

TUGAS AKHIR - TM141585

ANALISA HEAT BALANCE THERMAL OXIDIZER DENGAN WASTE HEAT RECOVERY UNIT (STUDI KASUS CENTRAL PROCESSING PLANT GUNDIH)

ALFIAN BANI SUSILOPUTRA NRP. 2112100030

Dosen Pembimbing Bambang Arip Dwiyantoro, ST., M.Eng., Ph.D.

JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017

TUGAS AKHIR - TM141585

ANALISA HEAT BALANCE THERMAL OXIDIZER DENGAN WASTE HEAT RECOVERY UNIT (STUDI KASUS CENTRAL PROCESSING PLANT GUNDIH)

ALFIAN BANI SUSILOPUTRA NRP. 2112100030

Pembimbing: Bambang Arip Dwiyantoro, ST., M.Eng., Ph.D.

JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - TM141585

HEAT BALANCE ANALYSIS OF THERMAL OXIDIZER WITH WASTE HEAT RECOVERY UNIT (CENTRAL PROCESSING PLANT GUNDIH CASE STUDY)

ALFIAN BANI SUSILOPUTRA Registration No. 2112100030

Academic Advisor: Bambang Arip Dwiyantoro, ST., M.Eng., Ph.D.

DEPARTMENT MECHANICAL ENGINEERING Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2016

ANALISA HEAT BALANCE THERMAL OXIDIZER DENGAN WASTE HEAT RECOVERY UNIT (STUDI KASUS CENTRAL PROCESSING PLANT GUNDIH)

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : <u>Alfian Bani Susiloputra</u> NRP. 2112.100.030

ANALISA HEAT BALANCE THERMAL OXIDIZER DENGAN WASTE HEAT RECOVERY UNIT (STUDI KASUS CENTRAL PROCESSING PLANT GUNDIH)

Nama Mahasiswa	: Alfian Bani Susiloputra
NRP	: 2112 100 030
Jurusan / Fakultas	: Teknik Mesin / FTI - ITS
Dosen Pembimbing	: Bambang Arip D., ST., M.Eng., Ph.D.

Abstrak

Central Processing Plant (CPP) merupakan plant yang memproses feed gas hingga menjadi natural gas siap pakai. Pengolahan feed gas di CPP menimbulkan dampak limbah berupa waste gas, terdiri dari acid gas dan vent gas, yang diolah terlebih dahulu sebelum dilepas ke lingkungan. Thermal Oxidizer (TOX) memiliki peran penting dalam mengatasi waste gas. Kinerja TOX ditentukan dari proses pembakaran yang terjadi pada burner serta suhu oksidasi waste gas pada chamber. Energi panas gas buang (flue gas) dimanfaatkan pada Waste Heat Recovery Unit (WHRU) yang berada diatas chamber, digunakan untuk memanaskan hot oil. Kondisi operasional pembakaran TOX di CPP saat ini, jumlah input sangat berbeda dengan desain awal. Suhu pembakaran juga sangat tinggi, yaitu diatas 1.600°F (1.144,261K). Sementara itu WHRU belum berjalan secara normal, suhu hot oil pada outlet WHRU masih 330-340°F (438,706-444,261K).

Analisa pembakaran TOX dilakukan dengan analisa termodinamika pada jumlah bahan bakar serta jumlah udara dan excess air untuk mendapatkan pembakaran sempurna dan suhu ideal pada chamber, yaitu 1.500-1.600°F (1.088,706-1.144,261K). Bahan bakar yang digunakan sejumlah 60%-100% dari fuel gas operasional dengan kenaikan 20%, sedangkan excess air yang digunakan 10%-35% dengan kenaikan 5%. Selain itu pemanfaatan energi panas flue gas pada WHRU dilakukan analisa supaya suhu hot oil keluar WHRU mencapai 350°F (449,817K). Analisa WHRU dilakukan dengan analisa perpindahan panas compact heat exchanger, untuk mendapatkan flowrate dari hot oil dari suhu dan laju aliran massa flue gas hasil variasi pembakaran TOX tersebut. Dari penelitian Tugas Akhir ini, suhu TOX hasil pembakaran operasional yang sesuai dengan desain awal yaitu pada 60% fuel gas dengan excess air (EA) antara 30% hingga 35%. Pada 60% fuel gas dengan EA antara 30% hingga 35% didapatkan suhu antara 1.095K hingga 1.138K. Pada hasil analisa WHRU, untuk mencapai suhu hot oil sebesar 350°F (449,817K) pada variasi TOX tersebut diperlukan laju aliran massa hot oil sebesar 1.257,720 kg/jam dan 1.481,420 kg/jam.

