

Tesis - RC142501

Penggunaan Sandwich Plate System (SPS) dengan Polyurethane Elastomer pada Submerged Floating Tunnel (SFT)

AHMAD HERNADI 3114202011

DOSEN PEMBIMING Budi Suswanto, S.T., M.T., Ph.D. Endah Wahyuni, S.T., M.Sc., Ph.D.

PROGRAM MAGISTER BIDANG KEAHLIAN TEKNIK STRUKTUR JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2017

KATA PENGANTAR

Alhamdulillahirabil 'alamin, segala puja dan sukur penulis ucapkan kepada Allah Sang Pemilik Ilmu. Atas berkat rahmat-Nyalah Tesis dengan judul **Penggunaan** Sandwich Plate System (SPS) dengan Polyurethane Elastomer pada Submerged Floating Tunnel (SFT) ini dapat diselesaikan. Tak lupa penulis kirimkan shalawat dan salam kepada Nabi Muhammad Shalallahu 'alaihi wasalllam, manusia yang menjadi pencerah bagi umat manusia hingga akhir zaman kelak.

Tesis merupakan salah satu bagian paling penting dari mata kuliah pada jenjang Magister. Pada tesis inilah ide atau konsep –penelitian- dari seorang Magister untuk mengemukakan pemikirannya akan dunia keilmuan yang digelutinya. Maka tak heran bobot dari SKS tesis adalah yang paling besar diantara semua mata kuliah pada jenjang Magister. Tesis ini terdiri dari 6 bab, dimana tiap bab saling berkaitan satu dengan lainnya. Dimulai dengan latar belakang pemilihan judul dan penelitian ini, dilanjutkan kajian pustaka dan metodologi yang berkaitan dengan penelitian ini. Kemudian analisis-analisis terkait penelitian lalu ditutup dengan kesimpulan yang didapatkan dari penelitian ini.

Tentu tesis ini tidak akan dapat diselesaikan tanpa bantuan orang-orang yang membantu penulis dalam pengerjaan dan penyusunannya, untuk itu penulis mengucapkan terima kasih yang sebesarnya kepada:

- Bapak Budi Suswanto, S.T., M.T., Ph.D. dan Ibu Endah Wahyuni, S.T., M.Sc., Ph.D. selaku pembimbing pada penelitian tesis ini.
- Bapak Data Iranata, S.T, M.T., Ph.D. dan Bapak Harun Al Rasyid, S.T., M.T., Ph.D. selaku penguji yang memberikan saran dan kritik pada penelitian ini.
- Para dosen dan staf di Program Pasca Sarjana Teknik Sipil ITS Surabaya.
- 4. Teman-teman angkatan 2014 dan angkatan 2015 Pasca Sarjana, baik dibidang keahlian Teknik Struktur, MRT, MRSA maupun MK.

- 5. Teman-teman Pra S2-3T dari Aceh sampai Papua yang memiliki integritas tinggi dalam mewujudkan Indonesia yang lebih baik.
- 6. Para dosen dan staf di lingkungan Universitas Borneo Tarakan, terutama di Fakultas Teknik dan di Jurusan Teknik Sipil.
- Keluarga tercinta, H. Darwin Sanusi, S.E., Hj. Icha H., Abd. Thalib, Haminah, Evy Susanti, S.H., Alesha Khairunnisa Hernavi, Iwan Darmawan, S.Kom, M. Fauzi dan keluarga besar penulis.
- 8. Direktur dan staf Bahana Citra Consultant, tempat penulis menimba ilmu dalam dunia nyata.
- 9. Semua pihak yang turut membantu yang tidak dapat disebutkan satu per satu.

Walaupun tesis ini telah melalui proses revisi, tidak dipungkiri pasti terdapat kesalahan di dalamnya. Untuk itu penulis memohon maaf bila terdapat kehilafan pada tesis ini, begitu pula apabila ada saran dan/atau kritik terkait tesis ini akan dengan senang hati penulis untuk terima.

Surabaya, Januari 2017

Penulis

Tesis disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Teknik (M.T.) di Institut Teknologi Sepuluh Nopember

> oleh: Ahmad Hernadi NRP. 3114202011

Tanggal Ujian: 11 Januari 2017 Periode Wisuda: Maret 2017

Disetujui oleh:

1. Budi Suswanto, S.T., M.T., Ph.D. NIP: 19730128 199802 1002

2. Endah Wahyuni, S.T., M.Sc., Ph.D. NIP: 19700201-199512 2001

- 3. Data Iranata, S.T., M.T., Ph.D. NIR: 19800430 200501 1002
- 4. Harun Al Rasyid, S.T., M.T., Ph.D.

NIP: 19830808 200812 1005

(Pembimbing II)

(Pembimbing I)

(Penguji)

(Penguji)

PENGGUNAAN SANDWICH PLATE SYSTEM (SPS) DENGAN POLYURETHANE ELASTORMER PADA SUBMERGED FLOATING TUNNEL (SFT)

Nama Mahasiswa	:	Ahmad Hernadi
NRP	:	3114202011
Pembimbing	:	1. Budi Suswanto, S.T., M.T., Ph.D.
		2. Endah Wahyuni, S.T., M.Sc., Ph.D.

ABSTRAK

Submerged Floating Tunnel (SFT) adalah struktur tubular yang mengambang pada kedalaman tertentu di bawah permukaan air yang mengekspolitasi daya dukung yang berasal dari gaya angkat Archimedes. Berbagai studi telah dilakukan terhadap SFT namun hingga saat ini belum ada SFT yang dibangun. Salah satu parameter penting pada SFT adalah penampang/tubularnya.

SFT yang identik dengan kapal sehingga sangat cocok bila diterapkan material yang digunakan pada kapal. Salah satu material yang dikembangkan pada kapal adalah *Sandwich Plate System (SPS)*. SPS merupakan material ringan yang terdiri dari dua pelat baja yang dipisahkan oleh bagian inti (*core*) berupa elastomer. Elastomer yang mulai banyak dikaji pada SPS adalah *polyurethane*. Keuntungan SPS dengan *polyurethane* sebagai inti memiliki banyak kelebihan seperti tahan terhadap reaksi kimia air laut, getaran dan kebisingan serta kuat terhadap ledakan.

Pada penelitian ini, SFT yang akan dianalisis memiliki panjang bentang 150 m dengan sisi datar 60 m serta sisi miring 45 m. Penampang yang digunakan pada penelitian ini memiliki bentuk lingkaran dan oval dengan spesifikasi 4-20-4. Dimensi penampang adalah tinggi/diameter 5 m dan lebar 8 m pada penampang oval. Data diperoleh dari penelitian sebelumnya yaitu dasar laut (d) 20 m di bawah permukaan laut, Sudut Inklinasi Kable (SIK) sebesar 54°, BWR sebesar 1,3, perletakan ujung dimodelkan sebagai Sendi-Sendi tinggi gelombang (H) sebesar 5,08 m dan periode gelombang (T) sebesar 9,08 detik. Permodelan pada penelitian ini terdiri dari 4 Model dengan Model A1 berbentuk Lingkaran dan Model A2 dengan bentuk Oval dengan beban hidrodinamis serta Model B1 berbentuk Lingkran dan Model B2 berbentuk Oval dengan beban *displacement*. Beban *displacement* ini untuk mendapatkan kegagalan pada SFT yang diberikan pada badan penampang sejauh 500 mm.

Proses analisis dilakukan secara numerik menggunakan program bantu *Abaqus* 6.14 yang berbasis metode elemen hingga. Pada penelitian ini diperoleh hasil bahwa Model A1 dan Model A2 masih dalam kategori aman dengan tegangan terbesar terjadi pada *Step* 2. Sementara pada Model B1 kegagalan penampang terjadi pada *displacement* 215 mm dan pada Model B2 penampang mengalami kegagalan pada *displacement* 217 mm. Pada elastomer *polyurethane*

tidak mengalami kegagalan hingga Step 10 dengan displacement arah y sebesar 500 mm.

Kata kunci: Abaqus, Displacement, Polyurethane, Sandwich Plate System, SPS, Submerged Floating Tunnel, SFT

THE USE OF SANDWICH PLATE SYSTEM (SPS) WITH POLYURETHANE ELASTORMER FOR SUBMERGED FLOATING TUNNEL (SFT)

By Student Identity Number Supervisor : Ahmad Hernadi

: 3114202011

: 1. Budi Suswanto, S.T., M.T., Ph.D.

2. Endah Wahyuni, S.T., M.Sc., Ph.D.

ABSTRACT

Submerged Floating Tunnel (SFT) as known as Archimedes Bridge is a tubular structure that floats at a certain depth below the surface of the water carrying capacity exploiting derived from Archimedes lift. Various studies have been conducted on SFT but but no SFT has been constructed yet. The most important for design and build for SFT is the section.

The section of SFT, which is identical to the vessel so that it is suitable when applied methods used on ships. One method that was developed in the vessel is Sandwich Plate System (SPS). SPS is a lightweight material that consists of two steel plates separated by a core in the form of elastomer. Elastomers which began much studied at the SPS is polyurethane. SPS advantage with polyurethane as the core has many advantages such as resistance to chemical reactions seawater, vibration and noise as well as strong against explosions.

Analysis in this research, the SFT has length 150 m with 60 m for flat side and 45 m for the aslant side. The tube that using this research are circle and oval with spesification 4-20-4, diamter/high is 5 m and width is 8 m in oval section. The oldest reserach found that seabed (d) is 20 m, angle of cable inclination is 54°, BWR is 1,3, support in the tip is hinge-hinge, wave heigh (H) is 5,08 m and wave period (T) is 9,08 second. Modeling using in this research are 4 type they are circle section as Model A1 and oval section as Model A2 where this section (A1 and A2) given hidrodynamic load, circle section as Model B1 and oval section as Model B2 given displacement load. Displacement load that given to the model to got fail of SFT, this displacement load given until 500 mm.

Analysis using software Abaqus 6.14 that based on FEM. Acording this research, Model A1 and Model A2 are in safe category with the maximum stress in Step 2. Section failed are occur to the Model B1 in displacement 215 mm and in displacement 217 mm for Model B2. For polyurethane elastomer does not fail until the maksimum displacement in 500 mm for the Step 10.

Keyword: Abaqus, Displacement, Polyurethane, Sandwich Plate System, SPS, Submerged Floating Tunnel, SFT

DAFTAR ISI

JUDUL PENELITIAN	i
KATA PENGANTAR	iii
LEMBAR PENGESAHAN	v
ABSTRAK	vii
DAFTAR ISI	xi
DAFTAR GAMBAR	xiii
DAFTAR TABEL	XV
BAB 1 PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Perumusan Masalah	4
1.3. Tujuan dan Manfaat	5
1.3.1. Tujuan	5
1.3.2. Manfaat	5
1.4. Batasan Masalah	6
BAB 2 KAJIAN PUSTAKA	7
2.1. Submerged Floating Tunnel (SFT)	7
2.2. Penampang SFT	8
2.3. Sandwich Plate Sistem (SPS)	10
2.4. Gelombang	13
2.4.1. Gelombang Linier	14
2.4.2. Gelombang Non Linier	15
2.4.2.a. Teori Gelombang Stokes	15
2.4.2.b. Teori Cnoidal	15
2.5. Penelitian Sebelumnya	16
BAB 3 METODA PENELITIAN	23
3.1. Diagram Alir Penelitian	23
3.2. Studi Literatur	24
3.3. Data	25
3.4. Preliminary Design	27
3.4.1. Design SPS	27
3.4.2. Pembebanan	32

3.5. Beban Hidrodinamik	33
3.5.1. Gelombang Stokes Orde 5	34
3.5.2. Beban Aksi Gelombang	36
3.6. Analisis	39
BAB 4 PRELIMINARY DESIGN	41
4.1. Pelat Lantai Kendaraan	41
4.2. Perhitungan Balok Memanjang	45
4.3. Perhitungan Balok Melintang	47
4.4. Perhitungan Penampang SFT	49
4.5. Perhitungan BWR	50
BAB 5 ANALISIS DAN PEMBAHASAN	53
5.1. Menentukan Tipe Gelombang	53
5.2. Menentukan Panjang Gelombang	54
5.3. Menentukan Kecepatan dan Percepatan Partikel Air	55
5.4. Menentukan Tekanan Gelombang	56
5.5. Hal yang Harus Diperhatikan Pada Analisis Abaqus	59
5.6. Interpretasi <i>Output</i> Model A1	69
5.7. Interpretasi Output Model A2	72
5.8. Interpretasi Output Model B1	76
5.9. Interpretasi Output Model B2	83
5.10. Perbandingan Model A1, Model A2, Model C1 dan Model C2	89
BAB 6 KESIMPULAN DAN SARAN	93
6.1. Kesimpulan	93
6.2. Saran	94
DAFTAR PUSTAKA	95
BIOGRAFI PENULIS	99

DAFTAR GAMBAR

Gambar 2.1 Ilustrasi SFT Daikokujima: "Muroran Submarine Tunnel" oleh	
Sachiko Asai	9
Gambar 2.2 Contoh dari SPS	10
Gambar 2.3 Penggunaan SPS pada Penghalang Kendaraan	11
Gambar 2.4 Penggunaan SPS pada Jembatan	12
Gambar 2.5 Penggunaan SPS pada Kapal	12
Gambar 2.6 Pengujian SPS terhadap Ketahan Api	12
Gambar 2.7 Bentuk Dasar Gelombang Progesif Sinusoidal	13
Gambar 2.8 Sketsa Penampang Penelitian oleh Reka Indrwan	16
Gambar 2.9 Konfigurasi Kabel Transversal SFT	18
Gambar 2.10 Defleksi Akbiat Kombinasi Maksimum; (a) Tampak 3D,	
(b) Sudut 54°, (c) Sudut 45°, (d) Sudut 36°, (e) Sudut 27°, (f) Sudut 18°,	
(g) Sudut 9°, (h) Sudut 0°	19
Gambar 2.11 Grafik Hubungan Strees – Strain Material Elastomer	21
Gambar 2.12 Pengujian terhadap (a) Ledakan, (b) Ketahanan Api,	
(c) Impak pada Baja dan (d) Impak pada SPS	22
Gambar 3.1 Flow Chart: (a) Penelitian SPS pada Penampang SFT dan	
(b) Prelimniary Design	24
Gambar 3.2 Geometri SFT	26
Gambar 3.3 Parameter perhitungan SPS	29
Gambar 3.4 Asumsi Permodelan	30
Gambar 3.5 Bentuk Panampang Lingkaran (A1 dan B1) dan Oval (A2 dan B2).	31
Gambar 3.6 Tekanan Gelombang	34
Gambar 3.7 Marine Growth Profil	38
Gambar 3.8 Detail Penampang Efektif	38
Gambar 3.9 Grafik Penentuan Model Gelombang	39
Gambar 4.1 Geser Pons Pada Pelat Lantai Kendaraan	. 43
Gambar 5.1 Penentuan Tine Gelombang	54
Gambar 5.2 Kecenatan Gelombang	56
Gambar 5.3 Gava Gelombang Model A1	57
Gambar 5.4 Gava Gelombang Model A?	58
Gambar 5.5 Profil gelombang dengan berbagai yariasi t	58
Gambar 5.6 Permodelan SET Pada <i>Abaaus</i>	60
Gambar 5.7 Permodelan Pohyurethane	61
Gambar 5.8 Pilihan <i>Module</i> pada <i>Abagus</i>	62
Gambar 5.9 Penggahungan Part	62
Sumour 5.7 1 ongeuoungun 1 urt	04

Gambar 5.10	Pemberian Material SPS	63
Gambar 5.11	Input Beban Hidrostatik	64
Gambar 5.12	Screen Shoot Subrotine Aqua	65
Gambar 5.13	Cara Pemberian Beban Aqua dan Tipe Gelombang	66
Gambar 5.14	Beban Displcament Model B2	66
Gambar 5.15	Penampang SPS yang Belum Dipartisi	67
Gambar 5.16	Penampang SPS yang Telah Dipartisi	68
Gambar 5.17	Penampang SPS Setelah Diberikan Mesh	68
Gambar 5.18	Displacement Penampang dan Tegangan Pada Kabel Model A1	70
Gambar 5.19	Output Tegangan S Model A1	71
Gambar 5.20	Output Displacement Model A1	72
Gambar 5.21	Tegangan S Model A2	.74
Gambar 5.22 S	Spektrum <i>Displacement</i> Model A2	75
Gambar 5.23	Displacement Penampang Model A2	75
Gambar 5.24	Tegangan Penampang dan Displacement Model B1	77
Gambar 5.25	Gambar Hubungan Tegangan Kabel dan Displacement	.79
Gambar 5.26	Tegangan Pada SFT Model B1	81
Gambar 5.27	Displacement Model B1	82
Gambar 5.28	Hubungan Tegangan Penampang dan Displacement Model B2	86
Gambar 5.29	Tegangan Pada Penampang Model B2	87
Gambar 5.30	Displacement Model B2	88
Gambar 5.31	Perbandingan Tegangan t ₁ Model A1 dan Model A2	91

DAFTAR TABEL

Tabel 2.1 Perbandingan antara Penampang Beton dan Beton-Baja	10
Tabel 2.2 Karakteristik Mekanikai Properties Material <i>Polyureinane</i>	21
Tabel 3.1 Spesifikasi Material Penelitian	26
Tabel 3.2 Parameter Ketebalan Minimum	27
Tabel 3.3 Nilai Faktor Material Baja	28
Tabel 3.4 Konfigurasi Permodelan SPS	31
Tabel 3.5 Hasil penelitian Reka Indrawan Penampang Baja	31
Tabel 3.6. Koefisien Drag dan Inersia	37
Tabel 4.1 Propertis penampang WF 250x175x7x11	45
Tabel 4.2 Beban Pada Balok Memanjang	46
Tabel 4.3 Kontrol Balok memanjang	46
Tabel 4.4 Propertis Penampang WF 600x300x14x23	47
Tabel 4.5 Tabel Beban Mati Balok Melintang	48
Tabel 4.6 Tabel Beban Hidup Balok Melintang	48
Tabel 4.7. Tabel Kontrol pada Balok Melintang	49
Tabel 4.8 Tabel Perhitungan Tebal SPS	50
Tabel 4.9 Tabel BWR	50
Tabel 5.1 Tegangan Model A1	69
Tabel 5.2 Tegangan Penampang dan Kabel Model A2	72
Tabel 5.3 Output Tegagangan Kabel Hingga Putus dan Displacement	78
Tabel 5.4 Tegangan Penampang Model B2	84
Tabel 5.5 Perbandingan Model A1 dan Model C1	89
Tabel 5.6 Perbandingan Model A2 dan Model C2	89
Tabel 5.7 Perbandingan Model A1 dan Model A2	91

BAB 1

PENDAHULUAN

1.1. Latar Belakang

Sebagai negara yang terdiri dari berbagai pulau, Negara Kesatuan Republik Indonesia (NKRI) sangat perlu untuk menghubungkan pulau-pulau yang ada demi peningkatan pertumbuhan ekonomi, politik, sosial dan budaya. Untuk kepentingan tersebut diperlukan infrastruktur yang dapat menjadi alat penghubung antar pulau. Selain penggunaan alat transportasi kapal laut sebagai penghubung antar pulau, saat ini infrastruktur yang berkembang di dunia adalah jembatan yang berada di atas permukaan air dan terowongan dasar laut (*immersed tunnel* dan *unduerground tunnel*)-konvensional. Keduanya, baik dari segi pengerjaan maupun biaya, membutuhkan waktu pengerjaan yang lama dan biaya yang tidak murah (Hakkart dkk, 1993).

