = $\frac{1}{2}$ lebar lantai kendaraan

m = serat sendiri lantai kendaraan per meter lari

$$\rho$$
 = density/kerapatan udara =1,3 kg/m²

b = setengah lebar lantai kendaraan

Gambar 3.20 Kecepatan kritis teroitis untuk *flutter*. (Walther, 1999)

Besar kecepatan kritis teoritis ini harus dikoreksi menjadi kecepatan kritis aktual yang kenyataanya lebih kecil dari kecepatan kritis teoritis berdasarkan koreksi sudut datang angin terhadap arah horizontal yang rata-rata 6°. Nilai η , koefisien koreksi dapat cari menggunakan grafik berikut (Walther, 1999) :

Gambar 3.21 Koefisien koreksi $\eta = V_{kritis aktual} / V_{kritis teoritis}$. (Walther, 1999)

Pada kenyataannya, angin tidak selalu menabrak jembatan dalam arah horisontal sempurna. Terkadang terdapat sudut α yang berkisar antara 3° sampai 9° (rata-rata 6°). Maka dari itu,

diperlukan lagi koreksi. Untuk lantai kendaraan dengan penampang aerodinamis, koreksi ini sebesar 0.5 (Walther, 1999).

$$\eta_{(\alpha=\pm6^{\circ})} = 0.5x \eta_{(\alpha=0^{\circ})}$$

Sehingga :
$$V_{kritis-aktual} = \eta x V_{kritis-teoritis}$$

3.9 Desain Kabel dan Anker di Gelagar

Desain kabel

Kabel di desain berdasarkan gaya aksial yang terjadi akibat kombinasi-kombinasi pembebanan.

Desain angker pada gelagar

Pada desain ini anker dipasang sesuai dengan jumlah *strand* yang direncanakan dari perhitungan sebelumnya. Dilakukan kontrol tegangan pelat baja pada saat *stressing* (pemberian gaya tarik).

Tegangan ijin pelat baja pada saat pemberian gaya tarik :

$$f_{yp} = 0.8 f_y \sqrt{\frac{Ap'}{Ap}} - 0.2$$

Tegangan di bawah pelat anker :

$$f_t = \frac{P}{Ap}$$

- a. Kuat lentur pelat sayap SNI03-1729-2002, ps. 8.10.2 $\phi Rb = \phi.6,25.t_f^2.f_y$
- b. Kuat leleh pelat badan SNI03-1729-2002, ps. 8.10.3 $\label{eq:prod} \phi Rb = \phi.(5k+N).t_w.f_v$

dimana :

- k = tebal pelat sayap ditambah jari-jari peralihan
- N =dimensi arah longitudinal pelat perletakan atau tumpuan, minimal sebesar *k*.
- c. Kuat tekuk dukung pelat badan SNI 03-1729-2002, ps. 8.10.4 (8.10-4.c) $\varphi Rb = 0.39.t_{w}^{2} \left[1 + \left\{ 4 \left(\frac{N}{d} \right) - 0.2 \right\} \left(\frac{t_{w}}{t_{f}} \right)^{1.5} \right] \sqrt{\frac{E.f_{y}t_{f}}{t_{w}}}$
- d. Kuat tekuk lentur pelat badan SNI03-1729-2002, ps. 8.10.6

$$\varphi Rb = \frac{12,08t_w^3}{h}\sqrt{Ef_y}$$

3.10 Penulangan Str. Pylon dan Desain Anker pada Pylon

Tulangan pokok dihitung dengan program bantu *spColumn* dan balok pengaku *pylon* direncanakan sebagai balok pratekan. Perencanaan disesuaikan dengan SNI 2847-2013.

Desain angker pada pylon

Anker kabel yang dipasang menyesuaikan jumlah *strand* kabel yang telah dihitung. Analisa ini meliputi cek tegangan pada beton pada saat pemberian gaya tarik (*stressing*).

Pemberian gaya tarik dilakukan pada saat beton berusia 14 hari, dengan kuat tekan beton diperkirakan 85% f'c.

$$f'_{c} = 85\% \text{ x f'c}$$

 $f_{cp} = 0.8.f'_{c} \sqrt{\frac{A_{2}}{A_{1}} - 0.2}$

Dimana :

 $\begin{array}{ll} A_2 &= H \ x \ H \\ A_1 &= (A \ x \ A) - Area \ \emptyset D \end{array}$

Tegangan di bawah pelat anker :

$$f_t = \frac{P}{A_1}$$

Kontrol :

 $f_{'cp}\!\!>f_t$

3.11 Menyusun Gambar

Tahapan akhir dari perencanaan berupa penyusunan gambar kerja, dalam pengerjaannya digunakan program bantu AutoCAD. Susunan gambar kerja berupa :

- Denah jembatan
- Potongan melintang dan memanjang
- Penulangan
- Konfigurasi kabeldan Struktur utama

BAB IV PRELIMINARY DESAIN

Dalam melakukan perhitungan suatu struktur jembatan, perlu dilakukan perkiraan dari dimensi-dimensi elemen struktur awal jembatan berdasarkan referensi terkait yang disesuaikan dengan parameter yang telah ada sebelumnya. Tatanan system kabel, dimensi awal gelagar, kabel dan *pylon* akan digunakan sebagai data awal untuk menganalisa struktur tersebut. Jika dalam anlisa selanjutnya ternyata dimensi awal tidak memenuhi syarat kemampuan strukturnya, maka parameter-parameter sebelumnya dapat diubah seperlunya.

4.1 Tatanan Sistem Kabel

Tatanan sistem kabel arah lateral jembatan berupa *Two Inclined Planes System*, sedangkan arah longitudinal jembatan berupa *fan pattern*, lihat Gambar 4.1 dan 4.2.

 Panjang bentang jembatan tipikal L= 480 m, dengan

> Panjang total jembatan (*multi-span*): L= 960 m

2) Jarak kabel pada gelagar menurut Whalter dkk. (1999):
a. Gelagar baja (15 m - 25 m)
b. Gelagar beton (5 - 10 m)

Direncanakan menggunakan 7 kabel $\lambda = \frac{\left[(l - CL)/2 \right]}{n} = \frac{\left[(240 - 16)/2 \right]}{7} = 16 \text{ m}$

3) Tinggi *pylon* (h) dicari dengan persamaan berikut : $h \ge L/6$ sampai L/8 (Troitsky 1977 hal 33) $240/6 \le h \ge 240/8$ 80 m $\leq h \geq 60$ m Atau, $h \geq 0.465 \text{ x n x } \lambda \text{ (Troitsky 1977 hal 181)}$ $h \geq 0.465 \text{ x 7 x 16}$ $h \geq 52$ m

Maka digunakan tinggi pylon (h) adalah 80 m.

66

Gambar 4.3 Tatanan system kabel arah lateral berupa *Two* Inclined Planes System

4.2 Dimensi Gelagar Memanjang Gelagar memanjang direncanakan menggunakan profil WF Tinggi gelagar memanjang (d) $\ge \frac{L}{12}$

Panjang balok (L) = 4 m

$$d \ge \frac{L}{12}$$
$$d \ge \frac{4}{12} = 0,33m$$

Direncanakan menggunakan profil WF 350.175.7.11

d	= 350 mm	tw	= 7 mm
bf	= 175 mm	tf	= 11 mm
r	= 14 mm	W	= 46,6 kg/m

sifat mekanis baja struktural BJ = 50 $f_u = 500 \text{ MPa}$ $f_y = 490 \text{ MPa}$ 175 175 175 175 175 175 1757

Gambar 4.4 Dimensi awal gelagar memanjang

4.3 Dimensi Gelagar Melintang

Gelagar memanjang direncanakan menggunakan profil WF Walded

Tinggi balok (d) $\ge \frac{L}{9}$ Panjang balok (L) = 17,5 m Tinggi balok (d) $\ge \frac{L}{9}$ Tinggi balok (d) $\geq \frac{17,5}{9} = 1,94m$

Dalam perencanaan ini digunakan tinggi balok(d) = 1,95 m

menggunakan profil Direncanakan Plate Girder 1950.400.28.16 d = 1950 mm= 16 mmtw bf = 400 mmtf = 28 mmw = 390 kg/msifat mekanis baja struktural BJ = 50 $f_n = 500 \text{ MPa}$ $f_v = 290 \text{ MPa}$

Gambar 4.5 Tampak melintang jembatan

4.4 Dimensi Gelagar Utama

Gelagar utama direncanakan menggunakan profil *Twin rectangle box girder*, seperti pada gambar 4.4. Menurut Podolny (1976) dalam bukunya "*Contruction & Design of Cable-Stayed Bridges*", nilai perbandingan antara tinggi gelagar dengan bentang jembatan bervariasi antara (1/40) s.d. (1/100).

Tinggi gelagar utama (h)
$$= \frac{1}{40}L \ge h \ge \frac{1}{100}L$$

Gambar 4.6 Tipe gelagar jenis twin rectangle box girder.

Dalam perencanaan ini, tinggi *box girder* direncanakan dengan perbandingan (L/100)

$$h = \frac{1}{100} 240$$
$$h = 2.4 \text{ m}$$

Direncanakan perkiraan awal menggunakan profil 2400.1400.60.60 d = 2400 mm $= 60 \text{ mm} \quad \text{w} = 390 \text{ kg/m}$ tw tf = 60 mmbf = 1400 mmS1 = 350 mmS2 = 400 mmtr1 = 20 mmtr2 = 20 mmhr1 = 200 mm= 200 mmhr2

Gambar 4.7 Preliminary twin I girder.

4.5 Dimensi Awal Kabel dan Anker

Menurut RSNI T-03-2005 pasal 12.6 kabel pemikul utama yang dipergunakan untuk struktur-struktur jembatan kabel dan jembatan gantung harus dibuat dari material mutu tinggi dengan kuat tarik minimum 1800 N/mm2.

Ada dua jenis kabel *parallel VSL 7-wire strand* yang dapat digunakan untuk jembatan kabel, lihat tabel 4.1 :

Standard	ASTM A 416-06 Grade 270	Euronorme 138-3	
Ø (mm)	15,2	15,7	
$A_{s} (mm^{2})$	140	150	
$f_u (f_{ijin}=0,45f_u)(Mpa)$	1860 (837)	1770 (796,5)	
Ukuran anker	7, 12, 19, 31, 37, 61, dan 91 strand		

 Tabel 4.1 Dua jenis kabel parallel VSL 7-wire strand

Dalam perencanaan akan digunakan kabel tipe I (15,2 mm; 1860 MPa). Kabel bentang tepi diberi symbol "s" dan bentang tengah diberi symbol "m". Penomoran kabel dimulai dari kabel yang terdekat dengan *pylon*.

Gambar 4.8 Tatanan system kabel dan penamaan kabel

Dimensi awal kabel didekatkan dengan persamaan berikut (Gimsing, 1983) :

$$Asc_0 = \frac{(W\lambda + P)\cos\theta}{(0,45f_u)\sin 2\theta/2 - \gamma.a}$$

Dimana :

 A_{sc} = Luas penampang kabel

- W = Beban mati dan hidup merata
- P = Beban terpusat
- λ = Jarak antara ngker kabel padagelagar
- θ = Sudut kabel terhadap horisontal
- γ = Berat jenis kabel
 - $= 77.01 \text{ kN/m}^3$
- f_u = Tegangan putus kabel
 - $= 1860 \text{ Mpa} = 1860000 \text{ kN/m}^2$
- a = jarak mendatar dari *pylon* ke angker kabel pada gelagar.

Jumlah kabel (n) =
$$\frac{Asc}{As}$$
, As = luas penampang kabel.

PerhitunganWλ+P:

 Wλ+P = Berat pada reaksi perletakan balok melintang yang diperoleh dari permodelan SAP2000.
 = 1861.01 KN

Karena per kabel dibebani oleh 4 gelagar melintang, maka:

Gambar 4.9 Reaksi gelagar melintang yang dipikul kabel

$$W\lambda + P = 1861,01 \text{ kN x } 3 = 5583,03 \text{ kN}$$

2. W λ =Berat gelagar utama yang membebani 1 kabel W = 2 x A (didapat dari analisa MIDAS) x 77kN/m³

$$= 2 \times 0,565 \text{ m}^2 \times 77 \text{ kN/m}^3$$

= 77,86 kN/m
W λ = 77,86 kN/m x 16 m x 1,1
= 1370,378 kN

3. $P_{angker} = 5 \text{ kN} (asumsi)$

Berat Total W\lambda+P = 6958,41 kN

Perhitungan penampang dan jumlah strand kabel untuk *preliminary design* sebagi berikut :

Gambar 4.10 Pembebananpadakabel (Gimsing, 1987)

KabelM₁:

a = 16 m;
$$\theta$$
= 76°; W λ +P = 6958,41 kN
Asc₀ = $\frac{(6958,41)\cos 76^{\circ}}{(0,45x1860000)\sin(2x76^{\circ})/2 - 77,01x16} = 0.0086 m^{2}$

Asc₀ = 8622 mm² Kabel tipe I (\emptyset = 15,2 mm; As = 140 mm²) Jumlah kabel (n) = $\frac{Asc_0}{As} = \frac{8622}{140} = 62$ kabel Asc = n. As = 62 x 140 = 8622 mm²

No	θ	Wλ+P	ai	Asc ₀	Asc ₀	n	Asc
INO.	(°)	(KN)	(m)	(m^2)	(Mm^2)	kabel	mm2
M_1	76	6958,41	16	0.0086	8622	62	8622
M ₂	63	6958,41	32	0.0094	9399	67	9399
M ₃	53	6958,41	48	0.0105	10506	75	10506
M_4	56	6958,41	64	0.0116	11695	84	11695
M ₅	40	6958,41	80	0.0131	13130	94	13130
M ₆	36	6958,41	96	0.0144	14411	103	14411
M ₇	33	6958,41	112	0.0156	15617	112	15617
S_1	76	6958,41	16	0.0086	8622	62	8622
S_2	63	6958,41	32	0.0094	9399	67	9399
S ₃	53	6958,41	48	0.0105	10506	75	10506
S_4	56	6958,41	64	0.0116	11695	84	11695
S_5	40	6958,41	80	0.0131	13130	94	13130
S_6	36	6958,41	96	0.0144	14411	103	14411
S ₇	33	6958,41	112	0.0156	15617	112	15617

Tabel 4.2 Perhitungan penampang dan jumlah *strand* kabel

Dalam pelaksanaan, kabel akan mengalami lendutan akibat berat sendiri. Tetapi dalam analisa dapat digunakan kabel yang lurus dengan koreksi pada nilai modulus elastisitasnya, sebagai berikut (H-J Ernst):

$$E_{eq} = \frac{E}{1 + \frac{(\gamma I)^2}{12\sigma^3}E}$$

Dimana :

 E_{eq} = Modulus elastisitas ekivalen

E = Modulus elastisitas kabel

= 200000 MPa

$$\gamma$$
 = Berat jenis kabel
= 77.01 kN/m³ = 77.01 x 10⁻⁶ N/mm³

Gambar 4.11 Tatanan sistem kabel

KabelM₇:
a = 16 m; b = 3,56 m; c = 56 m
$$l = \sqrt{16^2 + 3,56^2 + 56^2} = 16,84$$
 m

$$E_{eq} = \frac{200000}{1 + \frac{(77,01x10^{-6}x16846,5)^2}{12x837^3}x200000} = 199577 \text{ MPa}$$

Tabel 4.3 Perhitungan modulus elastisitas ekivalen

No	ai	bi	ci	l	E _{eq}
INO	(m)	(m)	(m)	(mm)	(Mpa)
M_1	16	3.56	56	16846.5	199990
M_2	32	3.89	58.5	32511.9	199964
M ₃	48	4.23	61	48402.2	199921
M ₄	64	4.57	63.5	64349.8	199860
M_5	80	4.9	66	80321	199783
M_6	96	5.24	68.5	96304.1	199688
M_7	112	5.57	71	112138	199577
S_1	16	3.56	56	16846.5	199990
S_2	32	3.89	58.5	32511.9	199964
S ₃	48	4.23	61	48402.2	199921
S_4	64	4.57	63.5	64349.8	199860
S ₅	80	4.9	66	80321	199783
S_6	96	5.24	68.5	96304.1	199688
S_7	112	5.57	71	112138	199577

Dari Tabel 4.3 dapat diamati bahwa koreksi modulus elastisitas yang terjadi sangatlah kecil (kurang dari 0,5%) sehingga dapat diabaikan. Hal ini berarti lendutan kabel yang terjadi akibat berat sendiri sangatlah kecil, sehingga dapat dianggap sebagai kabel lurus.

4.6 Dimensi Struktur Pylon

Besarnya dimensi *pylon* diperkirakan berdasar nilai jumlah gaya aksial tekan kabel untuk satu sisi kolom vertikal.

1)	Material pylon	= beton bertulang
2)	f' _c	$= 40 \text{ Mpa} = 0,04 \text{ kN/mm}^2$
3)	$\mathbf{f}_{\mathbf{y}}$	= 400 Mpa

Luas penampang *pylon* dapat dicari dengan persamaan berikut:

$$A_{perlu} = \frac{T}{f'c}$$

Dimana :

 A_{perlu} = Luas penampang *pylon* T = Gaya aksial total pada*pylon* (Asumsi b = lebar penampang ; h = tinggi penampang = 2b)

Besarnya gaya yang terjadi pada *pylon* akibat kabel dapat dilihat pada Tabel 4.4

No.	a	Т
Kabel	(°)	(kN)
M ₁	76	6958,41
M ₂	63	6958,41
M ₃	53	6958,41
M4	46	6958,41
M ₅	40	6958,41
M ₆	36	6958,41
M ₇	33	6958,41
S_1	76	6958,41

Tabel 4.4 Perhitungan gaya aksial pada pylon

S_2	63	6958,41
S_3	53	6958,41
S_4	46	6958,41
S_5	40	6958,41
S_6	36	6958,41
S_7	33	6958,41
	T =	97417,7

Gaya aksial total (T) = 97417,7 kN

b = lebar penampang; h = tinggi penampang = 2b

$$A_{perlu} = \frac{T}{f'c} = \frac{97417,7}{0,04} = 2.435.443 \text{ mm}^2 = 24.354,4 \text{ cm}^2$$

Asumsi akibat pengaruh momen lentur 50%, maka : $A_{tot} = 1,5 \text{ x } A_{perlu} = 1,5 \text{ x } 24.354,4 \text{ cm}^2 = 36.531,64 \text{ cm}^2$

Luas penampang (A) = b x $2b = 2b^2$

$$b = \sqrt{\frac{A_{tot}}{2}} = \sqrt{\frac{36.531,64}{2}} = 135 \text{ cm}$$

h = 2 x 169 = 270 cm

Karena tinggi *pylon* yang mecapai 80 m dan jika menggunakan dimensi diatas akan telihat langsing, maka digunakan dimensi b = 300 cm; h = 500 cm.

Gambar 4.12 Preliminary pylon
"Halaman ini sengaja dikosongkan"

BAB V STRUKTUR SEKUNDER

Dalam perencanaan jembatan ini, struktur sekunder terdiri dari pelat lantai dan sandaran. Struktur sekunder dianalisa secara terpisah dengan struktur utama. Hal ini dikarenakan struktur sekunder tidak banyak mempengaruhi perilaku struktur utama. Hasil perhitungan struktur sekunder dapat berlaku sebagai beban saat analisa struktur utama jembatan.

5.1 Perencanaan Pelat Lantai Kendaraan

Pelat lantai kendaraan berupa beton komposit antara beton bertulang dengan *steeldeck*.

Gambar 5.1 Potongan pelat lantai jembatan

 $\begin{array}{l} d3 \geq 200 \mbox{ mm} \\ d3 \geq 100 + 40 \mbox{ x b1} \\ d3 \geq 100 + 40 \mbox{ x 1750 mm} \\ d3 \geq 170 \mbox{ mm} \end{array}$

Digunakan d3 = 250 mm

$$\frac{Iy}{Ix} = \frac{4}{1,75} = 2,29 > 2$$
, maka pelat satu arah

Tebal aspal yang disyaratkan 50 s/d 80 mm, digunakan tebal aspal adalah 65 mm.

Data Perencanaan :

d3	= 250 mm	w steeldeck	= 0,0814 kN/m
d4	= 65 mm	w pelaksanaan	= 2,5 kN/m
Ybeton	$= 24 \text{ kN/m}^3$	-	
γ_{aspal}	$= 22 \text{ kN/m}^3$		
f'c	= 30 MPa		

5.1.1 Pembebanan

1. Beban Mati

- Berat pelat beton
 - = d3 x γ_{beton} x 1m x LF
 - = 250 x 24 x 1 x 1,3
 - = 7,80 kN/m
- Berat aspal
 - = d4 x γ_{aspal} x 1m x LF
 - = 250 x 22 x 1 x 1,4
 - = 2,002 kN/m
- Berat steeldeck
 - = w x 1m x LF
 - = 0,0814 x 1 x 1,1
 - = 0,0895 kN/m'

84

Gambar 5.2 Pembebanan beban mati (qDL)

2. Beban Hidup

Pelat direncanakan hanya menerima beban truk "T" (SNI 1725:2016 ps.8.4). dimodelkan sebagai dua as roda, masing-masing 112,5 kN, dengan jarak 1,75 m arah melintang jembatan (SNI 1725:2016 ps.8.4.1 dan gambar 26).

Gambar 5.3 Pembebanan beban truk model 1

Gambar 5.4 Pembebanan beban truk model 2

Gambar 5.5 Pembebanan beban truk model 3

- Faktor untuk beban T = 2,0 (SNI 1725:2016 Tabel.13)
- ✓ Faktor Beban Dinamis (FBD) Untuk pembebanan truk "T", FBD diambil 30% (SNI 1726:2016 ps.8.6)

Sehingga beban "T" = 112.5 kN x DLA x LF= 112.5 kN x 1.3 x 2.0= 292.5 kN

- 3. Beban pengaruh pelaksanaan (SNI 1725:2016 ps.10.3) Pengaruh beban muncul terdiri atas :
 - a) Beban yang disebabkan oleh aktivitas pelaksanaan itu sendiri;
 - b) Aksi lingkungan yang mungkin timbul selama waktu pelaksanaan

Dalam kasus ini beban diasumsikan sebagai pengaruh dari proses pengecoran, yaitu pekerja, peralatan dan penyebaran beton dari *concrete pump* yang tidak merata sebesar 2,5 kN.

qPL = 2,5 kN x 1 m x LF (SNI 1725:2016 Tabel 10)

Gambar 5.6 Pembebanan akibat pengaruh pelaksanaan

4. Rekapitulasi Beban

Tabel 5.1 Rekapitulasi pembebanan lantai kendaraan

J	enis Beban	Nilai	Satuan
B	eban Mati (DL)		
	Beban pelat beton	7.8	kN/m'
	Beban aspal	2.002	kN/m'
	Beban steeldeck	0.08954	kN/m'

B	eban Hidup (LL)		
	Beban Truk	292.5	kN
B	eban Pelaksanaan		
	Beban pelaksanaan	2.5	kN/m'

5. Konfigurasi beban

Untuk mendapat pengaruh yang paling menentukan, beban dikonfigurasi dalam keadaan ultimit, seperti berikut :

Model	Kombinasi	Gambar
1	DL+PL+LL	
2	DL+PL+LL	
4	DL+PL+LL	

Tabel 5.2 Kombinasi pembebanan

 \blacksquare =PL \blacksquare =DL \downarrow =LL (Beban "T")

5.1.2 Hasil Analisa

Analisa dilakukan menggunakan program bantu SAP2000. Pelat dianalisa dengan dua kondisi, yaitu: sebelum dan sesudah komposit. Sebelum komposit terjadi saat beton masih basah, yang dipikul sepenuhnya oleh *steeldeck* dan pengaruh beban pelaksanaan. Sedangkan setelah komposit, terjadi ketika semua beban sudah bekerja, yang dipikul oleh pelat beton komposit (beton bertulang dan *steeldeck*).

Sebelum Komposit $M_{max} = 3,79$ kN-m

Model	Mmax ⁽⁺⁾ di lapangan (kN-m)	Mmax ⁽⁻⁾ di tumpuan (kN-m)
1	76,03	79,6
2	58,94	64,87
3	53,61	69,69

Setelah Komposit

-			
Tabel 5.3	3 Mmax pela	t sesudah	komposit

Dari tabel di atas, maka digunakan Mmax⁽⁺⁾ dan Mmax⁽⁻⁾ terbesar, yaitu pada model 1.

5.1.3 Perhitungan Steeldeck dan Penulangan Pelat

Untuk menentukan tulangan setelah komposit, digunakan akibat pengaruh Mmax⁽⁺⁾ dan Mmax⁽⁻⁾ terbesar, dari hasil analisa sebelumnya, bahwa yang paling menentukan adalah model 1.

1. Tebal pelat steeldeck sebelum komposit

Direncanakan menggunakan LYSAGHT BONDEK 1.0 BMT, dengan spesifikasi sebagai berikut :

Thickness	= 1.00 mm
Ash	$= 1678 \text{ mm}^{2}/\text{m}^{2}$
Mass	= 8,14 kg/m'
fy	= 500 MPa
Ix	$= 640800 \text{ mm}^4/\text{m}^3$
e	= 25,5 mm

Gambar 5.11Penampang Lysaght Bondek 1.0 BMT

$$\frac{Ix}{e} = \frac{640800mm^4}{25,5mm} = 25129,4 \text{ mm}^3$$
$$\frac{M}{W} < fy = \frac{3790000Nmm}{25129,4mm^3} = 150,819 \text{ N/mm}^2 < \text{fy} = 550 \text{ N/mm}^2$$

Steeldeck tebal 1 mm kuat menahan momen lentur sebelum pelat komposit.

2. Penulangan lentur akibat Mmax⁽⁺⁾ di lapangan

Data perencanaan :	
Mmax ⁽⁺⁾	= 76,3kN-m
Tebal pelat lantai (b)	= 250mm
Tebal decking	=40 mm
Diameter Tul. Rencana	= 10 mm
Mutu baja (fy)	= 240 Mpa
Mutu beton (f'c)	= 30 Mpa
y _b	= 60 mm (brosur bondek)

Gambar 5.12Desain penulangan yang disarankan dalam brosur

d = b - y_b -
$$\binom{1}{2}$$
 D)
= 250 - 60 - $\binom{1}{2}$ x 10) = 185 mm
 β_1 = 0,85 - $\frac{f'c - 28}{7}$ x0,05 \ge 0,65
= 0,84 \ge 0,65 (SNI 2847-2013 pasal10.2(7(3))

90

$$As^{(+)}{}_{min1} = \frac{\sqrt{f'cxbxd}}{4fy} = 263,877 \text{ mm}^2$$
$$As^{(+)}{}_{min2} = \frac{1,4xbxd}{fy} = 269,792 \text{ mm}^2$$

As⁽⁺⁾_{min} yang digunakan (terbesar) ialah 269,792 mm²

Dicoba tulangan tarik (n) = 5 bh Jadi As⁽⁺⁾ perlu. = ($\frac{1}{4} \pi D^2$) x 2 = ($\frac{1}{4} \pi 10^2$) x 2 = 392,857 mm²

As⁽⁺⁾ aktual = As⁽⁺⁾ tul. + Ash bondek = $392,857 \text{ mm}^2 + 1678 \text{ mm}^2 = 2070,86 \text{ mm}^2$

$$As^{(+)}$$
 aktual > $As^{(+)}_{min}$

Karena tulangannya berada dalam satu lapis, maka :

Karenanya pelat tersebut daktail dan memenuhi peraturan ACI-318.

$$es = \frac{d-c}{c} x0,003 = 0.02836$$

Karena ε s lebih besar dari 0.002 maka, fs = fy

Cc = 0.85 fc' b a = 94285,7 NTs = As x fs = 94285,7 N Dengan Cc dan Ts sama dan nilai c lebih dari jarak tulangan ke tepi beton, maka nilai tersebut dianggap benar.

øMn	$> Mmax^{(+)}$
79.443.648,69 Nmm	> 76.030.000 Nmm OK!

Syarat kekuatan beton \emptyset Mn > Mu, digunakan nilai 0,9 karena ε s > 0.005. dari nilai-nilai diatas, syarat kekuatan tersebut terpenuhi sehingga desain tulangan sudah dapat diterima.

Perhitungan Jarak

 $S = \frac{1000}{As.perlu/As.tulangan} = \frac{1000}{392,857/0,25x\pi xD^2} = 200 \text{ mm}$

Digunakan jarak (S) = 200 mm

Kontol Jarak Spasi Tulangan

Smax	\leq	2 h
200	\leq	2 x 250
200	\leq	500OK!!

Dari perhitungan diatas, maka tulangan lentur daerah lapangan pelat lantai jembatan digunakan D10-200.

3. Penulangan lentur akibat Mmax⁽⁻⁾ di tumpuan

 $\frac{\text{Data perencanaan :}}{\text{Mmax}^{(-)}} = 79,6\text{kN-m}$

= 250mm
=40 mm
= 19 mm
= 390 Mpa
= 30 Mpa

Gambar 5.13 Desain penulangan yang disarankan dalam brosur

d =
$$b - d_{ct} - ({}^{1}/_{2} D)$$

= 250 - 40 - (${}^{1}/_{2} x 16$) = 200,5 mm

$$\beta_1 = 0.85 - \frac{f'c - 28}{7} x 0.05 \ge 0.65$$

= 0.76 \ge 0.65 (SNI 2847-2013 pasal10.2(7(3)))

$$As^{(-)}_{min1} = \frac{\sqrt{f'cxbxd}}{4fy} = 203,217 \text{ mm}^2$$
$$As^{(-)}_{min2} = \frac{1,4xbxd}{fy} = 179,936 \text{ mm}^2$$
$$As^{(-)}_{min2} = \frac{1}{2} \frac{1}$$

As⁽⁻⁾_{min} yang digunakan (terbesar) ialah 203,217 mm²

Dicoba tulangan tarik (n) = 5 bh Jadi As⁽⁻⁾ aktual = (½ π D²) x 5 = (¼ π 19²) x 5 = 1418,21 mm²

 $As^{(-)}$ aktual > $As^{(+)}_{min}$ Karena tulangannya berada dalam satu lapis, maka : dt = d = 200,5 mm

Cc = 0.85 fc' b a	= 8500a N
Ts = As. fy	= 553104 N
Cc = Ts	
a = Ts/Cc	= 65,071
$c = a / \beta_1$	= 85,139
c/dt	= 0.4 < 0.375, terkontrol Tarik

Karenanya pelat tersebut daktail dan memenuhi peraturan ACI-318.

$$es = \frac{d-c}{c} x0,003 = 0.00406$$

Karena ε s lebih besar dari 0.002 maka, fs = fy

Cc = 0.85 fc' b a = 553104 NTs = As x fs = 553104N

Dengan Cc dan Ts sama dan nilai c lebih dari jarak tulangan ke tepi beton, maka nilai tersebut dianggap benar.

Cek Kapasitas Penampang

øMn > Mmax⁽⁻⁾ 83.611.586,25 Nmm > 79.600.000 Nmm ... OK!

Syarat kekuatan beton \emptyset Mn > Mu, digunakan nilai 0,9 karena ε s > 0.005. dari nilai-nilai diatas, syarat kekuatan tersebut terpenuhi sehingga desain tulangan sudah dapat diterima.

94

Perhitungan Jarak $S = \frac{1000}{As.aktual/As.tulangan} = \frac{1000}{1418,21/0.25x\pi xD^2} = 200 \text{ mm}$

Digunakan jarak (S) = 200 mm

Kontol Jarak Spasi Tulangan

Smax	\leq	2 h
200	\leq	2 x 250
200	\leq	500OK!

Dari perhitungan diatas, maka tulangan lentur daerah tumpuan pelat lantai jembatan digunakan D19-200.

4. Kontrol Perlu Tulangan Susut + Suhu \rightarrow SNI – 2847- 2013 Pasal 7.12.2 (b)

Direncanakan \emptyset tulangan = 10 mm

Didapatkan,

ρ susut pakai	= 0,0014 → fy = 240 Mpa
As susut	$= 0,0014 \text{ x } 240 \text{ x } 1000 = 336 \text{ mm}^2$
As bagi	= 20% x As pasang = 20% x 1418,21
	$= 283,64 \text{ mm}^2$

$$n_{susut} = \frac{As.perlu}{0.25x\pi x\phi^2} = \frac{283.64}{0.25x\pi x 10^2} = 4.27 \rightarrow 6 \text{ batang}$$

S
$$= \frac{b}{n_{susut} - 1} = \frac{b}{5 - 1} = 250 \text{ mm}$$

Kontrol jarak tulangan susut + suhu (SNI 2847-2013 ps 7.12.2.2) Spakai $= S < 450 < 5.t_{pelat}$

$$= 250 < 450 < (5 \times 250)$$

Digunakan tulangan susut Ø10 - 250mm As $_{pasang}$ = 393 mm²

5.1.4 Kontrol Geser Pons

Kontrol geser pons dihitung berdasarkan SNI T-12-2004 Pasal 5.6.2.

$$V_{no} = u.d(f_{cv} + 0.3f_{pe})$$
$$f_{cv} = \frac{1}{6} \left(1 + \frac{2}{\beta_h}\right) \sqrt{fc'} \le 0.34 \sqrt{fc'}$$

Keliling kritis (u) : u = 2[(1/2)d3 + b + 1/2)d3 + (1/2)d3 + a + 1/2)d3] u = 2[(1/2)250 + 500 + 1/2)250 + (1/2)250 + 200 + 1/2)250] u = 2400 mm Vu = T = 303,516 kN (hasil SAP2000 pada pelat model 3)

d/2 = 185/2 = 92,5 mm

 $\beta_h = b/a = 500/200 = 2,5$

$$f_{cv} = \frac{1}{6} \left(1 + \frac{2}{2,5} \right) \sqrt{30} \le 0.34\sqrt{30}$$

$$f_{cv} = 1.643 \le 1.862 \dots \text{OK}$$

Maka, $V_{no} = 2400x182(1,643+0,3x0) = 717735,6 \text{ N} = 729,566 \text{ kN}$

 $Vu \le Vn$ 303,516 kN \le 729,566 kN ... OK

Dari perhitungan di atas, bahwa pelat lantai jembatan mampu menahan geser pons.

5.2 Perencanaan Sandaran (Railing)

Berdasarkan RSNI T-02-2005 pasal 12.5, beban yang bekerja pada sandaran adalah berupa gaya horizontal dan vertical sebesar w = 0.75 kN/m dan bekerja pada ketinggian 100 cm dari lantai trotoar. Dalam perencanaan ini sandaran digunakan pipa dengan diameter 60,5 mm, seperti pada Gambar 5.1.

Data perencanaan sandaran :	
Panjang total jembatan	= 480 m
Jarak antar tiang sandaran	= 2 m
Material yang digunakan	
1. Pipa sandaran :	
Diameter luar (d_0)	= 60,5 mm
Berat nina (a)	= 3.3 kg/m

Berat pipa (q) 3,3 kg/m Tebal pipa (t) = 3,2 mmMutu baja = BJ 41 Berikut ilustrasi profil pipa sandaran dapat dilihat pada Gambar 5.2.

Gambar 5.16 Profil sandaran (dalam mm)

2. Tiang sandaran :

Tiang sandaran menggunakan plat baja dengan tebal 30 mm dan lebar 200 mm, dengan spek baja sebagai berikut: $f_{u} = 370 \text{ MPa}$

$$f_y = 240 \text{ MPa}$$

5.2.1. Perhitungan Momen Pipa Sandaran

1) Akibat berat sendiri pipa sandaran

$$M_{VD} = (1/8).q.l^2$$

 $= (1/8).3,3kg/m.(2m)^2$
 $= 1,65 kgm = 0,0165 kNm$
2) Akibat beban vertikal
 $M_{VL} = (1/8).w.l^2$
 $= (1/8).0,75kN/m.(2m)^2$
 $= 0,375 kNm$
 $M_V = M_{VD} + M_{VL}$
 $= (0,0165 + 0,375) kNm$
 $= 0,3915 kNm$
3) Akibat beban horizontal
 $M_H = (1/8).w.l^2$
 $= (1/8).0,75kN/m.(2m)^2$
 $= 0,375 kNm$
Momen resultan (M_R)
 $M_R = \sqrt{M_H^2 + M_V^2}$
 $= \sqrt{(0,3915^2 + 0,375^2)kNm}$
 $= 0,55 kNm$

5.2.2. Analisa Kekuatan Profil Pipa Sandaran

1) Batas kelangsingan profil

$$\lambda = \frac{d_{o}}{t} = \frac{60,5}{3} = 20,17$$

$$\lambda_{\rm p} = \frac{14800}{f_{\rm y}} = \frac{14800}{250} = 59,2$$

Karena $\lambda < \lambda_p$ (penampang kompak) maka kuat lentur nominal penampang adalah M_n = M_p = $Z_x.f_y$

2) Kuat lentur nominal

$$Z_x = \frac{4}{3} (r_0^3 - r_1^3) = \frac{4}{3} (30, 25^3 - 27, 95^3) = 7794,71 \text{ mm}^3$$

Ilustrasi penampang pipa sandaran, lihat Gambar 5.3.