Kata kunci : Thermal Oxidizer, pembakaran, excess air, Waste Heat Recovery Unit.

HEAT BALANCE ANALYSIS OF THERMAL OXIDIZER WITH WASTE HEAT RECOVERY UNIT (CENTRAL PROCESSING PLANT GUNDIH CASE STUDY)

Name	: Alfian Bani Susiloputra
Registration No.	: 2112 100 030
Departement	: Teknik Mesin / FTI - ITS
Academic Advisor	: Bambang Arip D., ST., M.Eng., Ph.D.

Abstract

Central Processing Plant (CPP) is a plant that processes the feed gas into ready to use natural gas. This process cause waste which need to be treated before it released into the environment. Thermal Oxidizer has an important role in solve that problem. TOX performance determined from combustion process that occurs at the burner as well as temperature oxidation of waste gas in the chamber. The heat of flue gas is used in the Waste Heat Recovery Unit (WHRU), which located above the chamber, to heat hot oil. In the current operating conditions of combustion in TOX, the number of input supply has a significant difference from the initial design. The combustion temperature has also exceed from the design, that is above 1,600°F (1,144.261K). Meanwhile the WHRU is not running normally. The temperature of hot oil on the outlet WHRU is still 330-340°F (437.706-444.261K).

TOX combustion analysis conducted by the thermodynamic analysis on the amount of fuel, air and excess air to get the perfect and ideal temperature combustion chambers, that is 1.500-1.600°F (1,088.706-1,144.261K). The amount of fuel use 60%-100% of the operational fuel gas with a rise of 20%, while excess air use 10% -35% with a rise of 5%. In addition, analysis of WHRU need to be conducted to utilize of heat in the flue gas so that the temperature of hot oil on the outlet WHRU reached 350°F (449.817K). WHRU analysis conducted by compact heat exchangers heat transfer analysis, to obtain the hot oil flow rate from temperature and mass flow rate of flue gases produce from combustion variation of the *TOX*.

From this final project research, TOX combustion temperature that same with the initial design is at 60% of fuel gas with excess air (EA) between 30% to 35%. In 60% of fuel gas with EA between 30% to 35% obtained a temperature between 1,095K up to 1,138K. In the results of WHRU analysis, to reach the temperature of hot oil at 350°F (449.817K) on the variation of the TOX required mass flow rate of hot oil amounted to 1,257.720 kg/hour and 1,481.420 kg/hour.

Keywords : Thermal Oxidizer, combustion, excess air, Waste Heat Recovery Unit.

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat, taufik, dan hidayah-Nya sehingga penulis dapat menyelesaikan tugas akhir yang berjudul "Analisa *Heat Balance Thermal Oxidizer* dengan *Waste Heat Recovery Unit* (Studi Kasus *Central Processing Plant* Gundih)". Tugas akhir ini disusun sebagai salah satu syarat untuk meraih gelar sarjana teknik di Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember.