Konsep baru hadir yaitu teknologi jembatan penyebrangan antar pulau dengan sistem *Submerged Floating Tunnel* (SFT) atau terowongan layang bawah air. Secara garis besar, SFT adalah struktur tubular yang mengambang pada kedalaman tertentu dibawah permukaan air yang mengekspolitasi daya dukung yang berasal dari gaya angkat Archimedes, memiliki posisi yang tetap melalui suatu sistem angkur yang terbuat dari kabel yang dihubungkan dengan dasar laut. Dengan sistem ini, adanya bantuan kekuatan dari pengaruh gaya angkat struktur akibat berada dalam air (pengaruh gaya apung) merupakan kelebihan dan keunggulan tersendiri dibandingkan dengan jembatan konvensional dan tunnel underground (Faggiano dkk, 2005).

Menurut Jakobsen (2010), beberapa keuntungan dari SFT adalah dari segi volume pekerjaan, SFT tidak memiliki volume terlalu besar karena tidak perlu membuat tiang-tiang pier dan pondasi tiang seperti halnya pada jembatan konvensional dan jika dibandingkan dengan *immersed tunnel* dan *underground tunnel* (konvensional) maka SFT mempunyai panjang terowongan yang paling kecil sehingga dapat menghemat biaya konstruksi dan konsumsi energi kendaraan maupun kereta penumpang. Struktur SFT pada dasarnya terdiri dari tiga bagian utama yaitu :

- 1. Struktur tunnel yang terdiri dari sejumlah segmen-segmen tunnel dan merupakan tempat lalu lintas.
- 2. Struktur penghubung antara pantai dan tunnel.
- 3. Sistem kabel yang diangkur pada dasar laut bererta pondasinya.

Berdasarkan Forum of Europhean Highway Reseach Laboratory (FEHRL) Report No.1996/2a estimasi kuantitatif perbandingan panjang terowongan antara SFT dan terowongan tradisional untuk 1000 m panjang penyebrangan air dan 100 meter kedalaman air adalah 4 km untuk SFT dan 14 km untuk terowongan konvensional. Keuntungan lain adalah jika dilihat dari segi pelaksanaan waktu konstruksi relatif lebih pendek, dampak lingkungan yang berkaitan dengan *landscape* dan polusi sangat rendah serta tidak mengganggu lalu lintas perkapalan (Hakkart dkk, 1992).

Markey (2010) mengatakan walaupun belum ada struktur SFT aktual yang dibangun sampai saat ini di dunia dikarenakan untuk membangun struktur ini akan ditemui berbagai macam kesulitan teknik seperti desain arsitektur tunnel, konfigurasi sistem kabel, struktur penghubung antara tabung *tunnel* dengan pantai dan instalasi *tunnel* itu sendiri. Beberapa isu penting yang berhubungan dengan material, keamanan, stabilitas dan realibiltas dari SFT ketika dikenai beban hidrodinamik, beban gempa dan beban tubrukan telah menjadi objek penelitian yang sedang berjalan sampai saat ini (Zang dkk, 2010).

Indrawan (2011) melakukan penelitian terhadap penampang beton dan baja pada SFT dengan model berbentuk lingkaran dan oval. Hasil analisa numerik menunjukkan bahwa penampang beton memiliki rasio perbandingan tegangan aktual terhadap tegangan ijin yang lebih besar dibandingkan penampang baja yaitu sebesar 97,8% berbanding 91,3% . Hasil analisa numerik juga menunjukkan bahwa lendutan penampang beton lebih besar daripada penampang baja, yaitu 127,55 mm berbanding 22,4 mm. Untuk bentuk penampang oval memiliki lendutan tepi yang lebih besar daripada penampang lingkaran yaitu 28 mm dibandingkan 22,4 mm. Penampang pada penelitian Indrawan (2011) hanya melakukan permodelan dengan 1 (satu) material saja. Perkembangan teknologi yang semakin maju memberikan alternatif-alternatif yang sangat berperan guna menyempurnakan berbagai macam bentuk sistem yang digunakan oleh manusia, salah satunya adalah hadirnya material *Sandwich Plate System* (SPS). SPS sendiri telah mulai digunakan pada pembangunan kapal yang sangat identik dengan konstruksi SFT –yang membutuhkan material yang kuat namun ringan agar dapat mengapung.

IE (*Intelligent Engineering*) yang merupakan pemilik hak paten SPS telah melakukan pengujian karakteristik dari material SPS sebagai bahan pada konstruksi kapal dan juga bangunan sipil seperti pelat jembatan, gedung dan stadiun. IE sendiri telah memberikan nilai-nilai material properties dari keunggulan-keunggulan material SPS ini. Brooking dan Kennedy (2004) menyebutkan bahwa SPS ini selain ringan juga mampu mereduksi akibat ledakan, yang sangat berguna ketika terjadi kecelakaan/ledakan pada jalur SFT.

Momcilovic dan Motok (2009) menyatakan SPS merupakan material ringan yang terdiri dari dua pelat baja yang dipisahkan oleh bagian inti (*core*) berupa elastomer. Pelat biasanya terbuat dari baja yang disatukan melalui parimeter bar dibagian tepi pelat, *polyurethane* elastomer berada diantara kedua pelat tersebut dengan proses injeksi.

Brooking dan Kennedy (2004) melakukan eksperimen dan simulasi numerik pada performa, keselamatan dan keunggulan produksi pada SPS yang diterapkan pada struktur *double hull* pada kapal tanker. Hasil dari penelitian tersebut menyatakan perbandingan berat penggunaan SPS jauh lebih ringan dari penggunaan material baja konvensional, hal ini dikarenakan penggunaan konstruksi SPS mampu menghilangkan penggunaan penegar pada konstruksi baja konvensional dan mengurangi setidaknya 20% biaya produksi dalam hal volume pekerjaan pengecatan dan kemudahan dalam pekerjaan.

Polyurethane adalah jenis material polimer yang unik dan luas dalam pemakaiannya. Material ini ditemukan oleh Prof. Otto Bayer, kimiawan berkebangsaan Jerman pada tahun 1937. SPS sendiri telah dikenal penggunaanya sebagai material komposit sejak perang dunia kedua, dimana digunakan sebagai

bentuk material pesawat tempur berbahan dasar *plywood* (Welch D., 2005 dalam Momcilovic dan Motok, 2009). Awal pembentukan material ini dibentuk menyerupai serat yang didesain untuk menandingi serat nilon. Akan tetapi penelitian lebih lanjut menunjukkan bahwa *polyurethane* bukan hanya dapat digunakan sebagai serat, tapi dapat juga digunakan untuk membuat busa (*foam*), bahan elastomer (karet/plastik), lem, pelapis (*coating*) dan lain-lain (Welch D., 2005 dalam Momcilovic dan Motok, 2009).

Pemodelan secara numerik dilakukan dengan menerapkan pembebanan struktur SFT ini menggunakan studi kasus pada salah satu lintasan penyebrangan antar pulau di kepulauan Seribu, yaitu antara pulau Panggang dan pulau Karya di Jakarta. Prototipe SFT yang akan dibangun direncanakan menggunakan struktur baja pada badan dan rangka terowongan dan struktur beton pada lantai jembatan terowongan. Objek penelitian ini menitikberatkan pada penampang SFT dengan SPS berbentuk lingkaran dan oval yang dibebani beban hidrodinamik serta beban *displacement*.

Analisis dan permodelan SPS pada SFT ini dilakukan dengan menggunakan bantuan software berbasis *Finite Element Method* (FEM). Diantara software yang sangat familiar dikalangan teknik sipil berbasis FEM adalah *Abaqus*. Berbeda dengan *SAP 2000* yang sangat familiar, *Abaqus* tidak satuan sehingga perlu menyamakan semua satuan pada saat proses input. Abaqus sangat baik dalam menganalisis elemen-elemen yang lebih kecil dari suatu struktur. Pada penelitian ini akan menganalisis perilaku dari tegangan dan *displacement* dari penampang SFT dengan SPS. Software yang digunakan untuk menganalisis menggunakan *Abaqus 6.14*. Diharapkan perilaku dari tegangan dan *displacement* dari bagan SPS ini lebih baik dari pada tanpa SPS dan berada di bawah dari batas yang diijinkan.

1.2. Perumusan Masalah

Penampang dengan material yang kuat namun ringan pada struktur SFT telah menjadi isu utama karena berhubungan erat dengan masalah keamanan, stabilitas dan realibilitas struktur. Studi kali ini dimaksudkan untuk menginvestigasi penggunaan SPS pada penampang SFT. Studi ini merupakan

studi kasus pada lintasan penyebrangan antara Pulau Panggang dan Pulau Karya sehingga data lingkungan dan pembebanan diperoleh dari daerah sekitar ke dua pulau tersebut yang diambil dari penelitian sebelumnya. Beberapa permasalahan yang akan coba diselesaikan adalah:

- 1. Bagaimana memodelkan SPS dan memberikan beban gelombang dinamis pada SFT?
- 2. Bagaimana perilaku *displacement* dan tegangan yang terjadi pada SFT dengan SPS?
- 3. Bagaimana perilaku *displacement* dan tegangan SFT dengan SPS pada kondisi ekstrim?
- 4. Bagaimana perbandingan SFT dengan SPS dan SFT dengan penampang baja?

1.3. Tujuan dan Manfaat

1.3.1. **Tujuan**

Tujuan yang ingin dicapai pada penelitian ini adalah:

- 1. Mengetahui cara memodelkan SPS dan memberikan beban gelombang dinamis pada SFT.
- 2. Mengetahui hubungan *displacement* dan tegangan yang terjadi pada SFT dengan SPS.
- 3. Mengetahui hubungan *displacement* dan tegangan SFT dengan SPS pada kondisi ekstrim.
- 4. Mengetahui perbandingan SFT dengan SPS dan SFT dengan penampang baja

1.3.2. Manfaat

Manfaat dari penelitian ini adalah:

- 1. Sebagai bahan referensi dalam perencaan SFT dengan material yang berbeda sehingga memberikan alternatif yang lebih banyak kepada *stake holder* dan perencana dalam pembangunan SFT kelak.
- 2. Memperlihatkan prilaku SPS pada SFT yang berguna bagi praktisi dan akademisi, khususnya dibidang teknik sipil.

1.4. Batasan Masalah

Pada penelitian ini membatasi permasalahan pada:

- 1. Software berbasis FEM menggunakan Abaqus 6.14
- 2. Tidak memperhitungkan biaya
- 3. Tidak memberikan metode kerja
- 4. Tidak menghitung sambungan

BAB 2

KAJIAN PUSTAKA

2.1. Submerged Floating Tunnel (SFT)

Submerged Floating Tunnel (SFT) atau juga disebut Archimedes Bridges (AB) merupakan konsep yang telah digagas sejak tahun 1886 oleh Sir James Reed (Inggris) dan dikembangkan oleh Trygve Olsen Dale (Norwegia) pada tahun 1924. Pada tahun 1960 dilakukan penelitian lebih lanjut mengenai SFT ini di beberapa negara seperti Italia, Jepang dan Norwegia SFT merupakan salah satu konsep yang baik untuk melakukan penyeberangan antar pulau yang dipisahkan oleh air -sungai/laut (Østlid, 2010).

Konsep SFT adalah meletakan suatu struktur berbentuk tubular pada kedalaman tertentu di bawah permukan air dan ditahan oleh suatu sistem angkur untuk membuatnya tetap berada pada tempatnya. SFT merupakan salah satu solusi transportasi penyeberangan antar sungai yang paling efisien. Walaupun begitu, belum ada SFT yang dibangun hingga kini. Kemungkinannya adalah belum ada data yang pasti mengenai perilaku SFT terhadap lalu lintas dan kondisi alam, seperti gelombang dan gempa (Faggiano dkk, 2010) serta kesulitan teknis seperti desain arsitektur tunnel, konfugurasi sistem kabel dan struktur penghubung tabung tunnel dengan pantai dan instalasi tunnel itu sendiri (Markey, 2010).

Hakkart dkk (1993) menyebutkan bahwa tahun 1989, pada pertemuan International Tunneling Association (ITA), asosiasi/organisasi ini memberikan tugas kepada anggotanya untuk memberikan perhatian khusus terhadap Immersed Tunnel dan Submerged Floating Tunnel (SFT). Instruksi diberikan agar anggota asosiasi tersebut menitikberatkan penelitian dan desain terhadap:

- 1. *Immersed* atau *Submersed Tunnel*, struktur ini dapat dibangun baik di sungai maupun terusan selama memungkinakan untuk dibangun. Tipe ini sudah lama digunakan –konvensional.
- 2. *Submerged Floating Tunnel* (SFT), merupakan konsep baru dalam melakukan penyebrangan antar pulau dengan kondisi laut/sungai dalam. Pada konsep

ini, terowongan (*tunnel*) tidak berada di dasar laut/sungai tetapi menggantung (*suspended*).

Zang dkk (2010) dan Hakkart dkk (1993), menyebutkan bahwa SFT memiliki beberapa kelebihan bila dibandingkan dengan jembatan konvensional dan *immersed tunnel*, diantaranya adalah:

- 1. Pengaruhnya sangat kecil terhadap lingkungan di sekitarnya, tidak mengganggu pelayaran di atasnya.
- 2. Biaya pelaksanaan tidak berpengaruh besar terahadap peningkatan panjang sungai.
- 3. SFT tidak dipengaruhi cuaca, termasuk angin topan atau kabut yang ada di permukaan sungai atau selat.
- 4. Panjang dan kemiringan (slope) SFT dapat di kurangi dengan efektif.

Menurut Jacobsen (2010), beberapa keuntungan dari SFT adalah dari segi volume pekerjaan, SFT tidak memiliki volume terlalu besar karena tidak perlu membuat tiang-tiang pier dan pondasi tiang seperti halnya pada jembatan konvensional dan jika dibandingkan dengan *underground tunnel* (konvensional) maka SFT mempunyai panjang terowongan yang paling kecil sehingga dapat menghemat biaya konstruksi dan konsumsi energi kendaraan maupun kereta penumpang.

2.2. Penampang SFT

Jakobsen (2010) menyebutkan bahwa struktur SFT pada dasarnya terdiri dari tiga bagian utama yaitu :

- 1. Struktur *tunnel* yang terdiri dari sejumlah segmen-segmen *tunnel* dan merupakan tempat lalu lintas.
- 2. Struktur penghubung antara pantai dan tunnel.
- 3. Sistem kabel yang diangkur pada dasar laut.

Gambar 2.1 Ilustrasi SFT Daikokujima: "*Muroran Submarine Tunnel*" oleh Sachiko Asai (Sumber: Kanie, 2010)

Pada ilustrasi di atas merupakan studi SFT yang dicoba dikembangakan di Pulau Daikokujima, Muroran, Hokkaido, Jepang. SFT tersebut berdiameter 4 m yang digunakan sebagai tempat wisata bawah air. Gambar 2.1 di atas juga memperlihakan dengan jelas potongan dari SFT.

Studi menganai penampang SFT yang umum digunakan adalah beton, gabungan dari baja dan beton (Zang dkk, 2010), baja dan komposit aluminium (Faggiano dkk 2005). Pada Tabel 2.1 terlihat bahwa biaya yang digunakan untuk penampang beton-baja lebih besar bila dibandingakan penampang beton saja, namun memiliki keunggulan yang lebih banyak dari pada hanya penampang beton (tanpa baja). Waktu pelaksanan penampang baja-beton juga lebih cepat bila dibandingkan dengan penampang beton, sehingga akan lebih optimum menggunakan penampang beton-baja.

ltem	Concrete tube	Steel-Conctrete tube
Cost	Low cost	High cost
Section type	Rectangular section is majority	Round section or double round section
Construction	Cast in dry-dock, template needing, long construction cycle	Steel shell acting as template, pouring concrete in floating state, quick construction
Waterproofing	Control structural cracks and shrinkage cracks and set waterproof layer on inner and outer layer of tube to warerproof. Difficulty of waterproofing is relatively great	The outer steel shell is user to waterproof, welding quality assurance system is key point. Difficulty of waterproofing is relatively small

Tabel 2.1 Perbandingan antara Penampang Beton dan Beton-Baja

Sumber: Zang dkk, 2010

2.3. Sandwich Plate Sistem (SPS)

Sandwich Plate System (SPS) adalah suatu sistem struktur yang mulai dikembangkan baik untuk konstruksi kapal maupun konstruksi gedung dan jembatan. SPS ini terdiri dari 3 (tiga) lapisan, yaitu lapisan luar, inti dan lapisan dalam. Dimana lapisan luar dan lapisan dalam terdiri dari material yang sama dan inti terdiri dari polimer. *Polyurethane* adalah jenis material polimer yang unik dan luas dalam pemakaiannya. Material ini ditemukan oleh Prof. Otto Bayer, kimiawan berkebangsaan Jerman pada tahun 1937. SPS sendiri telah dikenal penggunaanya sebagai material komposit sejak perang dunia kedua, dimana digunakan sebagai bentuk material pesawat tempur berbahan dasar *Plywood* (Welch. D, 2005 dalam Momcilovic dan Motok, 2009).

Gambar 2.2 Contoh dari SPS (Sumber: Brosur I.E., Ltd.)

Awal pembentukan material ini dibentuk menyerupai serat yang didesain untuk menandingi serat nilon. Akan tetapi penelitian lebih lanjut menunjukkan bahwa *polyurethane* bukan hanya dapat digunakan sebagai serat, tapi dapat juga digunakan untuk membuat busa (*foam*), bahan elastomer (karet/plastik), lem, pelapis (*coating*), dan lain-lain (Welch. D, 2005 dalam Momcilovic dan Motok, 2009). Berdasarkan brosur Intelligent Engineering, Ltd., pemakaian SPS dengan *polyurethane* kini lebih luas dan umum seperti stadiun, bangunan gedung, jembatan, kapal, bangunan lepas pantai bahkan truk. Berbagai keunggulan dari SPS juga diperlihatkan pada brosur ini, seperti tahan akan: ledakan, api, impak, peluru, mampu meredam getaran dan bunyi serta ringan dan kuat. (Brooking dan Kenedy, 2004; dan brosur Inteligent Engineering, Ltd.)

SPS yang telah diterapkan antara lain pada London Olympic Stadium West Stand Mid Tier (2015), Mississippi State University Softball Stadium (2015), Liverpool Football Club (2015), National Gymnastics Arena, Baku, Azerbaijan (2013), Cape Canaveral (2015), 58 Victoria Embankment (2015), Birmingham New Street Station (tahap 1, 2012 dan tahap 2, 2015), Carnegie Hall – New York (2011), Grand Duchess Charlotte Bridge (2015), Pulaski Skyway Bridge (2015), Ovingham Bridge dan Stanifort Bridge (2014), Dawson Bridge (2010), Ma Fang Bridge (2009), Palang Kendaraan (2015), Truk Tambang (2014), Pintu Kapal (2015), Penampang Kapal (2014), dll (Brosur Innteligent Engineering, Ltd.).

Gambar 2.3 Penggunaan SPS pada Penghalang Kendaraan (Sumber: Brosur E.I., Ltd.)

Regional Council Bridges Ovingham Bridge and Staniforth Bridge March 2014 – July 2015

Gambar 2.4 Penggunaan SPS pada Jembatan (Sumber: Brosur E.I., Ltd.)

SPS Overlay Side Shell Protection on FPSO Cidade De Ilhabela August 2012

Gambar 2.5 Penggunaan SPS pada Kapal (Sumber: Brosur E.I., Ltd.)

Gambar 2.6 Pengujian SPS terhadap Ketahan Api (Sumber: Brosur E.I., Ltd.)

Penggunaan SPS yang begitu luas ini dan dengan kelebihannya serta penerapannya pada kapal yang sangat identik dengan SFT, sehingga sangat relevan bila di jadikan material dan objek penelitian baru pada penampang SFT.

