ESTIMASI PROPENSITY SCORE MATCHING MENGGUNAKAN PENDEKATAN MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) STUDI KASUS: DIABETES MELITUS (DM)

AMANDA, ADITYANINGRUM (2017) ESTIMASI PROPENSITY SCORE MATCHING MENGGUNAKAN PENDEKATAN MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) STUDI KASUS: DIABETES MELITUS (DM). Masters thesis, Insititut Teknologi Sepuluh Nopember.

[img] Text
1315201024-Master_Theses.pdf
Restricted to Repository staff only

Download (4MB)

Abstract

Propensity Score (PS) merupakan probabilitas bersyarat mendapatkan perlakuan tertentu berdasarkan kovariat yang diamati. Salah satu metode yang dikembangkan dari propensity score adalah metode Propensity Score Matching (PSM). PSM merupakan metode yang dilakukan dengan menyeimbangkan atau menyamakan kelompok subjek penelitian dengan metode matching. Dengan metode ini kelompok treatment dipasangkan dengan kelompok non-treatment berdasarkan kovariat yang diamati. Dalam analisis studi observasi, metode ini digunakan untuk mengurangi bias dalam estimasi efek perlakuan pada data yang bersifat observasi karena adanya faktor confounding. Jika confounding terdiri atas dua kategori dan fungsinya tidak linier, maka Multivariate Adaptive Regression Splines (MARS) merupakan model pendekatan yang tepat untuk estimasi nilai propensity score karena mudah dalam estimasi dan interpretasinya serta tidak memerlukan asumsi bahwa fungsinya harus bersifat linier. Metode PSM dengan MARS pada penelitian ini diterapkan pada data pasien penderita Diabetes Melitus (DM) tipe-2 yang dirawat di RS Dunda tahun 2015 dengan kasus Neuropati Diabetik Perifer (NDP). Tujuan penelitian adalah mengkaji estimasi Propensity Score berdasarkan Multivariate Adaptive Regression Splines dengan respon biner dalam mendapatkan estimasi ATT pada kasus DM khususnya Neuropati Diabetik Perifer (NDP). Hasil estimasi parameter dengan MLE adalah λ=σ_L (B^T β). Akurasi dari model terbaik yang diperoleh dari estimasi PSM dengan MARS adalah sebesar 92%. Selain itu, dari model juga diketahui bahwa lama pasien menderita DM dan kadar HbAIC merupakan variabel yang berpengaruh secara tidak langsung terhadap status NDP pasien, sedangkan umur, jenis kelamin, dislipidemia, dan obesitas dari pasien merupakan variabel yang berpengaruh langsung terhadap status NDP pasien. ====================================================================================================== Propensity score (PS) is the conditional probability to get certain treatments involving the observed covariates. One method that was developed from the propensity score is the Propensity Score Matching (PSM). PSM is a method to estimate the effect of treatment by balancing the subject group using matching methods. This method help matching subjects in treatment group with subjects in non-treatment group based on the observed covariates. In observational studies, this method used to reduce bias in the estimation of the impact of treatment on observational data for their confounding factors. If confounding is binary and its function is not linear, then Multivariate Adaptive Regression Splines (MARS) with binary response is one of the methods to estimate the value of propensity score because of its easiness in terms of estimation and interpretation without having a linear function as for the assumption its model. PSM methods using MARS in this study applied to the data of patients with diabetes mellitus (DM) type-2 who were treated in Dunda Hospital at 2015. This study aims to review the estimate of propensity score based on Multivariate Adaptive Regression Splines with response continue to get estimate of ATT in case of diabetic neuropathy. The result of parameter estimation with MLE is    LBTβ . The accuracy of the best model of PSM estimation using MARS is 92%. In addition, the model shown that the variables which are not directly influence to the NDP are duration of DM and levels of HbA1C of the patient, while age, gender, dyslipidemia and obesity of the patients are variables which are directly influence to the NDP.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Confounding, Diabetes Melitus, MARS, Propensity Score Matching, Studi Observasi
Subjects: Q Science > QA Mathematics > QA278.2 Regression Analysis
Divisions: Faculty of Mathematics and Science > Statistics > (S2) Master Theses
Depositing User: - AMANDA ADITYANINGRUM
Date Deposited: 24 Jan 2017 02:18
Last Modified: 24 Jan 2017 02:18
URI: http://repository.its.ac.id/id/eprint/2814

Actions (login required)

View Item View Item