Penyusunan laporan ini tidak terlepas dari bantuan, bimbingan, dan dukungan dari berbagai pihak. Oleh karena itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada :

- 1. Ibu, Bapak, Akhrisya, Agil, dan segenap keluarga besar penulis yang telah memberikan segala dukungan, nasihat, dan doa yang selalu dipanjatkan untuk penulis.
- 2. Bapak Bambang Arip Dwiyantoro, ST., M.Eng., Ph.D. selaku dosen pembimbing yang telah memberikan ilmu, bimbingan, saran, waktu, tenaga, dan pikirannya sehingga tugas akhir ini dapat terselesaikan dengan baik.
- 3. Bapak Dr. Ir. Atok Setiawan, M.Eng.Sc., Prof. Dr.Eng. Prabowo, M.Eng., Dr. Bambang Sudarmanta, ST., MT., dan Ary Bachtiar K.P., ST., MT., Ph.D. selaku dosen penguji pada seminar proposal dan sidang tugas akhir yang telah memberikan ilmu, kritik, dan saran demi kesempurnaan tugas akhir ini.
- 4. Seluruh Bapak/Ibu dosen pengajar dan karyawan di Jurusan S1 Teknik Mesin ITS yang telah memberikan banyak ilmu dan bantuan selama menjalani kuliah, baik akademik maupun no-nakademik.
- 5. Bapak Cahyo dan seluruh karyawan PT. Pertamina EP Asset 4 Field Cepu dan PT. Titis Sampurna di CPP Gundih yang telah memberikan izin dan membantu dalam penyelesaian tugas akhir ini.

- Mas Salman, Mas Rudy, Gary, Mubin, Riko, Anang, Gigih, dan seluruh keluarga besar Arek Pekalongan (APEL) Surabaya yang telah memberikan cerita, pengalaman, bantuan, dan dukungan selama menjalani kuliah dan kehidupan di Surabaya.
- 7. Hendyt, Arvin, Marsha, Cindy, Ulul, Utha, Halima, Idzni, Nabela, dan seluruh keluarga besar UKM TDC yang telah memberikan banyak pengalaman diluar akademik khususnya di bidang kewirausahaan dan kebersamaan di sekretariat UKM TDC.
- 8. Seluruh keluarga besar Laboratorium Perpindahan Panas yang telah memberikan kritik, saran dan bantuan dalam menyelesaikan tugas akhir .
- 9. Teman-teman T.Mesin ITS angkatan M55 yang telah memberikan bantuan dan dukungan selama menjalani perkuliahan dan menyelesaikan tugas akhir.
- 10. Ryan dan Anson selaku teman seperjuangan dalam menyelesaikan seluruh rangkaian tugas akhir ini.
- 11. Semua pihak yang tidak dapat penulis sebut satu per satu, saya ucapkan terima kasih banyak.

Penulis menyadari bahwa masih banyak kekurangan dalam penulisan tugas akhir ini. Oleh karena itu, penulis sangat mengharapkan kritik dan saran dari semua pihak. Penulis berharap tugas akhir ini dapat bermanfaat dan berkontribusi dalam ilmu pengetahuan khususnya di bidang konversi energi.

Surabaya, Januari 2017

Penulis

DAFTAR ISI

HALAMAN JUDUL
LEMBAR PENGESAHAN
ABSTRAK i
ABSTRACT iii
KATA PENGANTAR v
DAFTAR ISI vii
DAFTAR TABEL xi
DAFTAR GAMBAR xiii
DAFTAR SIMBOL xv
DAFTAR LAMPIRAN xvii
BAB I PENDAHULUAN 1
1.1 Latar Belakang1
1.2 Perumusan Masalah 3
1.3 Tujuan dan Manfaat Penelitian 3
1.4 Batasan Masalah 3
1.5 Sistematika Laporan 4
BAB II TINJAUAN PUSTAKA7
2.1 Thermal Oxidizer (TOX)7
2.2 Waste Heat Recovery Unit (WHRU) 8
2.3 Analisa Termodinamika Siklus Terbuka / Volume Atur
2.4 Prinsip Dasar Pembakaran13
2.4.1 Pembakaran dan Bahan Bakar13
2.4.2 Kebutuhan Udara Proses Pembakaran
2.4.3 Campuran Gas Ideal16
2.5 Konversi Energi Sistem Reaktif
2.5.1 Evaluasi Entalpi Sistem Reaktif
2.5.2 Kesetimbangan Energi Sistem Reaktif Volume
Atur pada Kondisi Tunak
2.5.3 Temperatur Api Adiabatik
2.6 Prinsip Dasar Perpindahan Panas dan Kekekalan
Energi
2.7 Analisa Perpindahan Panas pada Heat Exchanger 22