Gambar 5.17 Penampang pipa sandaran

$$\begin{split} M_n &= Z_x.f_y &= 7794,71\,mm^3\,.250\,N/mm^2 \\ &= 1948677,5\,\,Nmm \\ &= 1,95\,\,kNm \\ \phi M_n &= 0,9.1,95 \,= 1,755\,\,kNm > M_{MAX} = 0,55\,\,kNm \end{split}$$

Maka profil dapat digunakan.

5.2.2. Analisa Kekuatan Profil Tiang Sandaran

Tiang sandaran menggunakan baja profil WF 125.60.6.8 dengan spesifikasi :

Beban horizontal	= 2 m. 0,75 kN/m
	= 1,5 kN
Tinggi tiang sandaran	= 1,2 m
Momen yang terjadi	= 1,2 m. 1,5 kN
	= 2,25 kNm

<u>Cek tegangan yang terjadi pada tiang sandaran</u>

$$\zeta_{u} < \zeta_{ijin}$$

$$\zeta_{u} = \frac{M}{w}$$

$$W = \frac{Ix}{y}$$

$$= \frac{413 \text{ cm}^{4}}{6,25 \text{ cm}}$$

$$= 66,08 \text{ cm}^{3}$$

$$\zeta_{u} = \frac{22500 \text{ kgcm}}{66,08 \text{ cm}^{3}}$$

$$= 340,5 \text{ kg/cm}^{2} < \zeta_{ijin} = 2400 \text{ kg/cm}^{2} \dots \text{ OK}$$

5.2.3 Perencanaan Sambungan Las Tiang Sandaran

$$q_{eff tiang} = 0,707 \frac{f_u}{F_{E60}} t_w$$

$$= 0,707 \frac{3700 \text{kg} / \text{cm}^2}{60.70,33 \text{kg} / \text{cm}^2} 0,6 \text{cm}$$

$$= 0,372 \text{ cm}$$

$$= 3,72 \text{ mm}$$

$$Q_{pelat} = 1,41 \frac{f_u}{F_{E60}} t_p$$

$$= 1,41 \frac{3700 \text{kg} / \text{cm}^2}{60.70,33 \text{kg} / \text{cm}^2} 0,8 \text{cm}$$

= 0,989 cm
= 9,89 mm

Berikut gambar sambungan las tiang sandaran, Gambar 5.4

Gambar 5.18 Sambungan las (dalam mm)

Dicoba $t_e = 1$ cm = (4.6 cm + 2.11, 3 cm + 4.2, 7 cm + 2.6 cm) 1 cmА $= 63 \text{ cm}^2$ $= 66 \text{ cm}^3$ S_x Menghitung gaya yang terjadi H_{ux} $= H_{uv}$ f_{hx} $= f_{hv}$ $= H_{ux}/A$ $= (0,75 \text{kg/cm}. 200 \text{cm})/63 \text{ cm}^2$ = 2,38 kgP_{ux} $= P_{uv}$

$$f_{vx} = f_{vy}$$

= P_{ux}/A
= (0,75kg/cm. 200cm)/ 63 cm²
= 2,38 kg
M_{ux} = f_z
= M_{ux}/S_x
= (200cm. 0,75kg/cm. 120cm)/ 66cm³
= 272,72 kg/cm²

$$f_{0} = \sqrt{\left(\sqrt{\left(f_{hx}^{2} + f_{hy}^{2}\right)}\right)^{2} + \left(f_{ux} + f_{uy}\right)^{2}}$$
$$= \sqrt{\left(\sqrt{2,38^{2} + 2,38^{2}}\right)^{2} + \left(2,38 + 2,38\right)^{2}}$$

= 5,83 kg/cm²

$$f_{tot} = \sqrt{f_0^2 + f_z^2}$$

= $\sqrt{272,72^2 + 5,83^2}$
= 272,8 kg/cm²
 $\varphi f_n = 0,75. \text{ tw. } F_{E60}$
= 0,75. 0,6. 60. 70,33 kg/cm²
= 1898,91 kg/cm² > $f_{tot} = 272,8 \text{ kg/cm}^2$
te perlu = $f_{tot}/\varphi f_n$
= $\frac{272,8kg/cm^2}{1898,91kg/cm^2}$
= 0,15 cm \approx 0,2 cm
 a_{perlu} = te perlu/0,707
= 0,2/0,707
= 0,28 cm

 $= 2.8 \text{ mm} \approx 5 \text{ mm}$

"Halaman ini sengaja dikosongkan"

BAB VI GELAGAR MEMANJANG DAN MELINTANG

Pada bab ini akan direncanakan gelagar memanjang dan gelagar melintang. Dalam perhitungannya gelagar diasumsikan sebagai balok sederhana di atas dua tumpuan. Gelagar memanjang dan gelagar melintang di desain dan dihitung secara komposit dengan pelat lantai kendaraan. Pembebanan dan *Load Factor* mengikuti SNI terbaru yaitu SNI 1725:2016.

6.1 Gelagar Memanjang Komposit

Gelagar memanjang berfungsi menyalurkan beban yang bekerja di atas pelat lantai kendaraan ke gelagar melintang. Gelagar ini searah dengan arah kendaraan.

Dari hasil preliminary desain didapat data perencanaan profil untuk gelagar memanjang WF 350.175.7.11

	0 0 3	$\boldsymbol{\omega}$	
А	$= 63,1 \text{ cm}^2$	Ix	$= 13600 \text{ cm}^{2}$
d	= 300 mm	Iv	$= 984 \text{ cm}^4$
b_{f}	= 175 mm	Žx	$= 841 \text{ cm}^{3}$
W	= 46,6 kg/m	Z_{y}	$= 172 \text{ cm}^{3}$
t _w	= 7 mm	-	
t _f	= 11 mm		

sifat mekanis baja struktural BJ50

 $\begin{array}{ll} BJ &= 50 \\ f_{u} &= 500 \text{ MPa} \\ f_{v} &= 290 \text{ MPa} \end{array}$

Untuk lebih jelasnya berikut ilustrasi potongan gelagar memanjang dapat dilihat pada Gambar 6.1

Gambar 6.1 Potongan gelagar memanjang. (satuan mm)

6.1.1 Pembebanan

Dat	a perencana	an :		
λ b ₁ d3 d4	= 4 m = 1,75 f = 250 r = 65 m	m nm m	γ _{beton} γ _{aspal} w <i>steeldeck</i>	$= 24 \text{ kN/m}^3$ = 22 kN/m ³ = 0,081 kN/m ³
1)	Beban Ma Aspal	ti = d4 x γ_{aspal} x b = 0,065 x 22 x = 3,504 kN/m'	1 x LF 1,75 x 1,4	
	Plat beton	= d3 x γ_{beton} x b = 0,25 x 24 x 1 = 13,65 kN/m'	,75 x 1,3	
	Steeldeck	= w x LF = 0,081 x 1,1 = 0,09 kN/m'		
	Berat profi	il= w x LF = 0,466 x 1,1 = 0.512 kN/m'		
	qDL	= 17,76 kN/m'		

106

Gambar 6.2 Model gambar perhitungan beban lalu lintas balok memanjang (Irawan, 2016)

a) Beban Terbagi Rata (BTR) Untuk L $\leq 30 \text{ m}$: q = 9 kPa Untuk L > 30 m : q = 9,0 $\left(0, 5 + \frac{15}{L}\right)$ kPa (SNI 1725:2016 ps. 8.3.1) Karena L terbebani adalah 4 m, maka digunakan : q = 9,0 kPa = 9,0 kN/m²

 $q_{100\%}$ = qBTR. b1. LF = 9,0 kN/m². 1,75m. 2 = 31,5 kN/m

b) Beban Garis Terpusat (BGT)

Menurut SNI 1725:2016 ps. 8.3.1 besarnya BGT adalah 49 kN/m. Karena bentang total jembatan pada desain ini adalah 480 m maka nilai Faktor Beban Dinamis (FDB) diambil sebesar 30% (Gambar 28 SNI 1725:2016)

 $P_{100\%} = P_{BGT} (1+FBD). LF$ = 49 kN/m (1+30%). 2 = 127,4 kN/m c) Beban Truk (T)

Beban truk dianalisa sebagai beban berjalan selebar lantai kendaraan, berikut ilustrasi pembebanan dapat dilihat pada Gambar 6.3.

Untuk pembebanan truk, FBD harus diambil sebesar 30% (SNI 1725:2016 ps. 8.6)

T = 112,5 kN/m (1+30%). LF = 112,5 kN/m (1+30%). 2 = 292,5 kN/m

3) Beban pelaksanaan

Berdasarkan pada SNI 1725:2016 ps. 10.3 merupakan beban yang disebabkan oleh aktivitas pelaksanaan itu sendiri. Pada desain ini diasumsikan sebesar 2,5 kN/m, dengan rincian :

1.	Pekerja	= 1 kN/m
2.	Peralatan, dll.	= 1,5 kN/m

qPL	= 2,5 kN/m x LF
	= 2,5 kN/m x 1,00
	= 2,5 kN/m

4) Rekapitulasi beban

Berikut akan ditampilkan rekapitulasi beban yang bekerja diatas gelagar memanjang, dapat dilihat pada Tabel 6.1.

Tuber of Renapitalabi Sebali			
Jenis Beban Nilai Satuan			
Beban mati (DL)			
Berat aspal	3.5035	kN/m'	
Berat pelat beton	13.65	kN/m'	
Berat steeldeck	0.08954	kN/m'	

Tabel 6.1 Rekapitulasi beban

Berat sendiri profil	0.51216	kN/m'	
Beban Hidup (LL)			
Beban BTR 100%	31,5	kN/m'	
Beban BGT 100%	127.4	kN	
Beban T	292.5	kN	
Beban Pelaksanaan (PLL)			
Beban Pelaksanaan	2.5	kN/m'	

5) Kombinasi pembebanan

Untuk untuk mendapatkan pengaruh paling kritis perlu untuk mengkombinasikan beban berdasarkan kondisi ultimit. Berikut dapat dilihat pada Tabel 6.2

raber 0.2 Romoniusi penioeounun		
Kombinasi	Jenis beban yang dikombinasikan	
COMB1	DL + PLL	
COMB2	DL + LL(BTR+BGT)	
COMB3	DL + LL(T)	

Tabel 6.2 Kombinasi pembebanan

6.1.2 Hasil Analisa Gaya Dalam

Analisa gaya dalam untuk gelagar memanjang menggunakan program bantu SAP2000. Struktur dimodelkan sebagai balok sederhana dengan panjang 4 m. berikut hasil analisa dapat dilihat pada tabel 6.3.

OutputCase	V2	M3
Text	KN	KN-M
COMB1	68	68
COMB2	183,4	247,1
COMB3	209,5	355,5

Tabel 6.3 Hasil analisa struktur dengan SAP2000

Dari hasil analisa di atas dapat dilihat bahwa COMB3 lebih menentukan, baik untuk desain lentur maupun desain geser.

6.1.3 Analisa Kapasitas Gelagar

Analisa kapasitas gelagar memanjang dihitung secara komposit dengan pelat lantai. Gelagar memanjang direncanakan menggunakan profil WF 350x175x7x11

А	=	63.1	cm ²	I_{x}	=	13600	cm^4	Z_y	=	172 cm^3
W	=	46.6	kg/m	I_{y}	=	984	cm^4	$\mathbf{S}_{\mathbf{x}}$	=	777 cm^{3}
d	=	350	mm	\dot{i}_{x}	=	14.68	cm	h	=	328 mm
b_{f}	=	175	mm	\dot{i}_y	=	3.95	cm			
$t_{\rm w}$	=	7	mm	r	=	14	mm			
$t_{\rm f}$	=	11	mm	Z_{x}	=	841	cm3			

sifat mekanis baja struktural BJ50

Pelat beton mempunyai ketebalan 250 mm yang dicor di atas pelat baja gelombang *steeldeck* dengan : wr=100mm, hr=51 mm, t= 1 mm. Gelombang *steeldeck* dipasang \perp sumbu balok.

6.1.3.a. Kontrol Kekuatan Gelagar Sebelum Komposit

Gelagar memanjang dikontrol saat beton belum mengeras, atau gelagar sebelum menjadi komposit penuh.

a. Kontrol Tekuk Lokal (SNI 1729-2015 B4.1) Sayap

$$\lambda = \frac{b_f}{2t_f} = \frac{175}{2x11} = 7,95$$

$$\lambda_{\rm p} = 0.38 \sqrt{\frac{E}{F_y}} = 0.38 \sqrt{\frac{2.10^6}{290}} = 9.98$$

Badan

$$\lambda = \frac{h}{t_w} = \frac{D - 2r - 2t_f}{t_w} = \frac{350 - 2.14 - 2.11}{7} = 42.9$$

$$\lambda_p = 3.76 \sqrt{\frac{E}{F_y}} = 3.76 \sqrt{\frac{2.10^6}{290}} = 98.7$$

Karena nilai $\lambda < \lambda_p$, maka penampang kompak. Kuat lentur nominal penampang (M_n) = M_p

b. Kontrol Tekuk Lateral $L_b = 4000 \text{ m}$ $L_p = 1,76.i_y \sqrt{\frac{E}{f_y}} = 1,76.39,5 \sqrt{\frac{200000}{290}} = 1826 \text{ mm}$

Lb > Lp, maka termasuk bentang panjang. Nilai kuat nominal komponen struktur (M_n) = $M_{cr} < M_p$

- c. Kontrol Kapasitas (SNI 1729-2015 F2.2)
 - $\begin{array}{ll} M_n &= M_{cr} < M_p \\ M_p &= Z_x \; x \; f_y = 841000 x \; 290 = 243890000 \; \text{N-mm} \\ &= 243,89 \; \text{kN-m} \end{array}$

Dari analisa SAP2000 diperoleh :

M _{max}	= 68 kN-m
M _A	= 51 kN-m
M _B	= 68 kN-m
M _C	= 51 kN-m

112

Cb =
$$\frac{12,5M_{\text{max}}}{2,5M_{\text{max}} + 3M_A + 4M_B + 3M_C} \le 2,3$$

Cb =
$$1,136 \le 2,3$$

$$G = 80000 \text{ MPa} (\text{Tabel baja})$$

$$J = \sum \frac{1}{3} b \cdot t^{3}$$

= 1/3 x h x t_w³ + 1/3 x b_f x t_f³
= 1/3 x 300 x 7³ + 1/3 x 175 x 11³
= 111941,67 mm⁴

Iw =
$$I_y x \frac{h^2}{4} = 984 x 10^4 x \frac{300^2}{4} = 2,214 x 10^{11} \text{ mm}^6$$

$$Mcr = C_b \frac{\pi}{L} \sqrt{EI_y GJ + \left(\frac{\pi E}{L}\right)^2 I_y I_w}$$

= 129209107 N-mm
= 129,209 kN-m

 $M_n = M_{cr} = 129,209 \text{ kN-m} \le M_p = 243,89 \text{ kN-m}...OK$

Maka balok memenuhi kekuatan lentur sebelum beton mengeras.

d. Kontrol Lendutan

Lendutan dianalisa berdasarkan kemampuan balok akibat beban mati sebelum komposit. Menurut RSNI T-03-2005 ps. 4.7.2 lendutan maksimum gelagar diatas dua tumpuan L/800.

$$\Delta \text{ ijin} = \frac{4000}{800} = 5 \text{ mm}$$

$$\Delta \text{ terjadi} = \frac{5.q.L^4}{384.E.I_x} \Rightarrow q = 13.5 \text{ N/mm'} \text{ (tidak terfaktor)}$$

$$= \frac{5x13,5x4000^4}{384x200000x13600x10^4} = 1,66 \text{ mm}$$

 Δ terjadi = 1,66 mm < Δ ijin = 5 mm

Dengan demikian, dimensi gelagar melintang WF 350x175x7x11 memenuhi syarat.

6.1.3.b. Kontrol Kapasitas Lentur Gelagar Setelah Komposit a. Lebar Efektif

$$b_{eff1} = \frac{L}{5} = \frac{4000}{5}$$
 = 800 mm
 $b_{eff2} = S$ = 1750 m (Jarak antar gelagar)

beff diambil terkecil adalah 800 mm.

b. Menentukan C $A_c = b_{ef} x t_b$ = 800 x (250-51) = 159200 mm²

Nilai Cdiambil nilai terkecil dari : $C_1 = As x f_y = 6314 x 290 = 1831060 N$

C₂ = 0,85xfc'xA_c = 0,85 x 30 x 159200 = 4059600 N
C₃ =
$$\sum_{n=1}^{N} Q_n$$
 (untuk komposit penuh C₃ tidak menentukan)

Maka, $C = C_1 = 1831060$ N (sumbu netral pada pelat beton)

c. Menentukan jarak-jarak dari centroid gaya-gaya yang bekerja

a =
$$\frac{C}{0,85.f_c'b_{eff}} = \frac{1831060}{0,85x30x800} = 89,76 \text{ mm}$$

Gambar 6.3 Distribusi tegangan plastis momen⁺. (satuan mm)

- d1 = hr + tb a/2 = 51 + 199 89,76/2 = 205,12 mm
- d2 = 0 mm \rightarrow profil baja tidak mengalami tekan
- d3 = D/2 = 350/2 = 175 mm
- d. Kapasitas momen positif Mn = C(d1+d2) + Py(d3-d2)

C = 1831060 N $Py = As x f_y = 6314 x 290 = 1831060 \text{ N}$ Mn = 1831060(205,12 - 0) + 1831060(175-0) = 696024502 N-mm= 696,024 kN-m

114

$$ØM_n = 626,42$$
kN-m \ge Mu = 355,5 kN-m...OK

Maka gelagar komposit memenuhi kekuatan lentur terhadap beban layan.

6.1.4 Kontrol Kapasitas Geser Gelagar Komposit

Kontrol kapasitas geser direncanakan berdasarkan beban maksimum pada COMB2 (DL + LL(BTR + BGT)) dan COMB3 (DL + LL(T)). Dengan konfigurasi beban 100% untuk BGT + BTR berada di tepi, dan untuk beban Truk diasumsikan berada di tepi. Berikut ilustrasi penempatan beban BGT + BTR dan juga beban Truk untuk mendapatkan gaya geser max pada gelagar memanjang. Untuk lebih jelasnya dapat dilihat pada Gambar 6.4 dan Gambar 6.5.

Gambar 6.5 Pembebanan geser akibat beban Truk. (satuan mm)

OutputCase	V2	M3
Text	KN	KN-M
COMB1	68	68
COMB2	243,915	125,835
COMB3	348,188	77,81

Tabel 6.4 Hasil analisa gaya dalam

Berdasarkan SNI 1729-2015 G2.1 (a) untuk badan komponen struktur profil-I canai panas :

$$\frac{h}{t_{w}} \le 2,24\sqrt{E/F_{y}}$$

$$\frac{300}{7} \le 2,24\sqrt{2.10^{6}/290}$$

$$42,9 \le 54,8 \text{ (OK)}$$

Maka kuat geser ØVn dapat dihitung dengan persama
anberikut :

$$ØV_n = 426,3 \text{ kN} > \text{Vu} = 348,188 \text{ kN}...\text{OK}$$

Maka gelagar komposit kuat terhadap geser.

6.1.5 Kontrol Lendutan Gelagar Komposit

Lendutan dianalisa berdasarkan kemampuan layan akibat beban hidup. Menurut RSNI T-03-2005 ps. 4.7.2 lendutan maksimum gelagar diatas dua tumpuan L/800.

$$\Delta \text{ ijin} \qquad = \frac{4000}{800} = 5 \text{ mm}$$

Beton di transformasi ke baja :

Dari perhitungan pelat lantai kendaraan, diketahui bahwa : $t_b = d3$ -hr = 250 - 51 = 199 mm f'_c = 30 MPa

n =
$$\frac{Es}{Ec} = \frac{200000}{4700\sqrt{30}} = 7,769$$

b_{tr} = $\frac{b_{eff}}{n} = \frac{800}{7,769} = 103$ mm

e. Letak Garis Netral Penampang Transformasi

$$Y_{na} = \frac{\frac{A_{tr} x t_b}{2} + A_s \left(t_b + \frac{D}{2} \right)}{A_{tr} + A_s}$$

Dimana :

- t_b = Tebal pelat beton (mm)
- A_s = Luas penampang profil (mm²)
- A_{tr} = Luas penampang trasnformasi (mm²)
- D = Tinggi profil (mm)

$$\begin{array}{l} A_{tr} &= b_{tr} \ x \ t_{b} \\ &= 103 \ x \ 199 \\ &= 20491,396 \ mm^2 \end{array}$$

Gambar 6.6 Penampang komposit transformasi. (satuan mm)

f. Momen Inersia Penampang Transformasi

$$I_{tr} = I_x + A_s \left[\left(\frac{D}{2} + t_b \right) - y_{na} \right]^2 + \frac{b_{tr} x t_b^3}{12} + A_{tr} \left(y_{na} - \frac{t_b}{2} \right)^2$$
$$I_{tr} = 13600.10^4 + 6310 \left[\left(\frac{350}{2} + 199 \right) - 164,15 \right]^2$$
$$= + \frac{103x 199^3}{12} + 20491,396 \left(164,15 - \frac{199}{2} \right)^2$$
$$I_{tr} = 567319375 \text{ mm}^4$$

q = 78,3 N/mm' (beban setelah komposit tidak terfaktor)

$$\Delta \text{ terjadi} = \frac{5.q.L^4}{384.E.I_{tr}}$$

$$= \frac{5x78,3x4000^4}{384x200000x567319375} = 2,3 \text{ mm}$$

 Δ terjadi = 2,3 mm < Δ ijin = 5 mm

Dengan demikian, dimensi gelagar melintang WF 350x175x7x11 memenuhi syarat.

6.1.6 Shear Connector (STUD)

Data perencanaan : Pelat beton

t_b = 250 mm f'c = 30 MPa W = 2400 kg/m³ Ec = $W^{1.5}x(0.043x\sqrt{f'c})$ = 2400^{1.5} $x(0.043x\sqrt{30})$ = 27691,466 MPa

Stud :

D	= 19 mm
A _{sc}	$= \frac{1}{4} \times \pi \times 19^{2}$
	$= 284 \text{ mm}^2$
Fu	= 500 MPa

Kapasitas nominal 1 stud : Qn = 0,5 x $A_{sc} (f_c^* x E_c)^{0.5}$ = 0,5 x 284 (30 x 27691,466)^{0,5} = 124632,62 N

```
A_{sc}. F_u = 141821,43 N
```

 $Q_n \leq A_{sc}.F_u \rightarrow OK$

Cek koefisien <u>reduksi rs</u> karena pengaruh pelat *steeldeck* yang dipasang \perp terhadap balok.

(satuan mm)

120

hr = 51 mm
$$\rightarrow$$
 Hs = (hr + 40) mm = 91 mm
wr = 100 mm (¹/₂ gelombang pelat *steeldeck*)

$$\begin{array}{l} \text{wr} &= 100 \text{ mm} \left(\frac{1}{2} \text{ gelombang pelat steeldeck}\right) \\ \text{Nr} &= 1 \quad (\text{dipasang 1 stud pada setiap gelombang}) \end{array}$$

rs
$$= \frac{0.85xwr}{\sqrt{Nrxhr}} \left(\frac{hs}{hr} - 1\right) = 0.92 > 1$$
, terjadi reduksi

Maka:

Qn = Qn. rs =
$$124632,62$$
 N x $0,92 = 119481,05$ N

Gaya geser akibat komposit : Vh = C = As x fy $= 6314 mm^2 x 290 MPa$ = 1831060 N

Banyaknya stud :

n = $\frac{V_h}{Q_n} = \frac{1831060}{119481,05} = 15,3 \text{ bh} \approx 16 \text{ bh}$

Jumlah *Shear-Connector* Stud yang dibutuhkan di sepanjang bentang balok : $2 n = 2 x 16 \infty 32$ buah.

Jika pada setiap gelombang deck dipasang 1 stud, maka jumlah

stud sepanjang balok $= \left[\frac{L}{2wr}\right] 2 = \left[\frac{4000}{2x200}\right] 2$ $= 40 \text{ buah } \ge 32 \text{ buah... OK}$

Maka digunakan jumlah stud sebanyak 40 buah dengan 2 stud per gelombang *steeldeck*, sehingga ada 20 baris stud dengan jarak masing-masing baris stud adalah 200 mm.

6.1.7 Sambungan Gelagar Memanjang

101101101
= 16 mm
= 14130 Kg
= 500 MPa
= 16 mm
= 17,5 mm
$= 201 \text{ mm}^2$

6.1.7.a. Sambungan Pada Gelagar Memanjang (a) Kuat nominal geser

Diketahui.

 $Vd = \emptyset xVn$ $= \emptyset x1,13 x m x \mu x Tb$ = 1 x 1,13 x 0,35 x 2 x 14130= 11176,83 Kg= 111,7683 kN

(b) Gaya-gaya yang bekerja

Vu = 348,188 kN (Geser maksimum)

(c) Jumlah baut yang diperlukan

n $= \frac{Vu}{Vd} = \frac{348,188}{111,768} = 3,12 \text{ bh} \approx 4 \text{ bh}$

(d) Syarat jarak baut

3.db \leq S \leq 15. Tp ; atau 200 mm

122

 $\begin{array}{ll} S \mbox{ dipasang sejarak} = 50 \mbox{ mm} \\ 1,5. \mbox{ db} &\leq S1 \leq (4.Tp+100) \ ; \mbox{ atau } 200 \mbox{ mm} \\ 1,5. \ 16 &\leq S1 \leq (4.\ 24+100) \ ; \mbox{ atau } 200 \mbox{ mm} \\ 18 &\leq S1 \leq 25 \mbox{ ; \mbox{ atau } 200 \mbox{ mm} \\ \end{array}$

S1 dipasang sejarak = 25 mm

6.1.7.b. Sambungan Pada Gelagar Memanjang (a) Kuat nominal geser

Diketahui,

(b) Gaya-gaya yang bekerja

Vu = 348,188 kN (Geser maksimum)

(c) Jumlah baut yang diperlukan

n
$$= \frac{Vu}{Vd} = \frac{348,188}{55,884} = 6,23 \text{ bh} \approx 8 \text{ bh}$$

(d) Kontrol Pelat Siku L 100.100.12 (BJ 37) Luas geser (AnV) = LnV x tL= (L - n. dp) x tL= (200 - 2.16) x 12= $1560 mm^2$ Dimana, n = banyaknya lubang d_b = diameter lubang tL = tebal siku L = panjang garis kritis

Kuat rencana

Teg. Plat siku (fu) = 370 MPa

Karena terdiri dari 2 siku , maka : 2ØVn > Vu 2 x 259,74 kN > 348 kN 519,48 kN > 348 kN...OK

(e) Syarat jarak baut

3.db	<u>≤ S ≤ 15</u> . Tp	; atau 200 mm
3.16	<u>≤</u> S <u>≤</u> 15. 12	; atau 200 mm
48	\leq S \leq 180	; atau 200 mm

S dipasang sejarak = 50 mm

 $\begin{array}{ll} 1,5. \ db &\leq S1 \leq (4.Tp+100) \ ; \ atau \ 200 \ mm \\ 1,5. \ 16 &\leq S1 \leq (4. \ 12+100) \ ; \ atau \ 200 \ mm \\ 18 &\leq S1 \leq 148 \qquad ; \ atau \ 200 \ mm \end{array}$

S1 dipasang sejarak = 25 mm

124

Gambar 6.8 Detail sambungan gelagar memanjang. (satuan mm)

Gambar 6.9 Detail sambungan gelagar memanjang ke gelagar melintang. (satuan mm)

GELAGA WF 350.

GELAGA

Gambar 6.10 Detail sambungan potongan A-A. (satuan mm)

6.2 Gelagar Melintang Komposit

Gelagar melintang berfungsi menyalurkan beban-beban dari gelagar memanjang ke gelagar utama.

Dari hasil analisa didapat data perencanaan profil untuk gelagar melintang *Plate Girder* 1000.400.20.30

<u> </u>	<u> </u>	0		
А		$= 428 \text{ cm}^2$	Ix	$= 703150,7 \text{ cm}^4$
d		= 1000 mm	Iy	$= 32063 \text{ cm}^4$
b_{f}		= 400 mm	Żx	$= 14063 \text{ cm}^3$
w		= 336 kg/m	$Z_{\rm v}$	$= 1603 \text{ cm}^3$
t _w		= 20 mm	2	
t_{f}		= 30 mm		

sifat mekanis baja struktural

BJ = 50 f_u = 500 MPa f_v = 290 MPa

Untuk lebih jelasnya berikut ilustrasi potongan gelagar memanjang dapat dilihat pada Gambar 6.11

Gambar 6.11 Potongan melintang jembatan. (satuan mm)

6.2.1 Pembebanan

Data perencanaan : $= 24 \text{ kN/m}^3$ λ = 4 mVbeton $= 22 \text{ kN/m}^{3}$ = 1,75 mb₁ γ_{aspal} = 250 mmw steeldeck $= 0.081 \text{ kN/m}^{2}$ d3 = 65 mm Tebal Kerb d4 = 0.2 mL = 17,5 m1) Beban Mati Pelat = d3 x γ_{beton} x λ x LF $= 0,25 \times 24 \times 4 \times 1,3$ = 31.2 kNP *Steeldeck*= w x λ x LF = 0,081 x 4 x 1,1= 0.358 kNP Gelagar Memanjang $= w x \lambda x LF$ $= 0,466 \ge 4 \ge 1,1$ = 2.049 kN

Gambar 6.13 Pembebanan beban SDL. (satuan mm)

3) Beban Hidup

d) Beban Terbagi Rata (BTR) Untuk L $\leq 30 \text{ m}$: q = 9 kPa Untuk L > 30 m : q = 9,0 $\left(0, 5 + \frac{15}{L}\right)$ kPa (SNI 1725:2016 ps. 8.3.1) Karena L terbebani adalah 4 m, maka digunakan : q = 9,0 kPa = 9,0 kN/m²

 $q_{100\%}$

= qBTR. λ. LF = 9,0 kN/m². 4m. 2 = 72 kN/m

Gambar 6.15 Pembebanan BTR. (satuan mm)

e) Beban Garis Terpusat (BGT)

Menurut SNI 1725:2016 ps. 8.3.1 besarnya BGT adalah 49 kN/m. Karena bentang total jembatan pada desain ini adalah 480 m maka nilai Faktor Beban Dinamis (FDB) diambil sebesar 30% (Gambar 28 SNI 1725:2016)

$$q_{100\%}$$
 = q_{BGT} (1+FBD). LF
= 49 kN/m (1+30%). 2
= 127,4 kN/m

Gambar 6.16 Pembebanan BGT. (satuan mm)

f) Beban Truk (T)

Beban truk dianalisa sebagai beban berjalan selebar lantai kendaraan, berikut ilustrasi pembebanan dapat dilihat pada Gambar 6.3.

Untuk pembebanan truk, FBD harus diambil sebesar 30% (SNI 1725:2016 ps. 8.6)

T = 112,5 kN/m (1+30%). LF = 112,5 kN/m (1+30%). 2 = 292,5 kN/m

Gambar 6.17 Pembebanan Truk model 1. (satuan mm)

130

Gambar 6.18 Pembebanan Truk model 2. (satuan mm)

g. Beban Pejalan Kaki

Berdasarkan SNI 1725:2016 ps 8.9 beban pejalan kaki adalah sebesar 5 kPa.

q Pejalan = w x λ x LF q Pejalan = 5 kN/m² x 4 m x 2 q Pejalan = 40 kN/m²

Gambar 6.19 Pembebanan pejalan kaki. (satuan mm)

4) Beban pelaksanaan

Berdasarkan pada SNI 1725:2016 ps. 10.3 merupakan beban yang disebabkan oleh aktivitas pelaksanaan itu sendiri. Pada desain ini diasumsikan sebesar 2,5 kN/m, dengan rincian :

3.	Pekerja	= 1 kN/m
1	Daralatan dll	-1.5 k N/m

. Peralatan, dll.	= 1,5 kN/m
-------------------	-------------

qPL	= 2,5 kN/m x LF
_	= 2,5 kN/m x 1,00
	= 2,5 kN/m

Gambar 6.20 Pembebanan qPL. (satuan mm)

5) Rekapitulasi beban

Berikut akan ditampilkan rekapitulasi beban yang bekerja diatas gelagar melintang, dapat dilihat pada Tabel 6.5.

Jenis Beban	Nilai	Satuan					
Beban mati (DL)							
Berat sendiri profil	3.69578	kN/m'					
Pelat beton	31.2	kN/m'					
P steeldeck	0.35816	kN					
P profil memanjang	2.04864	kN					
Beban Superimposed Dead	Load (SDL)						
Aspal	8.008	kN/m'					
q kerb	24.96	kN/m'					
P railing	2	kN					
PJU	3.498	kN					
Beban Hidup (LL)							
Beban BTR	72	kN/m'					
Beban BGT	127.4	kN/m'					
Beban T	292.5	kN					
Pejalan kaki	40	kN/m'					
Beban Pelaksanaan (PLL)	Beban Pelaksanaan (PLL)						
Beban Pelaksanaan	2.5	kN/m'					

Tabel 6.5 Rekapitulasi beban

6) Kombinasi pembebanan

Untuk untuk mendapatkan pengaruh paling kritis perlu untuk mengkombinasikan beban berdasarkan kondisi ultimit. Berikut dapat dilihat pada Tabel 6.6

Kombinasi	Jenis beban yang dikombinasikan
COMB1	DL + SDL + PLL
COMB2	DL + SDL + LL(BTR+BGT+Pejalan)
COMB3	DL + SDL + LL(T1 + Pejalan)
COMB4	DL + SDL + LL(T2+Pejalan)

Tabel 6.6 Kombinasi pembebanan

6.2.2 Hasil Analisa Gaya Dalam

Analisa gaya dalam untuk gelagar melintang menggunakan program bantu SAP2000. Struktur dimodelkan sebagai balok sederhana dengan panjang 17,5 m. berikut hasil analisa dapat dilihat pada tabel 6.7.

OutputCase	V2	M3
Text	KN	KN-M
COMB1	424,904	1205,3705
COMB2	1858,83	5843,3103
COMB3	1072,067	3190,3253
COMB4	1633,03	5184,97

Tabel 6.7 Hasil analisa struktur dengan SAP2000

Dari hasil analisa di atas dapat dilihat bahwa COMB2 lebih menentukan, baik puntuk desain lentur maupun geser.

6.2.3 Analisa kapasitas

Analisa kapasitas gelagar memanjang dihitung secara komposit dengan pelat lantai. Gelagar memanjang direncanakan menggunakan profil *Plate Girder* 1000x400x20x30.

A	=	428	cm ²	I_{x}	=	703150,7	cm^4	$\mathbf{S}_{\mathbf{x}}$	=	16057	cm^3
W	=	336	kg/m	Iy	=	32063	cm^4	h	=	940	mm
d	=	1000	mm	i_{x}	=	40,53	cm				
b_{f}	=	400	mm	i_y	=	8,655	cm				
t _w	=	20	mm	Z_{x}	=	14063	cm ³				
t _f	=	30	mm	Z_{y}	=	1603	cm ³				

sifat mekanis baja struktural

 $\begin{array}{ll} BJ &= 50 \\ f_u &= 500 \ MPa \\ f_y &= 290 \ MPa \\ Es &= 200000 \ MPa \end{array}$

6.2.3.a. Kontrol Kekuatan Gelagar Sebelum Komposit

Gelagar melintang dikontrol saat beton belum mengeras, atau gelagar sebelum menjadi komposit penuh.

a. Kontrol Tekuk Lokal (SNI 1729-2015 B4.1) Sayap

$$\lambda = \frac{b_f}{2t_f} = \frac{400}{2x30} = 6,67$$
$$\lambda_p = 0,38 \sqrt{\frac{E}{F_y}} = 0,38 \sqrt{\frac{2.10^6}{290}} = 9,98$$

Badan

$$\lambda = \frac{h}{tw} = \frac{D - 2r - 2tf}{tw} = \frac{1000 - 2.30}{20} = 47$$

$$\lambda_{\rm p} = 3,76 \sqrt{\frac{E}{F_y}} = 3,76 \sqrt{\frac{2.10^6}{290}} = 98,7$$

Karena nilai $\lambda < \lambda_p$, maka penampang kompak. Kuat lentur nominal penampang (Mn) = Mp

b. Kontrol Tekuk Lateral

$$L_b = 1750 \text{ m} (\text{Jarak antar gelagar memanjang})$$

$$L_{p} = 1,76.i_{y}\sqrt{\frac{E}{f_{y}}} = 1,76x86,55\sqrt{\frac{200000}{290}} = 4000 \text{ mm}$$

 $L_b < L_p$, maka termasuk bentang pendek. Nilai kuat nominal komponen struktur (Mn) = Mp \leq 1,5My

c. Kontrol Kapasitas $M_p = Z_x x f_y = 14063.10^3 x 290 = 4,078.10^9 \text{ N-mm}$ = 4078,2738 kN-m $M_y = S_x x f_y = 16057.10^3 x 290 = 4,657.10^9 \text{ N-mm}$ = 4656,2738 kN-m $M_n = M_p = 4078,2738 \text{ kN-m} \le 1,5M_y = 6984,795 \text{ kN-m}$

Kontrol kapasitas momen Mu sebelum komposit = 954,3771 kN-m

Maka balok memenuhi kekuatan lentur sebelum beton mengeras.

d. Kontrol Lendutan

Lendutan dianalisa berdasarkan kemampuan balok akibat beban mati sebelum komposit. Menurut RSNI T-03-2005 ps. 4.7.2 lendutan maksimum gelagar diatas dua tumpuan L/800.

$$\Delta$$
 ijin = $\frac{17500}{800}$ = 21,9 mm

 Tabel 6.8 Hasil analisa lendutan gelagar melintang sebelum komposit

Joint	OutputCase	CaseType	U1	U2	U3
Text	Text	Text	mm	mm	mm
1	SEBELUM KOMPOSIT	Combination	0	0	0
2	SEBELUM KOMPOSIT	Combination	0	0	0
3	SEBELUM KOMPOSIT	Combination	0	0	-1,17702
4	SEBELUM KOMPOSIT	Combination	0	0	-3,25666
5	SEBELUM KOMPOSIT	Combination	0	0	-5,36578
6	SEBELUM KOMPOSIT	Combination	0	0	-6,88072
7	SEBELUM KOMPOSIT	Combination	0	0	-7,42728
8	SEBELUM KOMPOSIT	Combination	0	0	-6,88072
9	SEBELUM KOMPOSIT	Combination	0	0	-5,36578
10	SEBELUM KOMPOSIT	Combination	0	0	-3,25666
11	SEBELUM KOMPOSIT	Combination	0	0	-1,17702
13	SEBELUM KOMPOSIT	Combination	0	0	-4,04424
14	SEBELUM KOMPOSIT	Combination	0	0	-4,04424
15	SEBELUM KOMPOSIT	Combination	0	0	-5,9998
16	SEBELUM KOMPOSIT	Combination	0	0	-5,9998

 Δ terjadi = 7,43 mm < Δ ijin = 21,9 mm

Dengan demikian, dimensi gelagar melintang *Plate Girder* 1000x400x20x30 memenuhi syarat.

