Menyelesaikan Container Stowage Problem (CSP) Menggunakan Algorithm Particel Swarm Optimization (PSO)

Matsaini, . (2017) Menyelesaikan Container Stowage Problem (CSP) Menggunakan Algorithm Particel Swarm Optimization (PSO). Masters thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
2514202001-Master_Theses.pdf - Published Version

Download (3MB) | Preview

Abstract

Container Stowage Problem (CSP) adalah permasalahan penataan kontainer kedalam kapal dengan memperhatikan beberapa aturan penataan kontainer pada kapal seperti: total berat kontainer, berat satu tumpukan kontainer, tujuan kontainer, keseimbangan kapal, dan peletakan kontainer pada kapal, sehingga masalah penataan kontainer termasuk Combinatorial Problems yang susah dipecahkan dengan teknik Enumerasi dan termasuk NP-Hard Problem sehingga penyelesaian terbaik dengan metoda heuristic. Tujuan dari penelitian ini untuk meminimasi jumlah shifting sehingga diperoleh waktu unloading yang minimum. Dalam penelitian ini algoritma diusulkan adalah Modifikasi Particle Swarm Optimization (PSO) dengan menambahkan aturan perubahan posisi tumpukan, perubahan tumpukan berdasarkan tujuan, dan perubahan tumpukan berdasarkan jenis berat tumpukan (Light, Medium, dan Heavy). Algoritma usulan diaplikasikan pada lima macam kasus dan dibandingkan dengan algoritma Modifikasi Bee Swarm Optimization. Hasilnya algoritma PSO modifikasi lebih baik dari Bee Swarm Optimization (BSO) Modifikasi dengan nilai %Gap dan Gap bernilai negative yang artinya solusi dari PSO Modifikasi lebih kecil dari solusi BSO Modifikasi, perbandingan PSO Modifikasi terhadap solusi optimal dari Heuristik nilai rata-rata %Gap 0,87 persen dan Gap 60 detik, nilai ini lebih baik dari perbandingan BSO Modifikasi terhadap solusi optimal dari Heuristik dengan nilai rata-rata %Gap 2,98 persen dan Gap 459,6 detik ================================================================================================================== Container Stowage Problem (CSP) is the structuring of containers onto the ship with respect to some rules of the arrangement of containers on ships such as: total weight of the container, the weight of the pile of container, goal container, the balance of the ship, and the laying of containers on the ship, so the problem of structuring the container including Combinatorial Problems the trouble solving techniques Enumeration and included NP-Hard problem so the best solution with heuristic methods. The purpose of this study to minimize the amount of shifting in order to obtain the minimum unloading time. In this study, the proposed algorithm is Modified Particle Swarm Optimization (PSO) by adding a pile of position changes, changes in piles according to destination, and changes based on the type of heavy piles of piles (Light, Medium, and Heavy). The proposed algorithm was applied to the five kinds of cases and compared with the modification Bee Swarm Optimization algorithm. The result is a modified PSO algorithm is better than BSO Modifications to the value % Gap and Gap worth negative which means that the solution of Modified PSO smaller than Bee Swarm Optimization (BSO) solutions Modified, Modified PSO comparison to the optimal solution of a heuristic average % Gap and Gap value of 0.87 percent and 60 seconds, this value is better than the comparison BSO Modifications to the optimal solution of heuristics with an average % Gap and Gap value of 2.98 percent and 459.6 seconds.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Container Stowage Problem, Particle Swarm Optimization.
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA645 Structural analysis (Engineering)
T Technology > TA Engineering (General). Civil engineering (General) > TA681 Concrete construction
T Technology > TJ Mechanical engineering and machinery > TJ223 PID controllers
Divisions: Faculty of Industrial Technology > Industrial Engineering > (S2) Master Theses
Depositing User: - MATSAINI
Date Deposited: 10 Apr 2017 04:35
Last Modified: 06 Mar 2019 07:42
URI: http://repository.its.ac.id/id/eprint/3082

Actions (login required)

View Item View Item