2.7.1 Konduksi Satu Dimensi pada Silinder Kondis	si
Tunak 2	3
2.7.2 External Flow Melewati Tube 2	5
2.7.3 Internal Flow pada Tube	0
2.7.4 Analisa Heat Exchanger dengan Menggunaka	n
Metode LMTD 3	1
2.8 Penelitian Terdahulu	4
BAB III METODOLOGI PENELITIAN 4	3
3.1 Tahap-Tahap Penelitian Tugas Akhir 4	3
3.2 Tahap Perhitungan Thermal Oxidizer	7
3.4 Tahap Perhitungan Waste Heat Recovery Unit 5	0
BAB IV ANALISA DATA DAN PEMBAHASAN 5	5
4.1 Data Desain dan Data Aktual Operasional Therma	ıl
Oxidizer dan Waste Heat Recovery Unit5	5
4.2 Analisa Pembakaran pada Thermal Oxidizer 6	1
4.2.1 Stoikiometri Pembakaran pada TOX 6	1
4.2.2 Perhitungan Berat Molekuler Waste Gas 6	3
4.2.3 Perhitungan Rasio-Udara Bahan Bakar Teor	ri
dan Aktual 6	3
4.2.4 Perhitungan Laju Aliran Massa Waste Gas 6	4
4.2.5 Perhitungan Laju Aliran Massa dan Volum	e
Udara Teori dan Aktual6	4
4.2.6 Perhitungan Perubahan Entalpi	5
4.2.7 Perhitungan Laju Aliran Panas (\dot{Q})	6
4.2.8 Perhitungan Laju Aliran Massa Produ	k
Pembakaran6'	7
4.2.9 Temperatur Flue Gas 6	7
4.2.10 Heat Loss pada Dinding TOX7	0
4.3 Hasil Variasi pada Kondisi Operasional TOX 7	3
4.4 Pembahasan Grafik Pengaruh Variasi Bahan Baka	ır
dan Excess Air terhadap Perubahan Entalpi da	n
Suhu Flue Gas7	6
4.4.1 Pengaruh Variasi <i>Excess Air</i> terhadap Δh <i>Flu</i>	e
Gas7	6

4.4.2 Pengaruh Variasi Excess Air terhadap Suhu Flue
<i>Gas</i>
4.4.3 Perbandingan ∆h dan Suhu Flue Gas dengan
Variasi Flowrate Fuel Gas
4.5 Analisa Perpindahan Panas pada Waste Heat
Recovery Unit 82
4.5.1 Analisa Data Desain WHRU
4.5.2 Analisa Data Operasional WHRU
4.5.3 Pembahasan Grafik Laju Aliran Massa Oil
terhadap Variasi pada Pembakaran TOX 96
BAB V KESIMPULAN DAN SARAN
5.1 Kesimpulan
5.2 Saran
DAFTAR PUSTAKA
LAMPIRAN
BIODATA PENULIS

(halaman ini sengaja dikosongkan)