6.2.3.b. Kontrol Kapasitas Lentur Gelagar Setelah Komposit a. Lebar Efektif

 $b_{eff1} = \frac{L}{5} = \frac{17500}{5} = 3500 \text{ mm}$ $b_{eff2} = S = 4000 \text{ m (Jarak antar gelagar)}$

beff diambil terkecil adalah 3500 mm.

b. Menentukan C

$$A_c = b_{ef} x t_b$$
 = 3500 x (250-51)= 696500 mm²

Nilai Cdiambil nilai terkecil dari : $C_1 = As x f_y = 42800 x 290 = 12412000 N$

$$C_2 = 0.85 \text{ x fc}^2 \text{ xA}_c = 0.85 \text{ x } 30 \text{ x } 696500 = 17760750 \text{ N}$$

$$C_3 = \sum_{n=1}^{N} Q_n \text{ (untuk komposit penuh C_3 tidak menentukan)}$$
Maka, C = C₁ = 12412000 N (sumbu netral pada baja)

c. Menentukan jarak-jarak dari centroid gaya-gaya yang bekerja a $= \frac{C}{0,85.f_c'b_{eff}} = \frac{15312000}{0,85x30x3750} = 139,1 \text{ mm}$

d1 = hr + tb -
$$a/2 = 51 + 199 - 139, 1/2 = 180,465$$
 mm

d2 = 0 mm \rightarrow profil baja tidak mengalami tekan

$$d3 = D/2 = 1000/2 = 500 \text{ mm}$$

Gambar 6.21 Distribusi tegangan plastis momen⁺. (satuan mm)

d. Kapasitas momen positif Mn = C(d1+d2) + Py(d3-d2)

C = 12412000 NPy = As x f_y = 42800 x 290 = 12412000 N Mn = 12412000 (180,465 -0) + 15312000(500-0) = 8445931406 N-mm = 8445,93 kN-mm

Maka gelagar memenuhi kekuatan lentur.

6.2.4 Kontrol Kapasitas Geser Gelagar Komposit

Kontrol kapasitas geser direncanakan berdasarkan beban maksimum pada COMB2 (DL + LL(BTR + BGT)) dan COMB4 (DL + LL(T2)). Dengan konfigurasi beban 100% untuk BGT + BTR, dan untuk beban Truk diasumsikan ada disetiap lajur.

OutputCase	V2	M3	
Text	KN	KN-M	
COMB2	1858,83	5843,3103	
COMB4	1633,03	5184,9791	

Tabel 6.9 Hasil analisa gaya dalam

Berdasarkan SNI 1729-2015 G2.1 (b) untuk badan dari semua profil simetris ganda dan profil simetris tunggal serta

kanal lainnya, kecuali PSB bundar, koefisien geser badan, C_v , ditentukan sebagai berikut :

(iv) Bila
$$h/t_w \le 1,10\sqrt{k_v E/F_y}$$

 $C_v = 1,0$
(v) Bila $1,10\sqrt{k_v E/F_y} < h/t_w \le 1,37\sqrt{k_v E/F_y}$
 $C_v = \frac{1,10\sqrt{k_v E/F_y}}{h/t_w}$
(vi) Bila $h/t_w > 1,37\sqrt{k_v E/F_y}$
 $C_v = \frac{1,51k_v E}{(h/t_w)^2 F_y}$

Untuk badan tanpa pengaku transversal koefisien geser pelat badan, k_v , ditentukan sebagai berikut :

$$\frac{h}{t_w} < 260$$

$$\frac{940}{20} < 260$$

$$47 < 260, \text{ maka } k_v = 5$$

Schingga $h/t_w \le 1,10\sqrt{k_v E/F_y}$ $47 \le 1,10\sqrt{5.2.10^6/290}$ $47 \le 64,6$

Sehingga nilai $C_v = 1,0$

 $ØV_n = Ø. 0, 6. F_y. A_w. C_v$

Dimana :

 f_y = tegangan leleh (MPa) A_w = luas badan balok baja C_v = koefisien geser badan = 1,0 (SNI 1729-2015 G2.1 (a))

Maka gelagar kuat terhadap geser.

6.2.5 Kontrol Lendutan

Lendutan dianalisa berdasarkan kemampuan layan akibat beban hidup. Menurut RSNI T-03-2005 ps. 4.7.2 lendutan maksimum gelagar diatas dua tumpuan L/800.

 Δ ijin = $\frac{17500}{800}$ = 21,88 mm

Beton di transformasi ke baja :

Dari perhitungan pelat lantai kendaraan, diketahui bahwa : $t_b = d3$ -hr = 250 - 51 = 199 mm f' c = 30 MPa

n =
$$\frac{Es}{Ec} = \frac{200000}{4700\sqrt{30}} = 7,769$$

b_{tr} = $\frac{b_{eff}}{n} = \frac{3500}{7,769} = 451$ mm

h. Letak Garis Netral Penampang Transformasi

$$Y_{na} = \frac{\frac{A_{tr}xt_b}{2} + A_s\left(t_b + \frac{D}{2}\right)}{A_{tr} + A_s}$$

Dimana :

 $\begin{array}{ll} t_b &= Tebal \ pelat \ beton \ (mm) \\ A_s &= Luas \ penampang \ profil \ (mm^2) \\ A_{tr} &= Luas \ penampang \ trasnformasi \ (mm^2) \\ D &= Tinggi \ profil \ (mm) \end{array}$

$$\begin{array}{ll} A_{tr} &= b_{tr} \ x \ t_{b} \\ &= 451 \ x \ 199 \\ &= 89649,86 \ mm^2 \end{array}$$

i. Momen Inersia Penampang Transformasi

$$I_{tr} = I_{x} + A_{s} \left[\left(\frac{D}{2} + t_{b} \right) - y_{na} \right]^{2} + \frac{b_{tr} x t_{b}^{3}}{12} + A_{tr} \left(y_{na} - \frac{t_{b}}{2} \right)^{2}$$

142

$$I_{tr} = 1794384.10^{4} + 52800 \left[\left(\frac{1500}{2} + 199 \right) - 392,995 \right]^{2}$$
$$= + \frac{451x199^{3}}{12} + 89649,86 \left(392,995 - \frac{199}{2} \right)^{2}$$
$$I_{tr} = 4,228 \times 10^{10} \text{ mm}^{4}$$

Tabel 6.10 Lendutan	gelagar me	lintang	komposi	t
---------------------	------------	---------	---------	---

OutputCase	U1	U2	U3	
Text	mm mm		mm	
COMB1	0	0	-4,141969	
COMB2	0	0	-20,325427	
COMB3	0	0	-10,432713	
COMB4	0	0	-17,82659	

 Δ terjadi = 20,32 mm < Δ ijin = 21,9 mm

Dengan demikian, dimensi gelagar melintang *Plate Girder* 1000x400x20x30 memenuhi syarat.

6.2.6 Shear Connector (STUD)

Data perencanaan : Pelat beton

- $t_b = 250 \text{ mm}$
- $\tilde{f'c} = 30 \text{ MPa}$
- W = 2400 kg/m^3

Ec =
$$W^{1,5}x(0.043x\sqrt{f'c})$$

- $= 2400^{1.5} x (0.043 x \sqrt{30})$
- = 27691,466 MPa

 $\begin{array}{ll} Stud: & & \\ D & = 19 \ mm \\ A_{sc} & = \frac{1}{4} \ x \ \pi \ x \ 19^2 \\ & = 284 \ mm^2 \\ F_u & = 500 \ MPa \end{array}$

Kapasitas nominal 1 stud :

Qn = 0,5 x
$$A_{sc}$$
 (f_c ' x E_c)^{0,5}
= 0,5 x 284 (30 x 27691,466)^{0,5}
= 129263,36 N

 A_{sc} . $F_u = 141821,43$ N

 $Q_n \leq A_{sc}.F_u \rightarrow OK$

Cek koefisien <u>reduksi rs</u> karena pengaruh pelat *steeldeck* yang dipasang \perp terhadap balok.

$$\begin{array}{ll} hr &= 51 \ \text{mm} \rightarrow \text{Hs} = (hr + 40) \ \text{mm} = 91 \ \text{mm} \\ \text{wr} &= 100 \ \text{mm} \left(\frac{1}{2} \ \text{gelombang pelat } steeldeck \right) \\ \text{Nr} &= 2 \ \text{(dipasang 2 stud pada setiap gelombang)} \end{array}$$

rs
$$= \frac{0.85xwr}{\sqrt{Nrxhr}} \left(\frac{hs}{hr} - 1\right) = 0.92 > 1$$
, reduksi

Maka:

Qn = Qn. rs =
$$129263,36$$
 N x $0,92 = 119481,05$ N

144

Gaya geser akibat komposit : Vh = C = As x fy = $42800 \text{ mm}^2 \text{ x } 290 \text{ MPa}$

= 12412000 N

Banyaknya stud :

n
$$= \frac{V_h}{Q_n} = \frac{12412000}{119481,05} = 104 \text{ bh}$$

Jumlah *Shear-Connector* Stud yang dibutuhkan di sepanjang bentang balok : $2 n = 2 \times 104\infty 208$ buah.

Jika pada setiap baris dipasang 2 stud, maka jarak stud adalah : 17500 / 104 = 168 mm

Maka digunakan jumlah stud sebanyak 208 dengan jumlah stud tiap baris2 buah, dengan jarak masing-masing baris stud adalah 168 mm.

6.2.7 Sambungan Gelagar Melintang

Sambungan gelagar melintang terhadap gelagar utama didesain menggunakan sambungan las, dan gelagar dipotong pada jarak 120 cm dari gelagar utama kemudian disambung dengan sambungan baut agar mudah saat pelasanaan nya. Pada desain ini sambungan akan menerima beban Vu dan Mu.

6.2.7.a. Sambungan Gelagar Melintang Terhadap Gelagar Utama

Dari hasil analisa struktur didapat nilai gaya dalam pada tumpuan sebagai berikut :

 $V_u = 1858,83 \text{ kN}$

 $M_u = 5843,3103 \text{ kNm}$

Berikut ilustrasi sambungan gelagar melintang terhadap gelagar utama dapat dilihat Gambar 6.24.

Gambar 6.24 Sambungan gelagar melintang terhadap gelagar utama. (satuan mm)

E120xx = 120 Kips
Misal t_e = 1 cm
A = (4. 3cm. 1cm) + (1. 40cm. 1cm) + (2. 94cm. 1cm)
= + (4. 19cm. 1cm)
= 316 cm²
Akibat V_u:
f_v =
$$\frac{V_u}{A}$$

= $\frac{1858,83 \text{ kg}}{316 \text{ cm}^2}$
= 588,237kg/cm²
Akibat M_u:
f_h = $\frac{M_u}{S_x}$

$$= \frac{58433103 \text{ kg} - \text{cm}}{16057 \text{ cm}^3}$$

= 3639,1046 kg/cm²
$$f_{tot} = \sqrt{f_h^2 + f_v^2}$$

= $\sqrt{3639,1046\ ^2 + 588,237^2}$
= 3686,3404 kg/cm²
$$\phi f_n = \phi. 0,6. E120xx$$

= 0,75. 0,6. 120. 70,3 kg/cm²
= 3796,2 kg/cm²

$$= 3796,2 \text{ kg/cn}$$

$$f_{tot} < \phi f_n \dots OK$$

$$t_{e-perlu} = \frac{f_{total}}{\varphi f_n} \cdot 1 \text{ cm}$$
$$= \frac{3686,3404}{3796,2} \cdot 1 \text{ cm}$$
$$= 0,97 \text{ cm}$$

$$a = te/0,707$$

= 0,96 cm/0,707
= 1,373 cm

6.2.7.b. Sambungan Pada Gelagar Melintang Digunakan baut tipe tumpu :

Desain baut	= M22
Diameter baut	= 22 mm
f_{ub}	= 500 MPa
d _b	= 22 mm
$d_{p} = d_{b} + 1,5 \text{ mm}$	= 23,5 mm
Å _b	$= 380,285 \text{ mm}^2$

Gaya-gaya yang bekerja pada jarak 120 cm dari tumpuan : Vu = 1774,143 kN Mu = 4208,95 kN-m

Pembagian Momen :

$$M_{u-badan} = \frac{I_{bd}}{I_{prop}} \cdot M_{u}$$
$$= \frac{\frac{1}{12}(2)(94^{3})}{703150,7} \cdot 4208,95 \text{ kN-m}$$
$$= 828,625 \text{ kN-m}$$

$$M_{u-sayap} = M_u - M_{u-badan} = (4208,95-828,625) kN-m = 3380,332 kN-m$$

1. Sambungan pelat sayap

(a) Kuat nominal satu (1) baut

Diketahui,

$r_1 = 0,5$	(tidak ada ulir pada bidang geser)
m = 2	(2 bidang geser)
$tL = 2 \times 15 \text{ mm}$	(Pelat BJ50)
$f_{u} = 500 \text{ MPa}$	

a. Kuat geser (V_d) $\phi V_n = \phi_f. r_1. f_u^{\ b}. A_b. m$ $= 0,75. 0,5. 500. 380,285. 2. 10^{-3}$ = 142,607 kN (menentukan)

b. Kuat tumpu (R_d)

$$\varphi R_n = \varphi_{f.} 2,4d_{b.} t_{p.} f_u$$

 $= 0,75. 2,4. 22. 30. 500. 10^{-3}$
 $= 594 \text{ kN}$

Dipakai nilai kuat nominal satu (1) baut $\varphi Vn = 142,607 \text{ kN}$

(b) Jumlah baut yang diperlukan

Gaya kopel sayap $M_u = 3380,332 \text{ kN-mm}$ $T_u = \frac{M_u}{h}$ $= \frac{3380,332}{0,94}$ = 3596,09 kN

n

$$= \frac{T_u}{\varphi V_n} = \frac{3596,09}{142,607} = 25,2 \text{ buah} \approx 26 \text{ buah}$$

(c) Syarat jarak baut

3.db	<u>≤ S ≤ 15</u> . Tp	; atau 200 mm
3.22	<u>≤ S ≤ 15. 30</u>	; atau 200 mm
66	<u>≤ S ≤ 450</u>	; atau 200 mm
S dipasar	ng sejarak = 70 mm	

1,5. db	\leq S1 \leq (4.Tp + 100)	; atau 200 mm
1,5.22	\leq S1 \leq (4. 30 + 100)	; atau 200 mm
33	<u>≤</u> S1 <u>≤</u> 220	; atau 200 mm
S1 dipas	ang sejarak = 35 mm	

2. Sambungan pelat badan

(a) Kuat nominal satu (1) baut

Diketahui, $r_1 = 0,5$ (tidak ada ulir pada bidang geser) m = 2 (2 bidang geser) $tL = 2 \times 10 \text{ mm}$ (Pelat BJ50) $f_u = 500 \text{ MPa}$

a. Kuat geser (V_d)

$$\varphi V_n = \varphi_{f} r_1 f_u^b A_b m$$

 $= 0,75. 0,5. 500. 380,285. 2. 10^{-3}$
 $= 142,607 \text{ kN} \text{ (menentukan)}$

b. Kuat tumpu (R_d)

$$\phi R_n = \phi_f. 2,4d_b. t_p. f_u$$

 $= 0,75. 2,4. 22. 20. 500. 10^{-3}$
 $= 396 \text{ kN}$

Dipakai nilai kuat nominal satu (1) baut $\varphi Vn = 142,607 \text{ kN}$

(b) Jumlah baut yang diperlukan

Jarak vertikal baut (μ) = 70 mm M_u = 828,625 kN-m

n =
$$\sqrt{\frac{6M_u}{\mu R_u}}$$

= $\sqrt{\frac{6x828,625}{0,070x142,607}}$ = 20,88 buah \approx 22 buah

(c) Syarat jarak baut

S dipasang sejarak = 70 mm

1,5. db	\leq S1 \leq (4.Tp + 100)	; atau 200 mm
1,5.22	\leq S1 \leq (4. 20 + 100)	; atau 200 mm
33	<u>≤ S1 ≤ 180</u>	; atau 200 mm

S1 dipasang sejarak = 40 mm

- 🛰 M-1 410,5 257,5 GELAGAR MEMANJANG 980 WF 350.175.7.11 444 40 70 70 70 70 70 **70 70** 0 0 0 0 M 22 F10T 0000 ۵ ۲ 0 0 ۲ 70 70 0 0 0 0 0 GELAGAR MELINTANG 70 ۲ 0 0 70 40 PLATE GIRDER 6 6 1000. 400. 20. 30 $\overline{\mathbf{A} + \mathbf{A} + \mathbf{A}$ 11 ł - 🛹 M-1 900 GELAGAR UTAMA TWIN BOX GIRDER 2000. 1400. 60. 60

dilihat pada Gambar 6.25 dan Gambar 6.26 berikut ini.

Berikut ilustrasi sambungan balok pada gelagar melintang dapat

Gambar 6.25 Sambungan gelagar melintang. (satuan mm)

Gambar 6.26 Detail potongan M-1 – M-1. (satuan mm)

BAB VII

PEMODELAN DAN ANALISA STRUKTUR UTAMA

Pada bab ini akan dibahas gaya-gaya yang terjadi pada struktur gelagar utama (*main girder*) berupa *twin box girder*, kabel, *block anker*, dan *pylon*. Dalam analisa struktur *cable stayed* ini digunakan program bantu MIDAS CIVIL V2011. Bab ini akan membahas mulai dari pemodelan struktur, pembebanan, dan analisa struktur. Digunakan pembebanan statik, dan dinamik.

7.1 Pemodelan Struktur

Dalam pemodelan struktur, jembatan ini dimodelkan menggunakan *fishbone model*, dengan input nilai *section properties* dari gelagar utama, pelat lantai, kabel, dan struktur *pylon* sebagai berikut :

1					
Section	Nama	Area	Ixx	Іуу	Izz
ID	Name	(m ²)	(m)	(m)	(m)
1	Truss (Stay Cable)	0,1934	0	0	0
2	Beam (Steel Box)	0,4736	0,2975757	0,2904414	0,1701998
3	Beam (Deck Slab)	4,375	0,090325521	0,022786458	111,6536458
4	Pylon	8,33	14,58345	8,334408	14,15908
5	Kaki Pylon	12	19,4385	9	16
6	Lower Cross Beam	3,716	3,424348	3,69077	1,772425
7	Top Cross Beam	5,805	8,920178	22,23187	3,264869

Tabel 7.1 Section Properties

Karena dalam *fishbone model*, elemen dari gelagar utama dijadikan menjadi satu elemen di tengah sumbu jembatan, maka nilai Ixx, Iyy, dan Izz gabungan dicari sebagai berikut : Mencari nilai Inersia gabungan (I')

Gambar 7.1 Perspektif gelagar utama
Mencari nilai Iyy':
Iyy' =
$$2 \times Iyy = 2 \times 0,201062 \text{ m}^4 = 0,5808828 \text{ m}^4$$

Mencari nilai Izz' :
Izz' = 2 x [Izz + As x (r +
$$\frac{1}{2}$$
 Bf)²]
= 2 x [0,1701998 + 0,4736 x (9,5 + 0,5x1,5)²]
= 85,8252 m⁴

Untuk mempermudah dalam perhitungan, maka penampang gelagar utama dibagi menjadi 3 bagian yaitu I_{XX-A} , I_{XX-B} dan I_{XX-C} seperti pada Gambar 7.2 berikut ini :

Gambar 7.2 Pembagian penampang untuk menghitung Ixx gabunganbox

Menghitung I_{XX-A} :

Gambar 7.3 Permodelan I_{XX-A}

Diketahui batas-batas penampang $I_{\rm XX\text{-}A}$

m
m
3 m

$$I_{XX-A} = 4\rho \int_{r}^{R} R^{2} dA \int dx$$

$$= 4\rho \int_{y_{0}z_{0}}^{y'} z' (y^{2} + z^{2}) dy dz \int dx$$

$$= 4\rho \int_{y_{0}}^{y'} (zy^{2} + \frac{z}{3}) |_{z_{0}}^{z'} dy \int dx$$

$$= 4\rho \left(\frac{zy^{3}}{3} + \frac{z^{3}y}{3} \right) |_{y_{0}}^{y'} \int dx$$

$$= 4\rho \left(\frac{(z'-z_{0})(y'^{3}-y_{0}^{3})}{3} + \frac{(z'^{3}-z_{0}^{3})(y'-y_{0})}{3} \right) \int dx$$

$$= 32,932152 \text{ m}^{4}$$

Diketahui batas-batas penampang I_{XX-B}

Z_0	= 0	= 0,00 m
z'	$= \frac{1}{2} h$	= 0,99 m
y_0	= r	= 8,75 m
y'	= r + tw	= 8,81 m

$$I_{XX-B} = 4\rho \int_{r}^{R} R^{2} dA \int dx$$

$$= 4\rho \int_{y_{0}z_{0}}^{y'} \int_{z_{0}}^{z'} (y^{2} + z^{2}) dy dz \int dx$$

$$= 4\rho \int_{y_{0}}^{y'} \left(zy^{2} + \frac{z}{3} \right) \Big|_{z_{0}}^{z'} dy \int dx$$

$$= 4\rho \left(\frac{zy^{3}}{3} + \frac{z^{3}y}{3} \right) \Big|_{y_{0}}^{y'} \int dx$$

$$= 4\rho \left(\frac{(z'-z_{0})(y'^{3}-y_{0}^{3})}{3} + \frac{(z'^{3}-z_{0}^{3})(y'-y_{0})}{3} \right) \int dx$$

Diketahui batas-batas penampang I_{XX-B} $z_0 = 0 = 0,00 \text{ m}$ $\begin{array}{l} z_0 = 0 \\ z' = \frac{1}{2} h \\ r + t_W + b \end{array} = \begin{array}{l} = 0,00 \text{ m} \\ = 0,99 \text{ m} \\ 10,02 \text{ m} \\ 10,02 \text{ m} \end{array}$

y_0	= r + tW + b	= 10,02 m
y'	$= r + \frac{1}{2} tw$	= 10,03 m

$$I_{XX-C} = 4\rho \int_{r}^{R} R^{2} dA \int dx$$

$$= 4\rho \int_{y_{0}z_{0}}^{y'} \int_{z_{0}}^{z'} (y^{2} + z^{2}) dy dz \int dx$$

$$= 4\rho \int_{y_{0}}^{y'} \left(zy^{2} + \frac{z}{3} \right) \Big|_{z_{0}}^{z'} dy \int dx$$

$$= 4\rho \left(\frac{zy^{3}}{3} + \frac{z^{3}y}{3} \right) \Big|_{y_{0}}^{y'} \int dx$$

$$= 4\rho \left(\frac{(z'-z_{0})(y'^{3}-y_{0}^{3})}{3} + \frac{(z'^{3}-z_{0}^{3})(y'-y_{0})}{3} \right) \int dx$$

 $= 12,447318 \text{ m}^4$

Sehingga nilai Ixx'= $I_{XX-A} + I_{XX-B} + I_{XX-C} = 54,576419m^4$

Elemen kabel dimodelkan sebagai elemen *truss*, sedangkan *deck slab* dan *main girder* dimodelkan sebagai elemen *beam*. Untuk lebih jelasnya, permodelan jembatan dapat dilihat pada Gambar 7.6 dan Gambar 7.7.

Gambar 7.6. Analisis model jembatan dengan fishbone model

Gambar 7.7 Pemodelan elemen jembatan

7.2 Analisa Statik

Beban yang termasuk beban statik adalah beban tetap, beban hidup, dan beban angin. Beban tetap berupa berat sendiri struktur,

dan beban mati tambahan. Dalam pembebanan *fishbone model*, semua beban dijadikan sebagai beban garis atau beban titik.

7.2.1 Pembebanan

1. Beban Tetap

Beban tetap yang bekerja pada main girder adalah berupa hasil reaksi perletakan gelagar melintang akibat beban DL dan SDL. Sedangkan untuk berat sendiri main girder, deck slab, kabel dan pylon, sudah diperhitungkan oleh program bantu MIDAS CIVIL V2011

a) Beban Mati (DL)

Dari analisa pembebanan gelagar melintang didapatkan reaksi perletakan akibat beban DL (tanpa beban plat lantai) menggunakan program bantu SAP2000 adalah:

Gambar 7.8 Reaksi perletakan akibat beban DL

 $P_{DL} = 43,35 \text{ kN}$

86

Karena gelagar utama dimodelkan menjadi 1 elemen, maka ·

 $P_{DL} = 43,35 \text{ kN x } 2 = 86,7 \text{ kN}$

b) Beban Superimpose (SDL) Dari analisa pembebanan gelagar melintang didapatkan reaksi perletakan akibat beban SDL menggunakan program bantu SAP2000 adalah:

159

Gambar 7.9 Reaksi perletakan akibat beban SDL

$$P_{SDL} = 88,86 \text{ kN}$$

Karena gelagar utama dimodelkan menjadi 1 elemen, maka :

 $P_{SDL} = 88,86 \text{ kN x } 2 = 177,72 \text{ kN}$

- 2. Beban Hidup
 - g) Beban Terbagi Rata (BTR) Untuk L \leq 30 m : q = 9 kPa Untuk L > 30 m : q = 9,0 $\left(0,5+\frac{15}{L}\right)$ kPa (SNI 1725:2016 ps. 8.3.1)

Karena L terbebani adalah 960 m, maka digunakan :

q = 9,0
$$\left(0,5+\frac{15}{L}\right)$$
kPa
= 4,6 kN/m²

 $q_{100\%}$

Gambar 7.10Tampak potongan pembebanan BTR. (satuan mm)

 h) Beban Garis Terpusat (BGT) Menurut SNI 1725:2016 ps. 8.3.1 besarnya BGT adalah 49 kN/m. Karena bentang total jembatan pada desain ini adalah 480 m maka nilai Faktor Beban Dinamis (FDB) diambil sebesar 30% (Gambar 28 SNI 1725:2016) $P_{100\%} = P_{BGT} (1+FBD)$. Lebar lajur = 49 kN/m (1+30%). 14 m = 891.8 kN/m

Gambar 7.11Tampak potongan pembebanan BGT. (satuan mm)

i) Beban Pejalan Kaki

Berdasarkan SNI 1725:2016 ps 8.9 beban pejalan kaki adalah sebesar 5 kPa.

q Pejalan = w x lebar trotoar x Jumlah trotoar q Pejalan = $5 \text{ kN/m}^2 \text{ x } 1,5 \text{ m } \text{ x } 2$ q Pejalan = 15 kN/m^2

Karena gelagar utama dimodelkan menjadi 1 elemen, maka beban pejalan kaki = 15 kN/m x 2 = 30 kN/m.

j) Beban Angin

Beban angin dihitung berdasarkan SNI 1725-2016 Ps 9.6. Pada perencanaan jembatan ini, arah angin diasumsikan tegak lurus terhadap jembatan. Menentukan kecepatan angin rencana (V_{DZ})

Untuk jembatan atau bagian jembatan dengan elevasi lebih tinggi dari 10 m diatas permukaan tanah atau permukaan air, kevepatan angin rencana, V_{DZ} , harus dihitung dengan persamaan berikut :

$$V_{DZ} = 2.5 V_0 \left(\frac{V_{10}}{V_B}\right) \ln \left(\frac{Z}{Z_0}\right)$$

Dimana :

- V_{DZ} = kecepatan angin rencana pada elevasi rencana (km/jam)
- V₁₀ = kecepatan angin pada elevasi 10 m di atas permukaan tanah atau di atas permukaan air rencana (km/jam)
- V_B = kecepatan angin rencana yaitu 90 hingga 126 km/jam pada elevasi 1 m
- Z = elevasi struktur diukur dari permukaan tanah atau dari permukaan air dimana beban angin dihitung (Z > 10 m)
- V₀ = kecepatan gesekan angin, yang merupakan karakteristik meteorologi, sebagaimana ditentukan dalam Tabel 7.2, untuk berbagai macam tipe permukaan di hulu jembatan (km/jam)
- Z₀ = panjang gesekan di hulu jembatan, yang merupakan karakteristik meteorologi, ditentukan pada Tabel 7.2 (mm)

Tabel 7.2 Nilai V_0 dan Z_0 untuk berbagai kondisi permukaan hulu

Kondisi	Lahan Terbuka	Sub Urban	Kota
V ₀ (km/jam)	13,2	17,6	19,3

$Z_0 (mm) = 70$	1000	2500
-----------------	------	------

Karena jembatan terletak di tengah kota, maka :

$$V_{DZ} = 2,5x19,3 \left(\frac{100}{90}\right) \ln\left(\frac{30000}{2500}\right) = 133 \text{ km/jam}$$

Beban angin pada struktur (EW_S)

Berdasarkan SNI 1725-2016 Ps 9.9.1.1 beban angin pada struktur dihitung menggunakan rudmus :

$$P_D = P_B \left(\frac{V_{DZ}}{V_B}\right)^2$$

Dimana :

PB = tekanan angin dasar seperti yang ditentukan dalam Tabel 7.3 (MPa)

Komponen	Angin tekanan	Angin hisap			
bangunan atas	(MPa)	(MPa)			
Rangka, kolom, dan pelengkung	0,0024	0,0012			
Balok	0,0024	N/A			
Permukaan datar	0.0019	N/A			

Tabel 7.3 Tekanan angin dasar

Gaya total beban angin tidak boleh diambil kurang dari 4,4 kN/m pada bidang tekan dan 0,385 kPa pada bidang hisap pada struktur rangka dan pelengkung, serta tidak kurang dari 4,4 kN/m pada balok atau gelagar.

$$P_D = 0,0024 \left(\frac{133}{90}\right)^2 = 0,005258 \text{ N/mm}^2$$

 $EW_S = P_D x \text{ tinggi main girder}$

- $= 0.005258 \text{ N/mm}^2 \text{ x } 2400 \text{ mm}$
- = 12,6202 N/mm
- = 12,6202 kN/m > persyaratan

Gaya angin pada kendaraan (EW_L)

Berdasarkan SNI 1725-2016 Ps 9.9.1.2 tekanan angin rencana harus dikerjakan baik pada struktur jembatan maupun pada kendaraan yang melintasi jembatan. Jembatan harus direncanakan memikul gaya akibat tekanan angin pada kendaraan, dimana tekanan tersebut harus diasumsikan sebagai tekanan menerus sebesar 1,46 N/mm, tegak lurus dan bekerja 1800 mm diatas permukaan jalan.

 $EW_{I} = 1,46 \text{ N/mm x } 1800 \text{ mm} = 2628 \text{ N}$ Beban terpusat EWL kemudian di distribusikan sebagai momen ke plat lantai, sehingga :

= 2628 N x 0,9 m = 2365,2 Nmm = 2,265 kNmm EW

3. Rekapitulasi Beban

Tuber // Renuprunabi bebuin						
Jenis Beban	Nilai	LF	Total	Satuan		
Beban Mati (DL)						
Reaksi perletakan beban DL gelagar melintang	86,7	1	86,7	kN		
Beban Superimpose (SDL)						
Reaksi perletakan beban SDL gelagar melintang	177,72	1	177,72	kN		
Beban Hidup (LL)	Beban Hidup (LL)					
Beban BTR	64,575	2	129,15	kN/m		
Beban BGT	891,8	2	1783,6	kN		
Beban Pejalan Kaki	15	2	30	kN/m		
Beban Angin (EW)						
Beban angin pada	12,62	1	12,62	kN/m		

Tabel	7.4	Reka	pitulasi	beban
-------	-----	------	----------	-------

struktur (EW _S)				
Beban angin pada kendaraan (EW _L)	2,365	1	2,365	kN-m

4. Kombinasi Pembebanan

LCB1	= DL+SDL+LL _{KASUS1} +EW _S +EW _{L1}
LCB2	= DL+SDL+LL _{KASUS2} +EW _S +EW _{L2}
LCB3	= DL+SDL+LL _{KASUS3} +EW _S +EW _{L3}
LCB4	= DL+SDL+LL _{KASUS4} +EW _S +EW _{L4}
LCB5	= DL+SDL+LL _{KASUS5} +EW _S +EW _{L5}
LCB6	= DL+SDL+LL _{KASUS6} +EW _S +EW _{L6}

Untuk pembebanan LL dan EW_L lebih jelasnya lihat Tabel 7.5 berikut:

 Tabel 7.5Kasus pembebanan LL

Tabel 7.6 Gaya-gaya dalam akibat pembebanan statik

	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
<u> </u>			(1117)	(,	(,	(,
DL + 3	DL + LL1+E	WL1+EWS				
MIN	-30324,5	-1719,44	-9424,25	-1851,16	-15114,97	-41114,04
MAX	32444,55	1719,44	9426,61	1851,16	40722,75	54490,1
DL + S	SDL + LL2+E	WL2+EWS				
MIN	-68319	-1739,47	-6297,48	-1879,32	-67718,44	-41125,66
MAX	28292,61	1731,71	14391,29	1870,51	33151,61	54519,5
DL + S	SDL + LL3+E	WL3+EWS				
MIN	-51588,5	-1731,85	-10383,42	-1870,74	-50029,96	-41116,05
MAX	30568,84	1731,85	10383,42	1870,74	37539,28	54474,19
DL + 5	SDL + LL4+E	WL4+EWS				
MIN	-44886	-1739,56	-9285,86	-1879,48	-42779,63	-41130,42
MAX	17116,33	1739,56	9281,93	1879,48	19947,59	54500,53
DL + S	SDL + LL5+E	WL5+EWS				
MIN	-40674,1	-1727,07	-5677,11	-1859,93	-19341,28	-41133,25
MAX	11880,6	1727,07	5677,11	1859,93	15322,82	54499,52
DL + 5	SDL + LL6+E	WL6+EWS				
MIN	-40434	-1727,13	-5551,42	-1859,98	-19484,22	-41131,97
MAX	12738,35	1731,67	5689,57	1870,48	16292,42	54505,72

7.3 Analisa Dinamik

Untuk pembebanan gempa digunakan *response spectrum analysis* yang terdapat pada MIDAS CIVIL V2011. Berdasarkan (RSNI 2833-201X Ps. 5.2.1.) Perancangan Jembatan Terhadap Beban Gempa, dapat dilihat posisi Kota Palembang dalam peta gempa yang dalam ketentuan ini meliputi peta percepatan puncak batuan dasar (PGA) dan respons spektra percepatan 0,2 detik dan 1 detik di batuan dasar yang mewakili *level hazard* (potensi bahaya) gempa 1000 tahun dengan kemungkinan terlampaui 7% dalam 75 tahun. Data tersebut dapat dilihat pada Tabel 7.7 berikut:

No	Level Gempa	Keterangan	Nilai
1		Percepatan puncak di	0.05-0.1 g
	7% dalam 75 tahun (gempa ≈ 1000 tahun)	batuan dasar (PGA)	
2		Respons spektra percepatan 0.2 detik di batuan dasar (S_s)	0.1-0.15 g
3		Respons spektra percepatan 1.0 detik di batuan dasar (S ₁)	0.1-0.15 g

 Tabel 7.7. Data gempa

Kemudian data diatasdiinput sebagai data *renponse spectrum*, dapat juga diperoleh data koefisien gempa dan tabel *response spectrum* dari *website* <u>www.puskim.pu.go.id</u> dengan memasukkan lokasi Kota Palembang dengan jenis batuan tanah lunak. Kemudian data diinput pada program bantu untuk kemudian diolah secara otomatis sehingga didapatkan grafik *response spectrum*. Untuk lebih jelasnya dapat dilihat pada Tabel 7.8.