2.4. Gelombang

Gelombang sangat erat kaitannya dengan bangunan yang berada diperairan, baik beruapa pemecah gelombang, bangunan lepas pantai, kapal dan juga SFT tentunya karena merupakan salah beban yang bekerja pada bangunan tersebut.

Pergerakan gelombang dapat ditunjukkan dalam fungsi posisi (x) dan waktu (t) atau kombinasi antara keduanya (phase) yang didefinisikan sebagai θ = kx- ω t . Gambar 3.4 menjelaskan pergerakan gelombang sebagai suatu fungsi posisi pada suatu waktu tertentu di laut. Titik tertinggi gelombang biasanya disebut *crest*/puncak gelombang dan titik terendah gelombang biasanya disebut *trough*/lembah gelombang. Jarak *crest* ataupun *trough* dari muka air diam adalah amplitudo gelombang. Jarak antar puncak dengan puncak atau lembah dengan lembah disebut panjang gelombang (L). Gelombang bergerak dengan cepat rambat C di air dengan kedalaman d. Dalam hal ini yang bergerak hanya bentuk (profil) muka airnya saja.

Gambar 2.7 Bentuk Dasar Gelombang Progesif Sinusoidal (Sumber: Triadmojo, 2010)

dimana:

d	= jarak antara muka air rerata dan dasar laut
у	= jarak gelombang per kedalaman
η (x,t)	= profil muka air terhadap muka air rerata

a	= amlitudo gelombang
Н	= tinggi gelombang = 2a
L	= panjang gelombang
Т	= periode gelombang, inteval waktu antara lintasan crest
С	= cepat rambat gelombang = L/T
k	= angka gelombang = 2π
ω	= frukuensi gelombang = $2\pi/T$

Ada beberapa macam teori gelombang yang telah dikemukakan para ahli, antara lain teori gelombang Airy, Stokes, Chonidal, Splitary, Dean Stream dan lain sebagainya. Namun yang paling mudah dari teori gelombang tersebut adalah teori gelombang Airy karena bersifar linier. Dan untuk teori gelombang nonlinier yang banyak digunakan adalah teori Gelombang Stokes (Deo, 2013).

2.4.1. Gelombang Linier

Gelombang linier ini dikenal juga dengan nama gelombang Airy atau gelombang amplitudo kecil. Parameter-parameter penting pada teori gelombang ini antara lain kecepatan potensial (ø) yang dipengaruhi waktu dan posisi (x,y).

$$\varphi = \frac{gH\cosh(d+z)}{2\omega\cosh(kd)}\sin(kx - \omega t)$$
(2.1)

$$C = \frac{gT}{2\pi} \tanh kd$$
 (2.2)

$$L = \frac{gT^2}{2\pi} \tanh kd$$
 (2.3)

$$\eta(\mathbf{x}, \mathbf{t}) = \frac{\mathrm{H}}{2} \cos(\mathbf{k}\mathbf{x} - \omega \mathbf{t}) \tag{2.4}$$

$$u = \left(\frac{\pi H}{T}\right) \frac{\cosh k (d+z)}{\sinh(kd)} \cos(kx - \omega t)$$
(2.5)

$$v = \left(\frac{\pi H}{T}\right) \frac{\sinh k (d+z)}{\sinh(kd)} \sin(kx - \omega t)$$
(2.6)

$$a_{x} = \left(\frac{2\pi^{2}H}{T^{2}}\right) \frac{\cosh k (d+z)}{\sinh(kd)} \sin(kx - \omega t)$$
(2.7)

$$a_{y} = -\left(\frac{2\pi^{2}H}{T^{2}}\right)\frac{\sinh k (d+z)}{\sinh(kd)}\cos(kx - \omega t)$$
(2.8)

Dimana, g = percepatan gravitasi (m/s²); H = tinggi gelombang (m); k = angka gelombang = $\frac{2\pi}{L}$; ω = frekunsi gelombang = $\frac{2\pi}{T}$; d = kedalaman perairan (m); z = kedalaman perairan yang ditinjau (m); C = cepat rambat gelombang (m/s); L = panjang gelombang (m), T = periode gelombang (s); t = waktu tinjauan (s); x = panjang gelombang tinjauan (m); η = profil muka air; u = kecepatan partikel air arah horisontal (m/s); v = kecepatan partikel air arah vertikal (m/s), a_x = percepatan pertikel air arah horisontal (m/2²); dan a_y = percepatan pertikel air arah vertikal (m/2²).

2.4.2. Gelombang Non Linier

Pada gelombang non linier dimana kecuraman gelombang (H/L) terbatas, maka persamaan pada gelombang linier tidak dapat digunakan, sehingga perlu menggunakan metode lain seperti Stokes, Cnoidal, Solitary, Dean's dan lain sebagainya (Deo, 2013).

2.4.2.a. Teori Gelombang Stokes

Nilai untuk ø dan η pada teori gelombang Stokes menggunakan parameter b dan a yang diformulasikan pada persamaan berikut:

$$\varphi = \sum_{n=1}^{M} b^{n} \varphi_{n} (H, T, d) \sin(n\theta)$$

$$\eta = \sum_{n=1}^{M} a^{n} f_{n} (H, T, d) \cos(n\theta)$$
(2.9)
(2.10)

Dimana b_n dan a_n adalah nilai yang tidak terdefinisi dari fungsi H,T dan d; begitu juga $ø_n$ dan f_n ; θ = sudut fase = (kx- ω t).

2.4.2.b. Teori Cnoidal

Pada teori ini, Ø diidealisasikan dalam fungsi kosinus elips yang tak beraturan.

$$\frac{\emptyset}{L'\sqrt{gd}} = \cos(\sqrt{\sigma}SD)f(x)$$
(2.11)

$$\frac{\emptyset}{L'\sqrt{gd}} = \left[1 - \sigma S^2 \frac{D^2}{2!} + \sigma^2 S^4 \frac{D^4}{4!} + \dots \right] f(x)$$
(2.11)

Dimana L' adalah panjang gelombang "yang dipilih"

$$\sigma = \left| \frac{d}{L'} \right|^2 <<1 \text{ (sangat kecil)}$$
(2.12)

$$S = \frac{d+y}{d}$$
(2.13)

2.5. Penelitian Sebelumnya

Indrawan (2011) melakukan studi penampang dengan beberapa macam bahan dan bentuk penampang, yaitu: penampang bahan baja bentuk lingkaran, penampang baja bentuk oval, penampang beton bentuk lingkaran dan penampang beton bentuk oval.

Gambar 2.8 Sketsa Penampang Penelitian oleh Reka Indrwan (Indrawan, 2011).

Berdasarkan perhitungan rasio gaya apung, penampang oval beton memiliki ketebalan yang lebih tipis dari tebal beton yang disyaratkan, yaitu sebesar 40 cm. Hasil numerik pada penelitian Indrawan ini menyimpulkan bahwa penampang beton memiliki lendutan lebih besar dari pada penampang baja, yaitu 127,55 cm untuk penampang beton dan 22,4 cm untuk penampang baja. Dan berdasarkan bentuk penampang bulat dan oval dengan bahan baja, ternyata lendutan tepi pada penampang bentuk oval lebih besar dari pada penampang lingkaran, 28 mm berbanding 22,4 mm.

Sholeh dkk (2013) melakukan penelitian terhadap permodelan SFT dengan melakukan analisa numerik terhadap model uji yang dibuat oleh BPPT

dengan melakukan SAP 2000. Kosentrasi pengujian Sholeh dkk adalah dengan memodelkan elemen kabel pada SAP 2000 dengan 5 model. Permodelan tersebut adalah memodelkannya sebagai berikut:

- Memodelkan sling sebagai *frame*.
- Memodelkan sling sebagai kabel, tanpa *initial tension* dan beban gelombang diperilakukan linear.
- Memodelkan sling sebagai kabel, tanpa *initial tension* dan beban gelombang diperilakukan non-linear.
- Memodelkan sling sebagai kabel, dengan *initial tension* dan beban gelombang diperilakukan linear.
- Memodelkan sling sebagai kabel, dengan *initial tension* dan beban gelombang diperilakukan non-linear.

Hasil uji Sholeh dkk (2013) menunjukan bahwa pemodelan yang paling mendekati hasil uji Badan Pengkajian dan Penerapan Teknologi (BPPT) adalah model dengan menggunakan elemen kabel dengan memberikan *initial tension* pada kabel tersebut. Dan dengan mendefinisikan gelombang sebagai non-linear dan beban sebagai beban statik. Dengan hasil gaya aksial untuk perletakan ujung berkisar antara 2,3 kg – 6,03 kg sedangkan pada hasil uji BPPT berkisar antara 0,973 kg – 5,662 kg. Sedangkan gaya aksial dari hasil analisa numerik dengan perletakan sendi melingkar berkisar antara 0,2 kg – 3,76 kg dan gaya aksial hasil uji BPPT berkisar antara 0,744 kg – 3,499 kg.

Sipata dkk (2012) melakukan beberapa permodelan konfigurasi kabel dengan SAP 2000. Studi ini untuk mendapatkan konfigurasi kabel yang paling tepat dan efektif dengan material penampang SFT dari beton. Hasil studi ini juga menujukkan bahwa dengan meletakkan kabel pada 4 (empat) posisi, struktur badan atau dinding SFT yang direncanakan sudah aman dari semua beban yang bekerja. Selain itu gaya prestress sebesar 90.560.870,5 N yang diberikan pada badan SFT sangat membantu struktur SFT dalam menahan beban-beban yang bekerja sehingga dengan menggunakan jembatan dengan sistem ini akan sangat membantu dalam mengurangi volume material pembuatan jembatan penyeberangan antar pulau yang biasa digunakan. Gambar 2.9. merupakan beberapa konfigurasi kabel transversal SFT yang digunakan Sipata dkk (2012) dalam penelitiannya. Hasil dari studi tersebut menunjukkan bahwa konfigurasi kabel yang paling efektif adalah Type 1. Konfigurasi tersebut menghasilkan perilaku yang lebih baik dibandingkan dengan konfigurasi kabel lainnya dimana gaya aksial maksimum yang bekerja adalah sebesar 803,6 kips (1 kips = 4.448,2216 N).

Gambar 2.9 Konfigurasi Kabel Transversal SFT (Sipata dkk, 2012)

Penelitian oleh Komara dan Wahyuni (2014) adalah dengan melakukan beberapa permodelan konfigurasi kabel dengan *SAP 2000* v.14.2.2. Kabel dimodelkan dengan berbagai konfigurasi yaitu dengan posisi sudut 54°, 45°, 36°, 27°, 18°, 9°, 0°. Adapun konfigurasi kabel yang efektif adalah konfigurasi bentuk segitiga sebagaimana yang telah diteliti Sipata (2013).

Penelitian Komara dan Wahyuni (2014) ini menyebutkan bahwa konfigurasi kabel A sebagai kabel efektif. Pada kondisi ini, gaya aksial, tegangan dan defleksi yang dihasilkan lebih kecil. Kondisi kabel A ini digabungkan dengan parameter efektif lain yaitu kondisi perletakan Sendi-Sendi dan BWR 1,3. Kondisi struktur gabungan tersebut mendapatkan nilai yang mendekati model uji dengan pemodelan kabel menggunakan *initial tension* bawaannya sebesar 26,1 kN dan kondisi beban gelombang non-linier. Gaya yang terjadi pada model uji sebesar

4900 kN dan analisa numerik 4933,993 kN. Sehingga analisa statik menggunakan program bantu SAP 2000 pada kondisi ini dapat digunakan.

Gambar 2.10 Defleksi Akbiat Kombinasi Maksimum; (a) Tampak 3D, (b) Sudut 54°, (c) Sudut 45°, (d) Sudut 36°, (e) Sudut 27°, (f) Sudut 18°, (g) Sudut 9°, (h) Sudut 0° (Sumber: Komara dan Wahyuni, 2014)

Penelitian oleh Wahyudi dan Wahyuni (2014) adalah dengan melakukan pengujian secara numerik terhadap tipe perletakan ujung-ujung tunnel, berat sendiri dengan gaya apung (*Buoyancy Weight Ratio* – BWR) dan konfigurasi kabel. Tipe perletakan yang dimodelkan pada masing-masing ujung tunnel adalah: (1) Sendi-Sendi, (2) Jepit-Jepit, (3) Jepit-Sendi, (4) Jepit-Bebas, (5) Sendi-Bebas, (6) Bebas-Bebas. Hasil dari penelitian ini adalah perletakan ujung yang efektif adalah tipe sendi-sendi dengan konfigurasi kabel Sudut 54° dan BWR 1,3.

Santoso dan Wahyuni (2014) melakukan pengujian secara numerik terhadap *Bouyancy Weight Ratio* (BWR) Pada Struktur *Submerged Floating Tunnel* (SFT). Dimana BWR merupakan parameter utama dalam stabilitas struktur SFT dan setiap wilayah mempunyai gaya buoyancy yang berbeda-beda. BWR yang dianalisa bernilai 1,1 sampai dengan 1,8. Dari hasil analisa diperoleh BWR efektif adalah 1,3. Hasil tersebut kemudian digabungkan dengan parameter lainnya dengan perletakan ujung Sendi-Sendi dan konfigurasi kabel dengan sudut 54°. Hasil menunjukkan bahwa gaya aksial kabel sebesar 4933,993 kN yang mendekati hasil pengujian dengan model yang telah diskalakan sebesr 4900 kN.

Brooking & Kennedy (2004), yang merupakan teknisi pada Intelligent Enigneering, Ltd., bersama dengan Elestrogan telah melakukan pengujian pada material inti SPS yaitu *polyurethane* elastomer. Spesifikasi karakteristik material diuji pada temperatur-temperatur operasional ekstrim. Spesifikasi karakteristik material dari *polyurethane* pada SPS berdasarkan pengujian Brooking dan Kennedy (2004). Spesifikasi karakteristik material diuji pada temperaturtemperatur operasional ekstrim yaitu antara -80°C sampai +80°C. *Mechanical properties* dari material elastomer terdiri dari : berat jenis material, kekuatan tarik, kekuatan kompresi, modulus geser dan poisson rasio yang seluruh pengujiannya berdasarkan ASTM (*American Standard Test Material*) dan DIN (*Deutsches Institut fur Normung*). Berikut ini adalah karakteristik properties material elastomer.

Brooking & Kennedy (2004) juga melakukan pengujian lain yang dilakukan pada SPS, yang meliputi :

- 1. Ketahanan *fatigue* (*S-N curves*) pada ikatan antar bidang plat dan sambungan las untuk penggabungan antara setiap panel SPS.
- 2. Ketahanan pada air laut dan ketahanan kimia pada elastomer harus dapat bertahan selama proses pengoperasian material.
- 3. Ketahanan terhadap getaran dan peredaman terhadap kebisingan. SPS memberikan ketahanan yang jauh lebih baik dari penggunaan baja.
- 4. Ketahanan terhadap balistik, diuji dengan dimensi peluru 7,62 mm, hasil dari pengujian ini menunjukkan bahwa kurva balistik untuk SPS berada dibawah dari baja yang menandakan SPS lebih tahan terhadap ketahanan balistik dibanding dengan material baja.

Selain pengujian tersebut di atas, Brooking dan Kennedy (2004) juga melakukan pengujian terhadap proteksi perlindungan pada lingkungan, dengan melakukan pengujian ketahanan terhadap ledakan, uji *impact* dan ketahanan terhadap bahaya kebakaran, seperti yang ditunjukkan pada Gambar 2.11 (b).
			Те	est Resu	lt						
]	Density							
	$\rho_e = 1150 \text{ kg/m}^3$										
			Tensi	le Beha	viour						
	Property	-80°C	-60°C	-40°C	-20°C	23°C	60°C	80°C			
s	E (MPa)	3859	2924	1765	1164	874	436	248			
pertie	$\sigma_y(MPa)$	38,9	29,5	28,4	23,0	16,1	8,1	6,2			
r0]	ε _u (%)	7,2	11,1	13,2	15,1	32,1	43,1	47,4			
al F		(Compres	ssive Be	haviour						
nic	Property	-80°C	-60°C	-40°C	-20°C	23°C	60°C	80°C			
ha	E (MPa)	3878	2813	1347	1166	765	501	336			
Aec	σ_y (MPa)	52,1	33,5	30,9	21,4	18,0	10,2	7,9			
	SI	hear Mo	dulus (Torsion	Pendul	um Tes	st)				
	Property	-80°C	-60°C	-40°C	-20°C	23°C	60°C	80°C			
	G (MPa)	1386	955	559	429	285	180	135			
			Poi	sson Ra	tio						
			1	N = 0,36							

Tabel 2.2 Karakteristik Mekanikal Properties Material Polyurethane

Sumber : Brooking & Kennedy, 2004

Gambar 2.11 Grafik Hubungan *Strees – Strain* Material Elastomer (Sumber: Brooking dan Kennedy, 2004)

Gambar 2.12 Pengujian terhadap (a) Ledakan, (b) Ketahanan Api, (c) Impak pada Baja dan (d) Impak pada SPS (Brooking & Kennedy, 2004)

Pada Gambar 2.12 (a) merupakan pengujian terhadap ledakan antara baja dan SPS. Terlihat bahwa penampang baja tanpa *Polyuretahane* mengalami keruskan yang parah dan pada penampang SPS dengan *polyurethane* elastomer hanya mengalami sedikit kerusakan –warna putih pada gambar. Pengujian ketahanan terhadap bahaya kebakaran –Gambar 2.12 (b), dari hasil pengujian tersebut perilaku *polyurethane* elastomer dan pelat logam pada pemberian temperatur tinggi berfungsi dengan baik. IMO (*International Maritime Organization*) menilai pada struktur SPS dengan ukuran (SPS 4-25-4) mampu bertahan pada kebakaran selama 60 menit. Begitu juga pengujian impak pada baja mengalami kerusakan yang signifikan –Gambar 2.12.(c)- bila dibandingakan dengan SPS -Gambar 2.12 (d).

BAB 3 METODA PENELITIAN

3.1. Diagram Alir Penelitian

Bab ini menjelaskan dan menguraikan tahapan pengerjaan penelitian ini. Dimulai dengan studi literatur yang berhubungan dengan SFT khususnya material dan bentuk penampang SFT, konfigurasi kabel dan Sudut Inklinasi Kabel (SIK), *Buoyancy Weight Ratio* (BWR) dan tipe perletakan ujung. Analisa secara numerik dilakukan dengan program bantu *Abaqus 6.14* dengan data yang telah ada atau dari penelitian sebelumnya.

Berdasarkan penelitian sebelumnya menyebutkan bahwa penampang baja dengan bentuk lingkaran dan oval cukup efektif untuk meredam lendutan (Indrawan, 2013) sehingga pada penelitian ini menggunakan penampang baja berbentuk lingkaran dan oval dengan *Sandwich Plate System* dengan *polyurethane elastomer* (Brooking dan Kennedy, 2014). Beberapa parameter-parameter lain yang digunakan adalah Konfigurasi berbentuk segitiga (Sipata, dkk, 2013) dengan SIK 54° (Komara dan Wahyuni, 2013), BWR 1,3 (Santoso dan Wahyuni, 2014) dan perletakan ujung Sendi-Sendi (Wahyudi dan Wahyuni, 2014).

Gambar 3.1 Flow Chart: (a) Penelitian SPS pada Penampang SFT dan (b) Prelimniary Design

3.2. Studi Literatur

Pada penelitian ini diawali dengan studi literatur yang berhubungan dengan SPS dan SFT khususnya material dan bentuk penampang tunnel, Konfigurasi kabel dan Sudut Inklinasi Kabel (SIK), *Buoyancy Weight Ratio* (BWR) dan tipe perletakan ujung. Analisa secara numerik dilakukan dengan program bantu *Abaqus 6.14* dengan data yang telah ada atau dari penelitian sebelumnya.