DAFTAR TABEL

Tabel 2.1 Perkiraan Komposisi dari Udara Kering 14
Tabel 2.2 Nilai q4 dalam Kasus Kandungan Fly Ash Berbeda 36
Tabel 2.3 Nilai q ₂ untuk Variasi α
Tabel 2.4 Kerugian q2 terhadap Beban Berbeda
Tabel 2.5 Kerugian Panas Pembakaran Tidak Sempurna pada
Flammable Gas
Tabel 2.6 Data Eksperimen Kandungan Fly Ash Carbon dan Excess
Air Coefficient
Tabel 2.7 Hasil Percobaan dimana Udara Panas Mengalir di Sisi
(a) <i>Shell</i> (b) <i>Tube</i>
Tabel 4.1 Data Desain Input TOX pada Kondisi Normal 58
Tabel 4.2 Data Desain WHRU 60
Tabel 4.3 Data Operasional TOX 60
Tabel 4.4 Data Operasional WHRU 61
Tabel 4.5 Perhitungan ⊿h Data Desain TOX
Tabel 4.6 Komponen Flue Gas dan Entalpi Kondisi Referensi
(Excess Air 15%) 69
Tabel 4.7 Entalpi Komponen Flue Gas pada 1.100K hingga 1.500K
Tabel 4.8 Entalpi Komponen Flue Gas pada 1.600K hingga 2.000K
Tabel 4.9 Nilai ⊿h Flue Gas pada Setiap Suhu 70
Tabel 4.10 Susunan Dinding TOX70
Tabel 4.11 Hasil Pehitungan ∆h Flue Gas 100% Flowrate Fuel Gas
Tabel 4.12 Hasil Pehitungan <i>∆h Flue Gas</i> 80% <i>Flowrate Fuel Gas</i>
Tabel 4.13 Hasil Perhitungan <i>∆h Flue Gas</i> 60% <i>Flowrate Fuel Gas</i>
Tabel 4.14 Hasil Pehitungan ∆h Flue Gas untuk Excess Air 10%
pada Setiap Suhu74
Tabel 4.15 Hasil Pehitungan ∆h Flue Gas untuk Excess Air 15%
pada Setiap Suhu74

Tabel 4.16 Hasil Pehitungan <i>∆h Flue Gas</i> untuk <i>Excess Air</i> 20%
pada Setiap Suhu74
Tabel 4.17 Hasil Pehitungan <i>∆h Flue Gas</i> untuk Excess Air 25%
pada Setiap Suhu74
Tabel 4.18 Hasil Pehitungan <i>∆h Flue Gas</i> untuk Excess Air 30%
pada Setiap Suhu75
Tabel 4.19 Hasil Pehitungan <i>∆h Flue Gas</i> untuk Excess Air 35%
pada Setiap Suhu75
Tabel 4.20 Hasil Suhu Flue Gas Pembakaran TOX pada Data
Operasional75
Tabel 4.21 Nilai h _{flue gas} pada 100% Bahan Bakar dengan Excess Air
15%
Tabel 4.22 Nilai $\left(\frac{1}{UA} - R_{conv.cold}\right)$ pada 100% Bahan Bakar
dengan Excess Air 15%
Tabel 4.23 Hasil Perhitungan Laju Aliran Massa dari Oil 95

DAFTAR GAMBAR

Gambar 2.1 Thermal Oxidizer di CPP Gundih 8
Gambar 2.2 Waste Heat Recovery Unit pada TOX CPP Gundih . 9
Gambar 2.3 Ilustrasi yang digunakan untuk mengembangkan
prinsip kekekalan massa pada satu volume atur
Gambar 2.4 Ilustrasi prinsip kekekalan energi suatu volume atur
Gambar 2.5 Piramida pembakaran 13
Gambar 2.6 Heat exchanger jenis compact
Gambar 2.7 Silinder berlubang dengan kondisi konveksi
permukaan
Gambar 2.8 Distribusi temperatur untuk sebuah dinding silinder
komposit
Gambar 2.9 Aliran fluida melalui susunan tube
Gambar 2.10 Susunan tube bank
Gambar 2.11 Detail dimensi compact HE aliran crossflow dengan
annular fin
Gambar 2.12 Ilustrasi aliran di dalam sebuah tube
Gambar 2.13 Distribusi temperatur untuk parallel flow
Gambar 2.14 Distribusi temperatur untuk counter flow
Gambar 2.15 Pengaruh excess air ratio terhadap kerugian
pembakaran dan hubungan excess air ratio dengan
unburned carbon35
Gambar 2.16 Fitting curve antara α dan q ₄
Gambar 2.17 <i>Fitting curve</i> antara α dan $q_2+q_3+q_4$
Gambar 2.18 Grafik hubungan α dan kerugian panas pada beban
298MW 38
Gambar 2.19 Grafik hubungan α dan total kerugian pada beban
berbeda 39
Gambar 2.20 Grafik efektivitas dan temperatur keluar sebagai
fungsi kecepatan udara di tube 40
Gambar 2.21 Grafik efektivitas fungsi kecepatan udara di tube 41
Gambar 3.1 Diagram alir tahap penelitian Tugas Akhir 44