Variabel	Nilai
$P_{GA}(g)$	0.146
$S_{S}(g)$	0.262
$S_{1}(g)$	0.164
C _{RS}	0.930
C _{R1}	0.945
F _{PGA}	2.132
F _A	2.462
F_V	3.309
$P_{SA}(g)$	0.311
$S_{MS}(g)$	0.645

Tabel 7.8 Nilai koefisien gempa

0.542
0.430
0.361
0.168
0.840

Berikut adalah grafik nilai *response spectrum* yang didapat dari puskim dan dari hasil analisa program MIDAS CIVIL V2011 dapat dilihat pada Gambar 7.13 dan Gambar 7.14.

spektra Puskim

Gambar 7.14 Grafik Response Spectrum hasil desain MIDAS

7.3.1 Menghitung Koefisien Respons Gempa Elastik (C_{sm})

Nilai koefisien respons gempa elastik (C_{sm}) dihitung berdasarkan RSNI 2833-201X Ps. 5.4.2.

Arah X (Longitudinal)

Gambar 7.15 *Vibration mode shape* pada mode 1 menunjukan lentur arah X

Diketahui :	
Toutput MIDAS	= 13,095 sec (mode 1)
T ₀	= 0,168 sec
Ts	= 0,840 sec
Displacement	= 0,42 m

Sehingga $T_{output MIDAS} > T_s$, maka digunakan persamaan ke 3 pada RSNI 2833-201X Ps. 5.4.2.

$$C_{\rm sm} = \frac{S_{D1}}{T} = \frac{0,361}{13,095} = 0,027568$$

Maka dapat dihitung gaya geser dasar seismik (V) yang dihitung berdasarkan RSNI 2833-201X Ps. 5.1 dengan persamaan berikut :

$$V_{\text{statik}} = \frac{C_{sm}}{R} x W t$$

Dimana :

 C_{sm} = koefisien respons gempa elastik pada moda getar

Wt = berat total struktur

R = faktor modifikasi respons

= 2 (kesepakatan komisi keselamatan jembatan dan terowongan jalan)

Nilai Wt (berat total struktur) didapat dari jumlah reaksi perletakan arah vertikal pada MIDAS, didapat : Wt = 605939.1 kN

Gambar 7.16 Reaksi perletakan arah vertikal

Sehingga :

$$V_{\text{statik}} = \frac{0,027568}{2} \times 605939,1 = 8352,196 \text{ kN}$$

0,85 V_{statik} = 0,85 x 8352,196 kN = 7099,367 kN

Arah Y (Transversal)

Gambar 7.17 *Vibration mode shape* pada mode 2 menunjukan lentur arah Y

Diketahui :

= 3,801 sec (mode 2)
= 0,168 sec
= 0,840 sec
= 0,24 m

Sehingga $T_{output MIDAS} > T_s$, maka digunakan persamaan ke 3 pada RSNI 2833-201X Ps. 5.4.2.

$$C_{\rm sm} = \frac{S_{D1}}{T} = \frac{0,361}{3,801} = 0,0949$$

Maka dapat dihitung gaya geser dasar seismik (V) yang dihitung berdasarkan RSNI 2833-201X Ps. 5.1 dengan persamaan berikut :

$$V_{\text{statik}} = \frac{C_{sm}}{R} x W t$$

Dimana :

 C_{sm} = koefisien respons gempa elastik pada moda getar

Wt = berat total struktur = 605939,1 kN

R = faktor modifikasi respons

= 3 (kesepakatan komisi keselamatan jembatan dan terowongan jalan)

Sehingga :

$$V_{\text{statik}} = \frac{0,0949}{3} \times 605939,1 = 14387,27 \text{ kN}$$

0,85 V_{statik} = 0,85 x 14387,27 kN = 12229,18 kN

7.3.2 Kontrol Pengaruh Gempa Arah X (Longitudinal)

Pada bangunan atas jembatan pengaruh gempa harus direduksi, untuk gempa pada struktur jembatan arah X memiliki faktor modifikasi respons (R) yang lebih kecil dari gempa pada struktur jembatan arah Y, hal ini terjadi karena pada arah longitudinal tidak boleh ada struktur yang leleh.

Gambar 7.18 Jembatan arah X (Longitudinal)

Pada arah X diambil nilai $R = R_{\text{statik}} = 2$, sehingga pada respons spektrum MIDAS nilai *scale factor* diubah menjadi $\frac{1}{2} = 0.5$.

Gambar 7.19 Grafik Response Spectrum arah X

Kemudian dicari nilai $V_{dinamik}$ akibat gempa arah X dengan menjumlah semua reaksi geser arah X pada semua perletakan seperti pada Gambar 7.20 berikut ini.

Gambar 7.20 Reaksi gaya geser dasar arah X

Didapat nilai $V_{dinamik}$ arah X = 8376,9 kN

Sehingga terkontrol OK karena $V_{dinamik}$ arah $X > 0,85 V_{statik}$

7.3.3 Kontrol Pengaruh Gempa Arah Y (Transversal)

Pada bangunan atas jembatan pengaruh gempa harus direduksi, untuk gempa pada struktur jembatan arah Y memiliki faktor modifikasi respons (R) yang lebih besar dari gempa pada struktur jembatan arah X, hal ini terjadi karena pada arah transversal boleh ada struktur yang leleh, seperti balok pengaku pada *pylon*.

Gambar 7.21 Jembatan arah Y (Transversal)

Pada arah Y diambil nilai R = 3, sehingga pada respons spektrum MIDAS nilai *scale factor* diubah menjadi 1/3 = 0,333.

Gambar 7.22 Grafik Response Spectrum arah Y

Kemudian dicari nilai $V_{dinamik}$ akibat gempa arah Y dengan menjumlah semua reaksi geser arah Y pada semua perletakan seperti pada Gambar 7.23 berikut ini.

Gambar 7.23 Reaksi gaya geser dasar arah Y

Didapat nilai V_{dinamik} arah Y = 16435,3 kN

Sehingga terkontrol OK karena V_{dinamik} arah Y > 0,85 V_{statik}

7.3.4 Hasil Analisa Dinamis

Berikut adalah konfigurasi beban untuk analisa dinamik yang meliputi beban tetap, SDL dan beban gempa *respon spectrum* dapat dilihat pada Tabel 7.9.

Tabel 7.9 Konfigurasi pembebanan untuk analisa dinamik

Kasus	Konfigurasi Beban
1	DL + SDL + EY (Gempa)
2	DL + SDL + EX (Gempa)

Kemudian hasil gaya-gaya dalam terbesar minimum dan maksimal disajikan pada Tabel 7.10 berikut ini :

	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
DL+SI	DL+EX					
MIN	-30080	-2627,99	-2818,49	-2854,54	-15455,25	-60681,42
MAX	9142,37	2627,99	3662,84	2854,54	11613,08	87919,08
DL+SDL+EY						
MIN	-29944	-4379,99	-2987,36	-4757 <i>,</i> 56	-15279,64	-101135,69
MAX	8935,28	4379,99	3493,97	4757,56	11344,05	146531,81

 Tabel 7.10 Gaya-gaya dalam akibat pembebanan gempa

7.4 Staging Analysis

Metode pelaksanaan/*staging analysis* konstruksi jembatan *multi-span cable stayed* ini menggunakan metode *balanced cantilever*. Lantai kendaraan/*deck* dirangkai dengan panjang pengangkatan per segmen sepanjang 8 m (menyesuaikan dengan kemampuan *form traveler* yang digunakan). Kemudian pelaksanaan pemasangan segmen –segmen *deck* menggunakan *form traveler* tipe *overhead*. Untuk mempermudah dalam analisisnya, permodelan tidak dibuat *multi-span* karena metode pelaksanaan dan jembatan adalah tipikal.

program bantu MIDAS

Tahapan pelaksanaannya dapat dilihat sebagai berikut :

1. Pembangunan jembatan dimulai dari struktur pylon.

2. Tahap berikutnya pemasangan MG1 (*Main Girder* 1) dan LK1 (Lantai Kendaraan 1) menggunakan *crane* kemudian ditempatkan di atas perancah sementara.

3. Pemasangan kabel S1 dan M1.

4. Pemasangan MG2 dan LK2, dilanjutkan pengecoran pelat beton pada LK1

5. Pemasangan kabel S2 dan M2

6. Pemasangan MG3 dan LK3, dilanjutkan pengecoran pelat beton pada LK2.

7. Pemasangan kabel S3 dan M3

8. Pemasangan MG4 dan LK4, dilanjutkan pengecoran pelat beton pada LK3.

- 9. Pemasangan kabel S4 dan M4

10.Pemasangan MG5 dan LK5, dilanjutkan pengecoran pelat beton pada LK4.

11.Pemasangan kabel S5 dan M5

12.Pemasangan MG6 dan LK6, dilanjutkan pengecoran pelat beton pada LK5.

13.Pemasangan kabel S6 dan M6

14.Pemasangan MG7 dan LK7, dilanjutkan pengecoran pelat beton pada LK6

15.Pemasangan kabel S7 dan M7

16.Pemasangan Closure, dilanjutkan pengecoran pelat beton pada LK7.

17. Selanjutnya dilakukan pekerjaan pengecoran *closure* dan pekerjaan infrastruktur pelengkap jembatan.

7.4.1 Backward Solution

Metode analisis struktur dibuat dengan metode *demolishing procedure* melalui *backward solution*yang sudah tersedia dalam program MIDAS CIVIL V2011. Dimulai dari keadaan final jembatan, kemudian dilanjutkan dengan melepas bagian per bagian hingga sampai keadaan awal.

Berikut adalah gambar pembagian segmental pengangkatan oleh *form traveler* yang telah disesuaikan dengan kemampuan dari *form traveler* itu sendiri:

7.4.2 Pembebanan

1. Beban form traveler

Pada pelaksanaan jembatan ini digunakan *form traveler* tipe *overhead. Form traveler* membebani struktur pada saat pelaksanaan.

Gambar 7.26 Contoh form traveler tipe overhead

Form traveler yang digunakan mengikuti spesifikasi milik Handan China Railway Bridge Machinery Co. Ltd., dengan spesifikasi sebagai berikut :

184

specification			
Item	Description		Spesification
1	Model		FT-S
2	Ca	apacity	100t ~ 180t
3	Segm	en Length	$3.5m \sim 8.0m$
4	Dec	k Width	5m ~ 35m
5	Bridge Cu	rvature Radius	100m-unlimited
6	Bridge Type		Balance Cantilever Box Girder or Cable Stay
7	Launching Mechanism		Hydraulic
8	Formwork Material		Metal Sheet or Plywood Sheet
9	Shape of Bridge Section		Any Shape
10	Production Cycle Time		5 days – 7 days depend on site condition, concreting capacity, concrete design, pier height, reinforcement fabrication method etc.
11	Max.	Longitudinal	7 %
	Slope	Transverse	5 %

 Tabel 7.11 FT-S Series Form-Traveler (Overhead Model) Main

 Specification

Beban form traveler (FT) $P_{FT} = 1000 \text{ kN}$

2. Beban deck jembatan

Berdasarkan spesifikasi FT yang digunakan, maka direncanakan segmen yang akan diangkat oleh FT adalah per 8 meter panjang dengan lebar *deck* adalah 20,5 m, untuk lebih jelasnya lihat Gambar 7.25.

- Gelagar Utama (*Main Girder*) w = A. rapat massa. bentang. n = 0,4736 m². 7850 kg/m³. 8 m. 2 = 59484,16 kg

- Balok Melintang (*Floor Beam*) w = q. bentang. n = 336 kg/m. 17,5 m. 2
 - = 11759,3 kg
- Balok Memanjang
 - w = q. bentang. n = 80 kg/m. 4 m. 9= 2868,48 kg
- Berat total segmental *deck* w_{TOTAL} = 59484,16 kg+11759,3 kg+2868,48 kg = 74111,94 kg = 741,119 kN

Pada saat pelaksanaan *staging analysis* beban *deck* jembatan akan dipikul oleh *form traveler* yang kemudian akan disalurkan pada jembatan. Untuk konfigurasi pembebanan dapat dilihat pada Tabel 7.11 berikut ini.

Tabel 7.12 Konfigurasi pembebanan staging analysis

Kasus	Konfigurasi Beban	
1	DL + Form Traveler	

Berikut merupakasn spesifikasi *form traveler* yang akan digunakan dalam staging analysis dapat dilihat pada Gambar 7.27. sedangkan contoh *form traveler* dapat dilihat pada Gambar 7.28.

А

А

Gambar 7.27 (a) tampak depan*form traveler*; (b) detail potongan A-A (dalam mm)

Gambar 7.28 Contoh form traveler yang dipakai

Dari perhitungan pembebanan didapatkan :

1. Form traveler	= 1000 kN
2. Segmen deck	= 741 kN

3. Beban total = 1741kN

Sebelum beban *staging analysis* diinputkan pada program MIDAS CIVIL V2011, telebih dahulu dilakukan analisa distribusi beban dari *form traveler* ke gelagar utama. Dalam analisa ini digunakan program bantu SAP 2000 V14 karena dirasa lebih mudah dan cepat, berikut ilustrasi analisa dapat dilihat pada Gambar 7.29.

Dalam permodelan dan input beban pada *form traveler* ini, berat sendiri profil baja *form traveler* diabaikan, sehingga beban yang dianalisa hanya sebesar 1741 kN dari perhitungan sebelumnya, yang meliputi berat sendiri *form traveler* dan berat *deck* per segmen pengangkatan (dengan panjang segmen 8 m).. Dari analisa menggunakan SAP 2000 V14didapatkan hasil analisa untuk reaksi dari *form traveler* akibat beban rencana. Untuk lebih jelasnya dapat dilihat pada Gambar 7.30.

Gambar 7.30 Reaksi perletakan form traveler

7.4.3 Hasil Analisa

Dalam menganalisa metode pelaksanaa dengan program bantu MIDAS CIVIL, dibuat 8 *Construction Stages* dan tetap menggunakan *fishbone model*. Beban-beban yang bekerja adalah beban sendiri jembatan, dan reaksi perletakan dari *form traveler*. Untuk lebih jelasnya dapat dilihat pada Gambar 7.31 berikut ini :

Gambar 7.31 Constuction Stages (Backward Solution)

Berikut adalah hasil *staging analysis* yang direncanakan dengan metode *demolishing procedure* melalui *backward solution* :

			0				
Load	Stage	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
Summation	CS0	-8393	0	-3316,35	0	-67846,52	0,00
Summation	CS1	-8403	0	-3316,35	0	-67846,52	0,00
Summation	CS2	-8589	0	-3969,95	0	-89674,19	0,00
Summation	CS3	-10484	0	-2802,32	0	-39855,19	0,00
Summation	CS4	-9420	0	-2880,16	0	-34873,29	0,00
Summation	CS5	-9523	0	-3113,69	0	-39855,19	0,00
Summation	CS6	-11098	0	-3736,42	0	-89674,19	0,00
Summation	CS7	-7904	0	-2490,95	0	-39855,19	0,00
Summation	CS8	-6905	0	-1245,47	0	-9963,80	0,00

 Tabel 7.13 Konfigurasi pembebanan staging analysis

Dari tabel diatas dapat dilihat bahwa gaya-gaya dalam akibat *staging analysis* tidak menentukan, karena gaya-gaya dalam yang terjadi lebih kecil dari gaya-gaya dalam akibat beban saat layan.

7.5 Analisa Gelagar Utama

Desain gelagar utama jembatan *multi-span cable-stayed* ini menggunakan *twin rectangular box girder* dengan dimensi 2100.1500.60.60 dengan rusuk pada sisi atas, bawah, kiri dan kanan seperti pada gambar 7.32.

Data perencanaan sebagai berikut :

\mathbf{S}_1	=400 mm
S_2	= 350 mm
t _r	= 20 mm
h_r	= 200 mm
	$egin{array}{c} \mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{t}_r \ \mathbf{h}_r \end{array}$

Gambar 7.32 Detail gelagar utama (satuan mm)

Berikut adalah *section data* dan *calculation result* dengan menggunakan program MIDAS CIVIL dapat dilihat pada Gambar 7.33.

ION DAMA					Section Properti	es	
6/User				- 1			
Section ID 10	Box with S	Stiffener		-		Value	Unit
Name BALCK UTAMA	P User C	10 40	scatus		Area	4.736000e+005	mm^2
					Asy	2.120000e+005	mm^2
	Sect. Name				Asz	2.760000e+005	mm^2
1		幕を見る	Ni Section		lxx	2.975757e+011	mm^4
= 3tr2 =					lyy	2.904414e+011	mm^4
	Sec Out + Net	State Profe			Izz	1.701998e+011	mm^4
	(08.).tem	A135276	a)	-	Сур	7.500000e+002	mm
wilk2 \$1	Soft Barrie			-	Cym	7.500000e+002	mm
	-	-			Czp	1.050000e+003	mm
1		2100	mm		Czm	1.050000e+003	mm
	В	1500	min.		Qyb	1.397383e+006	mm^2
	Uf.	60	mm		Qzb	1.096217e+006	mm^2
- * -	DW	60	mm		Peri:0	7.200000e+003	mm
F	51	390	mm		Peri:I	1.232000e+004	mm
	ee1	20	mm		Center:y	7.500000e+002	mm
	6.0 6.0	400	-		Center:z	1.050000e+003	mm
N1 3 - N2 4 -	32	200			y1	-7.500000e+002	mm
	112	20	mm		z1	1.050000e+003	mm
		1			y2	7.500000e+002	mm
		Consider Sh	ear Deform	ation.	z2	1.050000e+003	mm
Offset - Center-Ton					y3	7.500000e+002	mm
Change Offset					z3	-1.050000e+003	mm
	_				y4	-7.500000e+002	mm

Gambar 7.33 Analisa section data dan section properties

Didapatkan :

 $\begin{array}{l} A_g &= 0,4736 \ m^2 \\ I_{xx} &= 0,2975757 \ m^4 \\ I_{yy} &= 0,2904414 \ m^4 \\ I_{zz} &= 0,1701998 \ m^4 \end{array}$

Dalam perhitungan gelagar utama ini, *local axis* untuk perhitungan disepakati mengikuti *local axis* yang ada di MIDAS CIVIL. Dimana arah X merupakan torsi, sedangkan arah Y dan Z merupakan lentur.

7.5.1 Hasil Analisa Struktur

Analisa gelagar utama dilakukan menggunakan program bantu MIDAS CIVIL. Dengan gaya-gaya dalam diambil terbesar dari analisa statik, dinamik dan *staging analysis* sebagai berikut :

mouei							
	Axial	Shear-y	Shear-z	Torsion	Moment-y	Moment-z	
	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)	
Max	32.444,55	4.379,99	14.391,29	4.757,56	40.722,75	146.531,81	
Min	-68.318,98	-4.379,99	-10.383,42	-4.757,56	-67.718,44	-101.135,69	

 Tabel 7.14 Gaya dalam hasil analisa menggunakan fishbone

 model

Karena hasil diatas merupakan hasil analisa *fishbone model*, dimana elemen gelagar utama digabung menjadi satu eleman, maka hasil-hasil di atas dibagi dua seperti pada tabel berikut ini :

Tabel 7.15 Gaya dalam untuk satu gelagar utama

	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
Max	16.222,28	2.190,00	7.195,65	2.378,78	20.361,38	73.265,91
Min	-34.159,49	-2.190,00	-5.191,71	-2.378,78	-33.859,22	-50.567,85

7.5.2 Kontrol Kemampuan Penampang a. Analisa Kuat Aksial

Analisa Batang Tarik (SNI 1729-2015 D)

Pn = Ag. fy

- $= 4736. 10^{2} \text{ mm}^{2}. 500 \text{ N/mm}^{2}$
- = 236800000 N
- = 236800 kN

Syarat Pu < \phi Pn

Pu = 17062,055 kN

Analisa Batang Tekan (SNI 1729-2015 E) Analisa kelangsingan Sumbu Z

$$\lambda r = 5{,}70\sqrt{\frac{E}{fy}} = 114$$

$$h/t_w = \frac{1980}{60} = 33$$

 $h/t_w < \lambda r$, maka elemen non-langsing

$$r_{z} = 599,4786 \text{ mm (SAP2000)}$$

$$\lambda_{z} = \frac{K_{z}.L_{z}}{r_{z}}$$

$$L_{z} = 16000 \text{ mm (jarak antar kabel)}$$

$$\lambda_{z} = \frac{1.16000}{599,4786}$$

$$= 26,69$$

Sumbu Y

$$\lambda r = {}_{1,40}\sqrt{\frac{E}{fy}} = 28$$

b/t_f = $\frac{1980}{60} = 33$

 $b/t_f < \lambda r$, maka elemen non-langsing

$$r_{y} = 783,111$$

$$\lambda_{y} = \frac{K_{y}.L_{y}}{r_{y}}$$

$$L_{y} = 4000 \text{ (jarak antar gelagar melintang)}$$

$$\lambda_{y} = \frac{1.4000}{783,111} = 5,108$$

Digunakan $\lambda = \frac{K.L}{r}$ terbesar adalah $\lambda_z = 26,69$

Tegangan kritis, F_{cr} ditentukan sebagai berikut :

$$\lambda = \frac{K.L}{r} = 26,69 < 4,71 \sqrt{\frac{E}{F_y}} = 94,2$$

Maka nilai F_{cr} :

$$F_{cr} = \begin{bmatrix} 0,658^{\frac{Fy}{Fe}} \end{bmatrix} F_{y}$$

$$F_{e} = \frac{\pi^{2}E}{\left(\frac{K.L}{r}\right)} = \frac{\pi^{2}200000}{(26,69)} = 2768 \text{ MPa}$$

$$F_{cr} = \begin{bmatrix} 0,658^{\frac{500}{2768}} \end{bmatrix} 500 = 463,6 \text{ MPa}$$

$$\varphi Pn = \varphi. F_{cr}. A_{g} = 0,9. 463,6. 47360 = 197602122 \text{ N}$$

$$= 197602,122$$
 kN

Syarat =
$$\varphi Pn > Pu$$

= 197602,122 kN >34159,49 kN ...OK

b. Analisa Kuat Geser (SNI 1729-2015 G)

 $\begin{array}{ll} \mbox{Kontrol Geser Arah Y} \\ V_{uy} &= 2190 \ \mbox{kN} \\ A_f &= 2. \ \mbox{t}_f. \ B_f \\ &= 2. \ \mbox{60. } 1500 \\ &= 180000 \ \mbox{mm}^2 \end{array}$

b/t_f = 1380/60 = 23
k_v = 5 +
$$\frac{5}{(a/b)^2}$$

= 5 + $\frac{5}{(350/1380)^2}$ = 82,37

 $a = S_1$ = jarak bersih antara pengaku = 350 mm

$$1,10\sqrt{k_v E/F_y} = 1,10\sqrt{82,37.200000/500} = 200$$

$$1,10\sqrt{k_v E/F_y} > b/t_f$$
, maka $C_v = 1,0$

$$\varphi V_n$$
 = φ . 0,6. f_y. A_f. C_v
= 0,9. 0,6. 500 N/mm². 180000 mm². 1
= 48600 kN

$$\varphi V_n = 48600 \text{ kN} > V_{uy} = 2189 \text{ kN} ..OK$$

Kontrol Geser Arah Z

$$\begin{array}{ll} V_{uz} & = 7195,645 \ kN \\ A_w & = 2. \ t_w. \ H \\ & = 2. \ 60. \ 1980 \\ & = 237600 \ mm^2 \end{array}$$

h/t_w = 1980/60 = 33
k_v =
$$5 + \frac{5}{(a/h)^2}$$

= $5 + \frac{5}{(400/1980)^2} = 127,5$

 $a = S_2$ = jarak bersih antara pengaku = 400 mm

$$1,10\sqrt{k_v E/F_y} = 1,10\sqrt{127,5.200000/500} = 248$$

$$1,10\sqrt{k_v E / F_y} > h/t_w, \text{ maka } C_v = 1,0$$

$$\varphi V_n = \varphi. \ 0,6. \ f_y. \ A_f. \ C_v$$

$$= 0,9. \ 0,6. \ 500 \ N/mm^2. \ 237600 \ mm^2. \ 1 = 64152000 \ N$$

$$= 64152 \ kN$$

$$\varphi V_n = 64152 \text{ kN} > V_{uz} = 7195,645 \text{kN} ..OK$$

c. Analisa Kuat Lentur (SNI 1729-2015 F7)

Dengan menggunakan program bantu SAP2000 didapatkan nilai modulus plastis penampang sebagai berikut

Gambar 7.34 Penampang Box

Dari analisa SAP2000 dapat dilihat bahwa ausmsi *local axis* harus disamakan, dimana arah X pada SAP2000 adalah arah Y pada MIDAS CIVIL, dan arah Y pada SAP2000 adalah arah Z pada MIDAS CIVIL, maka didapat nilai sebagai berikut : $Z_x = Z_y = 335272 \text{ cm}^3$

 $Z_x = Z_y = 355272 \text{ cm}^3$ $Z_y = Z_z = 263092 \text{ cm}^3$

Kontrol Tekuk Lokal(SNI 1729-2015 Tabel B4.1)

$$\lambda = \frac{b}{2t_f} \qquad \lambda = \frac{h}{2t_w} \\ = \frac{1380}{2.60} \\ = 12.5 \qquad = 16.5$$

$$\lambda p = \frac{1}{12} \sqrt{\frac{E}{F_y}} \qquad \lambda p = \frac{2}{242} \sqrt{\frac{E}{F_y}} = \frac{1}{12} \sqrt{\frac{2.10^6}{500}} = 224 \qquad = 484$$

 $\lambda < \lambda p \dots (OK)$

 $\lambda < \lambda p \dots (OK)$

Maka gelagar box termasuk penampang kompak. Maka berdasarkan SNI 1729-2015 F7.1 nilai $M_n = Z$. F_v

Momen Arah Z $M_{uz} = 73265,91 \text{ kNm}$ $M_{nz} = M_{pz}$ $= Z_z \cdot F_v$ = 263092000. 500 $= 1.3155.10^{11}$ Nmm = 131546 kNm $\phi M_{nz} = 0.9.131546 \text{ kNm}$ $= 118391,4 \text{ kNm} > M_{uz} = 73265,91 \text{ kNm}$ (OK) Momen Arah Y M_{uv} = 33859,22 kNm $= M_{pv}$ M_{nv} $= Z_v \cdot F_v$ = 335372000. 500 $= 1.6769.10^{11}$ Nmm = 167686 kNm $\phi M_{ny} = 0.9.167686 \text{ kNm}$ $= 150917,4 \text{ kNm} > M_{uz} = 33859,22 \text{ kNm} (OK)$

d. Kombinasi Akibat Lentur + Aksial (SNI 1729-2015 H1) $\frac{P_r}{P_c} = \frac{34159,49}{197602,12} = 0,17 \le 0,2.$ Maka digunakan rumus 2

Dimana :

Pr	$= P_u$
Pc	$= \phi P_n$
M _{rz}	$= M_{uz} = 73.265,91 \text{ kNm}$
M _{cz}	$= \varphi M_{nz} = 118.391,40 \text{ kNm}$
M _{ry}	$= M_{uy} = 33.859,22 \text{ kNm}$
M _{cy}	$= \varphi M_{ny} = 150.917,40 \text{ kNm}$

$$\frac{P_r}{2P_c} + \left(\frac{M_{rz}}{M_{cz}} + \frac{M_{ry}}{M_{cy}}\right) \le 1,0$$

0,93 <u>≤</u>1,0

e. Analisa Kuat Torsi (SNI 1729-2015 H3)

Kontrol kemampuan torsi untuk penampang persegi berongga.

 $\begin{array}{l} T_{\rm u} &= 2378,78 \ \rm kNm \\ \rm h/t &= 1980/60 \\ &= 33 \end{array}$

$$2,45\sqrt{\frac{E}{f_y}} = 2,45\sqrt{\frac{2.10^5}{500}} = 49$$
 h/t = 33, Maka niali F_{cr} dicari

dengan persamaan berikut :

$$F_{cr} = 0.6. F_y$$

= 0.6. 500 N/mm² = 300 N/mm²

Untuk penampang persegi berongga konstanta nilai torsi, C, dapat secara konservatif diambil sebagai berikut :

C =
$$2(B-t)(H-t)t-4,5(4-\pi t)^3$$

= $2(1500-60)(2100-60)60-4,5(4-\pi.60)^3$
= 380727988 mm^3

 $\begin{array}{ll} T_{c} & = 0,9.\ F_{cr}.\ C \\ & = 102796,557\ kNmm > T_{u} = 2378,78kNm.\ .\ OK \end{array}$

7.5.3 Analisa Jika Satu Kabel Putus

Gambar 7.35 Asumsi 1 kabel putus

Pada kasus ini diasumsikan satu kabel putus, dan berikut hasil nilai gaya dalam dari anlisa struktur setelah satu kabel putus dengan pembebanan dan kombinasi yang sama pada analisa sebelumnya. Didapatkan gaya-gaya dalam terbesar akibat beban statis dan beban gempa.

	mouer Kerku sutu kuber putus						
	Axial	Shear-y	Shear-z	Torsion	Moment-y	Moment-z	
	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)	
Max	31.870,28	11.837,36	14.673,40	20.321,70	40.068,38	152.443,71	
Min	-69.613,40	-6.286,99	-10.152,23	-8.684,11	-69.096,49	-121.626,23	

 Tabel 7.16 Gaya dalam hasil analisa menggunakan fishbone

 model ketika satu kabel putus

Karena hasil diatas merupakan hasil analisa *fishbone model*, maka hasil-hasil di atas dibagi dua seperti pada tabel berikut ini :

 Tabel 7.17 Gaya dalam untuk satu gelagar utama ketika satu kabel putus

	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
Max	15.935,14	5.918,68	7.336,70	10.160,85	20.034,19	76.221,86
Min	-34.806,70	-3.143,50	-5.076,12	-4.342,06	-34.548,25	-60.813,12

a. Analisa Kuat Aksial

Analisa Batang Tarik (SNI 1729-2015 D) Pn = Ag. fy = 4736. 10^2 mm^2 . 500 N/mm² = 236800000 N = 236800 kN

Analisa Batang Tekan (SNI 1729-2015 E) Analisa kelangsingan Sumbu Z

$$\lambda r = 5{,}70\sqrt{\frac{E}{fy}} = 114$$

$$h/t_w = \frac{1980}{60} = 33$$

 $h/t_w < \lambda r$, maka elemen non-langsing

$$r_z = 599,4786 \text{ mm} (\text{SAP2000})$$

$$\lambda_z = \frac{K_z \cdot L_z}{r_z}$$

 $L_z = 16000 \text{ mm} \text{ (jarak antar kabel)}$

$$\lambda_z = \frac{1.16000}{599,4786} = 26,69$$

Sumbu Y

$$\lambda r = 1,40 \sqrt{\frac{E}{fy}} = 28$$

b/t_f = $\frac{1980}{60} = 33$

 b/t_f
 < λr , maka elemen non-langsing

$$r_{y} = 783,111$$

$$\lambda_{y} = \frac{K_{y}.L_{y}}{r}$$

 $L_y = 4000$ (jarak antar gelagar melintang)

$$\lambda_{y} = \frac{1.4000}{783,111} = 5,108$$

Digunakan $\lambda = \frac{K.L}{r}$ terbesar adalah $\lambda_z = 26,69$

Tegangan kritis, F_{cr} ditentukan sebagai berikut :

$$\lambda = \frac{K.L}{r} = 26,69 < 4,71 \sqrt{\frac{E}{F_y}} = 94,2$$

Maka nilai F_{cr} :

$$\mathbf{F}_{\rm cr} = \left[\mathbf{0,658}^{\frac{Fy}{Fe}}\right] F_{y}$$

F_e =
$$\frac{\pi^2 E}{\left(\frac{K.L}{r}\right)} = \frac{\pi^2 200000}{(26,69)} = 2768$$
 MPa
F_{cr} = $\begin{bmatrix} 0,658^{\frac{500}{2768}} \end{bmatrix}$ 500 = 463,6 MPa

 $\varphi Pn = \varphi. F_{cr.} A_g = 0.9.463.6.47360 = 197602122 N$ = 197602.122 kN

Syarat =
$$\varphi$$
Pn>Pu
= 197602,122 kN>34806,70 kN ...OK

b. Analisa Kuat Geser (SNI 1729-2015 G)

Kontrol Geser Arah Y

$$\begin{array}{ll} V_{uy} & = 5918,\!68 \; kN \\ A_f & = 2.\; t_f . \; B_f \\ & = 2.\; 60.\; 1500 \\ & = 180000 \; mm^2 \end{array}$$

$$b/t_f = 1380/60 = 23$$

$$k_{v} = 5 + \frac{5}{(a/b)^{2}}$$
$$= 5 + \frac{5}{(350/1380)^{2}} = 82,37$$

 $a = S_1$ = jarak bersih antara pengaku = 350 mm

$$1,10\sqrt{k_v E/F_y} = 1,10\sqrt{82,37.200000/500} = 200$$

 $1,10\sqrt{k_v E/F_y} > b/t_f$, maka $C_v = 1,0$

$$\begin{split} \phi V_n &= \phi. \ 0.6. \ f_y. \ A_f. \ C_v \\ &= 0.9. \ 0.6. \ 500 \ N/mm^2. \ 180000 \ mm^2. \ 1 \end{split}$$

= 48600 kN

 $\varphi V_n = 48600 \text{ kN} > V_{uv} = 5918,68 \text{ kN} ..OK$

Kontrol Geser Arah Z

$$V_{uz} = 7336,7 \text{ kN}$$

 $A_w = 2. t_w. H$
 $= 2.60.1980$
 $= 237600 \text{ mm}^2$

h/t_w = 1980/60 = 33
k_v =
$$5 + \frac{5}{(a/h)^2}$$

= $5 + \frac{5}{(400/1980)^2} = 127,5$

 $a = S_2$ = jarak bersih antara pengaku = 400 mm

$$1,10\sqrt{k_v E/F_y} = 1,10\sqrt{127,5.200000/500} = 248$$

$$1,10\sqrt{k_v E/F_y} > h/t_w$$
, maka $C_v = 1,0$

$$\varphi V_n$$
 = φ . 0,6. f_y. A_f. C_v
= 0,9. 0,6. 500 N/mm². 237600 mm². 1 = 64152000 N
= 64152 kN

$$\varphi V_n = 64152 \text{ kN} > V_{uz} = 7336,7 \text{ kN} ..OK$$

c. Analisa Kuat Lentur (SNI 1729-2015 F7)

Dengan menggunakan program bantu SAP2000 didapatkan nilai modulus plastis penampang sebagai berikut

Gambar 7.36 Penampang Box

Dari analisa SAP2000 dapat dilihat bahwa ausmsi *local axis* harus disamakan, dimana arah X pada SAP2000 adalah arah Y pada MIDAS CIVIL, dan arah Y pada SAP2000 adalah arah Z pada MIDAS CIVIL, maka didapat nilai sebagai berikut : $Z_x = Z_y = 335272 \text{ cm}^3$ $Z_y = Z_z = 263092 \text{ cm}^3$

Kontrol Tekuk Lokal(SNI 1729-2015 Tabel B4.1)

$$\lambda = \frac{b}{2t_f} \qquad \lambda = \frac{h}{2t_w}$$

$$= \frac{1380}{2.60} \qquad = \frac{1980}{2.60}$$

$$= 12,5 \qquad = 16,5$$

$$\lambda p = \frac{1}{2}\sqrt{\frac{E}{F_y}} \qquad \lambda p = \frac{2,42}{\sqrt{\frac{E}{F_y}}}$$

$$= \frac{1}{12}\sqrt{\frac{2.10^6}{500}} \qquad = 2,42\sqrt{\frac{2.10^6}{500}}$$

$$= 22,4 \qquad = 48,4$$

 $\lambda < \lambda p \dots (OK)$ $\lambda < \lambda p \dots (OK)$

Maka gelagar box termasuk penampang kompak. Maka berdasarkan SNI 1729-2015 F7.1 nilai M_n = Z. F_y

Momen Arah Z

$$M_{uz} = 76221,86 \text{ kNm}$$

 $M_{nz} = M_{pz}$
 $= Z_z. F_y$
 $= 263092000.500$
 $= 1,3155.10^{11}\text{Nmm}$
 $= 131546 \text{ kNm}$
 $\phi M_{nz} = 0,9.131546 \text{ kNm}$
 $= 118391,4 \text{ kNm} > M_{uz} = 76221,86 \text{ kNm}$ (OK)
Momen Arah Y
 $M_{uy} = 34548,25 \text{ kNm}$
 $M_{ny} = M_{py}$
 $= Z_y. F_y$
 $= 335372000.500$
 $= 1,6769.10^{11} \text{ Nmm}$
 $= 167686 \text{ kNm}$
 $\phi M_{ny} = 0,9.167686 \text{ kNm}$

$$\varphi M_{ny} = 0.9.167686 \text{ kNm}$$

= 150917,4 kNm >M_{uz} = 34548,25kNm (OK)

d. Kombinasi Akibat Lentur + Aksial (SNI 1729-2015 H1)

 $\frac{P_r}{P_c} = \frac{34806,70}{197602,12} = 0,18 \le 0,2.$ Maka digunakan rumus 2

Dimana : $P_r = P_u$ $\begin{array}{ll} P_c & = \phi P_n \\ M_{rz} & = M_{uz} \end{array} = 76221,86 \ kNm \end{array}$

$$\begin{array}{lll} M_{cz} & = \phi M_{nz} = 118.391,40 \ kNm \\ M_{ry} & = M_{uy} = 34548,25 \ kNm \\ M_{cy} & = \phi M_{ny} = 150.917,40 \ kNm \end{array}$$

$$\frac{P_r}{2P_c} + \left(\frac{M_{rz}}{M_{cz}} + \frac{M_{ry}}{M_{cy}}\right) \le 1,0$$

0,961 \le 1,0

e. Analisa Kuat Torsi (SNI 1729-2015 H3)

Kontrol kemampuan torsi untuk penampang persegi berongga.