Pada penelitian ini juga menggunakan beberapa peraturan sebagai rujukan dalam perencanaan SFT. Beberapa peraturan yang digunakan pada penelitain ini antara lain adalah:

- 1. SNI 03-1729-2002 tentang Perencanaan Bangunan Gedung Baja
- 2. RSNI T-02-2005 tentang Pembebanan Untuk Jembatan
- 3. BMS 1992 tentang Perencanaan Jembatan
- 4. PPURG 1997 tentang Pembeban Untuk Rumah dan Gedung

3.3. Data

Sebagaimana penelitian sebelumnya menyebutkan bahwa penampang baja dengan bentuk lingkaran dan oval cukup efektif untuk meredam lendutan (Indrawan, 2011) sehingga pada penelitian ini menggunakan penampang baja berbentuk lingkaran dan oval dengan *Sandwich Plate System* dengan *polyurethane* sebagai elastomer/intinya (Brooking dan Kennedy, 2004). Beberapa parameterparameter lain yang digunakan adalah Konfigurasi berbentuk segitiga (Sipata, dkk, 2012) dengan SIK 54° (Komara dan Wahyuni, 2014), BWR ideal adalah 1,3 (Santoso dan Wahyuni, 2014) dan perletakan ujung Sendi-Sendi (Wahyudi dan Wahyuni, 2014).

Panjang dari perairan yang dilalui SFT adalah 150 m dengan SFT berbentuk seperti trapesium yang terdiri dari 3 (tiga) segmen, dimana segmen pertama dan ketiga memiliki kemiringan –sisi miring, yang berfungsi penghubung daratan dengan lautan dengan panjang masing-masing 45 m. Segmen kedua merupakan segemen datar yang terendam air sepanjang 60 m –sisi datar. Segemen kedua inilah yang paling banyak mendapatkan gaya apung Archimedes, elevasi segmen kedua ini –7,5 m dan dasar laut berada pada -20 m dari permukaan laut. Total panjang SFT ini adalah tinggi/diameter bagian dalam penampang SFT pada semua segemen direncanakan 5 m dan lebar 8 m. Panjang dari SFT ini secara keseluruhan adalah 153,28 m dan bagian yang terendam air sepanjang 117,38 m. sebagaimana terlihat pada Gambar 3.2 dan Gambar 3.3.

Gambar 3.2 Geometri SFT

Pada penelitian ini akan dilakukan analisis dengan dua konfigurasi penampang dengan bentuk lingkaran dan oval (Gambar 3.5) yang terdiri dari material SPS dengan *polyurethane* sebagai inti/*core*nya. Dengan konfigurasi tersebut diharapkan dapat memperlihatkan perbedaan dari setiap penampang sehingga dapat menjadi referensi dalam pembangunan SFT.

Matarial	ρ	Е	Rasio	$\mathbf{f}_{\mathbf{y}}$	f_u
Iviaterial	(kg/m^3)	(MPa)	Posion	(MPa)	(MPa)
Baja	7850	200000	0,30	410	550
Polyurethane (23° C)	1150	800	0,36	16	28
Strand (Kabel)	7750	195000	0,30	1675	1860

Tabel 3.1 Spesifikasi Material Penelitian

Spesifikasi karakteristik material dari *polyurethane* pada SPS berdasarkan pengujian Brooking dan Kennedy (2004). Sebagaimana terlihat pada tabel dan Gambar penelitian oleh Brooking dan Kenedy pada Tabel 2.2, yang digunakan pada penelitian ini adalah yang menggunakan suhu 23° C.

Untuk data perairan menggunakan data perairan Pulau Karya dan Pulau Panggang, yang bersumber dari penelitian sebelumnya oleh Sipata dkk (2014), dimana tinggi gelombang 1,2 m dengan periode gelombang 3,58 detik. Dari data ini akan diplot kedalam grafik hubungan d/gT^2 dan H/gT^2 yang akan diketahui tipe gelombang apa yang cocok diterapkan pada penelitian ini.

3.4. Preliminary Design

Proses ini untuk mendapatkan dimensi pelat beton/slab, balok melintang dan memanjang yang akan dilalui kendaraan nantinya seta ketebalan dari SPS. Dengan menggunakan metode coba-coba, penampang akan diinput terlebih dahulu kemudian dianalsis terhadap gaya luar yang terjadi. Gaya atau beban yang terjadi pada proses ini terdiri dari beban mati dan beban hidup.

Dimana beban mati adalah beban dari struktur itu sendiri dan beban hidup terdiri dari arus lalu lintas yang sesuai dengan RSNI T-02-2005 tentang Pembebanan Untuk Jembatan dan BMS 1992 tentang Perencanaan Jembatan. Akibat beban yang terjadi akan didaptkan gaya-gaya dalam berupa momen, gaya geser dan lendutan. Gaya dalam ini akan dikontrol dengan kekuatan nominal dari penampang. Syarat dari kontrol ini adalah gaya dalam yang terjadi harus kurang dari gaya nominal yang dimiliki penamapang seperti terliahat pada alur penelitian Gambar 3.1 (b).

3.4.1. Design SPS

Sebelum melakukan analisis, harus ditentukan dulu ketebalan minimum dari panel terluar, inti dan panel terdalam dari SPS. Adapun untuk menghitung ketebalan panel baja terluar dan terdalam menggunakan rumus sebagai berikut:

$$t_{1,2_\min} = 0.5 \left(t_0 + \frac{k.L}{f_1^{0.5}} \right)$$
(3.1)

dimana $t_{1,2_min}$ adalah ketebalan minimum panel terluar (t₁) dan panel dalam (t₂), t₀ dan k adalah parameter ketebalan minimum berdasarkan tabel 3.3, f₁ adalah faktor material (tabel 3.4) dan L panjang panel (m).

Items	t ₀	k
Bottom / Inner bottom / Side	5,0	0,04
Weather deck *	5,5	0,02
Bulkhead	5,0	0,03

Tabel 3.2 Parameter	Ketebalan	Minimum
---------------------	-----------	---------

Jenis Material Baja	Keterangan	Faktor material <i>f</i> 1
NV-NS	f_y tidak kurang dari 235 MPa	1,00
NV-27	f_y tidak kurang dari 265 MPa	1,08
NV-32	f_y tidak kurang dari 315 MPa	1,28
NV-36	f_y tidak kurang dari 355 MPa	1,39
NV-40 *	f_y tidak kurang dari 390 MPa	1,47

Tabel 3.3 Nilai Faktor Material Baja

Tanda * pada kedua tabel di atas adalah yang digunakan pada penelitian ini karena penampang langsung berhubungan dengan cuaca dan material baja yang digunakan BJ 55 (f_y 410 MPa –lebih dari 390 MPa). Sedangkan untuk ketebalan inti/core menggunakan metode coba-coba dengan syarat angka indeks kekakuan SPS ($R \le 1$). Untuk mencari R dan paremeternya menggunakan rumus sebagai berikut:

$$R = 0,01.A_{R.} \left[0,1 \frac{b^2}{d(t_1 + t_2)} + 11,7 \left(\frac{bt_c}{d^2}\right)^{1,3} \right] k.P_{eq,R} \le 1$$
(3.2)

$$A_R = \left(\frac{a}{b}\right)^{0.65} \tag{3.3}$$

$$d = \left(\frac{t_1 + t_2}{2}\right) + t_c \tag{3.4}$$

$$P_{eq,R} = 0,0017.\frac{Z}{L^2}$$
(3.5)

dimana:

- R = indeks kekakuan SPS
- a = panjang bagian terpanjang dari SFT (m)
- b = lebar/keliling SFT (m)
- $d_n = jarak/ketebalan dari as t_1 ke as t_2 (mm)$
- L = panjang panel/SFT = $2L_1+a$ (m)
- L_1 = panjang SFT sisi miring (m)
- t_1 = tebal pelat luar (mm)
- t_2 = tebal pelat dalam (mm)
- $t_c = tebal inti (mm)$
- k = parameter ketebalan minimum
- $P_{eq,R}$ = tekanan eqivalen (MPa)
- Z = modulus penampang (cm³)

Berdasarkan perhitungan didapatkan bahwa ketebalan minimum untuk t₁ dan t₂ adalah 3,75 mm; dan untuk t_c sebesar 15 mm. Untuk memudahkan pelaksanaan dan demi keamanan untuk t₁ dan t₂ digunakan 4 mm dan t_c sebesar 20 mm. Konfigurasi penampang SPS yang digunakan pada penelitian ini terdiri dari 2 model penampang yang berbeda dengan bentuk lingkaran dan oval. Dengan masing-masing penampang terdiri dari 2 model pembebanan, sehingga permodelan pada penelitian ini berjumlah 4 buah. Pada prinsipnya model tiap penampang (lingkaran dan beton) memiliki konfigurasi yang sama, hanya yang membedakan adalah pembebanannya (A1 dan A2 serta B1 dan B2). Peningkatan *displacement* pada model B, bertujuan melihat kondisi model A (kondisi normal - perencanaan) hingga mengalami perlelehan pada penampangnya (kondisi ekstrim).

Selanjutnya dari kedua model penampang dengan kondisi normal (A1 dan A2) akan dibandingkan dengan output dari penelitian Indrawan (2015) yang berbentuk lingkaran dan oval dengan penampang baja (C1 dan C2). Untuk perbandingan pada penelitian ini akan lebih difokuskan kepada bentuk lingkaran karena menurut penelitian Indrawan (2015), penampang berbentuk lingkaran dengan material baja lebih baik dari penampang berbentuk oval dengan material baja.

Gambar 3.3 Parameter perhitungan SPS

Proses selanjutnya adalah mengecek apakah masing-masing permodelan memenuhi persyaratan BWR antara 1,3, bila BWR kurang dari persyaratan tersebut, dapat ditambahkan beban *ballast* hingga memenuhi BWR tersebut. Langkah berkikutnya adalah dilakukan analisis dengan *Abaqus* pada masing masing model dengan memodelkan penampang sebagai solid.

Gambar 3.4 Asumsi Permodelan

Pada Gambar 3.4 memperlihatkan asumsi yang digunakan pada permodelan ini sebagaimana pada penelitian sebelumnya bahwa perletakan ujung sebagai sendi-sendi, begitu pula asumsi perletakan pada ujung kabel sebagai sendi. Selain itu asumsi lain yang digunakan adalah *displacement* yang menjadi titik kontrol adalah *displacement* yang terletak pada sisi datar –lihat gambar.

No	Kode	Bentuk Penampang	Dimensi Pe	nampang	Т	ebal Penar	npang	Perletakan Ujung	Sudut Inklinasi Kabel	Bouyancy Weight Ratio	Data G	elombang	Beban
			HD (mm)	VD (mm)	t1 (mm)	tc (mm)	t2 (mm)		SIK	BWR	Ts (detik)	H (m)	
1	A1	Lingkaran	5000	5000	4	20	4	Sendi-Sendi	54°	1,3	3,58	1,2	D+L+H+W
2	A2	Oval	8000	5000	4	20	4	Sendi-Sendi	54°	1,3	3,58	1,2	D+L+H+W
3	B1	Lingkaran	5000	5000	4	20	4	Sendi-Sendi	54°	1,3	3,58	1,2	Displacment
4	B2	Oval	8000	5000	4	20	4	Sendi-Sendi	54°	1,3	3,58	1,2	Displacment

Tabel 3.4 Konfigurasi Permodelan SPS

Gambar 3.5 Bentuk Panampang Lingkaran (A1 dan B1) dan Oval (A2 dan B2)

Tabel 3.5 Hasil pe	enelitian	Reka	Indrawan	Penampang	g Baja
--------------------	-----------	------	----------	-----------	--------

No	Kode	Bentuk Penampang	Dim Penan	ensi npang	Rasio Lebar terhadap Tinggi	Material Penampang	Tebal Penampang	Perletakan Ujung	Sudut Inklinasi Kabel	Bouyanc y Weight Ratio	Data Ge	lombang	Beban		Gaya I	Dalam	
			HD (mm)	VD (mm)	HD/VD		t (mm)		SIK	BWR	Ts (detik)	H (m)		S11 (MPa)	S22 (MPa)	S12 (MPa)	U (mm)
1	C1	Lingkaran	5000	5000	1	Baja	27	Sendi-Sendi	54°	1,3	3,58	1,2	D+L+H+W	247,1	249,24	70,88	22,4
2	C2	Oval	9000	5000	1,8	Baja	27	Sendi-Sendi	54°	1,3	3,58	1,2	D+L+H+W	79,65	219,15	56,72	28

3.4.2. Pembebanan

Dalam struktur SFT ini terdapat beberapa beban. Beban-beban yang bekerja pada struktur SFT antara lain beban permanen merupakan beban yang selalu bekerja pada struktur selama struktur tersebut ada. Beban permanen yang bekerja pada SFT adalah:

1. Beban Mati Struktur

Beban mati struktur merupakan beban yang diakibatkan oleh gaya gravitasi dari berat struktur itu sendiri. Untuk penampang tunnel, berat sendiri tergantung dari tebal, luas, panjang dan berat jenis dari material tunnel itu sendiri. Berat sendiri (W) dihitung dengan persaan sebagai berikut:

$$\mathbf{D} = \mathbf{1}, \mathbf{3}\mathbf{A}_{\mathrm{C}}\boldsymbol{\gamma}_{\mathrm{S}} + \mathbf{B} \tag{3.6}$$

dengan A_c adalah luas penampang bahan yang digunakan dan γs adalah berat jenis dari material. Berat sendiri dan berat tambahan dan utilitas diasumsikan 30% dari beban mati. Beban mati tambahan berupa Ballast (B) diberikan apabila rasio gaya apung kurang dari 1,3.

Selain berat penampang itu sendiri terdapat juga fasilitas-fasilitas yang terdapat pada SFT seperti pelat lantai kendaraan dari beton dan aspal, gelagar melintang dan gelagar memanjang yang berfungsi sebagai pemikul pelat lantai. Pelat lantai kendaraan mengacu pada peraturan jembatan BMS 1992 dengan tebal minimal 20 cm dan aspal minimal 5 cm serta balok gelagar dari baja.

2. Beban Hidup

Beban hidup pada struktur SFT ini tidak memperhitungkan beban truck "T" karena dimensi terowongan SFT yang mempunyai dimensi ketinggian 5 m (belum termasuk tinggi bebas). Persyararatan untuk dapat dilalui truk minimal mempunyai ruang bebas adalah 4,5 m, sehingga beban truk diabaikan untuk perhitungan pada balok melintang maupun memanjang. Untuk beban hidup (L) ini terdiri dari beban KEL sebesar 44 kN/m dan beban UDL sebesar 8 kPa.

3. Gaya Apung (*Buoyancy*)

Gaya apung terjadi akibat perbedaan kerapatan massa antara air laut dan udara/penampang SFT. Gaya apung dihitung dengan persamaan sebagai berikut:

$$U = A_T \gamma_W \tag{3.10}$$

dimana:

U = Gaya Apung (kN/m)

 A_T = Luas total penampang SFT

 $\gamma_{\rm w}$ = Berat jenis air laut (10,30 kN/m³)

4. Rasio Gaya Apung (Buoyancy Weight Ratio)

Rasio Gaya Apung (*Buoyancy Weight Ratio* atau BWR) terhadap beban mati disarankan bernailai 1,2 - 1,3, namung bisa kurang dan lebih dari nilai tersebut. Formulasi rasio gaya apung adalah:

$$BWR = \frac{U}{W}$$
(3.11)

dimana BWR adalah Rasio Gaya Apung terhadap beban SFT, U adalah Gaya Apung dan W adalah beban struktur dalam hal ini, beban mati (D) dtiambah beban hidup (L) dan Ballast (B), sebaiknya $1,2 \le BWR \le 1,3$. Pada penelitian ini menggunakan BWR 1,3, bilamana BWR tidak mencapai nilai tersebut maka ditambahkan beban ballast hingga didapatakan BWR yang diinginkan.

3.5. Beban Hidrodinamik

Beban ini disebabkan oleh lingkungan lokal dimana SFT dibangun. Beban ini didapatkan dari permodelan secara matematis. Beban hidrodinamik merupakan beban akibat aksi gelombang dan akibat arus laut yang bergerak secara dinamis tergantung kedalaman yang ditinjau ditambah beban statis sebagaimana terlihat pada Gambar 3.6 berikut ini. Beban hidrodinamik yang diberikan pada penelitian ini adalah yang sesuai dengan teori Stokes Orde 5 sebagaimana diformulasikan pada persamaan berikut:

$$Pw = -\rho gz - \rho \left\{ \frac{\partial \emptyset}{\partial t} + \frac{1}{2} \left(u^2 + v^2 \right) \right\}$$
(3.12)

Dimana Pw adalah beban akibat gelombang laut (kN/m); ρ = masa jenis air laut = 10,30 kN/m³; g = percepatan gravitasi = 9,81 m/s²; z = kedaman laut yang ditinjau; u dan v merupakan kecepatan partikel air laut arah horisontal dan vertikal (m/s), t = waktu tinjauan gelombang (s).

Gambar 3.6 Tekanan Gelombang (Sumber: USFOS, 2010)

Tekanan gelombang pada persamaan di atas secara otomatis dapat dilakukan oleh *Abaqus* dengan melakukan modifikasi *subrotine* dengan kode **Aqua (Abaqus Aqua)*. Tekanan gelombang, panjang gelombang dan gaya gelombang dengan rumusan oleh Morisson secara otomatis dapat diberikan pada subrotine *Abaqus Aqua* ini.

3.5.1. Gelombang Stokes Orde 5

Sebagaimana telah diberikan pengantar pada Bab 2 bahwasanya gelombang nonlinier yang banyak digunakan untuk menentukan beban gelombang adalah Teori Gelombang Stokes Orde 5. Selaras dengan penelitian ini yang menggunakan *Abaqus* sebagai perangkat lunak pendukung dalam melakukan analisis numerik, dimana *Abaqus* dapat melakukan analisis gelombang berdasarakan teori gelombang Stokes Orde 5.

Pada teori gelombang Stokes Orde 5 ini sangat dipengaruhi oleh kecepatan potensial (\emptyset). Dari parameter \emptyset ini dapat ditentukan kecepatan dan percepatan gelombang. Untuk menentukan kecepatan potensial (\emptyset) dan profil bentuk gelombang (η) pada teori ini, sangat dipengaruhi panjang gelombang L dan angka gelombang k, dimana k ini sendiri variabel yang dipengaruhi oleh panjang gelombang (lihat Bab 2.4) sehingga digunakan metode coba-coba untuk mencari nilai tersebut.