Gambar 3.2 Drawing dari TOX CPP Gundih	45
Gambar 3.3 Diagram alir perhitungan pembakaran TOX	49
Gambar 3.4 Diagram alir perhitungan panas WHRU	53
Gambar 4.1 Skema input TOX kondisi normal	56
Gambar 4.2 Kesetimbangan energi dan massa pada TOX	dan
WHRU	57
Gambar 4.3 Grafik $\Delta h_{flue gas} = f(EA)$ pada 60% fuel gas	76
Gambar 4.4 Grafik $\Delta h_{flue gas} = f(EA)$ pada 80% fuel gas	76
Gambar 4.5 Grafik $\Delta h_{flue gas} = f(EA)$ pada 100% fuel gas	77
Gambar 4.6 Grafik $T_{flue gas} = f(EA)$ pada 60% fuel gas	78
Gambar 4.7 Grafik $T_{flue gas} = f(EA)$ pada 80% fuel gas	79
Gambar 4.8 Grafik $T_{flue gas} = f(EA)$ pada 100% fuel gas	79
Gambar 4.9 Grafik perbandingan $\Delta h_{flue gas} = f(EA)$ pada 60%, 8	30%,
dan 100% <i>fuel gas</i>	80
Gambar 4.10 Grafik perbandingan $T_{flue gas} = f(EA)$ pada 60%, 8	80%
dan 100% <i>fuel gas</i>	81
Gambar 4.11 Susunan <i>tube</i> pada WHRU	84
Gambar 4.12 Grafik hasil laju aliran massa oil WHRU	96

DAFTAR SIMBOL

A =luasan (m²; ft²; in²) AF = rasio udara – bahan bakar basis massa \overline{AF} = rasio udara – bahan bakar basis mol c_p = kalor spesifik pada tekanan konstan (J/kg.K; Btu/lb.°R) c_v = kalor spesifik pada volume konstan (J/kg.K; Btu/lb.°R) C =laju kapasitas panas (W/K; Btu/s.°R) C_r = rasio laju kapasitas panas D = diameter (m; in; ft)E = energi total (J; Btu) $g = \text{gravitasi} (\text{m/s}^2; \text{ft/s}^2)$ $h = koefisien konveksi (W/m^2.K)$ \overline{h} = koefisien konveksi rata-rata (W/m².K) h = entalpi per unit massa (J/kg; Btu/lb) \overline{h} = entalpi per molekular (J/kmol; Btu/lbmol) \bar{h}_{f}^{o} = entalpi pembentuk (J/kmol; Btu/lbmol) H = entalpi (J; Btu)k = konduktivitas termal (W/m.K) L = panjang (m; in; ft)m = massa (kg; lb) $\dot{m} =$ laju aliran massa (m/s; lb/s) mf = fraksi massaM = berat molekuler (kg/kmol; lb/lbmol) n =jumlah mol (kmol; lbmol) $\dot{n} = \text{laju perubahan mol (kmol/s; lbmol/s)}$ *NTU* = number of transfer unit Nu= bilangan Nusselt \overline{Nu} = bilangan Nusselt rata-rata $p = \text{tekanan} (\text{N/m}^2; \text{psi})$

- Pr = bilangan Prandtl
- q =laju perpindahan panas (W; Btu/s)
- q' = laju perpindahan panas per unit panjang (W/m; Btu/m.s)
- q" = laju perpindahan panas per unit luas (W/m²; Btu/m².s)