 $\begin{array}{ll} T_{u} &= 10160,85 \ kNm \\ h/t &= 1980/60 \\ &= 33 \end{array}$

$$2,45\sqrt{\frac{E}{f_y}} = 2,45\sqrt{\frac{2.10^5}{500}} = 49$$
 h/t = 33, Maka niali F_{cr} dicari

dengan persamaan berikut :

$$F_{cr} = 0.6. F_y$$

= 0.6. 500 N/mm² = 300 N/mm²

Untuk penampang persegi berongga konstanta nilai torsi, C, dapat secara konservatif diambil sebagai berikut :

C =
$$2(B-t)(H-t)t-4,5(4-\pi t)^3$$

= $2(1500-60)(2100-60)60-4,5(4-\pi.60)^3$
= 380727988 mm^3

$$T_{c} = 0.9. F_{cr}. C$$

= 0.9. 300. 380727988
= 1.028.10¹¹ Nmm
= 102796,557 kNm > T_{u} = 10160,85 kNm. . OK

208

Dari kelima kontrol analisa yang meliputi :

- 1. Analisa kuat aksial tarik dan tekan
- 2. Analisa kuat geser arah Y dan Z
- 3. Analisa kuat lentur arah Y dan Z
- 4. Analisa kombinasi lentur dan aksial
- 5. Analisa kuat torsi

Diketahui bahwa :

- 1. Dalam keadaan struktur utuh gelagar utama (*box girder*) mampu menahan beban-beban yang terjadi saat beban layan dan beban gempa.
- 2. Dalam keadaan struktur kabel putus 1 gelagar utama (*box girder*)juga masih mampu menahan beban-beban yang terjadi saat beban layan dan beban gempa.Tetapi, dalam kenyataannya kabel yang putus tetap harus segera diperbaiki.

7.5.4 Sambungan Gelagar Utama (Box Girder)

Sambungan gelagar utama berupa sambungan baut dengan pelat baja. Sambungan pada semua elemen gelagar utama dianggap memikul beban yang sama, dengan gaya-gaya dalam sebagai berikut :

 $\begin{array}{ll} P_{u} & = 34159,49 \ kN \\ V_{uy} & = 2190 \ kN \\ V_{uz} & = 7195,65 \ kN \\ M_{uy} & = 33859,22 \ kNm \\ M_{uz} & = 73265,91 \ kNm \\ T_{u} & = 2378,78 \ kNm \end{array}$

Data perencanaan:

Baut Tipe Tumpu

d = $\emptyset 35 \text{ mm}$ fu = 500 Mpa Ab = 0,25. π .(35 mm)² = 962,5 mm² 210

dp = 35 mm + 1,5 mm = 36,5 mm

Pelat penyambung

tp = 30 mm (2 bidang geser)

- BJ = 55
- fu = 550 Mpa
- fy = 500 Mpa

1. Kuat nominal satu (1) baut

a. Kuat geser (Vd)

\mathcal{O}	
r_1	= 0,5 (tidak ada ulir pada bidang geser)
m	= 2 (dua bidang geser)
φVn	$= \varphi_{f.} r_{1.} f_{u}^{b}$. Ab. m
	$= 0,75.0,5.550.962,5.2.10^{-3}$
	= 397,031 kN (menentukan)

b. Kuat tumpu (Rd)

Dipakai nilai kuat nominal satu (1) baut $\varphi Vn = 397,031 \text{ kN}$

Syarat jarak baut ke tepi pelat

1,5db	\leq	S	\leq 4tp + 100 atau 200 mm
1,5(35 mm	ı)≤	S	$\leq 4.30 + 100$
52,5 mm	\leq	S	\leq 220 mm

Dipakai nilai $S_1 = 60 \text{ mm}$

S١	yarat	jarak	k baut	ke te	pi	pelat

1,5db	\leq	S	\leq 4tp + 100 atau 200 mm
1,5(35 mr	n)≤	S	$\leq 4.30 + 100$
52,5 mm	\leq	S	\leq 220 mm
Dipakai n	ilai S ₁	= 60 mm	

Kebutuhan baut box

Perhitungan jumlah baut dihitung dengan mempertimbangkan semua gaya-gaya dalam, baik itu gaya geser, aksial, momen dan torsi.

a. Sambungan pada plat sayap

Untuk menghitung jumlah baut pada pelat sayap penampang box, terlebih dahulu dicari gaya-gaya apa saja yang akan ditahan oleh pelat sayap penampang box, seperti berikut ini :

$$V_{uy} = 2190 \text{ kN}$$

$$\frac{M_{uz}}{B} = \frac{73265,91}{1,5} = 48843,93 \text{ kN}$$

$$P_{u1} = P_u \left(\frac{B}{B+H}\right) = 34159,49 \left(\frac{1,5}{1,5+2,1}\right)$$

$$= 14233,1208 \text{ kN}$$

$$T_{u1} = \frac{T_u}{B} \left(\frac{B}{B-H}\right) = \frac{2378,78}{1,5} \left(\frac{1,5}{1,5}\right)$$

$$T_{ul} = \frac{T_u}{H} \left(\frac{B}{B+H}\right) = \frac{23/8}{2,1} \left(\frac{1,5}{1,5+2,1}\right)$$

= 471,98 kN

Kemudian dicari resultan gaya nya :

$$R_{s} = \sqrt{(2190 + 471,98)^{2} + (14233,12 + 48843,93)^{2}}$$

= 63141,45 kN

n baut
$$= \frac{R_s}{V_d} = \frac{63141,45}{397,031} = 159$$
 baut

dipakai = 160 baut untuk plat sayap atas dan bawah

b. Sambungan pada plat badan

Untuk menghitung jumlah baut pada pelat badan penampang box, terlebih dahulu dicari gaya-gaya apa saja yang akan ditahan oleh pelat badan penampang box, seperti berikut ini :

$$V_{uz} = 7195,65 \text{ kN}$$

$$\frac{M_{uy}}{H} = \frac{33859,22}{2,1} = 16123,43 \text{ kN}$$

$$P_{u2} = P_u \left(\frac{H}{B+H}\right) = 34159,49 \left(\frac{2,1}{1,5+2,1}\right)$$

$$= 19926,36 \text{ kN}$$

$$T_{u2} = \frac{T_u}{B} \left(\frac{H}{B+H}\right) = \frac{2378,78}{1,5} \left(\frac{2,1}{1,5+2,1}\right) = 925,08 \text{ kN}$$

Kemudian dicari resultan gaya nya :

$$R_{\rm B} = \sqrt{(7195,65+925,08)^2 + (16123,43+19926,36)^2} = 36895,96 \text{ kN}$$

n baut
$$= \frac{R_B}{V_d} = \frac{36895,96}{397,031} = 92,93$$
 baut

dipakai = 102 baut untuk plat badan kiri dan kanan

c. Cek kemampuan penampang setelah ada sambungan baut berdasarkan kuat putus :

An =
$$473600 \text{ mm}^2 - (2.(10+17). 36,5.54) \text{ mm}^2$$

= 367166 mm^2
 φNn = φ . fu. An
= $0,75.550 \text{ N/ mm}^2$. $0,85.367166 \text{ mm}^2$
= 151455975 N
= $151455,98\text{kN} > \text{Nu} = 35616,06 \text{ kN} \dots (\text{OK})$

Sebagai ilustrasi sambungan pada gelagar utama dapat dilihat pada Gambar 7.37 sampai Gambar 7.39 berikut ini

Gambar 7.37 Sambungan gelagar utama pada badan (satuan mm)

Gambar 7.38 Sambungan gelagar utama pada sayap (satuan mm)

Gambar 7.39 Tampak melintang sambungan gelagar utama (satuan mm)

7.5.5 Kontrol Stabilitas Aerodinamis

Kontrol terhadap stablitas aerodinamis pada jembatan cable stayed perlu dilakukakan, karena kegagalan stabilitas aerodinamis merupakan salah satu penyebab terjadinya kegagalan struktur. Analisa stabilitas pada desain ini meliputi *vortex-shedding* (tumpahan pusaran angin) dan *flutter* (efek ayunan).

7.5.6 Frekwensi Alami

Frekwensi alami dihitung menggunakan frekwensi lentur balok (f_B) dan frekwensi alam akibat torsi (f_T) yang didekati menggunakan persamaan berikut ini :

$$f_{\rm B} = \frac{1,1}{2\pi} \left(\frac{g}{v_{\rm maks}}\right)^{1/2}$$

$$f_{\rm B} = \frac{1,1}{2\pi} \left(\frac{9,81}{0,4}\right)^{1/2}$$

$$f_{\rm B} = 0,867 \, {\rm Hz}$$

$$f_{T} = \frac{\overline{b}}{2r} f_{B}$$

$$f_{\rm T} = \frac{19}{2x8,7} 0,867$$

$$f_T = 0,95 \text{ Hz}$$

Dimana :

f _B	= frekwensi alami lentur balok (Hz)
g	= percepatan gravitasi $(m/s^2) = 9,81 \text{ kg/cm}^2$
V _{maks}	= deformasi statis maksimum akibat berat sendiri (m)
	= 0,4 m (dari analisa MIDAS CIVIL)
\mathbf{f}_{T}	= frekwensi alami torsi (Hz)
b	= jarak kabel arah melintang (m) = 19 m
r	= jari-jarigirasi penampang lantai kendaraan (m) = 8,7m

Dengan program bantu MIDAS CIVIL nilai frekwensi alami lentur balok (f_B) dan frekwensi alami torsi (f_T) dapat dicari dengan menggunakan *modal* melalui tahapan *mode* pada menu *result – vibration mode shapes*. Berikut adalah nilai frekwensi alami lentur balok (f_B) dan frekwensi alami torsi (f_T) yang didapat dari program bantu MIDAS CIVIL dapat dilihat pada Gambar 7.40 dan Gambar 7.41.

Gambar 7.40 Mode1 – 6 frekwensi lentur (f_B)

Gambar 7.41 Mode 17-22 frekwensi torsi (f_T)

Berikut rekapitulasi nilai frekwensi lentur (f_B) maupun frekwensi torsi (f_T) dari hasil analisa menggunakan program MIDAS CIVIL dapat dilihat pada Tabel 7.18.

Frequency Period Mode Ket. No (cycle/sec) (sec) Lentur 0,110988 9,010013 1 2 Lentur 0.385919 2,591215 3 Lentur 2,255356 0,443389 4 0,445506 2,24464 Lentur 5 0,452034 2,212222 Lentur 6 0,461775 2,165556 Lentur 7 Lentur 0,655005 1,526705 8 Lentur 0,798365 1,25256 9 0,816006 Lentur 1,225481 0,941684 1,061928 10 Lentur 11 1,026613 0,974077 Lentur 17 Torsi 1.203257 0.831077 18 1,499329 0,666965 Torsi 19 1,813287 0,551485 Torsi 20 Torsi 1,913313 0,522654 21 Torsi 2,039074 0,490419 22 0,488417 Torsi 2,04743 23 2,072378 0,482537 Torsi 24 2,145393 0,466115 Torsi 25 Torsi 2,149517 0,465221 26 Torsi 2,362017 0,423367 27 Torsi 2,413971 0,414255

Tabel 7.18 nilai f_B dan f_T

Efek vortex-shedding 7.5.7

Pada kecepatan angin tertentu yang disebut dengan kecepatan kritis, akan terjadi osilasi gaya akibat pusaran angin atau turbulensi. Untuk memperoleh nilai percepatan kritis tersebut, digunakan persamaan angka *Strouhal* (S).

S =
$$\frac{f_B h}{V}$$
 (Walther, 1999, 7.3.2 – 7.11)

Dimana :

S = angka *Strouhal*

 f_B = frekwensi alami lentur balok

- h = tinggi lantai kendaraan
- V = kecepatan angin yang dihitung berdasarkan angka Strouhal

Kecepatan angin (V) dicari dengan menggunakan persamaan angka *Strouhal*. Digunakan angka *Strouhal* (s) = 0,2, tinggi lantai kendaraan (h) = 2,60 m

$$V = \frac{f_B xh}{S}$$
$$= \frac{0,8677x2,6}{0,2}$$
$$= 11,28 \text{ m/det}$$

Kemudian dilakukan cek efek pusaran dengan angka *Reynold* (Re). Besarnya angka *Reynold* harus memenuhi persyaratan, nilai *Re* harus berkisar antara $10^5 - 10^7$ akibat kecepatan angin yang bekerja. Berikut persamaan untuk angka *Reynold*.

Re =
$$\frac{V.B}{v}$$
 (Walther, 1999, 7.3.2 – 7.10)

Dimana :

Re =angka *Reynold*

- V =kecepatan angin yang dihitung berdasarkan angka Strouhal
- B = lebar lantai kendaraan
- v = viskositas kinematik udara (0,15 cm²/dt)

Re =
$$\frac{V.B}{v}$$

= $\frac{11,28x20,5}{0,15x10^{-4}}$
= 1,54.10⁶ (10⁵ < Re < 10⁷)

Akibat terpaan angin, akan terjadi gaya angkat (*uplift*) yang besarnya dapat dihitung dengan persamaan berikut :

Fo =
$$\rho \frac{V^2}{2}$$
 Ch (Walther, 1999, 7.3.2 – 7.13)

Dimana :

besarnya nilai koefisien C dapat dicari dari grafik berikut ini, lihat Gambar 7.42 dan Gambar 7.43 :

Gambar 7.42 Macam penampang deck

220

Grafik koefisien C_N diatas merupakan hasil dari tiga bentuk penampang lantai kendaraan yang pernah dibangun. Berdasarkan desain penampang jembatan *cable-stayed* ini, penampang pertama cukup mewakili bentuk penampang lantai kendaraan yang didesain. Dengan α diambil sebesar 0°, maka akan didapat nilai koefisien C_N sebesar 0,4. Tetapi pada nyatanya, angin tidak selalu mengenai lantai kendaraan dalam arah horizontal secara sempurna. Nilai α dapat berubah berkisar antara 3° sampai dengan 9°, maka sebagai pembanding diambil nilai α rata-rata sebesar 6°. sehingga didapat nilai C_N sebesar 0,38.

Fo =
$$\rho \frac{V^2}{2}$$
Ch
= 1,3 $\frac{11,28^2}{2}$ 0,38x2,6
= 81,712 N/m'

Gaya ini akan menimbulkan osilasi gelagar yang amplitudonya dapat dihitung dengan menggunakan persamaan berikut ini :

$$\hat{\mathbf{v}} = \frac{\pi}{\delta} \frac{\mathbf{F}_{o}}{\mathbf{m}} \mathbf{v}_{\max}$$

dimana :

Ŷ	= amplitudo osilasi
δ	= penurunan logaritmik (koefisien peredaman)
Fo	= gaya angkat
V _{max}	= deformasi statis maksimum karena berat sendiri
m	= berat sendiri lantai kendaraan per meter panjang

Dari hasil analisa dengan program MIDAS didapat nilai v_{max} yang terjadi akibat berat sendiri struktur sebesar 0,4m. Penurunan logaritmik (koefisien peredam) ditentukan 0,05. Berat sendiri lantai kendaraan adalah 110,92 kN/m.

$$\hat{\mathbf{v}} = \frac{\pi}{\delta} \frac{F_{o}}{m} \mathbf{v}_{max}$$

= $\frac{\pi}{0.05} \frac{81,712}{110,92x10^{3}} 0,4x10^{3}$
= 18,51 mm

Bila perlu, perhitungan dapat dilanjutkan dengan mencari nilai percepatan getaran yang dihasilkan dengan persamaan berikut :

$$\ddot{v} = 4\pi^2 x f^2 x \hat{v}$$

= $4\pi^2 x 0,8667^2 x (18,51x10^{-3})$
= 0,55 m/s²

Digunakan f_B maka dapat diketahui klasifikasi efek psikologis berdasarkan amplitudo (v) dengan melakukan plot nilai v dan f_B pada grafik terkait. Untuk lebih jelasnya dapat dilihat pada Gambar 7.44

Gambar 7.44 Klasifikasi efek psikologis berdasarkan amplitudo (Walther, 1999)

Sedangkan untuk klasifikasi efek psikologi berdasarkan percepatan getaran (\ddot{v}) dapat diperoleh dengan melakukan plot nilai \ddot{v} dan f_B pada grafik terkait. Untuk lebih jelasnya lihat Gambar 7.45.

Gambar 7.45 Klasifikasi efek psikologis berdasarkan percepatan getaran (Walther, 1999)

Dari kedua grafik diatas didapat kesimpulan bahwa desain jembatan ini berada pada area (A), yang berarti bahwa desain dapat diterima (*acceptable*) baik berdasarkan nilai amplitudo (v) vs frekwensi alami lentur balok (f_B) maupun nilai percepatan getaran (\ddot{v}) vs frekwensi alami torsi (f_T).

7.5.8 Efek Flutter

Fenomena ini terjadi pada kecepatan kritis yang menimbulkan ayunan lentur (f_B) dan ayunan torsi (f_T), yang harus dihindari adalah nilai amplitudo akibat ayunan lentur dan ayunan torsi tidak terjadi secara bersamaan. Untuk desain yang ideal nilai perbandingan dari keduanya sebaiknya memiliki perbedaan fase sebesar $\pi/2$ atau berkisar 1,57 detik. Untuk lebih jelasnya lihat ilustrasi pada Gambar 7.46 berikut ini.

(Walther, 1999)

Untuk mendapatkan kecepatan kritis teoritis (V_{kritis} teoritis), dapat digunakan metode KLOEPPEL, dengan persamaan sebagai berikut :

 $\begin{array}{ll} V_{kritis \ teoritis} & = 2\pi.f_B.b \\ b & = 1/2 \ lebar \ lantai \ kendaraan \end{array}$

Dimana nilai $V_{kritis teoritis}$ dapat dicari secara grafis dari Gambar 7.38 dan tergantung dari tiga (3) besaran berikut ini :

1.
$$\mu = \frac{m}{\pi \rho b^2}$$

Dimana :
m = berat sendiri lantai kendaraan per meter lari
= 110,92 kN/m = 11092 kg/m

$$\rho$$
 = berat volume udara
= 1,3 kg/m³
b = setengah lebar lantai kendaraan
= 10,25 m
 μ = $\frac{11092}{\pi x 1,3x 10,25}$ = 264,96
2. δ/b = 0,05/10,25
= 0,00487
3. ϵ = f_T/f_B = 0,95/0,86 = 1,1

Untuk menentukan nilai kecepatan kritis teoritis pelu dicari nilai faktor pengali yang didapatkan dari Gambar 7.47 dengan melakukan plot nilai perbandingan frekwensi torsi dengan frekwensi lentur (f_T/f_B).

δ = 0,05 r/b = 8,7/10,25 = 0,84 dipakai = 1,00

Gambar 7.47 Kecepatan kritis teoritis untuk efek ayunan (Walther, 1999)

Dari nilai $\varepsilon = 1,1$ maka didapat nilai. $\frac{V_{kritis-teoritis}}{2\pi f_B b} = 4 \dots (\text{dari Gambar 7.38})$ $V_{kritis teoritis} = 4.(2\pi.f_B.b)$ $= 4.(2\pi.0,8667.(10,25))$ = 4.(55,81 m/dt) = 223,24 m/dt

Besar kecepatan kritis teoritis ini harus dikoreksi menjadi kecepatan kritis aktual, menggunakan grafik berikut, lihat Gambar 7.48.

Dari grafik diatas, dengan menyesuaikan bentuk penampang yang paling mendekati didapat nilai $\eta = 0.6$.

 $V_{kritis actual} = 0,6.223,24 \text{ m/dt}$ = 133,944m/dt

Tetapi pada kondisi nyata, angin tidak selalu mengenai lantai kendaraan dalam arah horizontal secara sempurna. Terkadang nilai α dapat berubah berkisar antara 3° sampai dengan 9°, maka sebagai pembanding coba diambil nilai α rata-rata sebesar 6°. Untuk jenis lantai kendaraan dengan penampang box, perlu ada koreksi sebesar 1/3 (Walther, 1999).

 $\eta (\alpha = \pm 6^{\circ}) = (1/3).0,6$ = 0,2Sehingga kecepatan aktual :

 $V_{\text{kritis actual}} = 0.2.223,24 \text{m/dt}$

 $= 44,65 \text{m/dt} \dots (\text{OK}) > V_{\text{desain}} = 37 \text{ m/dt}$

Hal ini menunjukkan bahwa, apabila pada kondisi nyata dilapangan bertiup angin dengan kecepatan 44,65 m/dt, maka akan terjadi efek ayunan (*flutter*). Maka dari itu kecepatan angin

di lapangan tidak boleh lebih dari itu, sedangkan pada perencanaan di lapangan telah didesain besarnya kecepatan angin 133 km/jam atau 37 m/dt, sehingga analisa efek ayunan memenuhi syarat. Analisa ini perlu dilanjutkan dengan pembuktian menggunakan jembatan model berskala pada *wind tunnel*, agar diperoleh hasil yang lebih akurat.

7.6 Struktur Kabel

Struktur kabel merupakan salah satu struktur utama pada jembatan *cable-stayed*, struktur kabel akan memikul beban dari lantai kendaraan. Beban yang dipikul berupa beban tetap, beban hidup, beban angin, beban gempa, dan beban saat pelaksanaan. Semua beban tersebut kemudian akan disalurkan ke menara (*pylon*).

7.6.1 Data Perencanaan

Pada bab preliminary desain telah dijelaskan bahwa ada dua jenis kabel pararel *VSL 7-wire strand* yang dapat digunakan untuk desain jembatan kabel. Pada desain ini digunakan kabel yang spesifikasinya disesuaikan dengan persyaratan RSNI T-03-2005 pasal 12.6, yang menyatakan bahwa kabel pemikul utama yang dipergunakan untuk struktur-struktur jembatan kabel dan jembatan gantung harus dibuat dari material mutu tinggi dengan kuat tarik minimum 1800 N/mm², maka dipakai kabel tipe ASTM A 416-06 Grade 270.

Standard	ASTM A 416-06 Grade 270	Euronorme 138-3		
Ø (mm)	15,2	15,7		
$A_{s} (mm^{2})$	140	150		
$f_u(f_{ijin}=0,45f_u)(Mpa)$	1860 (837)	1770 (796,5)		
Ukurananker	7, 12, 19, 31, 37, 61, dan 91 strand			

Tabel 7.19 Jenis kabel dan anker

Dalam perencanaan akan digunakan kabel tipe I (15,2 mm; 1860 MPa). Kabel bentang tepi diberi symbol "s" dan bentang

tengah diberi symbol "m". Penomoran kabel dimulai dari kabel yang terdekat dengan *pylon*.

Gambar 7.49 Tatanan system kabel dan penamaan kabel

Jumlah *strand* dan luas kabel ditentukan sebagai awal seperti pada BAB IV yaitu :

No	θ	Wλ+P	ai	Asc ₀	Asc ₀	n	Asc
INU.	(°)	(KN)	(m)	(m ²)	(Mm^2)	kabel	mm2
M_1	76	6073,4	16	0.0075	7526	54	7526
M ₂	63	6073,4	32	0.0082	8204	59	8204
M ₃	53	6073,4	48	0.0092	9170	65	9170
M_4	56	6073,4	64	0.0102	10208	73	10208
M ₅	40	6073,4	80	0.0115	11460	82	11460
M ₆	36	6073,4	96	0.0126	12579	90	12579
M ₇	33	6073,4	112	0.0136	13630	97	13630
\mathbf{S}_1	76	6073,4	16	0.0075	7526	54	7526
S ₂	63	6073,4	32	0.0082	8204	59	8204

Tabel 7.20 Perhitungan penampang dan jumlah strand kabel

S ₃	53	6073,4	48	0.0092	9170	65	9170
S_4	56	6073,4	64	0.0102	10208	73	10208
S_5	40	6073,4	80	0.0115	11460	82	11460
S_6	36	6073,4	96	0.0126	12579	90	12579
S_7	33	6073,4	112	0.0136	13630	97	13630

7.6.2 Gaya Stressing Kabel

Dalam pelaksanaannya masing-masing kabel diberi gaya tarik (*stressing*) terlebih dahulu sebelum dibebani. Hal ini dimaksudkan untuk mengatur posisi gelagar agar sesuai dengan posisi akhir sebelum menerima beban hidup. Apabila gaya tarik ini tidak diberikan pada kabel, gelagar akan melendut terlebih dahulu sebelum menerima beban hidup, hal ini terjadi akibat deformasi kabel karena dibebani lantai kendaraan.

Dengan bantuan program MIDAS CIVIL dapat dianalisa besarnya gaya tarik masing-masing kabel dengan fitur *unknown load factors calculation*. Langkah-langkah analisa gaya tarik kabel akan dijelaskan sebagai berikut :

- 1. Memberikan gaya tarik pada tiap kabel sebesar 1 unit (dalam hal ini kN)
- Member batasan deformasi untuk nodal-nodal pada lantai kendaraan. Hal ini dimaksudkan untuk memberikan input pada program kondisi final yang diinginkan untuk lantai kendaraan. Besarnya batasan yang di masukkan dalam analisa adalah sebesar +0,01m dan -0,01m, yang berarti bahwa lantai kendaraan boleh melendut maksimal <u>+</u> 0,01m pada kondisi akhir setelah dilakukan *stressing*.
- 3. Menentukan beban apa saja yang memengaruhi kondisi akhir sebelum diberi beban hidup. Beban-beban tersebut adalah beban tetap dan beban superimpose.
- 4. Melakukan iterasi dengan program MIDAS CIVIL pada gaya tarik yang telah diberikan sebelumnya sebesar 1 kN.

5. Hasil dari analisa adalah *load factor* pada masing-masing kabel. Hal ini berhubungan dengan menu *unknown load factors calculation*.

Masing-masing gaya kabel hasil iterasi dapat dilihat pada tabel 7.21 berikut ini.

Kabel	Pretension (kN)		
S7, M7	3138,36		
S6, M6	3056,02		
S5, M5	2883,74		
S4, M4	2690,26		
S3, M3	2502,80		
S2, M2	2328,72		
S1, M1	2165,89		

Tabel 7.21 Gaya tarik awal masing-masing kabel

Gambar 7.50 Cable force tuning

Dari gaya tarik awal (*pre-tension*) tersebut dapat diperoleh kebutuhan *strand* dan luas penampang kabel. Untuk lebih jelasnya dapat dilihat pada Tabel 10.4 berikut ini

 $\begin{array}{l} f_u \ \text{kabel} \\ f_u \ \text{ijin} \\ = 0,45 \ \text{x} \ 1860 \ \text{MPa} \\ = 837 \ \text{MPa} \\ = 0.837 \ \text{kN/mm}^2 \end{array}$

Kabel	fijin	Force	A pre	n pre	A perlu = P/f ijin	n perlu = A/As-kabel	n pakai	A pakai = n*As
	kN/mm2	(kN)	(mm2)		(mm2)			(mm2)
S7, M7	0,837	3138,36	15616,57	112	3749,5371	26,8	31	4340
S6, M6	0,837	3056,02	14411,47	96	3651,1604	26,1	31	4340
S5, M5	0,837	2883,74	13129,79	80	3445,3285	24,6	31	4340
S4, M4	0,837	2690,26	11694,95	64	3214,1714	23,0	31	4340
S3, M3	0,837	2502,80	10506,18	48	2990,2061	21,4	22	3080
S2, M2	0,837	2328,72	9398,881	32	2782,2201	19,9	22	3080
S1, M1	0,837	2165,89	8622,089	16	2587,6867	18,5	22	3080

 Tabel 7.22 Kebutuhan luas penampang kabel akibat pretension

Kemudian A_{pakai} diinput pada MIDAS, dan didapatkan gaya kabel yang baru, diambil gaya- gaya maksimum dari semua kombinasi yang ada, lebih jelasnya dapat dilihat pada Tabel 7.23 berikut ini :

Kabel	Max Force (kN)
S7, M7	4361,97
S6, M6	4404,68
S5, M5	4320,21
S4, M4	6014,16
S3, M3	5806,76
S2, M2	5593,92
S1, M1	5458,30

Tabel 7.23 Gaya masing-masing kabel

Dari gaya-gaya maksimum tersebut dapat diperoleh kebutuhan *strand* dan luas penampang kabel yang sebenarnya. Untuk lebih jelasnya dapat dilihat pada Tabel 9.6 berikut ini.

Kabel	f ijin	Force	A pre	n pre	A perlu = P/f ijin	n perlu = A/As kabel	n pakai	A pakai = n*As
	kN/mm2	(kN)	(mm2)		(mm2)			(mm2)
S7, M7	0,837	5458,30	15616,57	112	6521,2711	46,6	61	8540
S6, M6	0,837	5593,92	14411,47	96	6683,3008	47,7	55	7700
S5, M5	0,837	5806,76	13129,79	80	6937,5904	49,6	55	7700
S4, M4	0,837	6014,16	11694,95	64	7185,3729	51,3	55	7700
S3, M3	0,837	4320,21	10506,18	48	5161,5401	36,9	43	6020
S2, M2	0,837	4404,68	9398,881	32	5262,4589	37,6	43	6020
S1, M1	0,837	4361,97	8622,089	16	5211,4396	37,2	43	6020

 Tabel 7.24 Kebutuhan luas penampang kabel sebenarnya

Dari tabel diatas dapat dilanjutkan dengan analisa untuk memperoleh gaya tarik kabel yang sebenarnya.

7.6.3 Analisa Penampang Kabel A_{aktual}

Penampang kabel akan dicek dengan A_{pakai} , kemudian nilai A_{pakai} diinput ke dalam MIDAS CIVIL untuk masing-masing penampang kabel, kemudian didapat gaya kabel sebenarnya. Dapat dilihat pada Tabel 7.25 berikut ini :

1	17. 2 50uyt	i Kubel Sebel
	Kabel	Max (kN)
	S7, M7	4535,40
	S6, M6	4673,80
	S5, M5	4609,82
	S4, M4	5953,47
	S3, M3	5965,64
	S2, M2	5823,49
	S1, M1	6578,62

 Tabel 7.25Gaya kabel sebenarnya

Apabila kabel dengan desain A_{pakai} tersebut mampu untuk menahan gaya kabel P, maka penampang kabel memenuhi syarat. Berikut contoh perhitungannya.

Kabel S_7 :	
As _{Pakai}	= 11900 mm
Pn	$= f_{ijin}$. As _{pakai}
	$= 0,837 \text{ kN/mm}^2$. 8540 mm ²
	= 7148 kN
Р	= 6578,62kN (OK Pn > P)

Perhitungan kontrol kemampuan kabel dengan penampang aktual akibat gaya tarik yang terjadi lainnya dapat dilihat pada Tabel 7.26 berikut ini.

Kabel	f ijin	As pakai	Pn	Р	Kontrol
	kN/mm2	(mm2)	(kN)	(kN)	
S7, M7	0,837	8540	7148	6578,62	OK Pn>P
S6, M6	0,837	7700	6445	5823,49	OK Pn>P
S5, M5	0,837	7700	6445	5965,64	OK Pn>P
S4, M4	0,837	7700	6445	5953,47	OK Pn>P
S3, M3	0,837	6020	5039	4609,82	OK Pn>P
S2, M2	0,837	6020	5039	4673,80	OK Pn>P
S1, M1	0,837	6020	5039	4535,40	OK Pn>P

Tabel 7.26 Kontrol kemampuan kabel dari As_{pakai}

Dari hasil kontrol diatas dapat disimpulkan bahwa untuk kebutuhan luas penampang dan jumlah *strand* kabel yang dipakai sudah mampu untuk menahan gaya tarik maksimum yang terjadi.

7.6.4 Perhitungan Anker Pada Gelagar

Anker kabel pada gelagar dipasang sesuai dengan jumlah strand kabel yang telah dihitung. Selanjutnya akan dilakukan kontrol tegangan pelat baja pada saat *stressing* (pemberian gaya tarik).

Dead End

Stay Pipe

TENDON UNIT	0A2 mm	C2	0D2 mm @ @	OE2 mm	F2 mm	62 MM 🚱	H2 min mm	J2 mm	L2min mm	0A3 mm Q Q	TENDON UNIT
6-12	185	260	177.8/4.5	150	105	35	105	160	900	125/4.9	6-12
6-19	230	335	219.1/6.3	190	120	50	105	180	1,200	140/5.4	6-19
6-22	250	355	219.1/6.3	205	120	50	105	210	1,350	160/6.2	6-22
6-31	280	415	244.5/6.3	230	145	60	105	210	1,550	160/6.2	6-31
6-37	300	455	273/6.3	255	170	70	105	210	1,750	180/5.6	6-37
6-43	340	505	323.9/7.1	285	175	75	105	210	2,000	200/6.2	6-43
6-55	380	550	323.9/7.1	310	195	75	105	260	2,050	200/6.2	6-55
6-61	380	585	355.6/8	330	215	85	105	260	2,250	225/7.0	6-61
6-73	430	650	406.4/8.8	370	215	95	120	290	2,450	250/7.8	6-73
6-85	430	685	406.4/8.8	370	245	110	120	290	2,600	250/7.8	6-85
6-91	480	730	457/10	420	255	110	120	320	2,800	280/8.7	6-91
6-109	495	775	457/10	420	265	120	120	320	3,000	315/9.8	6-109
6-127	550	845	508/11	475	315	130	120	340	3,350	315/9.8	6-127

Gambar 7.52 Spesifikasi teknis anker VSL SSI 2000 untuk deck

Data anker yang dipakai adalah :

 Tabel 7.27 Data anker yang dipakai

Ankon	Strand						
Anker	43	55	61				
ØA2	340	380	380				
C2	505	550	585				

Contoh perhitungan anker digunakan S_7 yang mempunyai gaya paling besar.

Data perencanaan :

$$P = 6578,62kN$$

ØA2 = 380 mm

$$C_{2} = 585 \text{ mm}$$

Ap' =
$$C2 \times C2$$

Ap =
$$342225 \text{ mm}^2$$

Ap = $C2^2 - (0,25. \pi. \ \text{ØA2}^2)$
= $585^2 - (0,25. \pi. \ 430^2)$
= $228767,86 \text{ mm}^2$

Tegangan ijin pelat baja pada saat pemberian gaya tarik : Pelat baja BJ55

 $\begin{array}{ll} f_y & = 500 \text{ MPa} \\ f_u & = 550 \text{ MPa} \end{array}$

$$f_{yp} = 0.8.f_{y}\sqrt{\frac{Ap'}{Ap} - 0.2}$$
$$= 0.8.500\sqrt{\frac{342225}{228767.86} - 0.2}$$
$$= 455.36 \text{ MPa}$$

Tegangan di bawah pelat anker :

$$f_{t} = \frac{P}{Ap}$$

$$= \frac{6578,62.10^{3}}{228767,86}$$

$$= 28,76 \text{ Mpa } \dots \text{ OK } (f_{yp} > f_{t})$$

Untuk perhitungan kontrol tegangan anker lain akan disajikan dalam bentuk tabel, dapat dilihat pada Tabel 7.28.

V. I. I. Ankor		Р	Ap'	Ар	Teg. Ijin pelat baja saat stressing			
Kabel Anker	(kN)	(mm²)	(mm²)	fyp (MPa)	fyt (MPa)	Ket		
S7, M7	61	6578,62	342225	228767,86	455,36	28,76	OK	
S6, M6	55	5823,49	302500	189042,86	473,31	30,81	ОК	
S5, M5	55	5965,64	302500	189042,86	473,31	31,56	ОК	
S4, M4	55	5953,47	255025	164196,43	465,30	36,26	ОК	
S3, M3	43	4609,82	255025	164196,43	465,30	28,08	ОК	
S2, M2	43	4673,80	255025	164196,43	465,30	28,46	ОК	
S1, M1	43	4535,40	255025	164196,43	465,30	27,62	ОК	

Tabel 7.28 Perhitungan angker keseluruhan

Kontrol kemampuan anker dalam menerima gaya tarik (*stressing*) berikut ilustrasi plat anker pada seluruh titik pengangkeran dapat dilihat pada Gambar 7.53.