Skjelbia dan Hendrikson (1960) telah melakukan pengembangan dari teori stokes hingga orde 5. Dimana pada pengembangan ini diberikan beberapa parameter λ , A_{ij}, B_{ij}, C_{ij} dan E_{ij} untuk menentukan ø. Namun parameter ini sangat dipengaruhi oleh d/L dan kd. Karena ketidakpastian d/L dan kd maka dilakukan dengan cara coba-coba atau optimasi dengan menggunakan komputer. Berikut ini formulasi yang digunakan pada gelombang Stoke orde 5.

$$\varphi = \sum_{n=1}^{5} \varphi_n \cosh\{k(d+z)\}\cos(\omega t - kx)$$
(3.13)

Dimana

Angka gelombang dapat diformulasikan sebagai berikut

$$k = \frac{2\pi}{L}$$
(3.14)

Untuk mencari panjang gelombang L dan koefisien λ dapat ditentukan dengan persamaan di bawah ini. Dengan menggunakan parameter d/L sebagai acuannya.

$$\frac{\pi H}{d} = \left(\frac{1}{\frac{d}{L}}\right) \tanh kd \left(1 + \lambda^2 C_1 + \lambda^4 C_2\right)$$
(3.15)

$$\frac{\mathrm{d}}{\mathrm{L}_{0}} = \left(\frac{\mathrm{d}}{\mathrm{L}}\right) \tanh \mathrm{kd} \left\{ \lambda + \lambda^{3} \mathrm{B}_{33} + \lambda^{5} (\mathrm{B}_{35} + \mathrm{B}_{55}) \right\}$$
(3.16)

Dimana
$$L_0 = \frac{gT^2}{2\pi}$$
 (3.17)

Kecepatan arah horisontal

$$u = \frac{\partial \emptyset}{\partial x} = \sum_{n=1}^{5} n \frac{\omega}{k} \varphi_n \cosh\{k(d+z)\}\sin(\omega t - kx)$$
(3.18)

Kecepatan arah vertikal

$$\mathbf{v} = \frac{\partial \boldsymbol{\omega}}{\partial z} = \sum_{n=1}^{5} \frac{\boldsymbol{\omega}}{\mathbf{k}} \boldsymbol{\omega}_{n} \sinh\{\mathbf{k}(\mathbf{d}+z)\}\cos(\boldsymbol{\omega}\mathbf{t}-\mathbf{k}\mathbf{x})$$
(3.19)

Percepatan arah horisontal

$$a_{x} = \frac{\partial u}{\partial t} = \sum_{n=1}^{5} n \frac{\omega^{2}}{k} \varphi_{n} \cosh\{k(d+z)\}\cos(\omega t - kx)$$
(3.20)

Percepatan arah vertikal

$$a_{y} = \frac{\partial w}{\partial t} = -\sum_{n=1}^{5} \frac{\omega^{2}}{k} \omega_{n} \sinh\{k(d+z)\}\sin(\omega t - kx)$$
(3.21)

Profil muka air

$$\eta = \sum_{n=1}^{5} E_n \frac{\sin\{n(\omega t - kx)\}}{k}$$
(3.22)

Untuk menentukan parameter A_{ij}, B_{ij}, C_i dan E_i dapat dilihat pada lampiran.

3.5.2. Beban Aksi Gelombang

Gaya gelombang per kedalaman dapat dihitung dengan persamaan Moorison sebagai berikut:

$$F = F_D + F_I \tag{3.23}$$

$$F = \frac{\rho}{2g} D_{e} C_{d} u |u| + \frac{\rho}{2g} A_{e} C_{w} a$$
(3.24)

dimana:

F = Gaya gelombang (kN/m)

W	= Berat jenis air laut $(10,3 \text{ kN/m}^3)$
Ae	= Luas penampang termasuk marine growth (m^2)
Cd	= Koefisien drag
Cw	= Koefisien massa
De	= Diameter efektif SFT (termasuk marine growth) (m)
g	= Percepatan gravitasi $(9,81 \text{ m/s}^2)$
u	= kecepatan aliran gelombang pada kedalaman SFT (m/s)
u	= nilai absolut dari $\sqrt{u^2 + v^2}$
а	= percepatan gelombang per kedalaman (m/s ²)
FD	= Gaya Drag (kN/m)
FI	= Gaya Inersia (kN/m)

Tabel 3.6. Koefisien Drag dan Inersia (Sumber: API RP 2A-WSD 2000)

Parameter	Cd	Cm
Smooth member	0,65	1,6
Rough member *	1,05	1,2

Pada perhitungan gelombang juga perlu memperhitungkan efek *marine* growth karena SFT terbenam dalam air. Struktur yang menempel pada laut lama kelamaan akan ditempel oleh organisme laut, efek ini disebut *marine growth*. Akibat dari *marine growth* ini, penampang dari SFT akan bertambah besar sehingga beban aksi gelombang pada persamaan Morison diatas menggunakan diameter efektif dan Luas penampang efektif.

$$D_e = D_o + 2t_m \tag{3.25}$$

Dimana Diameter efektif (D_e) merupakan dimater luar dari SFT (D_o) ditambah dua kali -kanan dan kiri- ketebalan *marine growth* (t_m)

Perkiraan ketebalan *marine growth* (t_m) dapat ditentukan dengan menggunakan profil *marine growth* yang diperlihatkan pada Gambar 3.7 dibawah. Berdasarkan Gambar 3.7, maka ketebalan *marine growth* adalah 5 cm karena kedalaman SFT terletak pada -20 m. Gambar 3.8 memperlihatkan hubungan antara diameter efektif, dimater SPS dan *marine growth*.

Gambar 3.7 Marine Growth Profil (Ahrens, 1997; Sumber: Indrawan, 2011)

Gambar 3.8 Detail Penampang Efektif

Tipe gelombang akan dipilih berdasarkan Gambar 3.9. berikut ini. Dengan menggunakan menarik garis horisontal dan vertikal akan didapatkan jenis gelombang apa yang tepat diterapkan pada penelitian ini.

Gambar 3.9 Grafik Penentuan Model Gelombang (API-RP2A, 2000; Sumber USOFOS, 2010)

3.6. Analisis

Analisis dilakukan secara numerik dengan *software* berbasis Metode Elemen Hingga (MEH). Ada banyak *software* yang berbasis MEH ini yang umum digunakan di kalangan praktisi keteknik sipilan seperti *SAP 2000, SAFE, ETABS, Ansys, Abaqus* dan masih banyak lainnya. Pada penelitian ini menggunakan software *Abaqus* versi 6.14. Kelebihan *Abaqus* ini adalah sangat baik dalam menganalisis tegangan karena proses *meshing*nya sangat baik bila dibandingkan *SAP 2000* atau *ETABS*, serta mampu memperlihatkan arah tegangannya (Dewobroto, 2013). Selain itu *Abaqus* versi 6.14 merupakan *Abaqus* versi terbaru hingga saat ini (Januari 2016) dan telah menggunakan referensi terbaru untuk proses analisisnya, salah satunya beban hidrodinamik yang sesuai dengan penelitian ini. Kekurangan *Abaqus* adalah tidak terdapatnya input satuan sehingga perlu menyamakan semua satuan sebelum input parameter.

BAB 4

PRELIMINARY DESIGN

Pada bab ini dihitung berapa ketebalan pelat lantai kendaraan, penampang balok memanjang dan melintang yang aman untuk memikul kendaraan, ketebalaan SPS dan BWR. Kendaraan rencana yang dapat melewati SFT ini dibatasi hanya pada mobil penumpang dengan berat total 8 ton. Pemilihan ini karena diameter rencana SFT ini hanya 5 m, sehingga hanya kendaraan penumpang saja yang dapat memasuki terowongan SFT.

4.1. Pelat Lantai Kendaraan

Perencanaan pelat lantai kendaraan untuk SFT disesuaikan dengan bentuk geometri dari penampang SFT.

Direncanakan :

b1 = 1.2 meter (jarak antar balok memanjang)

Berdasarkan BMS pasal 6.1.12 :

```
d3 \ge 200 \text{ mm}

d3 \ge 100 + 40 \text{ b1}

d3 \ge 100 + 40 \text{ x } 1.2

d3 \ge 148 \text{ mm}

Jadi dipakai d3 = 300 mm = 0,3 m

d4 \ge 5 - 8 \text{ cm (tebal lapisan aspal)}

Diambil d4 = 5 cm = 0,05 m

lx = b1 = 1,2 \text{ m}

ly = \lambda = 5 \text{ m}

\frac{ly}{lx} = \frac{5}{1,2} = 4,17 > 2 \text{ (Pelat 1 arah )}
```

Faktor Beban :

▶ Beton cor di tempat , $K_{MS}^U = 1,3$

> Beban truk T, $K_{TT}^{U} = 2,0$ (Asumsi perhitungan terdapat beban truk)

Pembebanan :

- a. Beban Mati :
 - Berat sendiri plat = d3 x γ_{beton} x 1 m = 0,3 m x 24 KN/m³ x 1 m = 7,2 KN/m • Berat aspal = d4 x γ_{aspal} x 1 m = 0,05 m x 22 KN/m³ x 1 m = 1,1 KN/m $\mathbf{q}_{M} = 8,3$ KN/m
- b. Beban Hidup :

Beban roda truk = 100 KN , maka DLA = 0.3

 $T = (1 + 0,3) \times 100 = 130 \text{ KN}$

c. Beban Ultimate :

•
$$q_{M(U)} = K_{MS}^U \ge q_M$$

= 1,3 \times 8,3 KN/m = 10,79 KN/m

•
$$T_{(U)} = K_{TT}^U x T$$

= 2,0 x 130 KN = 260 KN

Momen – Momen Arah Melintang (Mx):

a. Beban Mati :

Mu =
$$\frac{1}{10} \propto q_{M(U)} \propto b1^2$$

= $\frac{1}{10} \propto 10,79 \text{ KN/m} \propto (1,2 \text{ m})^2 = 1,554 \text{ KN.m}$

b. Beban Hidup :

Mu = 0,8 x
$$\frac{S + 0.6}{10}$$
 x T_(U), dimana S = b1
= 0,8 x $\frac{1,2 + 0,6}{10}$ x 260 KN = 37,44 KN.m

c. Beban Total :

Mu = 1,554 KNm + 37,44 KNm = 38,994 KN.m

Perhitungan Tulangan :

Digunakan beton :

fy = 320 MPa
fc' = 30 Mpa
$$\beta$$
 = 0,85

Tulangan Arah x (Arah Melintang): •

~

Mu = As x fy x 0,9 x dy
Asu =
$$\frac{Mu}{fy \times 0,9 \times dy}$$

= $\frac{38.994.000}{320 \times 0,9 \times 225}$ = 601,76 mm²

Dicoba tulangan D 16, Ast = $201,06 \text{ mm}^2$

$$Asv = \frac{Ast \times 1000}{Asu} = 334,12 \text{ mm}$$

Dipakai tulangan arah melintang D 16 - 300 mm, As = $670,2 \text{ mm}^2$

Tulangan Arah y (Arah Memanjang) : •

Ay = Tulangan susut

$$\rho_{\min} = 0,0018 \text{ x} \frac{400}{fy}$$

= 0,0018 x $\frac{400}{320} = 0,00225$

d' =
$$300 - 40 - \frac{1}{2} \times 12 = 254 \text{ mm}$$

Ay =
$$\rho_{\min} x d' x 1000$$

= 0,00225 x 254 x 1000 = 571,5 mm²

Dipakai tulangan arah memanjang Ø 12 – 175 mm , As = 646,27 mm²

Kontrol Geser Pons :

Gambar 4.1 Geser Pons Pada Pelat Lantai Kendaraan

• Keliling Kritis :

$$U = 2 (b_0 + d_0)$$

= 2 [(0,5 x 35 + 50 + 0,5 x 35) + (0.5 x 35 + 20 + 0.5 x 35)]
= 2 [(35 + 50) + (35 + 20)] = 2 [85 + 55]
= 280 cm

• Luas Kritis :

A = U x (
$$d4 + d3$$
)
= 280 x (5 + 30) = 9800 cm²

• Gaya Geser Ultimate :

Vn =
$$K_{TT}^{U} x 100 x (1 + DLA)$$

= 2.0 x 100 x (1 + 0,3) = 260 KN

Vuc
$$= \left(1 + \frac{2}{\beta}\right) x \left(\frac{\sqrt{fc'}}{6}\right) x \cup x d0$$

Dimana :
$$\beta = \frac{50}{20} = 2,5$$

Vu_c $= \left(1 + \frac{2}{2,5}\right) x \left(\frac{\sqrt{30}}{6}\right) x 2800 \text{ mm x 550 mm}$
 $= 2530478 \text{ N}$
 $= 2530,478 \text{ KN}$
Vc $= \frac{\sqrt{fc'}}{3} x \text{ U x d0}$
 $= \frac{\sqrt{30}}{3} x 2800 \text{ mm x 550 mm}$
 $= 2811642 \text{ N}$
 $= 2811,642 \text{ KN}$

Kuat penampang pada geser harus memenuhi :

i. $Vn \leq Vu_c$

260 KN \leq 2530,478 KN (OK)

ii. Vc > Vuc2811,642 KN > 2530,478 KN (OK)

4.2. Perhitungan Balok Memanjang

Pada SFT ini balok memanjang diasumsikan sebagai *simple connection* sehingga berlaku sendi rol sebagai perletakannya. Jarak antar balok memanjang adalah 1,25 m dengan panjang balok memanjang 3 m. Baik balok memanjang pada SFT berbentuk lingkaran maupun oval memiliki konfigurasi yang sama.

Pada balok memanjang ini direncanakan menggunakan baja WF 250x175x7x11 dengan menggunkan penampang kompak. Keterangan lebih lanjut mengenai profil ini dapat dilihat pada tabel 4.1. Kemudian dikontrol apakah penampang dari profil termasuk kompak atau tidak. Dipilih profil yang digunakan adalah profil kompak guna memudahkan perhitungan lentur.

Setelah itu dihitung beban yang bekerja pada profil seperti beban mati dan beban hidup. Beban mati berasal dari beban aspal, pelat lantai, berat sendiri profil dan beban bekisting. Beban Hidup merupakan beban KEL dan UDL saja, tidak memperhitungkan beban T karena tidak didesain untuk dilewati truk.

A	56,24 cm^2	S_x	502,0 cm^3
w	44,10 kg/m	S_y	113,0 cm ³
Z_x	534,77 cm^3	<i>i</i> _{<i>x</i>}	10,4 cm
Z_y	165,60 cm ³	<i>i</i> _y	4,18 cm
I_x	6.120,00 cm ⁴	r	16 mm
I_y	984,00 cm ⁴	h	190 mm
fy	410 MPa	fu	550 MPa
tw	7 mm	tf	11 mm
d	244 mm	bf	175 mm

Tabel 4.1 Propertis penampang WF 250x175x7x11

Kontrol	Penam	png
---------	-------	-----

L

Rontron i champing						
h/t_w	27,14	ok	b/2tf	7,95	ok	
1680/fy^0.5	82,97	ок	170/fy^0.5	8,40	ОК	
Penampang Kompak !!!						

Tabel 4.2 Beban Pada Balok Memanjang

Beban Mati		
Aspal	1,7875	kN/m
Plat Beton	7,8	kN/m
Berat Sendiri Balok	0,4851	kN/m
Berat Bekisting	0,875	kN/m
Berat Total (q _{dead})	10,948	kN/m
Mmax (momen akibat beban mati)	12,31605	kN.m
Vmax _{(gaya} geser akibat beban mati)	16,4214	kN
Beban Hiduj	0	
Beban Hidup Merata (UDL)	0.00	kN/m ²
L<30 m (BMS 2.3.3.1)	8,00	
q udl	20,00	kN/m
Beban Hidup (KEL)		kN/m
(BMS 2.3.3.1)	44	
P _(KEL)	71,5	kN
Mmax (momen akibat beban hidup UDL+KEL)	76,125	kN.m

Setelah dilakukan perhitungan beban selanjutnya menghitung gaya dalam yang terjadi seperti momen dan geser serta lendutan.

Kontrol Geser				
Vlive max	101,500 kN			
V dead max	16,421 kN			
Vu	117,921 kN			
Vn	32718 kg			
V II	327,18 kN			
ǿVn	294,462 kN			
kontrol	ok !!!			

Tabel 4.3 Kontrol Balok memanjang

Kontrol Lentur				
M live max	76,125 kNm			
M dead max	12,31605 kNm			
M _u	88,441 kNm			
Mn	219,25652 kNm			
ǿM n	197,330868 kNm			
kontrol	ok !!!			

∆ beban mati	0,07 cm
∆ beban hidup	0,24 cm
∆ total	0,31 cm
∆ ijin	0,60 cm
kontrol lendutan	ok !!!

Kontrol Lendutan

Berdasarkan perhitungan di atas, balok memanjang menggunakan profil baja WF 250x175x7x11.

4.3. Perhitungan Balok Melintang

Seperti halnya pada balok memanjang, asumsi yang digunakan pada balok melintang ini adalah simple connection. Begitu juga penampang rencana balok melintang ini memiliki konfigurasi yang sama antara bentuk lingkaran dan oval, namun untuk perhitungan menggunakan perhitungan bentuk oval.

Rencana balok melintang yang digunakan adalah WF 600x300x14x23 dengan panjang 7,4 m. Perhitungan balok melintang ini dapat dilihat pada tabel berikut.

A	$222,40 \text{ cm}^2$	S_x	$4.620,00 \text{ cm}^3$
W	175,00 kg/m	S_y	701,00 cm ³
Z_x	5.017,23 cm^3	<i>i</i> _x	24,90 cm
Z_y	$2.041,35 \text{ cm}^3$	<i>i</i> _y	6,90 cm
I_x	137.000,00 cm ⁴	r	28,00 mm
I_y	10.600,00 cm ⁴	h	492,00 mm
fy	410 MPa	fu	550,00 MPa
tw	14 mm	tf	23 mm
d	594 mm	bf	302 mm

Tabel 4.4 Propertis Penampang WF 600x300x14x23

Kontrol Penampang

h/t_w	35,14	ok	b/2tf	6,6	ok	
1680/fy^0.5	82,97	ok	170/fy^0.5	8,40	ОК	
Penampang Kompak !!!						

Tabel 4.5 Tabel Beban Mati Balok Melintang

Beban Mati Sebelum Komposit				
Balok memanjang	1,164 kN/m			
Plat Beton	18,720 kN/m			
Balok melintang	1,925 kN/m			
Berat Bekisting	2,100 kN/m			
Berat Total (q _{dead})	23,909 kN/m			
Mmax (momen akibat beban mati)	163,659 kN.m			
Vmax _{(gaya g} eser akibat beban mati)	88,464 kN			

Beban	Mati	Sesudah	Komposit
-------	------	---------	----------

Aspal	4,29 kN/m
Berat Total (q _{dead})	4,290 kN/m
Mmax (momen akibat beban mati)	29,365 kN.m
Vmax _{(gaya} geser akibat beban mati)	15,873 kN

Seperti pada perhitungan balok memanjang beban yang bekerja pada balok melintang adalah beban hidup dan beban mati. Beban mati pada balok melintang ini terjadi dua kondisi yaitu sebelum komposit dan sesudah komposit. Beban mati sebelum komposit terdiri dari beban balok memanjang, balok melintang, pelat lantai dan beban bekisting sementara beban mati sesudah komposit hanya beban aspal. Beban hidup tidak berbeda dengan balok memanjang.

Tabel 4.6 Tabel Beban Hidup	Balok Melintang

Beban Hidup				
Beban Hidup Merata (UDL)	0 255	LN/dm^2		
L>30 m (BMS 2.3.3.1)	9,555	K1N/M		
q udl	56,129	kN/m		
Beban Hidup (KEL)		kN/m		
(BMS 2.3.3.1)	44			
q _{KEL}	114,4	kN/m		
Mmax (momen akibat beban hidup UDL+KEL)	1167,272	kN.m		
Vmax _{(gaya} geser akibat beban hidup UDL+KEL)	630,958	kN		

Kontrol Geser					
Vlive _{max}	630,958 kN				
V dead _{max}	104,337 kN				
Vu	735,295 kN				
Vn	169444,8 kg				
	1694,448 kN				
ǿVn	1525,0032 kN				
kontrol	ok !!!				

Kon	Kontrol Lentur						
M live max	1167,27 kNm						
M dead max	193,02 kNm						
M _u	1360,30 kNm						
Mn	2057,0643 kNm						
ǿM n	1851,3579 kNm						
kontrol	ok !!!						