Gambar 7.53 Pelat anker tendon unit 6-61

Gambar 7.54 Tampak A-A pelat anker dan dimensi (satuan dalam mm)

- 1. Untuk 61 strand, di kontrol S₇ sebagai yang terbesar mewakili anker lain.
- e. Kuat lentur pelat sayap SNI03-1729-2002, ps. 8.10.2 $\varphi Rb = \varphi.6,25.t_f^2.f_y$ = 0,85.6,25.(60mm)².500N/mm² = 9562500 N = 9562,5 kN

f.	Kuat leleh	n pelat badan 29-2002 ng 8 10 3
	φRb	$= \varphi.(5k + N).t_w.f_y$
	dimana :	
	k	= tebal pelat sayap ditambah jari-jari peralihan
	Ν	= dimensi arah longitudinal pelat perletakan atau
		tumpuan, minimal sebesar k.

$$\varphi Rb$$
 = 0,85.(5.60+585)mm. 50mm. 500 N/mm²
= 22567500 N
= 22567,5 kN

g. Kuat tekuk dukung pelat badan
SNI03-1729-2002, ps. 8.10.4 (8.10-4.c)

$$\varphi Rb = 0.39.t_{w}^{2} \left[1 + \left\{ 4 \left(\frac{N}{d} \right) - 0.2 \right\} \left(\frac{t_{w}}{t_{f}} \right)^{1.5} \right] \sqrt{\frac{E.f_{y}t_{f}}{t_{w}}} = 0.85.0.39.60^{2} \left[1 + \left\{ 4 \left(\frac{585}{2100} \right) - 0.2 \right\} \left(\frac{60}{60} \right)^{1.5} \right] \sqrt{\frac{2.10^{5}.500.60}{60}} = 26876571.4 \text{ N} = 26876.5 \text{ kN}$$

h. Kuat tekuk lentur pelat badan SNI03-1729-2002, ps. 8.10.6

$$\varphi Rb = \frac{12,08t_{w}^{3}}{h} \sqrt{Ef_{y}}$$

$$= 0.85 \frac{12,08.60^{3}}{2100} \sqrt{2.10^{5}.500}$$

$$= 12425142.9 N$$

$$= 12425,14kN$$

Dari semua perhitungan diatas dipakai nilai φ Rb yang terkecil sebesar 9562,5 kN.Dari perhitungan diatas maka didapat bahwa P < φ Rb, maka pelat mampu menahan beban yang terjadi.

7.7 Struktur Pylon

Struktur *pylon* berfungsi memikul beban yang terjadi pada lantai kendaraan, baik berupa beban hidup maupun beban mati, beban dari lantai kendaraan disalurkan melalui kabel ke *pylon* untuk kemudian ditransfer ke pondasi.

7.7.1 Gaya pada Pylon

Dalam analisanya akan dilakukan kontrol terhadap kelangsingan kolom. Untuk lebih jelasnya dapat dilihat penampang *pylon*, konfigurasi, dan tampak melintang pada Gambar 7.55 berikut ini.

Gambar 7.55 Struktur *pylon*(dalam mm)

Dalam perhitungan tulangan pada *pylon*, akan dihitung penulangan pada kaki *pylon*, *lower cross beam* dan *top cross beam*. Nilai gaya dalam yang terjadi pada struktur *pylon* didapat dari analisa program MIDAS CIVIL, dapat dilihat pada Tabel

7.29. s.d. Tabel 7.30. Gaya dalam yang terjadi pada *pylon* disajikan dalam tiga (3) kondisi pembebanan, yaitu akibat beban dinamik (gempa), dan beban statik. Pada tabel berikut hanya ditampilkan gaya dalam yang terbesar saja dari kombinasi yang direncanakan.

Load	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
DL+SDL+CASE1+EWS	0	7344,63	2976,32	1543,22	32352,31	47911,26
DL+SDL+CASE1+EWS	-69556,89	-7346,56	-5776	-1542,42	-53251,47	-47895,76
DL+SDL+CASE2+EWS	0	8321,56	3004,45	724,66	32837,53	44891,2
DL+SDL+CASE2+EWS	-83160,12	-8467,99	-20179,96	-1813,02	-54969,15	-44938,36
DL+SDL+CASE3+EWS	4436,33	8113,62	3011,44	6697,66	32734,21	44025,95
DL+SDL+CASE3+EWS	-79842,22	-8113,23	-24250,36	-881,58	-54270,08	-44028,33
DL+SDL+CASE4+EWS	0	7707,59	3055,94	755,76	33415,07	43927,07
DL+SDL+CASE4+EWS	-81815,31	-7708,54	-16102,3	-772,76	-57485,4	-43936,64
DL+SDL+CASE5+EWS	0	1010,82	3052,96	5736,93	33358,91	43927,07
DL+SDL+CASE5+EWS	-82349,01	-946,23	-22612,65	-820,49	-57367,17	-39252,78
DL+SDL+CASE6+EWS	0	1347,59	3054,86	2377,51	33410,32	10897,04
DL+SDL+CASE6+EWS	-82463,72	-1494,2	-23636,86	-820,49	-57762,43	-10046,6
DL+SDL+EX+0,3EY	5,42	1011,43	1656,06	5453,71	24495,69	21441,38
DL+SDL+EX+0,3EY	-65036,95	-1156,06	-18141,57	-1091,9	-43748,11	-20498,42
DL+SDL+EY+0,3EX	3,58	1379,73	1454,39	7854,04	17014,26	31286,54
DL+SDL+EY+0,3EX	-63396,94	-1492,3	-17769,25	-1553,04	-36792,18	-30567,28
Menentukan	-83160,12	8321,56	-24250,36	7854,04	-57762,43	47911,26

Tabel 7.29 Gaya dalam pada kolom pylon

Tabel 7.30 Gaya dalam pada kaki pylon

Load	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
DL+SDL+CASE1+EWS	-55392.5	849.47	4674.98	5755.58	98503.7	30641.47
DL+SDL+CASE1+EWS	-103437,98	-1028,36	-20207,7	-2455,8	-119090,44	-52374,54
DL+SDL+CASE2+EWS	-50899,22	1104,28	4724,98	7134,75	98616,45	58161,35
DL+SDL+CASE2+EWS	-94651,18	-1125,73	-21422,88	-7342,75	-119395,54	-59032,99
DL+SDL+CASE3+EWS	-45603,77	1080,44	4767,62	6789,28	98941,71	55526,95
DL+SDL+CASE3+EWS	-103806,59	-1080,37	-22728,27	-6787,64	-118879,58	-55522,23
DL+SDL+CASE4+EWS	-66522,93	1011,46	4771,05	5144,89	98726,97	46388,36
DL+SDL+CASE4+EWS	-104696,15	-1010,82	-23849,09	-5773,79	-119175,55	-48818,97
DL+SDL+CASE5+EWS	-69899,59	215,18	4772,75	2580,94	98762,29	17469,6
DL+SDL+CASE5+EWS	-104518,84	-190,25	-24012,02	-2391,6	-119102,66	-15011,15
DL+SDL+CASE6+EWS	-54493,48	221,54	4673,88	1337,83	98498,1	10993,68
DL+SDL+CASE6+EWS	-83979,22	-192,64	-23987,51	-2378,39	-93416,23	-8735,57
DL+SDL+EX+0,3EY	-54743,09	662,59	2910,5	4426,64	42751,57	33904,89
DL+SDL+EX+0,3EY	-82300,22	-619,47	-18969,66	-5098,35	-61561,48	-31784,88
DL+SDL+EY+0,3EX	-56212,69	984,5	1900,65	6869,35	24062,11	49162,83
DL+SDL+EY+0,3EX	-80061,25	-921,02	-18298,13	-7692,42	-40687,61	-47676,25
Menentukan	-104696.15	1104.28	-24012.02	7134.75	-119395.54	58161.35

7.7.2 Analisa Penampang Pylon

Gaya dalam maksimum dari semua kombinasi yang direncanakan akan digunakan dalam perhitungan penampang *pylon*.

a. Penulangan Lentur Kolom Pylon

Gaya dalam maksimum yang bekerja :

Pu	= 83160, 12 kN	Muy	= 57762,43 kNm
Vuy	= 8321,56kN	Muz	= 47911,26 kNm
Vuz	= 24250,36 kN		
Mt	= 7854,04 kNm		

Data berupa *section properties* dari *pylon* didapat dari hasil analisa penampang dengan program MIDAS CIVIL, untuk lebih jelasnya dapat dilihat pada Gambar 7.56.

Mutu Beton (f'c)	= 50 MPa
Mutu Tulangan (fy)	= 400 MPa
Luas Penampang (Ag)	$= 83300 \text{ cm}^2 = 8,33 \text{ m}^2$
Inersia arah y (Iy)	$= 8,334408 \text{m}^4$
Inersia arah z (Iz)	$= 14,15908 \text{m}^4$
Modulus Elastisitas	$=4700\sqrt{f'c}=33234,02$ MPa

DB/User					Value	Unit
Section ID 9	-			Area	8.330000e+000	m^2
	R-Octagon		•	Asy	6.040000e+000	m^2
Name pylon bollow	e		1	Asz	2.290000e+000	m^2
Hand provident	• User (C	DB AISC2	K(US)	lxx	1.458345e+001	m^4
				lyy	8.334408e+000	m^4
112	Sect. Name		<u>_</u>	Izz	1.415908e+001	m^4
		🔽 Built-Up S	ection	Сур	2.000000e+000	m
				Cym	2.000000e+000	m
	Get Data from :	Single Angle		Czp	1.500000e+000	m
	DB Name	ATSC 2K(LIS)		Czm	1.500000e+000	m
	Cosh Name	rabeli(co)		Qyb	2.549472e+000	m^2
	Sect. Name	1		Qzb	3.250306e+000	m^2
				Peri:0	1.400000e+001	m
	н	3 1	n	Peri:I	7.531371e+000	m
1,2	В	4 1	n	Center:y	2.000000e+000	m
Z	а	0.2	n	Center:z	1.500000e+000	m
2 —⊳ v	ь	0.2	n	y1	-2.000000e+000	m
	t1	0.75	n	z1	1.500000e+000	m
	+2	0.75		y2	2.000000e+000	m
4 J	12			z2	1.500000e+000	m
	t3	10	n	у 3	2.000000e+000	m
Number of Cell :				z3	-1.500000e+000	m
1 ÷				y4	-2.000000e+000	m
				z4	-1.500000e+000	m

Gambar 7.56 Section properties penampang pylon

Cek pengaruh kelangsingan pada komponen struktur tekan, kontrol kelangsingan boleh diabaikan apabila memenuhi syarat berikut ini :

1. Arah Z (*braced frame*) SNI 2847 2013 Ps 10.10.1 $\frac{k\ell_u}{r} \le 34 - 12(M_1/M_2)$

Dimana :

- k = faktor panjang efektif komponen struktur tekan = 1
- lu = panjang bebas komponen tekan (80 m) r = jari-jari girasi penampang (m)

$$-$$
 jari-jari girasi penampang (i

$$= \sqrt{\frac{12}{A}} = \sqrt{\frac{14,15908}{8,33}} = 1,303 \text{ m}$$

Maka,

r

$$\frac{1.80}{1,303} \le 34 - 12(47895,76/47911,26)$$

61,36>22,003, maka dianalisa sebagai kolom langsing

Perbesaran momen yang terjadi dapat dihitung dengan berdasarkan rangka tak bergoyang dengan sebagai berikut.

Q =
$$\frac{\sum P_u \Delta_o}{V_u I_y} < 0.05$$
 SNI 2847 2013 Ps 10.10.5.2

Dimana :

Pu = gaya tekan terfaktor (kN) Δ = simpangan relatif = 0.0351 m

$$Q = \frac{83160, 12 \times 0,0351}{24250, 36 \times 14,15908}$$

$$= 0,008 < 0,05$$

Maka kolom dianggap tak bergoyang.

EI = $\frac{0.4E_cI_z}{1+\beta_z}$ SNI 2847 2013 Ps 10.10.6 EI = $\frac{0,4.33234,02.10^6.14,15908}{1+0,5}$ EI = 1,254x10¹¹ kNm² $(k.lu)^2 = (1.80)^2 = 6400 \text{ m}^2$ Pc_z = beban tekuk = $\frac{\pi^2 EI}{(klu)^2}$

$$Pc_{z} = \frac{\pi^{2} 1,254.10^{11}}{6400}$$
$$Pc_{z} = 61621362,22 \text{ kN}$$

Faktor pembesaran momen

Cm \geq 1,0 untuk kolom dengan pengaku lateral $\delta ns_z = \frac{C_m}{1 - \frac{P_u}{0,75Pc_z}} = \frac{1}{1 - \frac{83160,12}{0,75.61621362,22}}$

 $\delta ns_z = 1.002 > 1$

Momen desain

$$Mc_z = \delta ns_z$$
. Muz
 $= 1,001.47911,26$ kNm = 47997,6259 kNm

2. ArahY (unbraced frame) $\frac{k\ell_u}{u} \le 22$

Dimana : k = faktor panjang efektif komponen struktur tekan = 2 lu = panjang bebas komponen tekan (80 m) r = jari-jari girasi penampang (m) r = $\sqrt{\frac{Iy}{A}}$ = $\sqrt{\frac{8,334408}{8,33}}$ = 1,000264 m

$$\frac{k\ell_u}{r} = \frac{2x80}{1,000264}$$

= 159,95> 22, maka dianalisa sebagai kolom langsing

Perbesaran momen yang terjadi dapat dihitung dengan berdasarkan rangka bergoyang dengan sebagai berikut.

EI =
$$\frac{0.4E_cI_y}{1+\beta_d}$$

EI = $\frac{0.4.33234,02.10^6.8,334408}{1+0.5}$
EI = 7,386x10¹⁰ kNm²
(k.lu)² = (2.80)² = 25600 m²
Pc_y = beban tekuk = $\frac{\pi^2 EI}{(klu)^2}$
Pc_y = $\frac{\pi^2 7,386.10^{10}}{25600}$

$$Pc_y = 9067989,84 \text{ kN}$$

Faktor pembesaran momen

Cm = 1,0 untuk kolom tanpa pengaku lateral

$$\delta ns_{y} = \frac{C_{m}}{1 - \frac{P_{u}}{0.75Pc_{x}}} = \frac{1}{1 - \frac{83160.12}{0.75.9067989.84}}$$
$$\delta ns_{y} = 1.0123 > 1$$

Momen desain

$$Mc_y = \delta ns_y. Muy = 1,0123. 57762,43kNm = 58477,47 kNm$$

Direncanakan tulangan longitudinal menggunakan D36 dan tulangan tranversal menggunakan \emptyset 22, dengan mutu baja tulangan fy 400 MPa. Kemudian kebutuhan tulangan akan direncanakan dan dianalisa menggunakan *spColumn*. Untuk lebih jelasnya dapat dilihat pada Gambar 7.57 berikut ini.

4000 × 3000 mm 3.12% reinf. Gambar 7.57 Desain penampang dan tulangan longitudinal *pylon* pada program bantu *spColumn*

Dari hasil analisa didapat : 260 buah D36 (3,18 %) $As = 264648 \text{ mm}^2$

Kontrol jarak antar tulangan

s
$$= \frac{b_{w} - 2.h_{selimut} - 2f - nD}{n - 1}$$
$$= \frac{3000 - 2.50 - 2.22 - 40.36}{40 - 1}$$
$$= 62 \text{ mm} > 40 \text{ mm}$$

b. Perhitungan Tulangan Geser Pylon

Gaya dalam *pylon* :

 $\begin{array}{ll} Pu &= 83160,12 \text{ kN} \\ Vuy &= 8321,56 \text{ kN} \end{array}$

Vuz = 24250,36 kN

Penulangan geser pada pylon arah sumbu Y

Kekuatan geser yang disediakan oleh beton untuk komponen struktur non-prategang berdasarkan SNI 2847-2013 Ps 11.2.1.2 :

Vc =
$$0.17 \left(1 + \frac{N_u}{14A_g} \right) \lambda \sqrt{f'_c} b_w d$$

= $0.17 \left(1 + \frac{83160.12}{14.8.33.10^6} \right) 1.\sqrt{50}.1460.2910$
= 5110805.428 N

$$\varphi Vc = 0.85.5110805.428N$$

= 4344184.614 N

 $\frac{1}{2} \phi Vc = \frac{1}{2} \cdot 4344184,614 N$ = 2172092,307N = 2172,09 kN

Nilai $\frac{1}{2} \phi Vc < \phi Vc < Vuy = 8321,56 \text{ k N}$ Maka perlu tulangan geser. Lihat SNI 2847-2013 Ps 11.4.7.2.

Berdasarkan SNI 2847-2013 Ps 21.3.4.2 spasi antar tulangan geser tidak boleh melebihi yang terkecil dari : d/4 = 3910/4 = 977 mm 8D tul. longitudinal = 8. 36 = 288 mm 24D tul. Transversal = 24. 22 = 528 mm atau 300 mm

$$\begin{array}{ll} Vu & \leq Vn \\ Vn & = Vc + Vs \\ Vu & \leq \varphi Vc + \varphi Vc \\ Vs & = (Vu/\varphi) - Vc \\ Vs & = (8321,56.10^3/0,85) - 5110805,428N \\ & = 4679265,16 \ N \end{array}$$

Digunakan 3 sengkang
Av =
$$3(0,25.\pi.O^2) = 3(0,25.\pi.22^2) = 1140,857 \text{ mm}^2$$

Vs = $\frac{A_v \cdot f_v \cdot d}{s}$, maka
s = $\frac{A_v \cdot f_v \cdot d}{V_s} = \frac{1140,857.400.2910}{4679265,16} = 283,79 \text{ mm}$
s_{maks} = $d/2 = 2910/2 = 1455 \text{ mm}$

Maka digunakan tulangan geser 3D22-250

Penulangan geser pada pylon arah sumbu Z

Vc =
$$0,17 \left(1 + \frac{N_u}{14A_g} \right) \lambda \sqrt{f'_c} b_w d$$

= $0,17 \left(1 + \frac{83160,12}{14.8,33.10^6} \right) 1.\sqrt{50}.1460.3910$
= $6867095,953$ N

$$\varphi Vc = 0,85.\ 6867095,953 N$$

= 5837031,56 N

$$\frac{1}{2} \phi Vc = \frac{1}{2} \cdot \frac{5837031,56 N}{2918515,78 N}$$

= 2918,515 kN

Nilai $\frac{1}{2} \phi Vc < \phi Vc < Vuz$ Maka perlu tulangan geser. Lihat SNI 2847-2013 Ps 11.4.7.2.

Berdasarkan SNI 2847-2013 Ps 21.3.4.2 spasi antar tulangan geser tidak boleh melebihi yang terkecil dari : d/4 = 3910/4 = 977 mm 8D tul. longitudinal = 8. 36 = 288 mm 24D tul. Transversal = 24. 22 = 528 mm atau 300 mm

$$Vu \leq Vn Vn = Vc + Vs Vu \leq \phi Vc + \phi Vc Vs = (Vu/\phi) - Vc Vs = (24250,36.103/0,85) - 6867095,953 N$$

Digunakan 10 sengkang
Av = 10(0,25.
$$\pi$$
. \emptyset^2) = 10(0,25. π .22²)= 3802,857 mm²
Vs = $\frac{A_v.f_y.d}{s}$, maka
s = $\frac{A_v.f_y.d}{V_s}$ = $\frac{3802,857.400.3910}{21662739,34}$ = 274,55 mm
s_{maks} = d/2 = 3910/2 = 1955 mm

Maka digunakan tulangan geser 10D22-250

c. Perhitungan Tulangan Puntir Penampang Kolom*Pylon* Gaya dalam torsi yang bekerja pada *pylon*.

Tu = 7854,04 kNm

Kontrol terhadap pengaruh puntir, apakah dapat diabaikan. Menurut SNI 2847-2013 Ps 11.5.1 untuk penampangberongga, A_g harus digunakan sebagai pengganti A_{cp} .

A _{cp}	$= 8330000 \text{ mm}^2$	
P _{cp}	= 2(4000+3000)mm	= 14000 mm
X ₁	= 3000mm $- 2(50+0,5.22)$ mm	= 2878 mm
X2	= 4000mm $- 2(50+0,5.22)$ mm	= 3878 mm
A_{oh}	$= (2878.3878) \text{mm}^2$	$= 11160884 \text{ mm}^2$
$\mathbf{p}_{\mathbf{h}}$	= 2(2878+3878)mm	= 13512 mm
Ø	= 45° (untuk komponen struktru	ır non-prategang)

$$T_{u} \leq \varphi 0,083\lambda \sqrt{f'_{c}} \left(\frac{A_{cp}^{2}}{P_{cp}}\right) \text{SNI } 2847 \ 2013 \text{ Ps } 11.5.1$$

$$\leq 0,85.0,083.1.\sqrt{50} \left(\frac{8330000^{2}}{14000}\right)$$

$$< 2472543764 \text{ Nmm}$$

7854,04>2472,54 kNm

Maka diperlukan tulangan puntir.

$$T_n = T_u/\phi = 7854,04.10^6/0.85 = 92400447059 \text{ Nmm}$$

$$A_o = 0.85A_{oh}$$

$$= 0.85.11160884 \text{ mm}^2$$

$$= 9486751.4 \text{ mm}^2$$

$$T_n = \frac{2A_o}{2}$$

$$T_{n} = \frac{2A_{o}A_{t}f_{yy}}{s}\cot\theta, \text{ maka}$$

At/s = $\frac{T_{n}}{2A_{o}A_{t}f_{yy}\cot\theta} = \frac{92400447059}{2.9486751,4.400.\cot 45} = 1,217$

Tulangan longitudinal tambahan untuk menahan puntir tidak boleh kurang dari : .

$$Al = \frac{A_t}{s} p_h \left(\frac{f_{yv}}{f_{yt}}\right) \cot^2 \theta$$

= 1,217.13512 $\left(\frac{400}{400}\right) \cot^2 45 = 16450,77 \text{ mm}^2$

Dipakai D36 ($As = 1018,285 \text{ mm}^2$) = Al/luas tulangan = 16450,77 / 1018,285 = 16,155 bh n

Dipakai 20D36 (As = $20365,714 \text{ mm}^2$)

Tulangan sengkang untuk puntir harus dipasang dengan perhitungan sebagai berikut :

$$T_n = \frac{2A_o A_t f_{yy}}{s} \cot \theta$$

$$A_t = \frac{T_n s}{2A_o A_t f_{yy} \cot \theta}$$

Spasi tulangan puntir SNI 2847-2013 Ps.11.5.6 tidak boleh melebihi nilai terkecil dari : $p_h/8 = 13512/8 = 1689 \text{ mm}$ atau 300 mm

maka digunakan spasi, s = 250 mm $A_t = \frac{92400447059.250}{2.9486751, 4.400. \cot 45} = 434,819 \text{ mm}^2$

Dipakai 2D22-250 untuk sengkang puntir As $= 760,571 \text{ mm}^2$

d. Perhitungan Tulangan daerah Pengangkuran

Pada daerah pengangkuran perlu disediakan tulangan untuk menahan pencaran (*bursting*) dan pengelupasan (*spalling*) agar lokasi pengangkuran tidak hancur atau angkur tertarik kedalam beton saat kabel dilakukan *stressing*.

Perhitungan tulangan pencaran (*bursting*) dan pecah (*spalling*) dicontohkan dengan angkur kabel S_7 .

$$T_{\text{pencar}} = 0,25.6578,62 \left(1 - \frac{600}{1360}\right)$$
$$T_{\text{pencar}} = 010072.56 \text{ N}$$

 $T_{pencar} = 919072,56 \text{ N}$ $d_{pencar} = 0,5(h-2e) = 0,5(1360-2.97,5) = 582,5 \text{ mm}$

Digunakan sengkang penutup D22 (As =380,28 mm²) As _{perlu} = T_{pencar}/f_{ys} = 919072,56 N / 400 N/mm² = 2297,68 mm² n = As _{perlu} / As = 7 sengkang dipasang dibelakang angkur

Spasi antar sengkang dihitung dengan cara :

S = $d_{pencar}/n = 88,57 \text{ mm}$

Dipasang sengkang 7D22 - 85

Untuk mencegah pecah (*spalling*), dipasang tulangan dengan kuat tarik 2%P.

 $2\%P = 0.2.6578.62.10^3 \text{ N} = 1315724.93 \text{ N}$

As perlu =
$$2\%$$
T / fy
= $1315724,93$ N / 400 N/mm²
= $3289,312$ mm²

Digunakan tulangan UD22 (As = $380,285 \text{ mm}^2$)

n = As $_{perlu}$ / As

= 9 tulangan U

Berikut adalah tabel perhitungan untuk semua angkur :

Kabal	h	e	d pencar			
Kabel	(mm)	(mm)	(mm)			
S7, M7	1360	61	619			
S6, M6	830	122	293			
S5, M5	807	111,5	292			
S4, M4	784	101	291			
S3, M3	700	80	270			
S2, M2	657	58,5	270			
S1, M1	709	83,5	271			

 Tabel 7.31
 Daerah
 Pengangkuran

Tabel 7.32 Kebutuhan Tulangan Daerah Pengangkuran

Kabal	Ankon	C1 (mm)	D (I-N)	Pencarar	ı (<i>burstin</i> g	r)	Pecah (S	palling)
Kabel	Allker	CI (mm)	Г (КІЧ)	Tpencar	As	n	As	n
S7, M7	61	600	6578,62	919072,56	2297,68	7	3289,31	9
S6, M6	55	585	5823,49	429745,31	1074,36	3	2911,74	8
S5, M5	55	585	5965,64	410276,15	1025,69	3	2982,82	8
S4, M4	55	585	5953,47	377787,28	944,47	3	2976,74	8
S3, M3	43	540	4609,82	263418,17	658,55	2	2304,91	7
S2, M2	43	540	4673,80	208080,19	520,20	2	2336,90	7
S1, M1	43	540	4535,40	270268,95	675,67	2	2267,70	6

Berikut ilustrasi desain tulangan pada penampang *pylon* dapat dilihat pada Gambar 7.60.

Gambar 7.60 Desain penampang pylon

7.7.3 Analisa Penampang Kaki Pylon

Gaya dalam maksimum dari semua kombinasi yang direncanakan akan digunakan dalam perhitungan penampang *pylon*.

e. Penulangan Lentur KakiPylon

Gaya dalam maksimum yang bekerja :

Pu	= 104696,15kN	Muy	= 119395,54 kNm
Vuy	= 1104,28kN	Muz	= 58161,35 kNm
Vuz	= 24012,02 kN		
Mt	= 7134,75 kNm		

Data berupa *section properties* dari *pylon* didapat dari hasil analisa penampang dengan program MIDAS CIVIL, untuk lebih jelasnya dapat dilihat pada Gambar 7.59. Mutu Beton (f[°]c) = 50 MPa Mutu Tulangan (fy) = 400 MPa Luas Penampang (Ag) = 120000 cm² =12 m² Inersia arah y (Iy) = 9m⁴ Inersia arah z (Iz) = 16m⁴ Modulus Elastisitas = 4700 $\sqrt{f^2}$ c= 33234,02 MPa

Gambar 7.61 Section properties penampang kaki pylon

Cek pengaruh kelangsingan pada komponen struktur tekan, kontrol kelangsingan boleh diabaikan apabila memenuhi syarat berikut ini :

1. Arah Z (*braced frame*) SNI 2847 2013 Ps 10.10.1
$$\frac{k\ell_u}{r} \le 34 - 12(M_1/M_2)$$

Dimana :

k = faktor panjang efektif komponen struktur tekan
 = 1
 lu = panjang bebas komponen tekan (80 m)

r = jari-jari girasi penampang (m)

$$r = \sqrt{\frac{lz}{A}}$$
$$= \sqrt{\frac{16}{12}}$$
$$= 1,154m$$

Maka,

$$\frac{1.30}{1,154} \le 34 - 12(31158,17/59032,99)$$

$$25,98 > 27,66$$
, maka kolom tidak langsing

Tidak perlu dicari perbesaran momen.

2. ArahY (unbraced frame) $\frac{k\ell_u}{r} \le 22$

Dimana :

k = faktor panjang efektif komponen struktur tekan = 2 lu = panjang bebas komponen tekan (80 m) r = jari-jari girasi penampang (m) r = $\sqrt{\frac{Iy}{A}}$ = $\sqrt{\frac{9}{12}}$ = 0,866 m $\frac{k\ell_u}{r} = \frac{2x30}{0.866}$

= 69,28 > 22, maka dianalisa sebagai kolom langsing

Perbesaran momen yang terjadi dapat dihitung dengan berdasarkan rangka bergoyang dengan sebagai berikut.

EI =
$$\frac{0.4E_c I_y}{1+\beta_d}$$

EI = $\frac{0.4.33234,02.10^6.9}{1+0.5}$

EI =
$$7,976 \times 10^{10} \text{ kNm}^2$$

$$(k.lu)^2 = (2.30)^2 = 3600 \text{ m}^2$$

$$Pc_y$$
 = beban tekuk = $\frac{\pi^2 EI}{(klu)^2}$

$$Pc_{y} = \frac{\pi^{2} 7,976.10^{10}}{3600}$$
$$Pc_{y} = 69633182,07 \text{ kN}$$

Faktor pembesaran momen

= 1,0 untuk kolom tanpa pengaku lateral Cm $= \frac{C_m}{1 - \frac{P_u}{0.75Pc_x}} = \frac{1}{1 - \frac{104696,15}{0.75.69633182,07}}$ δns_v $\delta ns_v = 1,002 > 1$

Momen desain $Mc_v = \delta n s_v$. Muy = 1,002. 119395,54 kNm = 119635,375 kNm

Direncanakan tulangan longitudinal menggunakan D36 dan tulangan tranversal menggunakan Ø22, dengan mutu baja tulangan fy 400 MPa. Kemudian kebutuhan tulangan akan direncanakan dan dianalisa menggunakan *spColumn*. Untuk lebih jelasnya dapat dilihat pada Gambar 7.62 berikut ini.

Gambar 7.63 Grafik diagram interaksi SpColumn

Dari hasil analisa didapat : 260 buah D36 (2,210 %) $As = 264648 \text{ mm}^2$ Kontrol jarak antar tulangan

s
$$= \frac{b_{w} - 2.h_{selimut} - 2f - nD}{n - 1}$$
$$= \frac{3000 - 2.50 - 2.22 - 40.36}{40 - 1}$$
$$= 62 \text{ mm} > 40 \text{ mm}$$

f. Perhitungan Tulangan Geser Pylon

Gaya dalam *pylon* : Pu = 104696,15 kN Vuy = 1104,28 kN Vuz = 24012,02 kN

Penulangan geser pada pylon arah sumbu Y

Kekuatan geser yang disediakan oleh beton untuk komponen struktur non-prategang berdasarkan SNI 2847-2013 Ps 11.2.1.2 :

Vc = 0,17
$$\left(1 + \frac{N_u}{14A_g}\right) \lambda \sqrt{f'_c} b_w d$$

= 0,17 $\left(1 + \frac{104696,15}{14.12.10^6}\right) 1.\sqrt{50}.3000.2861$
= 10323895,51 N

 $\varphi Vc = 0.85.\ 10323895.51N$ = 8775311.184 N

$$\frac{1}{2} \phi Vc = \frac{1}{2} \cdot 8775311,184N$$

= 4387655,592N
= 4387,655 kN

NilaiVuy <½ ϕ Vc < ϕ Vc Maka tidak perlu tulangan geser
Penulangan geser pada pylon arah sumbu Z

Vc =
$$0.17 \left(1 + \frac{N_u}{14A_g} \right) \lambda \sqrt{f'_c} b_w d$$

= $0.17 \left(1 + \frac{104696.15}{14.8.33.10^6} \right) 1.\sqrt{50}.4000.3861$
= 18576516.63 N

 $\varphi Vc = 0.85. 18576516.63N$ = 15790039.14 N

 $\frac{1}{2} \phi Vc = \frac{1}{2} . 15790039,14 N$ = 7895019,569 N = 7895,019 kN

Nilai $\frac{1}{2} \phi Vc < \phi Vc < Vuz$ Maka perlu tulangan geser. Lihat SNI 2847-2013 Ps 11.4.7.2.

Berdasarkan SNI 2847-2013 Ps 21.3.4.2 spasi antar tulangan geser tidak boleh melebihi yang terkecil dari : d/4 = 3861/4 = 965 mm 8D tul. longitudinal = 8. 36 = 288 mm 24D tul. Transversal = 24. 22 = 528 mm atau 300 mm

Vu	\leq Vn	
Vn	=Vc + Vs	
Vu	$\leq \phi Vc + \phi Vc$	
Vs	$= (Vu/\phi) - Vc$	

Vs =
$$(24012,02.10^{3}/0,85) - 18576516,63N$$

= 9672918,661 N

Digunakan 4 sengkang Av = $4(0,25.\pi.O^2) = 4(0,25.\pi.22^2) = 1521,142 \text{ mm}^2$

S

Vs =
$$\frac{A_v \cdot f_y \cdot d}{s}$$
, maka
s = $\frac{A_v \cdot f_y \cdot d}{V_s}$ = $\frac{1521,142.400.3861}{9672918,661}$ = 242,87 mm
s_{maks} = d/2 = 3861/2 = 1930,5 mm

Maka digunakan tulangan geser 4D22-250

Perhitungan Tulangan Puntir Penampang Kaki Pylon g.

Gaya dalam torsi yang bekerja pada pylon.

= 7134,75 kNm Tu

Kontrol terhadap pengaruh puntir, apakah dapat diabaikan. Menurut SNI 2847-2013 Ps 11.5.1 untuk penampang berongga, Ag harus digunakan sebagai pengganti Acp.

A _{cp}	$= 12000000 \text{ mm}^2$	
P _{cp}	= 2(4000+3000)mm	= 14000 mm
X ₁	= 3000mm $- 2(50+0,5.22)$ mm	= 2878 mm
X ₂	= 4000mm $- 2(50+0,5.22)$ mm	= 3878 mm
A _{oh}	$= (2878.3878) \text{mm}^2$	$= 11160884 \text{ mm}^2$
$\mathbf{p}_{\mathbf{h}}$	= 2(2878+3878)mm	= 13512 mm
Ø	$=45^{\circ}$ (untuk komponen struktru	r non-prategang)

$$T_{u} \leq \varphi 0,083\lambda \sqrt{f'_{c}} \left(\frac{A_{cp}^{2}}{P_{cp}}\right) \text{SNI } 2847 \ 2013 \ \text{Ps } 11.5.1$$
$$\leq 0,85.0,083.1.\sqrt{50} \left(\frac{1200000^{2}}{14000}\right)$$
$$< 5131170865 \ \text{Nmm}$$

7134,75> 5131,17 kNm

Maka diperlukan tulangan puntir.

$$\begin{array}{ll} T_n & = T_u / \phi = 7134,75.10^6 / 0,85 = 8393823529 \ \text{Nmm} \\ A_o & = 0,85A_{oh} \\ & = 0,85.\ 11160884 \ \text{mm}^2 \\ & = 9486751,4 \ \text{mm}^2 \end{array}$$

$$T_n = \frac{2A_o A_t f_{yy}}{s} \cot \theta, maka$$

At/s =
$$\frac{T_n}{2A_o A_t f_{yv} \cot \theta} = \frac{8393823529}{2.9486751, 4.400. \cot 45} = 1,105$$

Tulangan longitudinal tambahan untuk menahan puntir tidak boleh kurang dari :

$$Al = \frac{A_t}{s} p_h \left(\frac{f_{yv}}{f_{yt}}\right) \cot^2 \theta$$

= 1,105.13512 $\left(\frac{400}{400}\right) \cot^2 45 = 14944,175 \text{ mm}^2$

Dipakai D36 (As = $1018,285 \text{ mm}^2$) n = *All*/luas tulangan = 14944,175 / 1018,285 = 16,155 bh

Dipakai 20D36 (As = 20365,714 mm²)

Tulangan sengkang untuk puntir harus dipasang dengan perhitungan sebagai berikut :

$$T_{n} = \frac{2A_{o}A_{t}f_{yy}}{s}\cot\theta$$
$$A_{t} = \frac{T_{n}s}{2A_{o}A_{t}f_{yy}\cot\theta}$$

264

Spasi tulangan puntir SNI 2847-2013 Ps.11.5.6 tidak boleh melebihi nilai terkecil dari : $p_h/8 = 13512/8 = 1689 \text{ mm}$ atau 300 mm

maka digunakan spasi, s = 250 mm $A_t = \frac{8393823529.250}{2.9486751,4.400.\cot 45} = 394,99 \text{ mm}^2$

Dipakai 2D22-200 untuk sengkang puntir As $= 760,571 \text{ mm}^2$

Berikut ilustrasi desain tulangan pada penampang *pylon* dapat dilihat pada Gambar 7.64.

Gambar 7.64 Desain penampang kaki pylon

7.7.4 Analisa Top Cross Beam

Mutu Beton (f[°]c) = 50 MPa Mutu Tulangan (fy) = 400 MPa Luas Penampang (Ag) = 5,805 m² Modulus Elastisitas = $4700\sqrt{f^{\circ}c}$ = 33234,02 MPa

Berikut adalah gaya dalam yang bekerja pada balok *top cross beam* hasil dari analisa struktur menggunakan program MIDAS CIVIL.

Struktur komponen yang mengalami tekan dapat diabaikan bila gaya tekan yang terjadi kurang dari :

Pu	< 0,10. f°c. Ag
Pu	$< 0,10.50.5,805.10^{6}$
Pu	< 29025000 N
7085,47	< 29025 kN
Maka, gay	a aksial tekan dapat diabaikan.

Direncanakan tulangan longitudinal menggunakan D22 (fy = 400 Mpa), sedangkan untuk tulangan geser menggunakan Ø16 (fy = 400 Mpa).

Penampang balok akan dianalisa menggunakan *SpColumn* untuk mengontrol akibat beban aksial dan momen, untuk lebih jelasnya lihat Gambar 7.65 berikut ini.

Direncanakan jumlah tulangan 296 D22 dengan As tulangan 112519 mm² (1,76%)

Gambar 7.66 Grafik diagram interaksi SpColumn

Kontrol jarak antar tulangan

s
$$= \frac{b_{w} - 2.h_{selimut} - 2f - nD}{n - 1}$$
$$= \frac{2000 - 2.50 - 2.16 - 20.22}{20 - 1}$$
$$= 65 \text{ mm} \dots (\text{OK}) > 40 \text{ mm}$$

 $\frac{Tulangan Geser}{Pu} = 7085,47 \text{ kN}$ Vu = 4792,28 kN

Kuat geser beton menurut SNI 2847-2013 Ps 11.2.1.1

Vc =
$$0,17\lambda \sqrt{f'_c} b_w d$$

= $0,17.1.\sqrt{50}.890.5923$
= $6336736,712$ N

$$\varphi Vc = 0.85.6336736.712 N$$

= 5386226.206 N

$$\frac{1}{2} \phi Vc = \frac{1}{2} \cdot 5386226,206 N$$

= 2693113,103 N
= 2693,113 kN

Nilai $\varphi Vc > Vu > \frac{1}{2} \varphi Vc$ Maka perlu tulangan geser minimum. Lihat SNI 2847-2013 Ps 11.4.6.3. Vs min = 1/3 Ag = 1935000 N

Berdasarkan SNI 2847-2013 Ps 21.3.4.2 spasi antar tulangan geser tidak boleh melebihi yang terkecil dari : d/4 = 5923/4 = 1480 mm 8D tul. longitudinal = 8. 22 = 176 mm 24D tul. Transversal = 24. 16 = 384 mm atau 300 mm Maka dicoba menggunakan jarak antar tulangan geser sebesar 160 mm.

Av = 0,25.
$$\pi$$
. \emptyset^2 = 0,25. π . 16^2 = 201,14 mm²
Av_{min} = 0,062 $\sqrt{f'_c} \frac{b_w s_{pakai}}{f_y}$ = 0,062 $\sqrt{50} \frac{890.160}{400}$
= 156,072 mm² (menentukan)

Namun tidak boleh kurang dari (0,35 b_w S) /f_y = (0,35.890.160) /400 = 124,6 mm²

Dicoba tulangan geser 1 lapis. $Av_x = n. Av = 1.201,14 \text{ mm}^2 = 201,14 \text{ mm}^2 > Av_{min}$

Vs
$$= \frac{A_v \cdot f_y \cdot d}{s} = \frac{201, 14.400.5923}{160}$$

= 2978422,857 N > Vs_{min}

Maka digunakan tulangan geser D16-160

<u>Perhitungan Tulangan Puntir Penampang Top Cross Beam</u> Gaya dalam torsi yang bekerja pada *pylon*. Tu = 884,63 kNm

Kontrol terhadap pengaruh puntir, apakah dapat diabaikan.

$= 5805000 \text{ mm}^2$	
= 2(6000+2000)mm	= 18000 mm
= 2000mm $- 2(50+0,5.16)$ mm	= 1884 mm
= 6000mm $- 2(50+0,5.16)$ mm	= 5884 mm
=(1884.5884)mm ²	$= 11085456 \text{ mm}^2$
= 2(1884 + 5884)mm	= 15536 mm
$=45^{\circ}$ (untuk komponen struktru	ır non-prategang)
	$= 5805000 \text{ mm}^{2}$ = 2(6000+2000)mm = 2000mm - 2(50+0,5.16)mm = 6000mm - 2(50+0,5.16)mm = (1884.5884)mm^{2} = 2(1884+5884)mm = 45° (untuk komponen struktru

$$T_{u} \leq \varphi 0,083\lambda \sqrt{f'_{c}} \left(\frac{A_{cp}^{2}}{P_{cp}}\right) \text{SNI } 2847 \ 2013 \text{ Ps } 11.5.1$$

$$\leq 0.85.0,083.1.\sqrt{50} \left(\frac{5805000^{2}}{18000}\right)$$

$$\leq 933929219.7 \text{ Nmm}$$

884,63>933,92 kNm

Maka tidak diperlukan tulangan puntir.

Untuk lebih jelasnya dapat dilihat pada Gambar 7.67 berikut ini.

270

Gambar 7.67 Desain penampang top cross beam

7.7.5 Analisa Lower Cross Beam

Mutu Beton (f'c) = 50 MPa Mutu Tulangan (fy) = 400 MPa Luas Penampang (Ag) = $3,716 \text{ m}^2$ Modulus Elastisitas = $4700\sqrt{f'c}$ = 33234,02 MPa Berikut adalah gaya dalam yang bekerja pada balok *lower* cross beam hasil dari analisa struktur menggunakan program MIDAS CIVIL.

Struktur komponen yang mengalami tekan dapat diabaikan bila gaya tekan yang terjadi kurang dari :

Pu	< 0,10. f°c. Ag
Pu	$< 0,10.50.3,716.10^{6}$
Pu	<18581100 N
46693,8	< 18581,1 kN
Maka, gay	a aksial tekan tidak dapat diabaikan.

Direncanakan tulangan longitudinal menggunakan D22 (fy = 400 Mpa), sedangkan untuk tulangan geser menggunakan Ø16 (fy = 400 Mpa).

Penampang balok akan dianalisa menggunakan *SpColumn* untuk mengontrol akibat beban aksial dan momen, untuk lebih jelasnya lihat Gambar 7.68 berikut ini.

Direncanakan jumlah tulangan 176 D22 dengan As tulangan 66903,4 mm² (1,798%)

Gambar 7.68 Desain penampang dan tulangan longitudinal *pylon* pada program bantu *spColumn*

Gambar 7.69 Grafik diagram interaksi SpColumn

$$\frac{Kontrol jarak antar tulangan}{s} = \frac{b_{w} - 2.h_{selimut} - 2f - nD}{n - 1}$$

$$= \frac{2000 - 2.50 - 2.16 - 20.22}{20 - 1}$$

= 65 mm . . . (OK) > 40 mm

<u>Tulangan Geser</u> Pu = 46693,8kN Vu = 6332,57 kN

Kuat geser beton menurut SNI 2847-2013 Ps 11.2.1.2

Vc =
$$0.17 \left(1 + \frac{N_u}{14A_g} \right) \lambda \sqrt{f'_c} b_w d$$

= $0.17 \left(1 + \frac{46693.8.10^3}{14.3.716.10^6} \right) \lambda \sqrt{50.890.2923}$
= 5933791,903 N

$$\varphi Vc = 0.85.5933791.903N$$

= 5043723.117 N

$$\frac{1}{2} \phi Vc = \frac{1}{2} \cdot 5043723,117N$$

= 2521861,559 N
= 2521,861 kN

Nilai $\frac{1}{2} \phi Vc < \phi Vc < Vu$ Maka perlu tulangan geser. Lihat SNI 2847-2013 Ps 11.4.7.2.

Berdasarkan SNI 2847-2013 Ps 21.3.4.2 spasi antar tulangan geser tidak boleh melebihi yang terkecil dari : d/4 = 2923/4 = 730 mm 8D tul. longitudinal = 8. 22 = 176 mm 24D tul. Transversal = 24. 16 = 384 mm atau 300 mm Vu \leq Vn Vn = Vc + Vs Vu $\leq \phi$ Vc + ϕ Vc

$$Vs = (Vu/\phi) - Vc$$

Vs =
$$(6332,57.10^3/0,85) - 5933791,903N$$

= $1516290 N$

Digunakan 1 sengkang

Av =
$$1(0,25.\pi.0^2) = 4(0,25.\pi.22^2) = 201,142 \text{ mm}^2$$

Vs = $\frac{A_v.f_y.d}{s}$, maka
s = $\frac{A_v.f_y.d}{V_s} = \frac{201,142.400.2923}{1516290} = 155,09 \text{ mm}$
s_{maks} = $d/2 = 2923/2 = 1461,5 \text{ mm}$

Maka digunakan tulangan geser D16-150

<u>Perhitungan Tulangan Puntir Penampang Top Cross Beam</u> Gaya dalam torsi yang bekerja pada *pylon*. Tu = 187,13 kNm

Kontrol terhadap pengaruh puntir, apakah dapat diabaikan. $A = 3716220 \text{ mm}^2$

Acp	- 3710220 mm	
P _{cp}	= 2(3000+2000)mm	= 10000 mm
X ₁	= 2000mm $- 2(50+0,5.16)$ mm	= 1884 mm
X ₂	= 3000mm $- 2(50+0,5.16)$ mm	= 2884 mm
A _{oh}	=(1884.2884)mm ²	$= 5433456 \text{ mm}^2$
$\mathbf{p}_{\mathbf{h}}$	= 2(1884 + 2884)mm	= 9536 mm
Ø	$=45^{\circ}$ (untuk komponen struktru	r non-prategang)

$$T_{u} \leq \varphi 0,083\lambda \sqrt{f'_{c}} \left(\frac{A_{cp}^{2}}{P_{cp}}\right) \text{SNI } 2847 \ 2013 \text{ Ps } 11.5.1$$
$$\leq 0,85.0,083.1.\sqrt{50} \left(\frac{3716220^{2}}{10000}\right)$$

<688945476,3 Nmm</p>

884,63>688,94 kNm

Maka tidak diperlukan tulangan puntir.

Untuk lebih jelasnya dapat dilihat pada Gambar 7.70 berikut ini.

Gambar 7.70 Desain penampang lower cross beam

7.7.6 Analisa Anker Pada Pylon

Anker dipasang sesuai dengan jumlah strand kabel yang telah dihitung. Analisa ini meliputi cek tegangan pada beton saat pemberian gaya tarik (*stressing*). Berikut adalah nilai gaya tarik dan anker dapat dilihat pada Tabel 7.33.

Kabel	Force (kN)
S7, M7	6578,62
S6, M6	5823,49
S5, M5	5965,64
S4, M4	5953,47
S3, M3	4609,82
S2, M2	4673,80
S1, M1	4535,40

Tabel 7.33 Hasil analisa gaya tarik dari A_{pakai}

Gambar 7.71 Detail anker VSL SSI 2000 untuk pylon

Stay				Stressing End											
TENDON	Number of strands 11	Minimum breaking load kN	Force at 45% NN	Transverse force kN	TENDON	0 A1	0 81 mm	C1	0 D1	0 E1 mm	F1 min mm	G1	H1 min	n	L1 min mm
6-12	12	3,348	1,507	50	ő-12	190	230	290	219.1/6.3	196	85	30	235	160	1,500
6-19	19	5,301	2,385	80	6-19	235	285	355	267/6.3	241	100	35	245	180	1,750
6-22	22	6,138	2,762	90	6-22	255	310	385	298.5/7.1	261	110	40	245	210	1,900
6-31	31	8,649	3,892	130	6-31	285	350	440	323.9/7.1	291	130	45	275	210	2,100
6-37	37	10,323	4,645	150	6-37	310	380	485	355.6/8.0	316	140	50	295	210	2,300
6-43	43	11,997	5,399	180	6-43	350	425	540	406.4/8.8	356	145	55	305	210	2,550
6-55	55	15,345	6,905	230	6-55	385	470	585	419/10	391	165	60	325	260	2,650
6-61	61	17,019	7,659	250	6-61	385	470	600	419/10	391	180	65	345	260	2,850
6-73	73	20,367	9,165	300	6-73	440	530	680	508/11	446	180	75	345	290	3,050
6-85	85	23,715	10,672	350	6-85	440	540	710	508/11	446	210	80	375	290	3,150
6-91	91	25,389	11,425	375	6-91	490	590	760	559/12.5	496	195	80	385	320	3,400
6-109	109	30,411	13,685	450	6-109	505	610	795	559/12.5	511	215	90	400	320	3,550
6-127	127	35,433	15,945	525	6-127	560	670	865	610/12.5	566	255	95	410	340	3,950

Gambar 7.72 Spesifikasi teknis anker VSL SSI 2000 untuk pylon

Gambar 7.73 Dimensi anker

Anker	43	55	61		
ØB1 (mm)	425	470	470		
C1 (mm)	540	585	600		

Tabel 7.34 Data anker yang dipakai

Gambar 7.74 Penerapan piramida terpancung untuk mencari A2 dalam tumpuan berundak atau miring.

Contoh perhitungan anker digunakan S_7 yang mempunyai gaya paling besar.

Data perencanaan :

$$P = 6578,62 \text{ kN}$$

$$H = 1480 \text{ mm}$$

$$ØB1 = 470 \text{ mm}$$

$$A_2 = H \times H$$

= 2100400 m

$$= 2190400 \text{ mm}^2$$

C1 =
$$600 \text{ mm}$$

A₁ = (C1 x C1) – Area ØB1
= (600 x 600) – (0,25.
$$\pi$$
.540²)
= 186435,71 mm²

Pemberian gaya tarik dilakukan pada saat beton berusia 14 hari, dengan kuat tekan beton diperkirakan 85% f'c.

$$f_{c}^{*} = 85\% \times 50 \text{ MPa}$$

= 42,5 MPa

$$f_{cp} = 0.8.f'_{c} \sqrt{\frac{A_{2}}{A_{1}} - 0.2}$$
$$= 0.8.50 \sqrt{\frac{2190400}{186435.71} - 0.2}$$
$$= 115.54 \text{ MPa}$$

Tegangan dibawah pelat anker :

$$f_t = \frac{P}{A_1} = \frac{6578,62}{186435,71} = 35,28 \text{ MPa} < f_{cp} \dots \text{OK}$$

Untuk perhitungan masing-masing anker ditampilkan pada Tabel 7.35 berikut ini.

Vahal	Anker	Force	f _{cp}	f _t	Kontrol
Kabel	(Strand)	(kN)	(MPa)	(MPa)	$(\mathbf{f}_{t} \leq \mathbf{f}_{cp})$
S7, M7	61	6578,62	115,54	35,29	OK
S6, M6	55	5823,49	121,58	34,53	OK
S5, M5	55	5965,64	121,58	35,37	OK
S4, M4	55	5953,47	129,17	39,77	OK
S3, M3	43	4609,82	129,17	30,80	OK
S2, M2	43	4673,80	129,17	31,23	OK
S1, M1	43	4535,40	129,17	30,30	OK

 Tabel 7.35 Kontrol tegangan beton pada saat stressing

BAB VIII KESIMPULAN

8.1 Ringkasan

Dari seluruh analisa dan kontrol yang telah dilakukan dalam mendesain jembatan *multi-span cable-stayed* ini, dapat dilihat ringkasan hasil tugas akhir, yang disajikan sebagai berikut:

- 1. Jembatan memiliki panjang total 960 m yang meliputi bentang tepi 2@120 m dan bentang utama 3@240 m dengan lebar jembatan 20,5 m 4UD2.
- 2. Pelat lantai kendaraan berupa pelat beton bertulang dengan *steeldeck*, tebal pelat adalah 25 cm dengan tulangan lentur daerah lapangan D10-200 dan tulangan lentur daerah tumpuan D19-200. Tulangan susut atas dan bawah Ø10-250.
- 3. Tiang sandaran berupa baja profil WF 125.60.6.8 dengan tinggi 1,2 m, sedangkan untuk pipa sandaran berupa profil pipa baja dengan dimensi Ø 60,5 mm.
- 4. Gelagar memanjang komposit berupa baja profil WF 350.175.7.11, jarak antar gelagar memanjang 1,75 m, sambungan gelagar memanjang terhadap gelagar melintang berupa sambungan baut tipe friksi M16 F10T dengan pelat siku L 100.100.20, jumlah stud 40 buah sepanajng gelagar dengan 2 stud per gelombang *steeldeck*.
- 5. Gelagar melintang komposit berupa baja *plate girder* 1000.400.20.30, jarak antar gelagar melintang 4 m, sambungan gelagar memanjang terhadap gelagar utama berupa sambungan las a = 1,37 cm, sedangkan sambungan gelagar melintang terhadap gelagar melintang pada jarak 90 cm dari tumpuan berupa baut tipe tumpu Ø20 mm, jumlah stud sebanyak 208 sepanjang gelagar dengan jumlah stud tiap baris 2 buah.
- 6. Permodelan struktur utama jembatan dan *staging analysis* menggunakan *fishbone model*.
- 7. Metode pelaksanaan menggunakan balanced cantilever dengan menggunakan form traveler tipe overhead. Staging

analysis atau analisa metode pelaksanaan memanfaatkan program MIDAS CIVIL metode *backward solution*.

- 8. Gelagar utama berupa *rectangular twin box girder* 2100.1500.60.60 dengan pengaku 200.20. Sambungan antar gelagar utama berupa sambungan baut Ø35 mm.
- 9. Jembatan masih mampu menahan beban statik dan dinamis (gempa) saat jembatan diasumsikan satu kabel putus, dengan rasio kombinasi lentur dan aksial adalah 0,96 < 1,00.
- 10. Stabilitas aerodinamis jembatan menunjukan frekuensi alami lentur (f_B) = 0,867 Hz dan torsi (f_T) = 0,95 Hz; efek *vortex-shedding* masuk dalam kategori A (dapat diterima \rightarrow Gambar 7.44 dan 7.45) dan efek *flutter* menghasilkan V_{kritis} _{actual}= 44,65 m/dt > V_{rencana} = 37 m/dt yang artinya tidak terjadi ayunan/*flutter*.
- 11. Digunakan kabel *VSL SSI 2000 7-wire strand*, tipe ASTM A 416-05 Grade 270 dengan jumlah *strand* bervariasi mulai dari 43, 55 dan 61 untaian*strand*.
- 12. Anker pada *deck* dan *pylon* menggunakan tipe DRT *Stay Cable System* SSI 2000.
- 13. Struktur *pylon* terdiri atas :
 - a. Kolom *pylon hollow* 4x3 m dengan tulangan terpasang 260D36 (3,118 %) ditambah 20D36 sebagai tulangan puntir, dan sengkang 3D22-250 arah y dan 10D22-250 arah z;
 - Kaki *pylon*4x3 m dengan tulangan terpasang 260D36 (2,21 %)ditambah 20D36 sebagai tulangan puntir, dan sengkang 4D22-250 arah z;
 - c. *Top cross beam*didesain sebagai penampang *hollow* 2x6 m dengan tulangan terpasang 296D22 (1,76 %) dan sengkang D16-160;
 - d. *Lower cross beam* didesainsebagai penampang *hollow* 2x3 m, dengan tulangan terpasang 176D22 (1,798 %) dan sengkang D16-150.

8.2 Kesimpulan

Dari Tugas Akhir ini dapat diambil kesimpulan sebagai berikut :

1. Analisa menggunakan *fishbone model* mampu mengurangi banyak *Degree of Freedom* (DOF) pada program bantu.

	Jumlah <i>node</i>	Jumlah	Lama <i>perform</i>							
	(DOF)	element	analysis							
Fishbone model	690	868	30,77 sec							
Full model	5608	9250	740,76 sec							

 Tabel 8.1 Perbandingan fishbone model dan full model

2. Dengan *fishbone model* kinerja program bantu seperti MIDAS dalam menganalisis struktur menjadi semakin ringan dan cepat (efektif).

```
YOUR MIDAS JOB IS SUCCESSFULLY COMPLETED
TOTAL SOLUTION TIME..: 30.77 [SEC]
```

Gambar 8.1 Perform analysis untuk fishbone model

```
YOUR MIDAS JOB IS SUCCESSFULLY COMPLETED
TOTAL SOLUTION TIME..: 740.76 [SEC]
```

Gambar 8.2 Perform analysis untuk full model

- 3. Dengan *fishbone model* desain pembebanan juga menjadi lebih mudah dan sederhana.
- 4. Pada Tugas Akhir ini didapatkan hasil gaya-gaya dalam dengan analisis *fishbone model*yang masuk akal dan dapat diterima jika dilihat dari apa yang sudah dihitung dan dikontrol pada perhitungan gelagar utama, kabel dan struktur *pylon*.

- 5. *Fishbone model* telah dibuktikan dapat digunakan, seperti pada Tatara *Bridge* di India dan Nhat Tan *Bridge* di Vietnam yang keduanya didesain menggunakan *fishbone model*.
- 6. *Displacement* atau perpindahan arah X sebesar 0,42 m sehingga diperlukan *expansion joint* pada pertemuan antara jembatan utama dan jembatan pendekat.

8.3 Saran

Dalam pengerjaan tugas akhir ini masih banyak terdapat kekurangan, maka dari itu perlu adanya hal-hal yang harus diperhatikan agar perencanaan atau desain sejenis dapat lebih baik lagi, hal-hal tersebut antara lain :

- 1. Dalam penggunaan *fishbone model* perlu dipelajari lebih lanjut dan mendalam, agar analisis desain jembatan menjadi lebih akurat.
- 2. Kasus dan jenis beban dapat ditambah agar desain menjadi lebih teliti dan mampu mengantisipasi keadaan yang paling kritis.
- 3. Selain dilakukan analisa dinamis (stabilitas aerodinamis) akibat beban angin yang dikontrol menggunakan rumus empiris, perlu juga dilakukan uji menggunakan *wind tunnel* dengan jembatan berskala.

DAFTAR PUSTAKA

- Arnaud S., Matsunaga N., dan Ragaru J.-P. 2008. "Behavior of a multiple spans cable-stayed bridge". Ingerosec Corp., Tokyo, Japan.
- Beneus E, dan Koc I. 2014. *Innovative road bridges with steel sandwich decks.* Göteborg, Chalmers University of Technology.
- Brockenbrough, R.L., dan Merrit F.S. 2011. *Structural Steel Designer's Handbook-Fifth Edition*. New York, Mc Graw Hill dan ASCE Press.
- Chen, W.F., dan Duan Lian. 2014. Bridge Engineering Handbok Second Edition-Superstructure Design. New York, Taylor & Francis Group.
- Gimsing, Neils J. 1983. *Cable Suported Bridge Concept and Design*. Denmark, John Wiley and Sons Ltd.
- Gimsing, Neils J., dan Christos T. Georgakis. 2012. Cable Suported Bridge Concept and Design Third Edition. Denmark, John Wiley and Sons Ltd.
- Haldania, Ravi. 2007. *Cable Stayed Bridges*. IIT-Powai, Dept. of Civil Engineering.
- Harwijono, Hidayat Soegihardjo, dan Djoko Irawan. 2007. Kuliah Rekayasa Jembatan Bentang Panjang PS1391 (ed. Mei, 2007). Surabaya, ITS.
- Hendri. 2011. "Desain Jembatan *Cable Stayed* Malangsari-Banyuwangi dengan *Two Vertical Planes System*". Institut Teknologi Sepuluh Nopember.
- Maina V., Taki N., Tokuchi T., Matsuno K., dan Nishi T. 2014. "CONSTRUCTION STAGE ANALYSIS FOR THE NHAT TAN BRIDGE". Istanbul Bridge Conference, Turkey.
- Nugroho, Gary. 2015. "Desain Struktur Jembatan Semi-Harp Pattern Cable Stayed Bedadung-Jember dengan Double Planes System Menggunakan Dek Baja". Institut Teknologi Sepuluh Nopember.

- Parke, Gerard, dan Nigel Hewson. 2008. *ICE Manual of Bridge Engineering Second Edition*. London, Thomas Telford Ltd.
- S. Arnaud, N. Matsunaga, S. Nagano & J.-P. Ragaru. 2008. "Behavior of a multi spans cable-stayed bridge" Ingerosec Corp., Tokyo, Japan
- Stahl, F.L., and Gagnon, C.P. 1996. Cable Corrosion in Bridges and Other Structures. New York, American Society of Civil Engineer.
- Standar Nasional Indonesia. Standar Pembebanan untuk Jembatan. RSNI T-02-2005. Departemen PU Dirjen Bina Marga.
- Standar Nasional Indonesia. Perencanaan Struktur Baja untuk Jembatan. RSNI T-03-2005. Departemen PU Dirjen Bina Marga.
- Standar Nasional Indonesia. Perencanaan Struktur Beton untuk Jembatan. RSNI T-12-2004. Departemen PU Dirjen Bina Marga.
- Standar Nasional Indonesia. Standar Perancangan Jembatan Terhadap Beban Gempa. RSNI 2833-201X. Departemen PU Dirjen Bina Marga.
- Standar Nasional Indonesia. Tata Cara Pelaksanaan Struktur Baja Untuk Bangunan Gedung. SNI 1729-2002. Departemen Pekerjaan Umum.
- Standar Nasional Indonesia. Spesifikasi Untuk Bangunan Gedung Baja Struktural. SNI 1729-2015. Badan Standarisasi Nasional.
- Standar Nasional Indonesia. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung. SNI 03-2847-2002.
- Standar Nasional Indonesia. Persyaratan Beton Struktural Untuk Bangunan Gedung. SNI 2847-2013. Badan Standarisasi Nasional.
- Troitsky, M.S. .1988. *Cable-stayed Bridge Theory and Design*. London, BSp Professional Books.
- Virlogeux, M. 2001. "Bridges with multiple cable-stayed spans". In Structural Engineering International 1/2001, IABSE

Walther, R., Houriet, Isler, Moia, Klein. 1999. Cable Stayed Bridge Second Edition. London, Thomas Telford Publising.

W. Podolny and J. B. Scalzi, "Construction and Design of Cable Stayed Bridges," John Wiley and Sons, New York, 1986.

VSL SSI 2000 STAY CABLE SYSTEM

DESIGN ENGINEERING SUPPLY INSTALLATION MONITORING

VSL LEADS THE WAY WITH A NEW STAY CABLE TECHNOLOGY

Sunshine Skyway Bridge – USA, 1986 Supply of post-tensioning and stay cables. Cables anchored to the pylon by saddles and equipped with hydraulic dampers.

SSI 2000

VSL, a specialist stay cable contractor

Leader in the field of post-tensioning and related engineering, VSL operates as a worldwide network through 40 subsidiaries located on 5 continents. Its post-tensioning systems have been used throughout the world since 1956, earning a well-merited reputation for their quality and efficiency.

The SSI 2000 system reflects VSL's development of stay cable technology to provide the best solution for ever-changing and complex engineering requirements. The system offers high fatigue resistance, excellent corrosion protection, cable force monitoring, as well as strand adjustability, inspectability and replaceability. VSL can now deliver even faster installation and erection cycles.

Increasing spanning dimensions

Because of their structural and economic advantages, more cable-stayed structures such as footbridges, bridges and suspended roofs have been built over the last 30 years. Achievable spans dimensions have also considerably increased.

Stay cables used to be factory-manufactured and assembled from parallel or locked coil wires. Then, a high-quality seven-wire prestressing strand was developed for staycable applications. It was used in prefabricated stay cables installed in bridges using heavy equipment. These strands are placed in a steel or HDPE pipe and protected by cement grouting. Since the performance of a cable-stayed structure essentially depends on its stay cable properties, it became necessary to improve the

OLOGY: A I

technology and develop new, modern stay cable systems able to meet demands such as increased span lengths and durability.

Stringent new standards

Modern engineering is setting stringent new standards for cable-stayed bridge systems. Designers and authorities throughout the world are demanding:

- Increased stay cable durability: Critical factors are corrosion protection, good anchorage conditions, easy inspection and maintenance, replaceability and prevention of cable vibration.
- Outstanding fatigue and static load performance levels (200MPa and 300MPa stress range fatigue test for the SSI 2000 anchorage assembly and its components respectively).

- Improved aesthetics, such as the use of coloured cables.
- Integration of damping systems into the anchorage.

Main contractors benefit from optimal construction schedules thanks to:

- A design which takes into account the tight interaction between the deck erection and the stay cable installation.
- Light equipment for installation works, allowing easier operations and flexibility. Clients benefit from integration of enhanced durability protection and easier long-term maintenance, which can provide clients with substantial savings.

The VSL SSI 2000 stay cable system is designed to meet these requirements.

Alamo Dome Stadium Roof – USA, 1993 A typical use of stay cables for suspended roofs.

Ben Ahin Bridge – Belgium, 1988 Rotation of the entire bridge after stay cable installation.

Koshiki Daimyojin Bridge – Japan, 1993 Technical consultation and supply of the prefabricated stay cables.

Barrios de Luna Bridge – Spain, 1983 The cable strands are protected by grouting inside the stay pipe.

Batam Tonton Bridge – Indonesia, 1997 Package: design, supply and installation of stay cables, deck form-travellers and pylon formwork. Construction engineering for the superstructure construction.

CONCEPT FVSL SSI 2000 STAY CABLE SYSTEM 3 RABILITY

VSL products and services

Stay cable structures provide owners and architects with a high level of design freedom. As a specialist stay cable contractor, VSL provides comprehensive technical assistance from the earliest stage of the preliminary studies right through to the detailed design and construction phases:

- consulting service to owners, engineers and contractors
- static analysis of the structu
- assistance in the dynamic analysis of cable vibrations and recommendation of solutions
- detailed design of the structure with optimised use of the stay cable system
- construction engineering
- geometry control during construction and final adjustment
- method statements for the construction of the structure and cable installation
- supply and installation of stay cables, with incorporation of monitoring and anti-vibration system
- design and supply of special equipment such as formwork launching truss climbform etc.
- products and services for inspection, maintenance
 and remain works

VSL's capabilities, expertise and know-how are available to develop the best-adapted solutions in co-operation with all partners involved in the design, supply, installation and assembly of cable-suspended structures.

THE SSI 2000 SYSTEM'S FEATURES

SSI 2000: VSL STAY CABLE TECHNOLOGY FOR BRIDGES

The SSI 2000 stay cable system is based on the proven VSL stay cable wedge/strand anchorage technologies, which have been applied for over 20 years. Meeting the most stringent requirements, it has been used in more than 70 stay cable projects and successfully passed many full-scale tests.

Easier to use

The VSL SSI 2000 system is easier to use in all types of cable-stayed bridge designs. It incorporates multiple independent and hard-wearing protection layers to guarantee long-term performance. The system also allows for easy inspection and, where required, cable replacement. It meets and often exceeds the requirements of the latest PTI recommendations for stay cable systems.

The system has been optimised to facilitate cable installation on site. Because it uses prefabricated anchorages, there is no anchorage component assembly on the deck or the pylon along the critical bridge erection path. These very compact anchorages permit easy installation in confined locations inside box girders or pylons. Single-strand installation and stressing are standard features of this system. The 15.2- or 15.7-mm diameter, high-tensile, 7-wire steel strand is the prime element of this stay cable. It is delivered as monostrand, i.e. greased or waxed and sheathed. The strand is factory-manufactured to VSL specifications. Either grease or wax is applied to fill the voids around wires. The strand is overlaid with a tightly extruded HDPE cover. While not required for durability, the SSI 2000 system can, on request, be delivered with a galvanised or other type of metallic coating.

Full individual encapsulation

The individual encapsulation of each strand avoids the risk of corrosion migration inside stay

SSI 2000 VSL SSI 2000 STAY CABLE SYSTEM 4 OLOGY: A NE

cable areas that cannot be visually inspected. Full individual strand encapsulation is achieved by providing each strand with its own protection tube and sealing details in the anchorages. The performance of the seals can be checked at any time during the design life of the stay. This special sealing system also ensures full protection of the strand during the construction phase. The SSI 2000 system guarantees that the quality of the factory-applied individual protection treatment is maintained over the entire length of the strand: from wedge to wedge, and next to wedges where the protection treatment needs to be removed during installation.

CONCEPT

Protections for higher durability

Anchorage details are designed to filter vibration and bending stresses in the cable before they reach the wedge anchorage. The deviator placed inside the guide pipe provides the anchorage with an additional level of protection from imposed cable rotations. The corrosion protection systems on the anchorages have been designed to provide up to 100 years of design life in the most aggressive environments.

Options

In its standard configuration, the VSL SSI 2000 stay cable system is delivered with its

monostrands positioned inside a black HDPE stay pipe but without any metallic coating. It does not require grouting over the free length. The system can be supplied with a number of options, including: use of metal-coated (i.e. galvanised) monostrands; coloured HDPE stay pipe (co-extruded or fully coloured); special helical anti-vibration ribs on the stay pipe; stabilizing cables; special anti-vibration damper next to one end of the cable, generally at deck level for easy maintenance and designed to provide high performance and easy installation on both on new and existing bridges.

VSL SSI 2000 MAIN DIMENSIONS

SSI 2000 STRESSING AND ANCHORAGE For 127 Tendon Unit (Papendorpse Bridge)

Stay

Stressing End

TENDON UNIT	Number of strands n	Minimum breaking load ^{kN} ①	Force at 45% kN	Transverse force kN 2	TENDON UNIT	Ø A1 mm	Ø B1 mm	С1 ^{mm} 3	ø D1 ^{mm} 4 8	Ø E1 mm	F1 min ^{mm} G	G1 ^{mm} 3	H1 min ^{mm} G	J1 mm	L1 min mm
6-12	12	3,348	1,507	50	6-12	190	230	290	219.1/6.3	196	85	30	235	160	1,500
6-19	19	5,301	2,385	80	6-19	235	285	355	267/6.3	241	100	35	245	180	1,750
6-22	22	6,138	2,762	90	6-22	255	310	385	298.5/7.1	261	110	40	245	210	1,900
6-31	31	8,649	3,892	130	6-31	285	350	440	323.9/7.1	291	130	45	275	210	2,100
6-37	37	10,323	4,645	150	6-37	310	380	485	355.6/8.0	316	140	50	295	210	2,300
6-43	43	11,997	5,399	180	6-43	350	425	540	406.4/8.8	356	145	55	305	210	2,550
6-55	55	15,345	6,905	230	6-55	385	470	585	419/10	391	165	60	325	260	2,650
6-61	61	17,019	7,659	250	6-61	385	470	600	419/10	391	180	65	345	260	2,850
6-73	73	20,367	9,165	300	6-73	440	530	680	508/11	446	180	75	345	290	3,050
6-85	85	23,715	10,672	350	6-85	440	540	710	508/11	446	210	80	375	290	3,150
6-91	91	25,389	11,425	375	6-91	490	590	760	559/12.5	496	195	80	385	320	3,400
6-109	109	30,411	13,685	450	6-109	505	610	795	559/12.5	511	215	90	400	320	3,550
6-127	127	35,433	15,945	525	6-127	560	670	865	610/12.5	566	255	95	410	340	3,950

SSI 2000 VSL SSI 2000 STAY CABLE SYSTEM BOLOGY: A NE

Dead End

TENDON UNIT	ØA2 mm	C2 ^{mm} 🚱	ØD2 ^{mm} 4 3	ØE2 mm	F2 mm	G2 ^{mm} 3	H2 min mm	J2 mm	L2min mm	ØA3 mm 4 9	TENDON UNIT
6-12	185	260	177.8/4.5	150	105	35	105	160	900	125/4.9	6-12
6-19	230	335	219.1/6.3	190	120	50	105	180	1,200	140/5.4	6-19
6-22	250	355	219.1/6.3	205	120	50	105	210	1,350	160/6.2	6-22
6-31	280	415	244.5/6.3	230	145	60	105	210	1,550	160/6.2	6-31
6-37	300	455	273/6.3	255	170	70	105	210	1,750	180/5.6	6-37
6-43	340	505	323.9/7.1	285	175	75	105	210	2,000	200/6.2	6-43
6-55	380	550	323.9/7.1	310	195	75	105	260	2,050	200/6.2	6-55
6-61	380	585	355.6/8	330	215	85	105	260	2,250	225/7.0	6-61
6-73	430	650	406.4/8.8	370	215	95	120	290	2,450	250/7.8	6-73
6-85	430	685	406.4/8.8	370	245	110	120	290	2,600	250/7.8	6-85
6-91	480	730	457/10	420	255	110	120	320	2,800	280/8.7	6-91
6-109	495	775	457/10	420	265	120	120	320	3,000	315/9.8	6-109
6-127	550	845	508/11	475	315	130	120	340	3,350	315/9.8	6-127

Stay Pipe

PYLON

A mini

В

A mini

120 810

UNIT

Dimensions (mm) of monostrand jack. TENDON 6-12 6-31 6-61 6-91 6-127

to 6-22 to 6-55 to 6-85 to 6-109 A mini 1000 1050 1100 1150 1200

Dimensions (mm)

of multistrand jack and chair.

TENDON 6-12 6-22 6-31 6-55 6-85 6-109 6-127 UNIT 6-19 6-37 6-61 6-91 6-91 6-91

A mini 1000 1000 1100 1200 1300 1350 1500

490 620 620 780 780 970 970

ØA3 mm 4 0	TENDON UNIT
125/4.9	6-12
140/5.4	6-19
160/6.2	6-22
160/6.2	6-31
180/5.6	6-37
200/6.2	6-43
200/6.2	6-55
225/7.0	6-61
250/7.8	6-73
250/7.8	6-85
280/8.7	6-91
315/9.8	6-109
315/9.8	6-127

- Forces are indicated for strand EN 10138-3 1860S7 - 16.0 (Euronorm).
- 2 Admissible transverse force on the standard guide deviator.
- 3 Valid for nominal concrete strength at stressing to 45% of stay capacity: 45 MPa (cube), 36 MPa (cylinder). Dimension must be checked in case of other bearing condition.
- 4 External diameter/ wall thickness.
- 6 Minimum height of anchor head allows an adjustability of 40 mm.
- 6 Dimensions valid for load monitoring/adjustment with multi-strand jack.
- Non-grouted stay.
- B Guide pipe to be checked for the actual transverse force.