Tabel 4.7. Tabel Kontrol pada Balok Melintang

Kontrol Lendutan					
∆ beban mati	0,29 cm				
∆ beban hidup	1,16 cm				
∆ total	1,45 cm				
∆ ijin	1,48 cm				
kontrol lendutan	ok !!!				

Tahap akhir dari desain balok melintang adalah mengontrol gaya dalam yang terjadi harus kurang dari gaya dalam yang dimampu ditahan oleh profil. Berdasarkan analisi tersebui balok melintang menggunakan profil baja WF 600x300x14x23.

4.4. Perhitungan Penampang SFT

Penamang SFT ini terdiri dari 3 (tiga) layer/lapisan, yaitu bagian dalam dari baja (t₁), bagian tengah dari *polyurethane* (t_c) dan bagian luar dari baja (t₂). Namun ketebalan tiap layer ini harus memenuhi persyaratan yang telah ditentukan seperti pada uraian 3.4.1.

Untuk menghitung ketebalan t₁ dan t₂ dengan menggunakan Persamaan (3.1) didapatkan nilai t₁ dan t₂ = 3,748 mm. Nilai ini dibulatkan menjadi 4 mm. Sedangkan untuk menghitung ketebalan ini (t_c) harus menggunakan coba-coba sehingga memenuhi Persamaan (3.2). Dicoba menggunakan t_c = 15 mm, didapatkan nilai R < 1. Namun untuk memudahkan pelaksanaan dibulatkan menjadi 20 mm sehingga SPS yang digunakan pada penelitian ini adalah 4-20-4.

Lingkaran			Oval			
to	5		to	5		
k	0,02		k	0,02		
L	151,4112	m	L	151,4112	m	
f1	1,47		f1	1,47		
t 1,2_min	3,748818	mm	t 1,2_min	3,748818	mm	
t1	4	mm	t1	4	mm	
t2	4	mm	t2	4	mm	
tc	15	mm	tc	15	mm	
а	151,4112	m	а	151,4112	m	
b	15,70796	m	b	20,42035	m	
d	19	mm	d	19	mm	
Z	8641685	cm³	Z	8641685	cm³	
Ar	4,361388		Ar	3,677575		
Peq,R	0,640813		Peq,R	0,640813		
R	0,003846	ОК	R	0,004583	ОК	

Tabel 4.8 Tabel Perhitungan Tebal SPS

4.5. Perhitungan BWR

BWR atau rasio gaya apung terhadap beban SFT dapat ditentukan menggunakan Persamaan (3.6), (3.10) dan (3.11). Untuk contoh kasus BWR dengan penampang lingkaran dengan SPS 4-20-4 adalah sebagai berikut:

Berat tunnel didapat dengan Persamaan (3.6)

 $W_T = 1,3(\sum A_c \cdot y_s) = 1,3(14,362) = 18,672 \text{ kN}$

 $U = A_T \cdot \gamma_w = 20,077 \cdot (117,38 \cdot 10,30) = 24273 \text{ kN}$

Untuk perhitungan lebih rinci dapat dilihat pada tabel berikut ini

Tabel 4.9 Tabel BWR

Model	SPS	B. Memanjang	B. Melintang	Lantai Beton	Bersat Aspal	Berat Tunnel	UDL	UKL	Ballast	W	U	BWR
A1	4-20-4	199,58778	254,8	5068,896	604,04344	17,61877794	346,978	20,8572	12159	18671,78	24273,66	1,300
A2	4-20-4	399,17556	490	5068,896	604,04344	22,87497661	346,978	40,11	22779	29751,08	38676,55	1,300
Ket: Jumlah balok melintang oval 4 buah dan oval 6 buah												

Nilai W pada tabel di atas merupakan gabungan dari berat balok memanjang, balok melintang, lantai beton dan aspal, berat tunnel, UDL, UKL dan Ballast. Sedangkan BWR sendiri merupakan pebandingan antara U terhadap W. Nilai BWR harus 1,3 sehingga bila rasio antara U dan W belum mencapai atau melebihi 1,3 maka dilakukan penambahan ballast. Sehingga ballast pada tabel di atas merupakan beban mati tambahan, dapat berupa blok beton ataupun air saluran dalam SFT.

BAB 5 ANALISIS DAN PEMBAHASAN

Pada bab ini dibahas mengenai analisis data dan interpretasi dari hasil dari *Abaqus*. Analisis data ini bertujuan untuk mendapatkan parameterparameter yang harus diinput pada *Abaqus*, terutama tipe gelombang. Dengan mengetahui tipe gelombang yang terjadi akan diketahui pula parameter apa saja yang akan diberikan pada saat memasukan beban gelombang yang terdapat pada bahasa program *Abaqus Aqua*. *Abaqus Aqua* merupakan bahasa program pada *Abaqus* yang memang diperuntukan untuk analisis stuktur yang mendapat pengaruh gelombang seperti bangunan lepas pantai, kapal dan tentu saja SFT.

5.1. Menentukan Tipe Gelombang

Seperti telah dijelaskan pada Bab 3, gelombang di lautan terdiri dari berbagai bentuk/tipe. Bentuk gelombang yang paling mudah adalah Tipe Airy, namun pada penelitian ini tipe gelombang yang digunakan harus sesuai dengan keadaan di lapangan. Utuk menentukan tipe gelombang dapat menggunakan grafik yang ada pada Gambar 3.9.

Pada Gambar 3.9, parameter-parameter yang dibutuhkan untuk menentukan tipe gelombang yang digunakan adalah tinggi gelombang (H), perioda gelombang (T) dan kedalaman laut (d). Dari grafik tersebut dihubungkan antara parameter horisontal dan vertikal. Adapun nilai dari parameter horisontal dan vertikal tersebut adalah:

$$\frac{\mathrm{H}}{\mathrm{g}\cdot\mathrm{T}^2} = \frac{1,2}{9,81\cdot3,58^2} = 0,009544 \tag{5.1}$$

$$\frac{d}{g \cdot T^2} = \frac{20}{9,81 \cdot 3,58^2} = 0,159072$$
(5.2)

Nilai tersebut kemudian ditarik searah nilainya dan titik pertemuan garis tersebutlah yang menentukan tipe gelombang yang digunakan.

Gambar 5.1 Penentuan Tipe Gelombang

Garis merah tersebut merupakan nilai dari H/gT² dengan nilai 0,009 dan garis hijau nilai dari d/gT² dengan nilai 0,159. Pertemuan kedua garis tersebut berada pada area Stokes 5, yang artinya tipe gelombang berdasarkan data H, g, d dan T tersebut adalah tipe gelombang stokes. Tipe gelombang Stokes ini dapat diinput di *Abaqus* dengan menggunakan bahasa program *Abaqus Aqua*.

5.2. Menentukan Panjang Gelombang

Panjang gelombang ditentukan menggunakan cara coba-coba dengan persamaan (3.14), (3.15), (3.16) dan (3.17). Karena antara variabel d, L dan λ sangat terkait dengan variabel lainnya. Maka pada penentuan panjang gelombang ini hanya variabel d/L dan λ saja yang diinput dengan cara coba-coba, sehingga didapatkan panjang gelombang L sebesar 20,411423 m \approx 20,14 m.

5.3. Menentukan Kecepatan dan Percepatan Partikel Air

Kecepatan Partikel Air untuk arah horisontal (u) dan vertikal (v) ditentukan dengan persamaan berikut ini:

$$u = \frac{\partial \emptyset}{\partial x} = \sum_{n=1}^{5} n \frac{\omega}{k} \vartheta_n \cosh\{k(d+z)\}\sin(\omega t - kx)$$
(5.3)

$$\mathbf{v} = \frac{\partial \boldsymbol{\varphi}}{\partial z} = \sum_{n=1}^{5} \frac{\omega}{k} \boldsymbol{\varphi}_{n} \sinh\{\mathbf{k}(\mathbf{d} + z)\}\cos(\omega t - \mathbf{k}x)$$
(5.4)

Untu percepatan arah x (ax) dan arah y (ay) dapat ditentukan dengan persamaan berikut ini:

$$a_{x} = \frac{\partial u}{\partial t} = \sum_{n=1}^{5} n \frac{\omega^{2}}{k} \omega_{n} \cosh\{k(d+z)\}\cos(\omega t - kx)$$
(5.5)

$$a_{y} = \frac{\partial w}{\partial t} = -\sum_{n=1}^{5} \frac{\omega^{2}}{k} \omega_{n} \sinh\{k(d+z)\}\sin(\omega t - kx)$$
(5.6)

Dengan menggunakan $\sigma = 2\pi/T = 1,755$ cps, y = -7,5 m dan x = 0 serta t = T = 3,58, maka didapatkan nilai dari persamaan tersebut diatas dan diplot dalam grafik berikut ini.

Gambar 5.2 Kecepatan Gelombang

Dari Gambar 5.2 terlihat kecepatan gelombang semakin di dasar semakin berkurang. Kecepatan gelombang ini tidak dipengaruhi bentuk dari penampang SFT, karena variabel yang digunakan adalah angka gelombang, periode gelombang dan kedalaman laut saja.

5.4. Menentukan Tekanan Gelombang

Tekanan gelombang akibat kecepatan dan percepatan partikel air menggunakan Persamaan (3.21) hingga Persamaan (3.23). Pada Persamaan (3.14) tersebut memerlukan koefisien Cd dan Cm. Nilai dari Cd dan Cm yang digunakan adalah 1,05 dan 1,2. Gaya gelombang ini sangat dipengaruhi oleh bentuk dari bentuk SFT.

Gambar 5.3 Gaya Gelombang Model A1

Pada tekanan gelombang dengan SFT berbentuk lingkaran (A1) ini tekanan terbesar terjadi pada muka air. Tekanan ini dipengaruhi oleh profil gelombang dengan menggunakan rumusan Morison. Pada gaya gelombang ini belum mendapat gaya tekan hidrostatis. Tekanan hidrostatis akan berbentuk linier dan semakin besar pada dasar laut, berbalik dengan kondisi gaya gelombang.

Gambar 5.4 Gaya Gelombang Model A2

Gambar gaya gelombang di atas merupakan tekanan gelombang pada SFT dengan model lingkaran (A1) dan oval (B1). Untuk model A2 dan B2, beban ini ditambahkan beban displacement hingga 500 mm sehingga kondisi ekstrim dari SFT tersebut. Gaya gelombang pada SFT dengan bentuk lingkaran (A1) terlihat lebih kecil bila dibandingkan dengan penampang berbentuk oval (B1). Hal tersebut dipengaruhi oleh dimensi penampang dimana lebar/diameter efektif model B1 lebih besar dari pada model A1. Jadi semakin besar penampang, semakin besar pula gaya gelombangnya.

Gambar 5.5 Profil gelombang dengan berbagai variasi t

Profil gelombang ini akan mempengaruhi besarnya gaya gelombang. Pada distribusi gaya gelombang kondisi A1 dan A2, menggunakan t = 0 T. Dengan kondisi t = 0 T ini akan mendapatkan gaya gelombang yang paling besar bila dibandingkan dengan t semakin besar (mendekati T).

5.5. Hal yang Harus Diperhatikan Pada Analisis Abaqus

Secara umum, tahap-tahap dalam melakukan anlisis dengan *Abaqus* adalah menggambar model SFT, *input material*, penggabungan *part*, *step*, *interaction*, *load*, *mesh*, *job* dan *analysis*. Namun untuk penelitian ini ada hal-hal yang harus diperhatikan dalam melakukan analisis dengan *Abaqus* ini.

1. Satuan dan Orientasi Sumbu

Dalam *Abaqus* tidak terdapat input satuan sehingga kita harus mendefiniskan sendiri satuan yang kita gunakan. Satuan yang digunakan pada *input Abaqus* pada penelitian ini adalah kN untuk beban, m untuk jarak/ *displcament*, m/s² untuk gaya gravitasi, ^o untuk sudut dan kPa untuk tekanan, begitu pula *output* yang dihasilkan dari *Abaqus* sama seperti asumsi input satuan. Namun untuk hasil pada pembahasan nantinya *output* dari tekanan tersebut akan dikonversi menjadi MPa dan mm untuk satuan jarak/*displacement*.

Selain satuan, hal lain yang harus diperhatikan pada penelitian ini adalah orientasi sumbu dari model. Untuk profil memanjang dari SFT searah sumbu x dan lebar/potongan melintang searah sumbu y sedangkan level/tinggi searah sumbu z. Penggunaan sumbu ini nantinya akan singkron dengan bahasa program pada saat pemberian beban gelombang stokes.

2. Penggambaran Model

Model yang akan dibentuk dengan *Abaqus* menggunakan *shape solid*. Karena bentuknya yang cukup rumit sehingga penggambaran model menggunakan solid dengan tipe *sweep*. Dengan tipe ini kita dapat membuat bentuk model SFT mendekati kondisi aslinya. Tahap awal dari tipe ini adalah dengan membuat bentuk SFT dengan koordinat -75,12.15 untuk koordinat penampang yang berada di daratan pada sisi kiri lalu -30,0, kemudian 30,0 dan ditutup pada koordinat 75,12.15. Sehingga bentuk dari potongan memanjang SFT terlihat seperti pada Gambar 5.6. Langkah selanjutnya adalah membuat penampang dari SFT pada *tools* yang sama. Dengan menekan *enter*, maka kita akan dialihkan untuk membuat penampang dari SFT. Selanjutnya dibuat dulu lapisan terdalam (t₁) untuk SFT dengan radius lingkaran dalam 2,5 m dan diberi ketebalan 4 mm sehingga radius lingkaran luar untuk t₁ adalah 2,504 m.

Gambar 5.6 Permodelan SFT Pada Abaqus

Gambar 5.7 Permodelan Polyurethane

Setelah itu membuat lapisan inti (t_c) atau *elastomer polyurethane* dengan cara yang sama dengan memodelkan t₁ di atas. Hanya saja perbedaan terjadi pada radius lingkaran dalam 2,504 m dan radius lingkaran luar sebesar 2,524 m sebagaimana terlihat pada Gambar 5.7 di atas.

3. Penggabungan Part

Dalam *Abaqus*, tiap bagian dari model harus dibuat dalam satu *part*, yang dapat digabungkan satu dengan lainnya sehingga menjadi model yang sesuai dengan yang diinginkan. Penggabungan *part* atau bagian bagian yang telah dimodelkan menggunakan *Module: Assembly*. Pada module ini terdiri dari beberapa *tool* seperti *create instace* untuk memasukan *part* pada gambar kerja, *rotate instance* untuk memutar *part, translate instance* untuk menggerakan *part* dan lain sebagainya. Pada tahapan ini merupakan

penggabungan dari beberapa *part* sehingga menjadi bentuk yang sesuai dengan yang akan di analisis.

Gambar 5.8 Pilihan Module pada Abaqus

(

Module:	Assembly V Model: V Model-1 V Step:
Ľ	Merge/Cut Instances
· ≠ × ⊨	Note: This function will create a new part and automatically instance it into the assembly. Part name: SPS 4-20-4 Operations Merge Geometry Mesh Both Cut geometry Options
avra) よ よ よ	Original Instances © Suppress Delete Geometry Intersecting Boundaries © Remove © Retain The Section Content of the Section Content
	Continue Cancel

Gambar 5.9 Penggabungan Part

Karena pada model SFT ini terdiri dari 3 lapisan dengan material yang berbeda/*part*, maka penggabungan antara lapisan satu dengan lainnya menggunakan *merge* dengan tipe *both* kemudian untuk memishakan antara t₁, t_c dan t₂ menggunakan *retrain* untuk *geometri*, dimana lapisan tersebut akan menjadi satu dalam hal *part* namun terpisah dalam hal *properties*/material sehingga penampang akan berbentuk SPS.

Gambar 5.10 Pemberian Material SPS

Setelah penggabungan part, maka langkah selanjutnya adalah memberikan material SPS yang sesuai pada masing-masing lapisan. Gambar 5.10 di atas memperlihatkan cara pemberian material SPS pada *part* yang telah digabung. Pertama-tama memilih lapisan t₁ dan diberikan material baja, selanjutnya memilih lapisan tengah dan diberikan material *polyurethane*. Begitu pula pada lapisan terdalam (t₂), setelah dipilih diberikan material yang sesuai yaitu baja sehingga seluruh lapisan telah membentuk SPS dengan material yang sesuai.

4. Load dan Boundary Condition

Pada tahap ini diberikan beban/*load* yang sesuai dengan SFT seperti beban hidrostatis, dinamis dan beban lainnya yang bekerja pada SFT. Beban hidrostatis ini diberikan secara dinamis dengan membuat *Step* dengan bentuk dinamis. Karena titik tengah dari penampang berada pada koordinat 0,0, maka tinggi elevasi air berada 7,5 m dari titik tengah dan -12,5 m untuk dasar laut. Beban maksimum sebesar $\rho gd = 2020$ kN/m. Beban Gelombang Stokes diberikan pada tahap ini namun bukan pada *module load*, tapi pada edit bahasa program (*subrotine*). Input yang harus diberikan pada beban gelombang ini berdasarkan manual dari *Abaqus* adalah **AQUA* dan **WAVE*. Dimana **AQUA* untuk memberikan efek dinamis pada beban gelombang dan **WAVE* adalah tipe gelombang yang akan digunakan, dalam hal ini stoke orde 5.

ſ	\$	Edit Load ×							
1	Name: Hyd	Irostatic							
	Type: Pres	sure							
	Step: Step-1 (Static, General)								
	Region: Surf	-6 😽							
	Distribution:	Hydrostatic 🖌 f(x)							
_	Magnitude:	2020.86							
	Amplitude:	(Ramp) 🗸 🏠							
	Zero pressure	e height: 7.5							
	Reference pre	essure height: -12.5							
	Note: The zero and reference pressure height values are not affected by the amplitude.								
	ОК	Cancel							
	Note: The zero and reference pressure height values are not affected by the amplitude. OK Cancel								

Gambar 5.11 Input Beban Hidrostatik

Input File Usage:	*AQUA seabed elevation, free surface elevation, gravitational constant, fluid density The *AQUA option must be included in the model data portion of the input file
Input File Usage:	*WAVE, TYPE=STOKES wave height, wave period, phase angle, direction of travel cosines

Gambar 5.12 Screen Shoot Subrotine Aqua

Screen shoot di atas didapatkan dari manual Abaqus. Adapun input bahasa program yang digunakan pada penelitian ini adalah:

*AQUA

-12.5, 7.5, 9.81, 10.3

*WAVE, TYPE=STOKES

1.2, 3.58, 0, 1, 0

Cara memasukan beban gelombang ini dengan klik kanan pada "*Module*" kemudian pilih "*Edit Keyword*". Setelah itu, masukan bahasa program dari *Aqua* dan gelombang seperti di atas, tepat di atas "*Step*". Sesuai keterangan dari manual *Abaqus*, bahwa untuk *subrotine Aqua* harus terdiri dari elevasi dasar laut (-12,5 m), muka air laut (7,5 m), gaya gavitasi (9,81 m/s²) dan masa jenis air laut (10,30 kN/m³). Sementara untuk gelombang, harus menuliskan **WAVE* kemudian tipe gelombangnya, yaitu Stokes Orde 5. Adapaun parameter pada *subrotine* gelombang ini adalah tinggi gelombang (1,2 m), periode gelombang (3,58 m), sudut fase gelombang (0), dan arah datang gelombang (1,0).

Gambar 5.13 Cara Pemberian Beban Aqua dan Tipe Gelombang

Gambar 5.14 Beban Displcament Model B2

Khusus Model B1 dan Model B2 dilakukan penambahan beban berupa *displacement* searah sumbu y pada bagian sisi datar dari badan SFT (Gambar 5.14). Selain penambahan beban hal lain pada bagian ini adalah pada pilihan *boundary condition*, dimana pada bagian ini diberikan asumsi dari perletakan dan beban *displacement*. Perletakan diasumsikan sebagai

sendi, baik pada ujung perletakan maupun pada ujung kabel. Pada perletakan ujung, sendi diberikan mengelilingi penampang. Sementara penambahan beban *displacement* dilakukan secara statis diberikan hingga 500 mm yang dilakukan hingga 10 Step sehingga setiap Step memberikan *displacement* searah sumbu y negatif sebesar 50 mm. Dengan penambahan beban ini diharapkan memperlihatkan kondisi SFT sampai mencapai titik lelehnya (fy = 410 MPa pada baja, fy = 16 MPa pada PU, dan fy = 1675 MPa pada kabel). Penambahan beban *displacement* ini sebagai asumsi bahwa SFT terkena beban gelombang secara ekstrim yang melebihi perencanaan sehingga mengalami *displacement* (searah sumbu y) melebihi batas yang diijinkan sebesar 187,5 mm.

5. Mesh

Setelah dilakaukan penggabungan *part* seperti dijelaskan di atas, maka hal penting lainnya adalah *mesh*. Pada model SFT terlihat bahwa penampang sebelum diberikan *mesh* masih berwarna jingga. Warna jingga pada model menunjukkan bahwa tidak dapat dilakukan mesh pada model karena bentuk yang rumit –berdasarkan program *Abaqus*, sehingga harus dilakukan pemotongan penampang/partisi menjadi bentuk yang lebih sederhana.

Gambar 5.15 Penampang SPS yang Belum Dipartisi

Untuk penempatan partisi ini dilakukan dengan cara coba-coba sehingga warna dari model akan menjadi dari salah satu warna berikut: hijau, kuning

atau merah muda. Tiap tiap warna mewakili pemilihan model *mesh* yang dapat dilakukan. Model dengan warna hijau adalah yang paling baik untuk dilakukan mesh karena memiliki bentuk yang paling sederhana, kemudian kuning dan merah muda. Partisi pada model SFT di penelitian ini adalah dengan membagi 2 bagian SFT secara memanjang. Pada saat dibagi dengan model partisi ini, SFT telah berganti berwarna kuning yang artinya model sudah dapat di*mesh* (Gambar 5.16). Selanjutnya dilakukan *meshing* pada penampang SFT dan *part* lainnya seperti sabuk dan kabel. Karena sabuk dan kabel sudah barwarna kuning, sehingga tidak perlu dilakukan partisi, cukup langsung ke proses *mesh*.

Gambar 5.16 Penampang SPS yang Telah Dipartisi

Gambar 5.17 Penampang SPS Setelah Diberikan Mesh

Penampang/part yang telah diberikan mesh, akan terdiri dari banyak elemen sebagaimana terlihat pada Gambar 5.17 di atas. Semakin kecil mesh maka semakin banyak elemen yang dihasilkan. Namun semakin banyak elemen akan membutuhkan waktu analisis yang lama. Untuk penelitian ini, mesh yang digunakan untuk penampang dipilih yang berbentuk persegi, dengan jumlah mengikuti default dari Abaqus. Hal ini bertujuan agar elemen yang dihasilkan tidak terlalu banyak, namun juga tidak terlalu sedikit.

5.6. Interpretasi *Output* Model A1

Sebagaimana telah dijelaskan di atas bahwa satuan untuk *output* dari *Abaqus* ini adalah kPa untuk tekanan dan m untuk jarak/*displacement*, namun pada saat penyajian akan dikonversi ke MPa dan mm.

Step	1	2	3	4	5	Ijin
S t ₁ (MPa)	288,35	312,11	293,28	307,73	297,09	410
Rasio (%)	70,33	76,12	71,53	75,06	72,46	100
S t _c (MPa)	1,15	1,25	1,17	1,23	1,19	16
Rasio (%)	7,22	7,79	7,34	7,69	7,43	100
S t ₂ (MPa)	282,54	305,81	287,37	301,52	291,10	410
Rasio (%)	68,91	74,59	70,09	73,54	71,00	100

Tabel 5.1 Tegangan Model A1

Tabel 5.1 memperlihatkan tegangan pada Model A1. Tegangan yang terjadi pada penampang SFT dengan Model A1 ini sebagaimana terlihat pada Tabel 5.1. berada pada daerah perletakan, dimana tegangan untuk model A1 tegangan terbesar terjadi pada daerah ini. Dari ketiga lapisan t₁, t_c dan t₂ tidak ada yang mengalami leleh hingga *Step* 5. Beban yang diberikan pada kondisi ini adalah beban dalam kondisi normal -beban perencanaan. Tegangan maksimum terjadi pada *Step* 2 dimana pada t₁ (bagian terluar) rasio antara tegangan yang terjadi dan tegangan ijin –lelehnya- sebesar 76,12%. Begitu pula pada lapisan inti t_c dan lapisan terdalam t₂, tegangan terbesar terjadi pada *Step* 2. Walaupun begitu semua lapisan belum mencapai batas lelehnya sehingga dari segi tegangan penampang, model A1 memenuhi persyaratan.

Gambar 5.18 Displacement Penampang dan Tegangan Pada Kabel Model A1

Gambar 5.18 memperlihatkan *displacement* penampang dan tegangan yang terjadi pada kabel dengan Model A1. Dari gambar tersebut telihat bahwa *displcement* terbesar pada penampang dengan Model A1 terjadi pada *step* 2 dengan besar 140 mm dan masih dibawah batas ijin sebesar 187,5 mm. Rasio antara *displacement* yang terjadi dan batas yang diijinkan pada masing-masing *step* adalah 65,92%, 74,67%, 67,79%, 73,07% dan 69,23%. Tegangan yang terjadi pada kabel Model A1 ini identik dengan *displacement* pada penampang. Besarnya tegangan yang terjadi pun masih dibawah batas lelehnya sebesar 1675 MPa.

Gambar 5.19 adalah gambar *output* tegangan pada Model A1 dalam bentuk spektrum warna. Berdasarkan spektrum warna dari tegangan, warna

merah adalah nilai maksimum dan hingga biru dengan nilai minimum (lihat gambar dan keterangannya). Pada Model A1 ini, tegangan terbesar terjadi pada *Step* 2 pada elemen 417. Dimana elemen 417 ini adalah bagian terluar dari SPS (t₁) dengan besar 312,110 MPa. Kemudian pada dibawah lapisan t₁ terdapat lapisan inti (t_c) dan lapisan dalam (t₂). Pada posisi yang sama, besarnya t_c adalah 1,247 MPa pada elemen 833 dan t₂ sebesar 305,814 MPa pada elemen 208. Pemilihan elemen 417 ini berdasarkan spektrum warna tegangan yang terjadi pada SFT, terlihat pada gambar di bawah elemen 417 (kotak merah) memiliki warna agak kekuningan.

Gambar 5.19 Output Tegangan S Model A1

Gambar 5.20 di bawah adalah *output* dari *displacement* yang ditampilkan dalam bentuk sptektrum warna. Seperti halnya tegangan (S), pemilihan *node displacement* (U) pada Model A1 ini berdasarkan spektrum warna akibat *displacement*, dimana warna merah menunjukkan daerah yang

paling besar *displacementnya* hingga berwarna biru yang memiliki nilai terkecil (Gambar 5.16). *Displacement* terbesar terjadi pada *Step* 2, dimana besarnya displacement pada *Step* ini adalah 140 mm –nilai pada Gambar 5.20 sebesar 0,140 karena dalam satuan m- pada node 486. Pada gambar terlihat warna spektrum yang terang adalah *displacmient* pada SFT akibat beban sedangkan warna redup merupakan bentuk SFT sebelum mendapat beban apapun.

Gambar 5.20 Output Displacement Model A1

5.7. Interpretasi *Output* Model A2

Untuk Model A2 dengan bentuk oval dengan beban dalam kondisi normal -perencanaan, hasil yang diperoleh dari *output* dari *Abaqus* dapat dilihat pada Tabel 5.2 berikut:

Step	1	2	3	4	5	Ijin
S t ₁ (MPa)	359,17	391,98	366,13	385,77	371,55	410
Rasio (%)	87,60	95,61	89,30	94,09	90,62	100
S t _c (MPa)	1,39	1,52	1,42	1,49	1,44	16
Rasio (%)	8,69	9,49	8,86	9,34	8,99	100

Tabel 5.2 Tegangan Penampang dan Kabel Model A2

S t ₂ (MPa)	363,89	397,17	370,96	390,87	376,45	410
Rasio (%)	88,75	96,87	90,48	95,33	91,82	100
S kabel (MPa)	421,90	517,20	440,00	500,70	455,00	1675
Rasio (%)	25,19	30,88	26,27	29,89	27,16	100

Tabel 5.2 adalah output dari tegangan pada penampang dan kabel. Tegangan yang terjadi pada Model A2 ini juga memiliki nilai terbesar pada Step 2 dimana posisi dari elemen dengan tegangan terbesar ini terjadi pada daerah perletakan ujung, yaitu pada elemen 1093 (t₁), elemen 469 (t_c) dan elemen 1768 (t₂). Dari Step 1 hingga Step 5, semua tegangan pada penampang masih di bawah batas yang diijinkan, yaitu 410 MPa pada t₁ dan t₂ serta 16 MPa pada t_c. Rasio antara tegangan yang terjadi dan tegangan ijin pada Model A2 ini hampir mendekati 100% -batas ijinnya. Dimana rasio terbesar terjadi pada Step 2 dengan besar 95% untuk t1, 9,5% untuk tc dan 96% untuk t2. Besarnya tegangan pada model A2 ini akibat dari besarnya ukuran penampang dibanding penampang model A1, sehingga gaya/tekanan gelombang yang terjadi juga semakin besar. Sementara tegangan yang terjadi pada kabel juga terjadi pada Step 2 dengan rasio 30,88% dari kapasitas ijinnya. Berdasrkan tegangan pada kabel, Model A2 masih dalam kategori aman sementara berdasarkan tegangan pada penampang, model A2 ini juga masih dalam batas aman namun kurang baik mengingat rasio yang cukup besar hingga 96%. Solusi untuk model bentuk oval ini adalah dengan menambah ketebalan SPS terutama pada t₁ dan t₂ sehingga tegangan yang terjadi pada penampang tidak sebesar saat ini.

Gambar 5.21 Tegangan S Model A2

Pada Tabel 5.2 di atas, tegangan pada penampang terjadi pada masingmasing *Step* berada pada elemen 1093 (t_1), 469 (t_c) dan 1768 (t_2). Sedangkan pada Gambar 5.18 di atas menunjukkan posisi dari elemen-elemen tersebut, dimana bagian yang berwarna kuning terjadi pada daerah perletakan ujung yang ditandai dengan kotak merah. Sedangakan pada keterangan spektrum terlihat warna merah memiliki besar 5,172e+5. Nilai tersebut terletak pada kabel sebagaimana terlihat pada tabel, adapun satuan pada permodelan adalah dalam kPa, sehingga bila dikonversi 512720 kPa menjadi 517,20 MPa.

Gambar 5.22 Spektrum Displacement Model A2

Gambar 5.23 Displacement Penampang Model A2

Pada Gambar 5.22 dimana memperlihatkan *displacement* pada penampang dalam bentuk spektrum warna, terlihat bahwa daerah yang berwarna merah -dimana pada daerah ini merupakan *displacement* yang terbesar- terjadi pada daerah sisi datar dan sisi miring. Namun *displacement* terbesar pada penampang SFT dengan Model A2 ini terletak pada bagian badan SFT sisi miring yang terjadi pada *Step* 2 di node 495 dengan besar 121 mm. Rasio antara yang terjadi terhadap *displacement* ijin 187,5 mm pada masing-masing step adalah 54,88%, 64,53%, 56,96%, 62,72% dan 58,56%. Rasio dari yang terbesar hingga terkercil terjadi pada *Step* 2 (64,53%), *Step* 4 (62,72%), *Step* 5 (58,56%), *Step* 3 (56,96%) dan *Step* 1 (54,88%). Bentuk *displacement* pada Model A2 ini juga identik dengan *displacement* pada Model A1.

5.8. Interpretasi *Output* Model B1

Model B1 pada prinsipnya adalah model A1 yang diberikan beban *displacement* pada sisi datar sebesar 500 mm –melebihi batas yang diijinkan sebesar 187,5 mm. Pemberian beban *displacement* ini untuk memperlihatkan pengaruh *displacement* terhadap tegangan yang terjadi pada SFT. Pada Model B1 ini, tegangan yang terjadi akan dikomparasikan dengan *displacementnya*. Titik/node yang diberi beban *displacement* dikomparasi dengan tegangan yang terjadi dalam node yang sama sehingga benar-benar memperlihatkan hubungan *displacement* dan tegangan. Node yang diberi beban *displacement* adalah node 1379 pada elemen 499, sehingga komparasi akan dilakukan pada node 1379 dengan element 499 untuk t₁, elemen 915 untuk t_c, 216 untuk t₂.

Pada Gambar 5.24 di bawah terlihat bahwa dengan *displacement* sebesar 181,83 mm tegangan pada t₁ telah mencapai batas ijinnya 410 MPa dan mencapai batas putusnya dengan tegangan 550 MPa pada *displacement* 215 mm. Sedangkan pada t_c hingga pada Step 10 masih sangat jauh dari batas ijinnya 16 MPa, sementara pada t₂ batas ijin 410 MPa terjadi pada *displacement* 182,15 mm. Dengan meningkatkan *displacement* maka akan terjadi kegagalan putus pada penampang t₂ yang terjadi pada *displacement* 218 mm. Peningkatan *displacement* 182 mm telah terjadi kegagalan pada penampang t₁ dan t₂.

76

Gambar 5.24 Tegangan Penampang dan Displacement Model B1

S kabel (MPa)	764,4	969,2	1174	1379	1585	1675	1790	1860
U (mm)	141,57	166,16	200,41	240,23	283,28	303,05	328,30	344,02
U1 (mm)	7,09	8,58	10,07	11,56	13,05	13,71	14,55	15,05
U2 (mm)	-50,61	-100,54	-150,47	-200,40	-250,34	-272,26	-300,27	-317,24
U3 (mm)	-132,03	-132,01	-131,99	-131,97	-131,95	-131,94	-131,93	-131,93

Tabel 5.3 Output Tegagangan Kabel Hingga Putus dan Displacement

Gambar 5.25 Gambar Hubungan Tegangan Kabel dan Displacement

Tabel 5.3 dan Gambar 5.25 memperlihatkan hubungan antara *displacement* dan tegangan pada kabel sampai mencapai titik putusnya. Dari hubungan antara tegangan kabel dan *displacement* terlihat bahwa leleh kabel sebesar 1675 MPa terjadi pada *displacement* 303,05 mm (pada tabel teks warna hijau). Dengan peningkatan *displacement* maka kabel akhirnya mengalami kegagalan –tegangan putus- sebesar 1860 MPa pada *displacement* 344,02 MPa (pada tabel teks warna merah). Walaupun beban *displacement* diberikan hingga 500 mm, namun telah terjadi kegagalan sebelum batas tersebut. *Displacement* pada gambar tersebut berada pada node yang sama dengan node pada penampang, yaitu node 1379.

Hubungan tegangan kabel dan *displacement* dengan arah x, searah memanjang dari SFT leleh pada kabel terjadi pada *displacement* 13,71 mm dan mencapai tegangan putus pada *displacement* 15,05 mm. Sedangkan pada hubungan antara tegangan kabel dan displacement dengan arah y –searah beban displacement, terjadi perlelehan pada kabel dengan *displacement* -272,26 mm dan tegangan putus terjadi pada *displacement* -317,24 mm. Pada *displacement* arah y ini sebenarnya telah melewati batas yang diijinkan terhadap *displacement* maksimal sebesar 187,5 mm sementara pada *displacement* arah x dan z belum mencapai batas yang diijinkan walaupun telah mencapai batas lelehnya.

Pada hubungan antara tegangan kabel dan *displacement* arah z (U3) terlihat bahwa semakin besar tegangan yang terjadi maka semakin kecil *displacementnya*. Hal ini diakibatkan gaya *displacement* yang searah sumbu y negatif mengakibatkan penampang mengalami pergerakan ke arah atas –semakin kecil menuju nol. Namun dengan terus meningkatkan *displacement* hingga 500 mm pun pada arah z ini belum mencapai displacement sama dengan nol.

Displacement yang ditinjau pada Model B1 ini berada pada node 1379 yang terletak pada sisi datar dari SFT, dimana pada Gambar 5.26 node ini diperlihatkan dengan titik merah pada penampang. Sedangkan elemen yang menjadi tinjauan adalah elemen 499, elemen ini ditunjukan pada Gambar 5.26 dengan kotak merah. Pada *Step* 1, tegangan terbesar terjadi pada daerah perletakan ujung yang diperlihatkan pada gambar dengan warna hijau. Sementara pada elemen ini berwarna biru muda yang artinya tegangan pada elemen ini cukup kecil

80

bila dibandingkan pada daerah perletakan. Seiring pertambahan *displacement* pada node 1379, elemen 499 ini berubah warna menjadi hijau dan daerah perletakan menjadi biru. Hingga *Step* 10 dimana pada node 1379 ini *displacement* pada arah sumbu sebesar 500 mm, tegangan maksimum pada elemen 499 sebesar 1583 MPa pada t₁, 6 MPa pada t_c dan 1552 MPa pada t₂. Tentu saja pada kondisi ini penampang telah mengalami kegagalan karena melebihi tegangan putusnya yang hanya sebesar 550 MPa.

Gambar 5.26 Tegangan Pada SFT Model B1

Gambar 5.26 dan Gambar 5.27 memperlihatkan spektrum warna dari tegangan dan *displacement* dimana warna merah adalah nilai terbesar dan warna biru adalah nilai terkecil. Spektrum warna dari *displacement* yang terjadi pada *Step* 1 hingga *Step* 3 terlihat bahwa *displacement* pada sisi miring berwarna hijau sementara pada sisi datar berwarna merah. Hal ini menunjukkan *displacement* yang terjadi pada sisi miring masih belum bergerak terlalu jauh, mendekati *displacement* pada sisi datar. Sementara pada Step 4 hingga *Step* 10 perbedaan *displacement* pada sisi miring dan sisi datar ini sangat jelas terlihat perbedaannya, dimana warna dari sisi miring berwarna dominan biru dan pada sisi datar berwarna merah. Begitu pula bentuk dari SFT ini telah mensgalami perubahan bentuk yang cukup siginifikan dari kondisi aslinya, pada gambar bentuk SFT dengan warna terang kondisi setelah mengalami *displacement* hingga 500 mm.

5.9. Interpretasi *Output* Model B2

Tidak berbeda dengan Model B1, Model B2 merupakan Model A2 yang diberikan beban *displacement* searah sumbu y sebesar 500 mm. Node untuk *displacement* yang menjadi acuan pada Model B2 ini adalah node 1607 yang terletak pada elemen 749. Berdasarkan node dan elemen ini, didapatkan tegangan yang terjadi pada t₁, t_c dan t₂ dari *Step* 1 hingga *Step* 10 adalah sebagaimana ditampikan pada Tabel 5.4.

Berdasarkan Tabel 5.4 Tegangan Penampang Model B2 di atas terlihat bahwa pada *Step* 2 tegangan pada t₁ dan t₂ telah melebihi batas yang ijinnya sebesar 410 MPa (berwarna merah). Sementara pada t_c hingga *Step* 10 belum mencapai batas yang diijinkan, bahkan hanya 26% saja dari batas ijinnya sebesar 16 MPa. Adapun rasio pada tabel di atas adalah rasio antara tegangan yang terjadi berbanding tegangan ijinnya. Tegangan penampang ini bila dikorelasikan dengan *displacement* yang tejadi maka akan memudahkan dalam menentukan pada *displacement* berapa tegangan ini melebihi batas yang diijinkan.