W CONCEPT FUSI SI 2000 STAY CABLE SYSTEM 7 RABILITY

Lysaght Bondek[®]

Structural steel decking system Design and Construction Manual

- Excellent spanning capacities for greater strength and less deflection
- Acts as permanent formwork with minimal propping and no stripping of formwork
- Fast and easy to install (590mm wide)
- Works as composite slab saving on concrete and reinforcement costs

Preface

BlueScope Lysaght presents this new publication on LYSAGHT BONDEK[®]. We upgraded this document and design and construction information for the latest standards and construction practices.

- AS 3600:2009
- AS/NZS 1170.0:2002
- Simplified uniform arrangement for mesh and bars

Our newest release of supporting software and the Design and Construction Manual for BONDEK structural steel decking incorporates BlueScope Lysaght's latest research and development work. Improved design and testing methods have again pushed BONDEK structural steel decking to the forefront. New formwork tables are optimised for steel frame construction but are also suitable for concrete frame construction and masonry walls. Call Steel Direct on 1800 641 417 to obtain additional copies of the Design and Construction Manual and Users Guide for BONDEK Design Software. The software can be downloaded by visiting:

www.lysaght.com/bondekdesignsoftware

The following is an overview of this manual. It is structured to convey the subject in a comprehensive manner. This manual consists of eight sections. Section 1 presents the general introduction of the BONDEK and is followed by purpose and scope in Section 2. Formwork design in Section 3 discusses the concept of designing BONDEK as a formwork. Section 4 presents the concept of designing BONDEK as a composite floor slab while Section 5 discusses design of composite slab in fire. Design tables for steel framed construction are presented in Section 6. Construction and detailing issues are presented in Section 7. Relevant list of references are presented in Section 8. Finally, material specifications are documented in Appendix A.

We recommend using this manual's tables for typical design cases. If the appropriate table is not in this manual, try the LYSAGHT BONDEK design software, and LYSAGHT BONDEK design software user's guide, which are available separately through Steel Direct or contact your local technical representative.

These developments allow you to make significant improvements compared with the design methods we previously published for slabs using BONDEK.

Conditions of use

This publication contains technical information on the following base metal thicknesses (BMT) of LYSAGHT BONDEK:

- LYSAGHT BONDEK 0.6 mm thickness
- LYSAGHT BONDEK 0.75 mm thickness
- LYSAGHT BONDEK 0.9 mm thickness (Availability subject to enquiry)
- LYSAGHT BONDEK 1.0 mm thickness

Warranties

Our products are engineered to perform according to our specifications only if they are installed according to the recommendations in this manual and our publications. Naturally, if a published warranty is offered for the product, the warranty requires specifiers and installers to exercise due care in how the products are applied and installed and are subject to final use and proper installation. Owners need to maintain the finished work.

Warning

Design capacities presented in this Manual and LYSAGHT software are based on test results. They shall not be applicable to any similar products that may be substituted for LYSAGHT BONDEK. The researched and tested design capacities only apply for the yield stress and ductility of DECKFORM® steel strip supplied by BlueScope Steel and manufactured by BlueScope Lysaght to the LYSAGHT BONDEK profile specifications. For public safety only LYSAGHT BONDEK can be certified to comply with Australian, International standards and the Building Code of Australia in accordance with the product application, technical and specification provisions documented in this Design and Construction Manual.

Technical support

Contact Steel Direct on 1800 641 417 or your local BlueScope Lysaght Technical Sales Representative to provide additional information.

Contents

1.	Introducing LYSAGHT BONDEK
2.	Purpose and scope of this publication
3	Formwork design 8
0.	31 Introduction 8
	32 Becommended deflection limits
	3.3 Loads for design
	3.4 Lise of spanning tables
	2.5 IVSAGUT BONDEK maximum span tables
л	Composite alab design
4.	4.1 Introduction
	4.1 Introduction
	4.2 Design roads
	4.2.1 Strength load combinations
	4.2.2 Serviceability load combinations
	4.3 Design for strength
	4.3.1 Negative bending regions
	4.3.2 Positive bending regions
	4.4 Design for durability and serviceability
	4.4.1 Exposure classification and cover
	4.4.2 Deflections
	4.4.3 Crack control
	4.5 Detailing of conventional reinforcement
	4.6 Use of tables given in Section 6 19
5.	Design for fire
	5.1 Introduction
	5.2 Fire resistance periods
	5.3 Design for insulation and integrity
	5.4 Design for structural adequacy
	5.4.1 Design loads 20
	5.4.2 Design for strength 20
	5.5 Reinforcement for fire design
6.	Design tables - steel-framed construction
	6.1 Use of design tables
	6.2 Interpretation of table solutions
	6.3 Single span tables
	6.4 Interior span tables
	6.5 End span tables
7.	Construction and detailing
	7.1 Safety
	7.2 Care and storage before installation
	7.3 Installation of BONDEK sheeting on-site
	7.3.1 Propping
	7.3.2 Laving
	7.3.3 Interlocking of sheets
	7.3.4 Securing the sheeting platform
	7.3.5 Installing BONDEK on steel frames
	7.3.6 Installing BONDEK on brick supports
	7.3.7 Installing BONDEK on concrete frames
	7.3.8 Provision of construction and movement joints 41
	7.3.9 Fastening side-lan joints 41
	7.3.10 Cutting and fitting Edgeform 41
	7 3 11 Cutting of sheeting
	7.3.12 Items embedded in slabs
	7 3 13 Holes in sheeting
	7 3 14 Sealing // //
	7 3 15 Inspection M
	7.0.10 IIIspection

7.4	Positioning and support of reinforcement	. 44
	7.4.1 Transverse reinforcement	. 45
	7.4.2 Longitudinal reinforcement.	. 45
	7.4.3 Trimmers	. 45
7.5	Concrete	46
	7.5.1 Specification	46
	7.5.2 Concrete additives	46
	7.5.3 Preparation of sheeting	46
	7.5.4 Construction joints	46
	7.5.5 Placement of concrete	. 47
	7.5.6 Curing	. 47
	7.5.7 Prop removal	. 47
7.6	Finishing	47
	7.6.1 Soffit and Edgeform finishes	47
	7.6.2 Painting	48
	7.6.3 Plastering	48
	7.6.4 Addition of fire protective coating	49
7.7	Suspended ceilings & services	. 49
	7.7.1 Plasterboard	. 49
	7.7.2 Suspended ceiling	. 49
	7.7.3 Suspended services.	. 49
7.8	Fire stopping detailing	50
	7.8.1 At reinforced block walls	50
	7.8.2 Fire collars	50
7.9	BONDEK in post tensioned concrete-framed construction	151
	7.9.1 BONDEK PT clip (post tensioned)	. 51
	7.9.2 BONDEK rib removal at PT anchor points or	
	stressing pans.	. 51
	7.9.3 Positioning of PT duct/cables in transverse	
	direction	. 51
7.10	Architectural matters	. 52
7.11	Accessories	. 53
8. Refe	rences	. 54
Append	dix A: Material specifications	. 55
1.0 Introducing LYSAGHT BONDEK

LYSAGHT BONDEK is a highly efficient, versatile and robust formwork, reinforcement and ceiling system for concrete slabs. It is a profile steel sheeting widely accepted by the building and construction industry to offer efficiency and speed of construction.

New design rules have been developed for the design of LYSAGHT BONDEK acting as structural formwork for the construction of composite and non-composite slabs (where BONDEK is used as lost formwork). The rules for calculating moment capacities are based on testing performed at BlueScope Lysaght Research and Technology facility at Minchinbury.

The data obtained allowed us to include moment capacities in negative regions based on partial plastic design model. As a consequence, the span limits that previously applied to BONDEK have been increased by up to 8%.

The typical BONDEK profile and dimension of a cross section of composite slab is given in Figure 1.1 and 1.2 respectively. The section properties and the material specifications are given in Table 1.1 and 1.2 respectively.

LYSAGHT BONDEK is roll-formed from hot dipped, zinc coated, high tensile steel. The steel conforms to AS 1397, grade G550 with Z350 and Z450 coatings.

LYSAGHT BONDEK has superior spanning capacities. 1.0mm BMT LYSAGHT BONDEK can be used as a permanent formwork spanning up to 3.6m unpropped used in steel-framed construction. LYSAGHT BONDEK provides efficient reinforcement in slab construction for steel-framed buildings, concrete-framed buildings and in buildings with masonry load bearing walls. The excellent shear bond resistance developed between BONDEK ribs and concrete enables highly efficient composite action to be achieved in a composite BONDEK slab.

LYSAGHT BONDEK composites slabs can be designed to achieve a fire-resistance of up to 240 minutes. For fire resistance levels of 90 and 120 minutes, the BONDEK ribs contribute significantly to the resistance of the slab in fire.

Composite slabs incorporating LYSAGHT BONDEK can be designed in a number of ways:

- Using the design tables given in this manual.
- Calculate from first principles using the relevant Australian Standards, Eurocodes and data from the current LYSAGHT BONDEK design software.
- Contact Steel Direct on 1800 641 417 or your local BlueScope Lysaght Technical Sales Representative to provide additional information.

However, if in doubt you should get advice from a specialist where required.

Figure 1.1 LYSAGHT BONDEK profile.

4

Design Advantages include:

- Excellent spanning capacities for greater strength and less deflection
- Acts as permanent formwork with minimal propping and no stripping of formwork face is required
- Fast and easy to install (590mm wide) with less handling required
- Works as reinforcement with composite slab saving on concrete and reinforcement costs
- Ribs at 200mm centres creating a safe working platform with slip resistant embossments on the ribs
- Advanced Design for Fire Resistance
- New BONDEK design software gives added flexibility and ease of design
- Backed by a BlueScope Steel warranty
- Nationwide technical support

Figure 1.2 BONDEK dimensions (2 sheets shown) (Fire reinforcement is not shown, see Chapter 5)

Table 1.1LYSAGHT BONDEK section properties

	Thickness BMT(mm)	Cross-sectional area of волдек A _{sh} (mm²/m)	Sheeting Elastic Centroid d _{cb} (mm)
I.0 BMT BONDEK	1.0	678	5.5
0.9 BMT BONDEK	0.9	1503	15.4
0.75 BMT BONDEK	0.75	259	15.3
0.6 BMT BONDEK	0.6	007	15.2

Table 1.2

6

Material specification (based on Z350)										
Thickness	M	ass	Yeild Striegth	Coverage						
(mm)	kg/m²	kg/m	MPă	m²/t ັ						
0.6	8.52	5.03	550	117.31						
0.75	10.50	6.20	550	95.24						
0.9	12.48	7.36	550	80.16						
1.0	13.79	8.14	550	72.50						
1.0	10.75	0.14	550	72.50						

5.5 Reinforcement for fire design

The arrangement of additional fire reinforcement for fire design is shown in Figure 5.1.

- Some additional reinforcement may be necessary in some rare cases, in addition to any mesh and negative reinforcement required by our tables for composite slab design.
- D500L reinforcement is ignored in our design tables as fire reinforcement at all locations where significant elongation of reinforcement is expected
- The location of reinforcement A⁻_{stf} for Fire detail 1 is in a single top layer at a depth of d_{ct} below the slab top face (refer to Figure 5.1). This detail is applicable to continuous slabs only, this option is used for interior spans in our design tables.
- The location of reinforcement A⁺_{stf} for Fire detail 2 is in a single bottom layer at a distance of y_b above the slab soffit (refer to Figure 5.1). This option is used for single spans and end spans of continuous slabs in our design tables.
- The cross-sectional area of the additional reinforcement for fire design is designated A_{stf}^{+} in our tables (D500N with bar diameter = 12 mm or less).
- The negative reinforcement (A_{st}^{-}) and the additional fire reinforcement (A_{stf}^{+} or A_{stf}^{-} as applicable), shall be located as shown in Figure 5.1 & 5.2.
- Location of mesh is at bottom for single spans and top for continuous spans. (See also Figure 1.2)

Fire Detail 1

Fire Detail 2

Figure 5.1 Details of reinforcement for fire design

	INSTITUT TEKNOLOGI SEPULUH NOPEMBER
--	--

BIDANG PROGRAM GAMBAR

DECAIN ALTERNATIC IEMPATAN MUCH III MENCOLINAKAN CICTEM MULTI CRAN CARLE CTAVER	KODE GAMBAR JUMLAH LEMBAR			DR. IR. HIDAYAT SOEGIHARDJO M., MS.		CATATAN	
DESAIN ALIERNATIF JEWIDATAN MUST III MENGGUNARAN SISTEM MULTI-SPAN CADLE-STATED	м3	34	DOSEN	NIP. 19550325 198003 1 004			
DENGAN FISHBUNE MUDEL		F		PROF. TAVIO, S	T., MT., Ph.D.		
CTDURTUD		1 – 34 L		NIP. 19700327	199702 1 001		
SIRUKIUR							
S-1 JURUSAN TEKNIK SIPIL FTSP-ITS		SKALA GAMBAR		RIZKY NUGRAHA / 3114 10 6001			
			DIPERIKSA	PARAF	TANGGAL		
PETA LUKASI JEWIDATAN WUSI III							

INSTITUT TEKNOLOGI SEPULUH NOPEMBER		JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED Dengan Fishbone Model	KODE GAMBAR M3	JUMLAH LEMBAR 34	DOSEN PEMBIMBING	DR. IR. HIDAYAT NIP. 19550325 PROF. TAVIO. S	SOEGIHARDJO M., MS. 198003 1 004 T., MT., Ph.D.	CATATAN	
	BIDANG	STRUKTUR	3 - 24			NIP. 19700327	199702 1 001			
	SEPULUH NOPEMBER	PROGRAM	S-1 JURUSAN TEKNIK SIPIL FTSP-ITS	SKALA GAMBAR	MAHASISWA	RIZKY NUGRAHA	/ 3114 10 6001			
		GAMBAR	KONSEP DESAIN JEMBATAN MUSI III EKSISTING	-	-	DIPERIKSA	PARAF	TANGGAL		

INSTITUT TEKNOLOGI SEPULUH NOPEMBER	JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED Dengan Fishbone Model	KODE GAMBAR JUMLAH LEMBAR M3 34		DOSEN PEMBIMBING	DR. IR. HIDAYAT SOEGIHARDJO M., MS. NIP. 19550325 198003 1 004 PROF. TAVIO. ST., MT., Ph.D.		CATATAN		
	BIDANG	STRUKTUR	4.	4 - 34		NIP. 19700327 199702 1 001				
	SEPULUH NOPEMBER	PROGRAM	S-1 JURUSAN TEKNIK SIPIL FTSP-ITS	SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA	/ 3114 10 6001		
		GAMBAR	KONSEP DESAIN JEMBATAN MUSI III EKSISTING	-	-	DIPERIKSA	PARAF	TANGGAL		

—	-			DESAIN ALTEDNATIE IEMDATAN MIICI III MENGGUNAKAN SISTEM MIJI TI SDAN GADI E STAVED	KODE GAMBAR	JUMLAH LEMBAR		DR. IR. HIDAYAT	SOEGIHARDJO M., MS.	CATATAN	
	<u> </u>		JUDUL IA	DESAN ALTERIVATIF JEMBATAN MUSITII MENGGUNARAN SISTEM MULTI-SFAN CABLE-STATED	м3	34	DOSEN	NIP. 19550325	198003 1 004		
INSTITUT TEKNOLOGI SEPULUH NOPEMBER			DENGAN FISHBUNE MODEL			PEMBIMBING	PROF. TAVIO, S	T., MT., Ph.D.			
	INSTITUT TEKNOLOGI	DIDANIO	CTDUNTUD	5 -	34		NIP. 19700327	199702 1 001			
	CEDULUU NODEMDED	BIDANG	SIRURIUR								
	SEPULUH NOPEMBER	DDOODAN			skala gambar N		RIZKY NUGRAHA / 3114 10 6001				
		PRUGRAM	S-1 JURUSAN TERNIK SIPIL FISP-IIS								
					1 1:	15000	DIPERIKSA	PARAF	TANGGAL		
			GAMBAR	I PRUFIL SUNGAI DAN TAWIPAN SAWIPING JEWIBATAN WUST III							1

		JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED	KODE GAMBAR M3	JUMLAH LEMBAR 34	DOSEN	DR. IR. HIDAYAT SOEGIHARDJO M., MS. NIP. 19550325 198003 1 004		CATATAN	
N SI				_		PEMBIMBING	PROF. TAVIO, ST	., MT., Ph.D.		
	INSTITUT TEKNOLOGI	BIDANG	STRUKTUR		6 - 34		NIP. 19700327	199702 1 001		
	SEPULUH NOPEMBER									
				SKALA GAMBAR	SKALA GAMBAR		RIZKY NUGRAHA / 3114 10 6001			
		PROGRAM	3-1 JURUSAN TERNIK SIFIL FISF-IIS	1 ·	1250					
					1230	DIPERIKSA	PARAF	TANGGAL		
		GAMBAR	AWPAN SAWPING JEWIBAIAN CABLE STATED		5000					

	DESAIN ALTERNATIC IEMPATAN MUCH III MENCOUNAKAN SISTEM MULTI SRAN GARLE STAVER	KODE GAMBAR JUMLAH LEMBAR			DR. IR. HIDAYAT	SOEGIHARDJO M., MS.	CATATAN	
JUDUL IA	DESAIN ALIERIVATIF JEMIDATAN MUSI III MENGGUNARAN SISTEM MULTI-SPAN CADLE-STATED	M3	34	DOSEN	NIP. 19550325 198003 1 004 PROF. TAVIO, ST., MT., Ph.D.			
	DENGAN FISHBONE MODEL			PEMBIMBING				
DIDANIO	CTDUKTUD	8 -	8 - 34		NIP. 19700327	199702 1 001		
BIDANG	SIRUKIUR							
DDOODAN	C 1 HIDHCAN TERNIK CIDIL FTCD ITC	SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
PRUGRAM	S-1 JURUSAN TERNIK SIPIL FISP-IIS	1.1	250					
0111010		1.4	200	DIPERIKSA	PARAF	TANGGAL		
GAMBAR	DETAIL PILON		1000					

		JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED		JUMLAH LEMBAR 34	DOSEN PEMBIMBING	DR. IR. HIDAYAT SOEGIHARDJO M., MS NIP. 19550325 198003 1 004	CATATAN		
INSTITUT TEKNOL SEPULUH NOPEM			DENGAN FISHBUNE MUDEL		PROF. TAVIO, ST., MT., Ph.D.					
	INSTITUT TEKNOLOGI	DIDANIO	STRUKTUR	9 - 34			NIP. 19700327	00327 199702 1 001		
	SEPULUH NOPEMBER	BIDANG								
		PROGRAM		SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
			5-1 JURUSAN TERNIK SIPIL FISP-115							
				1 :	300	DIPERIKSA	PARAF	TANGGAL		
		GAMBAR	FURMASI SEGMENTAL LANTAT KENDARAAN							

	DECAIN ALTERNATIC IEMBATAN MUCI III MENOCUNAVAN CICTEM MULTI CRAN CARLE CTAVER	KODE GAMBAR JUMLAH LEMBAR			DR. IR. HIDAYAT SOEGIHARDJO M., MS.		CATATAN	
JUDUL IA	DESAIN ALIERWAIIF JEWIDAIAN MUSI III MENGGUNARAN SISIEW MULII-SPAN GADLE-SIATED	M3 34		DOSEN	NIP. 19550325	198003 1 004		
	DENGAN FISHBUNE MUDEL			PEMBIMBING	PROF. TAVIO, ST., MT., Ph.D.			
DIDANIO		12	- 34		NIP. 19700327 199702 1 001			
BIDANG	JEWIDATAN BENTANG PANJANG							
DDOODUU		SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
PRUGRAM	S-1 JURUSAN TERNIK SIPIL FISP-115							
0111010		1:3	2500	DIPERIKSA	PARAF	TANGGAL		
GAMBAR								

ED SEPULUH NOPEMBER

	DECAIN ALTERNATIC JEMPATAN MUCI III MENOCUNAKAN CISTEM MULTI SRAN CARLE STAVER	KODE GAMBAR JUMLAH LEMBAR M3 34 F			DR. IR. HIDAYAT SOEGIHARDJO M., MS.		CATATAN	
JUDUL IA	DESAIN ALTERNATIF JEMIDATAN MUSI III MENGGUNARAN SISTEM MULTI-SPAN GADLE-STATED			DOSEN	NIP. 19550325 198003 1 004			
	DENGAN FISHBONE MODEL			PEMBIMBING	PROF. TAVIO, ST	Г., МТ., Ph.D.		
DIDANC	CTDUIVTUD	17 -	- 34		NIP. 19700327 199702 1 001			
BIDANG	SIKUNIUK							
DDOODAN		SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
PRUGRAM	3-1 JURUSAN TERNIK SIPIL FISP-115							
CAMPAD		1:2	20	DIPERIKSA	PARAF	TANGGAL		
GAMBAR	SAWIDUNGAN GELAGAR IWEIWANJANG							

		DECAIN ALTERNATIC JEMPATAN MUCH III MENOCUNAKAN CICTEM MULTI CRAN CARLE CTAVER	KODE GAMBAR	JUMLAH LEMBAR		DR. IR. HIDAYAT	SOEGIHARDJO M., MS.	CATATAN	
	JUDUL IA	DESAIN ALIERIVATIF JEMBATAN MUSITII MENGGUNARAN SISTEM MULTI-SPAN CABLE-STATED	M3	34	DOSEN	NIP. 19550325	198003 1 004		
		DENGAN FISHBONE MODEL			PEMBIMBING	PROF. TAVIO, ST	., MT., Ph.D.		
INSTITUT TEKNOLOGI	DIDANO	CTDUNTUD	18	- 34		NIP. 19700327	199702 1 001		
CEDULUU NODEMDED	BIDANG	SIRUKIUR							
SEPULUH NOPEMBER	DDOODAN		SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
	PRUGRAM	3-1 JURUSAN TERNIK SIPIL FISP-115							
	0111010		1:	25	DIPERIKSA	PARAF	TANGGAL		
	GAMBAR	JAIVIDUNUAN UELAUAK IVIELINIANG							

GAMBAR

S-1 JURUSAN TEKNIK SIPIL FTSP-ITS 1:30 DIPERIKSA PARAF TANGGAL SAMBUNGAN GELAGAR UTAMA

		JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED	KODE GAMBAR M3	JUMLAH LEMBAR 34	DOSEN	DR. IR. HIDAYAT NIP. 19550325	SOEGIHARDJO M., MS. 198003 1 004	CATATAN	
	INSTITUT TEKNOLOGI			22	- 34	PEMBIMBING	PROF. TAVIO, S NIP. 19700327	T., MT., Ph.D. 199702 1 001		
NY XH		BIDANG	SIRUNIUR							
	SEFULUH NUF EMBER	PROGRAM	S.1 HIDHSAN TEKNIK SIDIL ETSD.ITS	SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
		11100104								
		CAMPAD	DENILI ANGAN STRUKTUR DVI ON	1:	50	DIPERIKSA	PARAF	TANGGAL		
		GAMBAR	PENULANGAN SIRUKIUR FILUN							

					11					
			DECAIN ALTERNATIF, JEMPATAN MUSI III MENCOLINAKAN SISTEM MULTI SRAN GARLE STAVER	KODE GAMBAR	JUMLAH LEMBAR		DR. IR. HIDAYAT	F SOEGIHARDJO M., MS.	CATATAN	
		JUDUL IA	DESAIN ALIERNAHF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULH-SPAN CABLE-STATED	м3	34	DOSEN	NIP. 19550325	198003 1 004		
			DENGAN FISHBONE MODEL			PEMBIMBING	PROF. TAVIO, S	T., MT., Ph.D.		
	INSTITUT TEKNOLOGI	DIDANIO	CTDUKTUD	23	- 34		NIP. 19700327	199702 1 001		
E DY XH	CEDILIUI NODEMDED	BIDANG	SIKUNIUK							
	SEPULUH NOPEMBER	PPOOPAN		SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
		PRUGRAM	3-1 JURUSAN IERNIK SIPIL FISP-113	1 ·	50					
		CAMPAD	DENULANCAN STRUKTUR RALOK DENCAKU DVI ON		150	DIPERIKSA	PARAF	TANGGAL		
		GAMBAR	PENULANGAN STRUKTUR BALUK PENGARU PTLUN	1:	150					

	INSTITUT TEKNOLOGI	JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED DENGAN FISHBONE MODEL KODE GAUBAR JUMLAH LEMBAR DOSEN FEMBING	DR. IR. HIDAYAT NIP. 19550325 PROF. TAVIO. ST	SOEGIHARDJO M., MS. 198003 1 004 MT., Ph.D.	CATATAN				
		BIDANG	STRUKTUR	24 - 34		NIP. 19700327 199702 1 001				
	SEPULUH NOPEMBER	PROGRAM	S-1 JURUSAN TEKNIK SIPIL FTSP-ITS	SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA	/ 3114 10 6001		
		GAMBAR	DETAIL ANKER S7 PADA BOX	1:	+0	DIPERIKSA	PARAF	TANGGAL		

		JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED	KODE GAMBAR M3	JUMLAH LEMBAR 34	DOSEN	DR. IR. HIDAYAT NIP. 19550325	SOEGIHARDJO M., MS. 198003 1 004	CATATAN	
			DENGAN FISHBUNE MUDEL	25	27	PEMBIMBING	PROF. TAVIO, ST	., MT., Ph.D.		
NY G	INSTITUT TEKNOLOGI	BIDANG	STRUKTUR	25	- 34		NIP. 19700327	199702 1 001		
	SEPULUH NOPEMBER	DROCRAM		SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA	/ 3114 10 6001		
		PROGRAM	3-1 JURUSAN TERNIK SIFIL FISF-113							
		CAMPAD	DETAIL MELINTANC ANVED 57 DADA DOV	1:	20	DIPERIKSA	PARAF	TANGGAL		
		GAMDAR	DETAIL WELIWIANG ANKER 31 FADA DUA							· · · · · · · · · · · · · · · · · · ·

 DETAIL
 ANKER
 S6
 PADA
 BEIX

 M3
 SKALA
 1 : 70
 70

 DETAIL ANKER S5 PADA BOX

 M3
 SKALA 1 : 70

	<u>}</u>		JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED	KODE GAMBAR JUMLAH LEMBAR M3 34		DOSEN	DR. IR. HIDAYAT NIP. 19550325	SOEGIHARDJO M., MS. 198003 1 004	CATATAN	
	\rightarrow			DENGAN FISHBONE MODEL			PEMBIMBING	PROF. TAVIO, S	T., MT., Ph.D.		
		INSTITUT TEKNOLOGI	BIDANG	STRUKTUR	26	- 34		NIP. 19700327	199702 1 001		
TYX YE		CEDIII IIU NODEMDED	DIDANG	SINGNICK							
		SEFULUH NUFEMBER	DDOODAN		SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
	<u>R</u>		PRUGRAM	3-1 JURUSAN TERNIK SIFIL FISP-113							
			0111010		1:5	70	DIPERIKSA	PARAF	TANGGAL		
			GAMBAR	I DEIAIL ANNER 30 DAN 33 PADA BUX							(

		JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED	KODE GAMBAR M3	JUMLAH LEMBAR 34	DOSEN	DR. IR. HIDAYAT NIP. 19550325	SOEGIHARDJO M., MS. 198003 1 004	CATATAN	
			DENGAN FISHBUNE MODEL		74	PEMBIMBING	PROF. TAVIO, ST., MT., Ph.D.			
	INSTITUT TEKNOLOGI	BIDANG	STRUKTUR	2 f	- 34		NIP. 19700327	199702 1 001		l
	CEDIII IIU NODEMDED	5.57 ****	ononion							
	SEFULUE NOF EMDER	DDOCDAN	S-1 JURUSAN TEKNIK SIPIL FTSP-ITS			MAHASISWA	RIZKY NUGRAHA	IZKY NUGRAHA / 3114 10 6001		L
		PROGRAM								1
×7 37		0111010		1:	70	DIPERIKSA	PARAF	TANGGAL		
		GAMBAR	DETAIL ANNER 34 DAN 33 PADA BUX							1

			DESAIN ALTERNATIE, JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SDAN CARLE-STAVED	KODE GAMBAR	JUMLAH LEMBAR		DR. IR. HIDAYAT	SOEGIHARDJO M., MS.	CATATAN		
		JUDUL IA	DESAIN ALTERNATIF JEMDATAN MUSI III MENGGUNARAN SISTEM MULTI-SPAN CABLE-STATED	м3	34	DOSEN	NIP. 19550325	198003 1 004			
			DENGAN FISHBONE MODEL			PEMBIMBING	PROF. TAVIO, S	T., MT., Ph.D.			
	INSTITUT TEKNOLOGI	DIDANIO	CTDUATUD	28	- 34		NIP. 19700327	199702 1 001			
NY SHI		BIDANG	SIRUKIUR								
	SEPULUH NOPEMBER	DDOODAN			SKALA GAMBAR		RIZKY NUGRAHA / 3114 10 6001				
		PF	PRUGRAM	5-1 JURUSAN TERNIK SIPIL FISP-115							
		0111010		1:	70	DIPERIKSA	PARAF	TANGGAL			
		GAMBAR	I DEIAIL ANNER 52 DAN 51 PADA BUX							(

GENERAL ASSEMBLY STAY CABLE SYSTEM SSI 2000 STRESSING ANCHORAGE DECK DRT 6-61

Dimension according to SSI 2000 standard anchorage

(**) Bearing Plate dimension are valid for nominal concrete strength 45MPa (cube), 36MPa (cylinder) at the time of stressing

			DECAIN ALTERNATIF, JEMPATAN MUSI JU MENCOUNAVAN SISTEM MULTI CRAN CARLE STAVER	KODE GAMBAR	JUMLAH LEMBAR		DR. IR. HIDAYAT	SOEGIHARDJO M., MS.	CATATAN	
		JUDUL IA	DESAIN ALTERNATIF JEMDATAN MUSI III MENGGUNARAN SISTEM MULTI-SPAN CABLE-STATED	м3	34	DOSEN	NIP. 19550325 198003 1 004			
			DENGAN FISHBONE MODEL			PEMBIMBING	PROF. TAVIO, S	Г., МТ., Ph.D.		
	INSTITUT TEKNOLOGI	DIDANO	CTDUKTUD		- 34		NIP. 19700327 199702 1 001			
		BIDANG	SIKUNIUK							
	SEPULUH NOPEMBER	DDOODAN		SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
		PROGRAM	S-1 JURUSAN TEKNIK SIPIL FISP-IIS							
		CAMPAD		1:	25	DIPERIKSA	PARAF	TANGGAL		
		GAMBAR								4

Dimension according to SSI 2000 standard anchorage

(**) Bearing Plate dimension are valid for nominal concrete strength 45MPa (cube), 36MPa (cylinder) at the time of stressing

				DECAIN ALTERNATIF, JEMPATAN MUSU JU MENCCUNAKAN SISTEM MULTI SDAN CARLE STAVED	KODE GAMBAR	JUMLAH LEMBAR		DR. IR. HIDAYAT	SOEGIHARDJO M., MS.	CATATAN	
			JUDUL IA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNANAN SISTEM MULTI-SPAN CABLE-STATED DENGAN FISHBONE MODEL	м3	34	DOSEN PEMBIMBING	NIP. 19550325	198003 1 004		
		\rightarrow						PROF. TAVIO, S	T., MT., Ph.D.		
		INSTITUT TEKNOLOGI	DIDANC	STDURTID	30	- 34		NIP. 19700327	/ 199702 1 001		
		CEDULUU NODEMDED	BIDANG	SINUNIUN							
		SEPULUH NOPEMIDER	DDOCDAN	S 1 HIDLISAN TEKNIK SIDIL ETSD ITS	skala gambar MAHASISWA		MAHASISWA	RIZKY NUGRAHA	HA / 3114 10 6001 🛛 🖡		
	XK/		PROGRAM	3-1 JURUJAN IERNIK JIFIL FIJP-113							
			CAMPAD		1:	25	DIPERIKSA	PARAF	TANGGAL		
			GAMBAR								1

STRESSING END ANCHORAGE DECK DRT 6-43

Dimension according to SSI 2000 standard anchorage

(**) Bearing Plate dimension are valid for nominal concrete strength 45MPa (cube), 36MPa (cylinder) at the time of stressing

				DECAIN ALTERNATIF, JEMPATAN MUSU JU MENCOUNAKAN SISTEM MULTI SRAN GARLE STAVER	KODE GAMBAR	JUMLAH LEMBAR		DR. IR. HIDAYAT	SOEGIHARDJO M., MS.	CATATAN	
		INSTITUT TEKNOLOGI SEPULUH NOPEMBER	JUDUL IA	DESAIN ALTERIVATIF JEMBATAN MUSI III MENGGUNARAN SISTEM MULTI-SPAN CADLE-STATED	м3	34	DOSEN PEMBIMBING	NIP. 19550325 198003 1 004			
				DENGAN FISHBONE MODEL				PROF. TAVIO, ST., MT., Ph.D. NIP. 19700327 199702 1 001			
			DIDANC	STRUKTUR	31	- 34			7 199702 1 001		
			BIDANG								
			DDOCDAN	S-1 JURUSAN TEKNIK SIPIL FTSP-ITS	SKALA GAMBAR		MAHASISWA	RIZKY NUGRAHA / 3114 10 6001			
	K/S		PROGRAM								
			CAMPAD		1:	25	DIPERIKSA	PARAF	TANGGAL		
			GAMBAR								

Dimension according to SSI 2000 standard anchorage

(**) Bearing Plate dimension are valid for nominal concrete strength 45MPa (cube), 36MPa (cylinder) at the time of stressing

	INSTITUT TEKNOLOGI SEPULUH NOPEMBER		DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED Dengan Fishbone model	KODE GAMBAR	JUMLAH LEMBAR	DOSEN PEMBIMBING	DR. IR. HIDAYAT SOEGIHARDJO M., MS. NIP. 19550325 198003 1 004 PROF. TAVIO, ST., MT., Ph.D. NIP. 19700327 199702 1 001	「SOEGIHARDJO M., MS. 198003 1 004	CATATAN	
		JUDUL IA		м3	34					
		DIDANC	STRUKTUR	32	- 34			199702 1 001		
		BIDANG								
		DDOODAN	C 1 HIDLICAN TEVNIK CIDIL FTCD ITC	SKALA GAMBAR MAHASISWA		MAHASISWA	RIZKY NUGRAHA	HA / 3114 10 6001 /		
		PRUGRAM	3.1 JURUSAN IERNIK SIFIL FISP-113							
				1:2	25	DIPERIKSA	PARAF	TANGGAL		
		GAMDAR								

	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	JUDUL TA	DESAIN ALTERNATIF JEMBATAN MUSI III MENGGUNAKAN SISTEM MULTI-SPAN CABLE-STAYED DENGAN FISHBONE MODEL	KODE GAMBAR M3	JUMLAH LEMBAR 34	DOSEN PEMBIMBING	DR. IR. HIDAYAT NIP. 19550325 PROF. TAVIO, ST	DR. IR. HIDAYAT SOEGIHARDJO M., MS. NIP. 19550325 198003 1 004 PROF. TAVIO, ST., MT., Ph.D.	CATATAN	
		BIDANG	STRUKTUR	33 - 34			NIP. 19700327 199702 1 001			
		PROGRAM	S-1 JURUSAN TEKNIK SIPIL FTSP-ITS	SKALA GAMBAR	jkala gambar		RIZKY NUGRAHA / 3114 10 6001			
		GAMBAR		1:	25	DIPERIKSA	PARAF	TANGGAL		

GENERAL ASSEMBLY STAY CABLE SYSTEM SSI 2000

STRESSING END ANCHORAGE PYLON DRT 6-43

36MPa (cylinder) at the time of stressing

BIODATA PENULIS

Penulis yang memiliki nama lengkap Rizky Nugraha lahir di Bogor 20 Desember 1993 yang merupakan putra dari pasangan Hasan dan Ade Hadijah, sekaligus anak ke-4 dari 4 bersaudara. Sebelumnya penulis pernah mengenyam pendidikan di SDN Muaraberes, SMPN 2 Cibinong dan SMAN 2 Cibinong. Setelah menyelesaikan studinya di SMAN 2 Cibinong, Penulis melanjutkan pendidikan di perguruan tinggi Politeknik Negeri Jakarta jurusan Teknik Sipil

dengan program studi Diploma III bidang konsentrasi Teknik Sipil yang ditempuh selama 3 tahun dan lulus pada tahun 2014. Pada tahun 2015, Penulis melanjutkan studi ke jenjang sarjana di Jurusan Teknik Sipil FTSP ITS dan terdaftar sebagai mahasiswa ITS dengan NRP 3114 106 001. Di Jurusan Teknik Sipil ini, Penulis mengambil bidang studi struktur sebagai Tugas Akhirnya. Apabila ada yang ingin ditanyakan terkait tugas akhir ini dapat menggubungi penulis pada alamat email berikut <u>rizqnugraha@gmail.com</u>.