Tabel 5.4 Tegangan Penampang Model B2

Step	1	2	3	4	5	6	7	8	9	10	Ijin
S t ₁ (MPa)	203	332	462	592	723	853	984	1115	1245	1376	410
Rasio (%)	50	81	113	144	176	208	240	272	304	336	100
S t _c (MPa)	0,81	1,11	1,46	1,83	2,20	2,58	2,96	3,35	3,74	4,12	16
Rasio (%)	5	7	9	11	14	16	19	21	23	26	100
S t ₂ (MPa)	199	323	449	574	700	826	952	1078	1204	1330	410
Rasio (%)	49	79	109	140	171	201	232	263	294	324	100

Pada Gambar 5.28 memperlihatkan hubungan antara tegangan t_1 , t_c , t_2 dan *displacement*. Sebagaimana telah dijelaskan di atas bahwa *displacement* yang menjadi tinjau berada pada node 1607 yang terletak pada sisi datar SFT. Dari grafik tersebut dapat diketahui bahwa dengan batas ijin untuk t_1 terjadi pada *displacement* 168,80 mm. Peningkatan *displacement* secara berangsur-angsur meningkatkan pula teganganga yang terjadi. Sementara tegangan ijin sebesar 410 MPa pada t_2 terjadi pada *displacement* 169,65 mm. Peningkatan *displacement* semakin meningkatan tegangan yang terjadi, baik pada t_1 , t_c dan t_2 . Walaupun *displacement* maksimum diberikan sebesar 500 mm pada Step 10, namun leleh terjadi pada Step 3 untuk lapisan t_1 dan t_2 dengan displacement yang berdekatan yaitu pada displacement 215 mm untuk t_1 dan 218 mm untuk t_2 . Sementara pada t_c tidak/belum mencapai batas ijinnya hingga *displacement* maksimum sebesar 551 mm pada *Step* 10.

Gambar 5.28 Hubungan Tegangan Penampang dan Displacement Model B2

Gambar 5.29 Tegangan Pada Penampang Model B2

Gambar 5.29 Tegangan pada penampang Model B2 di atas merupakan spektrum tegangan yang terjadi pada Model B2 dimana berdasarkan warna, urutan terbesar hingga terkecil adalah merah, jingga, kuning, hijau, biru, nila dan biru – seperti urutan warna pelangi. Pada gambar di atas terlihat ada kotak dan titik berwarna merah pada penampang, kotak tersebut merupakan elemen yang ditinjau

yaitu elemen 749 dan titik tersebut node yang menjadi tinjauan yaitu node 1607. Pada saat *Step* 1 tegangan terbesar terjadi pada daerah perletakan ujung. Pada *Step* 1 ini tegangan pada elemen yang ditinjau sekitar 200an MPa (warna nila), sementara pada daerah perletakan ujung tegangan yang terjadi sekitar 400an MPa (warna hijau) –nilai pasti dapat dilihat pada tabel. Pada *Step* 3 hingga *Step* 10 barulah perubahan cukup signifikan terlihat, dimana tegangan pada elemen yang ditinjau berwarna hijau sementara pada sisi miring dan daerah perletakan ujung warna dari tegangan adalah warna biru.

Gambar 5.30 Displacement Model B2

Gambar 5.30 di atas memperlihatkan *displacement* yang terjadi pada Model B2. Pada Model B2 ini tidak jauh berbeda dengan Model B1 karena *displacement* yang diberikan sama yaitu 500 mm. Pada *Step* 1 dan *Step* 2, spektrum warna dari *displacement* ini lebih bervariasi karena *displacement* yang terjadi masih sangat kecil. Pada *Step* 1 dan *Step* 2 ini sisi datar didominasi warna merah yang artinya pada daerah ini *displacement* yang terjadi paling besar, sementara pada sisi miring *displacement* berwana jingga, kuning, hijau dan biru. Pada *Step* 3 hingga *Step* 10 warna dari *displacement* agak identik antara step satu dengan lainnya. Hal ini akibat *displacement* yang terjadi cukup besar bila dibandingkan pada sisi datar. Pada *Step* 3 inilah tegangan pada penampang telah melewati batas ijinnya –leleh dan melewati tegangan putus pada *Step* 4.

5.10. Perbandingan Model A1, Model A2, Model C1 dan Model C2

Sebagaimana telah diungkapkan pada Bab 3 bahwa, hasil dari permodelan A1 dan A2 akan dibandingkan dengan hasil dari penelitian Indrawan dalam hal ini Model C1 dan C2 (lihat Tabel 3.5). Sejatinya, permodelan yang paling layak untuk dibandingakan adalah Model A1 dan C1 karena memiliki konfigurasi yang sama persis, namun yang membedakan hanya materialnya saja. Bila pada penelitian ini (A1) menggunakan SPS, maka model C1 menggunkan baja dengan ketebalan 27 mm. Berikut ini tabel S11, S22, S12 dan U dari model A1, A2, C1 dan C2.

 Tabel 5.5 Perbandingan Model A1 dan Model C1

Model	S11 (MPa)	S22 (MPa)	S12 (MPa)	U (mm)
A1	250,701	76,694	-83,974	140,000
C1	247,100	249,240	70,880	22,400
Rasio (%)	101,457	30,771	118,473	625,000

Tabel 5.6 Perbandingan Model A2 dan Model C2

Model	S11 (MPa)	S22 (MPa)	S12 (MPa)	U (mm)
A2	397,174	1,217	66,349	121,000
C2	79,650	219,150	56,720	28,000
Rasio (%)	498,649	0,555	116,976	432,143

Pada Tabel 5.5. dan Tabel 5.6. di atas, tegangan pada Model A1 dan Model A2 yang ditampilkan adalah tegangan lapisan terluar t₁ dari SPS dengan material baja yang memiliki ketebalan 4 mm. Pada Tabel 5.5. terlihat bahwa Model C1 memiliki tegangan S11 yang lebih kecil bila dibandingkan dengan Model A1. Namun tegangan yang terjadi pada S22 memiliki selisih yang sangat jauh, dimana rasio pada Model A1 dan Model C1 sebesar 30,77% atau sebesar 76,69 MPa pada Model A1 sementara pada Model C1 sebesar 249,24 MPa. Rasio pada Tabel 5.5 dan Tabel 5.6 adalah perbadingan antara model A (SPS) terhadap model C (Baja saja). Bila dibandingkan pada tegangan geser S12, Model A1 dan Model C1 tidak memiliki selisih yang jauh namun berbeda arah tegangan. Namun dari tinjauan *displcaement*, maka Model C1 sangat kecil bila dibandingkan dengan Model A1, yang mana U pada Model A1 mempunyai rasio 625% dari *displacement* Model C1. Walaupun begitu, nilai U pada Model A1 ini masih di bawah batas yang diijinkan. Besarnya *displacement* ini diakibatkan ketebalan dari t₁ yang hanya sebesar 4 mm saja, sementara pada Model C1 sebesar 27 mm.

Sementara pada Tabel 5.6 tegangan S11 pada Model A2 adalah 397,174 MPa sementara pada Model C2 hanya sebesar 79,65 MPa. Bila dibandingkan S11 pada Model C2, maka Model A2 memiliki rasio sebesar 498% terhadap tegangan S11 pada Model C2. Pada tegangan S22, Model A2 sangat unggul bila dibandingkan Model C2 dengan rasio 0,56%. Sementara pada tegangan S12 Model A2 dan Model C2 tidak memiliki perbedaan yang signifikan dimana pada Model A2 sebesar 66,35 MPa dan pada Model C2 sebesar 56,72 MPa. Bila ditinjau dari *displacement* U, pada Model A1 sebesar 121 mm sementara pada Model C2 sebesar 28 mm saja. Tentu perbandingan pada Model A2 dan Model C2 ini kurang baik mengingat dimensi antara Model A2 dan Model C2 berbeda dimana Model A2 dimensinya lebih kecil dari pada Model C2.

Model	S11 (MPa)	S22 (MPa)	S33 (MPa)	U (mm)
Al	250,701	76,694	65,706	140,000
Rasio (%)	61,147	18,706	16,026	74,667
A2	397,174	1,217	137,998	121,000
Rasio (%)	96,872	0,297	33,658	64,533

Tabel 5.7 Perbandingan Model A1 dan Model A2

Gambar 5.31 Perbandingan Tegangan t₁ Model A1 dan Model A2

Tabel 5.7 menunjukan perbandingan tegangan S11, S22 dan S33 serta U antara Model A1 dan Model A2 dimana nilai tersebut adalah nilai terbesar dari step yang ada, yaitu pada elemen 417 pada Model A1 dan elemen 1093 pada Model A2. Dari tabel ini diketahui ternyata S11 pada Model A1 lebih kecil dari pada Model A2, dimana rasio antara S11 ini terhadap tegangan ijinnya (410 MPa) sebesar 61,15% untuk Model A1 dan 96,87% untuk Model A2. Sementara bila dibandingkan dari tegangan S22 maka Model A2 lebih unggul dari pada Model A1 dan pada tegangan S33 maka Model A1 yang lebih baik. Bila dibandingkan dari segi *displacement* U, maka Model A2 lebih baik dari pada Model A1. Bila diperhatikan maka mMdel A1 lebih baik dari segi S11 dan S33 sementara pada Model A2 lebih baik dari segi S22 dan U. Seperti telah dijelaskan di atas walau tegangan yang terjadi pada kedua model ini masih dibawah batas yang diijinkan, namun Model A1 yang lebih disarankan mengingat tegangan-tegangan yang terjadi tidak mencapai 95% dari batas ijinnya. Sementara pada Model A2 ada salah satu bagian tegangan yang melebihi 95% dari batas ijinnya.

Gambar 5.31 memperlihatkan perbandingan tegangan yang terjadi pada lapisan terluar (t_1) pada Model A1 dan Model A2. Dari gambar grafik tersebut terlihat bahwa *Step* 2 merupakan nilai terbesar dari kedua model. Pada *Step* 2 – nilai terbesar, tegangan t_1 pada Model A1 sebesar 312,11 MPa dan pada Model A2 sebesar 391,98 MPa. Selisih tegangan yang terjadi antara Model A1 dan Model A2 pada *Step* 2 adalah sebesar 79,87 MPa, dimana Model A2 (bentuk oval) lebih besar. Pada gambar garafik tersebut terlihat Model A1 lebih baik dari pada Model A2 karena tegangan yang terjadi lebih kecil dari pada Model A2. Berdasarkan Tabel 5.7 dan Gambar 5.31 yang memperlihatkan perbandingan tegangan S11, S22, S33, S t₁ dan *displacement* pada Model A1 dan Model A2 dapat disimpulkan bahwa Model A1 lebih baik dari pada Model A2 dan kedua model dalam tahap aman dari segi perencanaan.
BAB 6

KESIMPULAN DAN SARAN

6.1. Kesimpulan

Setelah melakukan analisis dan perbandingan SFT dengan SPS dapat disimpulkan bahwa:

- 1. Permodelan SPS dan beban gelombang pada SFT dilakukan dengan cara:
 - Permodelan menggunakan tipe solid dengan *retrive* dan penggambaran menggunakan tipe *sweep*.
 - Beban hidrodinamis pada SFT dapat diberikan dengan menggunakan bahasa program *AQUA dan *WAVE
- Perilaku pada permodelan A1 dan A2 dimana beban pada kedua model ini dalam kondisi normal –perencanaan adalah:
 - Kedua model (A1 dan A2) menunjukkan dapat dipergunakan pada perencanaan SFT.
 - Tegangan dan *displacement* yang terjadi permodelan A1 dan A2 memiliki nilai terbesar pada *Step* 2 dari 5 *Step*.
 - Permodelan A1 memberikan hasil numerik yang lebih baik dari pada permodelan A2 dengan rasio terhadap tegangan ijin sebesar 61,147% pada Model A1 dan 96,872% pada Model A2.
- Pada permodelan B1 dan B2 (kondisi ekstrim) memperlihatkan bahwa Model B1 lebih baik dari Model B2 dengan *displacement* maksmimum 182 mm untuk mencapai batas ijinnya (410 MPa), sementara pada Model B2 batas ijin tercapai pada *displacement* 169 mm.
- 4. Perbandingan antara SFT dengan bentuk penampang lingkaran dengan material SPS (A1) dan material baja (C1) memperlihatkan dari tegangan S11 dan U lebih baik dengan material baja. Namun, hal ini diakibatkan dari ketebalan penampang baja pada Model C1 sebesar 27 mm dan ketebalan (t₁) pada Model A1 hanya sebesar 4 mm. Perbandingan antara SFT dengan bentuk penampang oval dengan material SPS (A2) dan

material baja (C2) memperlihatkan dari tegangan S11 dan U lebih baik dengan material baja.

6.2. Saran

Pada penelitian ini tentu masih banyak hal yang harus dilakukan sehingga perlu dilakukan penelitian lebih lanjut. Adapun saran kami pada penelitian selanjutnya adalah:

- 1. Menggunakan perbandingan tinggi dan lebar penampang yang lebih bervasiasi pada penampang berbentuk oval.
- Menggunakan ketebalan penampang dengan variasi t₁, t_c dan t₂ yang lebih banyak.
- 3. Penggunaan elastomer/core pada SPS selain polyurethane.

DAFTAR PUSTAKA

- American Petroleum Institute (2000), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design (API RP 2A-WSD), Washington, D.C., API.
- Badan Standarisasi Nasional (2005), Standar Pembebanan Untuk Jembatan (RSNI T-02 2005, Bandung, BSN.
- Brooking, M.A. and Kennedy, S.J. (2004), "The performance, safety and production benefits of SPS structures for double hull tankers", *Proceedings of the RINA Conference on Double Hull Tankers*, London, UK, pp. 1-2.
- Departemen Pekerjaan Umum . (1987), Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung (PPPURG 1987), Jakarta, Yayasan Badan Penerbit PU.
- Dewobroto, Wiryanto. (2013), *Komputer Rekayasa Struktur dengan SAP 2000*, Jakarta, LuminaPress.
- Directorate General Of Highways Ministry Of Public Works Republic Of Indonesia (1992), Bridge Management System (BMS)
- Faggiano, B., Landolfo, R., Mazzolani, F. (2005), "The SFT: an innovative solution for waterway strait crossings", *Proceedings of the IABSE* Symposium "Structures and Ex-treme Events", Lisbon, Portugal, LIS 146.
- Faggiano, B., Martire, G., Mazzolani, F. (2010), "Cable Supported Immersed Inversed Bridge: A challenging proposal", *Procedia Engineering*, *Volume 4*, *Pages 283-291*
- Forum of European National Highway Research Laboratories (FEHRL) (1996), Analysis Of The Submerged Floating Tunnel Concept, Crowthore, Transport Research Laboratory.
- Hakkart, CH., Lancelotti, A., Østlid, H., Marazza, R., Nyhus, K. A., C (1993),
 "Submerged Floating Tunnels", *Tunnelling and Underground Space Technology*, *, Volume 8, Issue 2*, , Ed. Culverwell, D.R., Pergamon Press Ltd., Great Britain, Pages 265-285
- Indrawan, Reka. (2011) *Studi Penampang Submerged Floating Tunnel*, Surabaya, Institut Teknologi Sepuluh Nopember.

- Jakobsen, Bernt. (2010), "Design of the Submerged Floating Tunnel operation under various condition", *Procedia Engineering*, *Volume 4*, Pages 71-79
- Kanie, Shunji. (2010), "Feasibility studies on various SFT in Japan and their technological evaluation", *Procedia Engineering*, *Volume 4*, Pages 13-20
- Komara, Indra dan Wahyuni, E. (2014), *Studi Konfigurasi Kabel Struktur Submerged Floating Tunnel*, Surabaya, Institut Teknologi Sepuluh Nopember.
- Markey, Ian. (2010), "SFT monitoring and design verification", *Procedia Engineering, Volume 4*, Pages 319-323.
- Momcilovic, Nikola dan Motok, Milorad.(2009), "Estimation of Ship Lightweight Reduction be Means of Application of Sandwich Plate System", *FME Transactions* 37, Hal. 123-128, Belgrade, Pages 317-336.
- Østlid, Håvard. (2010), "When is SFT competitive?", Procedia Engineering, Volume 4, Pages 3-11.
- Santoso, Agus M., Wahuni, Endah. (2014), Studi Variasi Buoyancy Water Ratio (BWR) Pada Struktur Submerged Floating Tunnel (SFT), Surabaya, Institut Teknologi Sepuluh Nopember.
- Sholeh, Syayhuddin., Wahyuni, Endah., Raka, IGP. (2013), "Studi Permodelan Struktur Submerged Floating Tunnel", ", *Teknik POMITS*, Vol. 1, No. 1, Surabaya, Institut Teknologi Sepuluh Nopember.
- Sipata, Fandy., Wahyuni, E., Suswanto, B. (2014), *Studi Permodelan Perletakan Ujung (Shore Connections) Pada Submerged Floating Tunnel (SFT),* Surabaya, Institut Teknologi Sepuluh Nopember.
- Skjlebreia, L., Hendrickson, J. (1960), Fifth Order Gravity Wave Theory, Proceedings of the 87th Coastal England Conference, den Haag
- Triatmodjo, Bambang. (2010), *Perencanaan Pelabuhan*, Yogyakarta, Beta Offset Yogyakarta.
- Usofos (2010), Hydrodynamics: Theory Description of use Verification
- Wahyudi, Agus., Wahyuni, Endah. (2012), *Studi Konfigurasi Kabel (Submerged Floating Tunnel)*, Surabaya, Institut Teknologi Sepuluh Nopember.

Zang, Keqian., Xiang, Yiqian., Du, Y. (2010), "Research on tubular segment design of submerged floating tunnel", *Procedia Engineering*, Volume 4, Pages 199-205.

BIOGRAFI PENULIS

Sulung dari tiga bersaudara ini dilahirkan di Tarakan, 25 September 1986. Menamatkan pendidikan dasar di SDN 002 Tarakan (sekarang SD Utama 1 Tarakan) pada tahun 1998. Pendidikan lanjut diselesaikan di SLTP N 1 Nunukan pada tahun 2001 dan di SMU N 1 Nunukan pada tahun 2004. Pada tahun 2012 mendapatkan gelar Sarjana Teknik di Jurusan

Teknik Sipil Universitas Borneo Tarakan (UBT). Sembari kuliah S1 hingga lulus, penulis juga bekerja di CV Bahana Citra Consultant. Sempat menjadi asisten dosen pada di Jurusan Teknik Sipil UBT sehingga memudahkannya untuk memperoleh informasi beasiswa ke jenjang magister hingga mendapatkan beasiswa Pra S2 - 3T di Institut Teknologi Sepuluh Nopember (ITS) Surabaya pada tahun 2013 dan dilanjutkan pada beasiswa BPPDN 2014. Tertarik akan permodelan dan bahasa program komputer hingga akhirnya mengantarkannya pada penelitian skripsi dan tesis yang berkaitan dengan permodelan rekayasa. Dibawah bimbingan Miftahul Iman, S.T., M.Eng. beliau menamatkan program Sarjana Tekniknya dan menyelesaikan program magister dengan Bidang Keahlian Teknik Struktur di Institut Teknologi Sepuluh Nopember Surabaya dibawah bimbingan Budi Suswanto, S.T., M.T., Ph.D dan Endah Wahyuni, S.T., M.Sc., Ph.D. Penulis dapat dihubungi melalui telepon dan WA di nomor 081346617568 dan email emailnya.ahmad.hernadi@gmail.com