- Q = perpindahan panas (J; Btu) \dot{Q} = laju perpindahan panas (W; Btu/s) r = jari-jari (m; in; ft) $R = \text{konstanta gas} (J/\text{kg.K}; Btu/lb.^{\circ}R; ft.lbf/lb.^{\circ}R)$ \overline{R} = konstanta gas universal = 8,314 kJ/kmol.K = 1,986 Btu/lbmol.°R = 1545ft.lbf/lbmol.°R *Re* = bilangan Reynold R_t = tahanan termal (K/W) s = entropi per unit massa (J/kg.K; Btu/lb.°R) \bar{s} = entropi per molekuler (J/kmol.K; Btu/lbmol.°R) $S = \text{entropi} (J/K; Btu/^{\circ}R)$ t = waktu(s) $t = \text{tebal}(\mathbf{m})$ $T = \text{temperatur} (^{\circ}\text{C}; \text{K}; ^{\circ}\text{F}; ^{\circ}\text{R})$ u = energi internal per unit massa (J/kg; Btu/lb) \bar{u} = energi internal per molekular (J/kmol; Btu/lbmol) U = energi internal (J; Btu) U_t = overall heat transfer coefficient (W/m²K) v = volume spesifik (m³/kg; ft³/lb) $V = volume (m^3; in^3; ft^3)$ V = kecepatan (m/s; ft/s)W = kerja(J; Btu) $\dot{W} =$ laju kerja (J/s; Btu/s) v = fraksi mol z = elevasi (m; in; ft) $\eta = efisiensi$ μ = viskositas dinamik (kg/m.s; lb/ft.s)
- ρ = massa jenis (kg/m³; lb/ft³)

DAFTAR LAMPIRAN

LAMPIRAN A Efisiensi Fin Bentuk Annular

LAMPIRAN B Faktor Koreksi untuk *Heat Exchanger* Tipe Compact Aliran Single-pass Crossflow dengan Satu Fluida Mixed dan Lainnya Unmixed

- LAMPIRAN C Hasil Stoikiometri Pembakaran pada TOX Data Desain
- LAMPIRAN D Hasil Stoikiometri Pembakaran pada TOX Data Operasional

LAMPIRAN E Tabel Hasil Perhitungan

(halaman ini sengaja dikosongkan)

BAB I PENDAHULUAN

1.1 Latar Belakang

Gas alam (*natural gas*) menjadi salah satu bahan bakar yang banyak digunakan saat ini, Central Processing Plant (CPP) Gundih merupakan kilang natural gas milik PT Pertamina EP yang berada di wilayah kerja Asset 4 Field Cepu. CPP Gundih mendapat pasokan feed gas dari 8 sumur produksi dengan total kapasitas 75 MMSCFD. Setelah dilakukan pengolahan, CPP Gundih menghasilkan gas alam siap pakai dengan kapasitas 50 MMSCFD. Feed gas dari sumur produksi memasuki inlet manifold yang kemudian diolah pada Gas Separation Unit (GSU) untuk memisahkan air dan kondensat yang terbawa dari sumur produksi. Setelah itu feed gas memasuki Acid Gas Removal Unit (AGRU) untuk memisahkan kandungan acid gas yang ada. Treated gas hasil pengolahan AGRU selanjutnya memasuki Caustic Treater Unit (CTU) untuk menghilangkan *mercaptant* vang terkandung didalam treated gas. Kemudian treated gas menuju Dehydration Unit untuk menurunkan kadar air.

Dari pengolahan *feed gas* di CPP Gundih menimbulkan dampak limbah berupa *waste gas*, terdiri dari *acid gas* dan *vent gas*, yang diolah terlebih dahulu sebelum dilepas ke lingkungan supaya tidak mencemari lingkungan dan sesuai dengan Peraturan Menteri Lingkungan Hidup. *Acid gas* dengan kandungan H₂S yang sangat tinggi diolah dalam dua jalur, yaitu langsung dibakar pada *Thermal Oxidizer* (TOX) dan diproses pada *Biological Sulphur Recovery Unit* (BSRU) untuk menyerap kandungan sulfur melalui reaksi pada bioreaktor yang kemudian bisa dipadatkan pada *Sulphur Melter & Solidification Unit*. Namun, tidak semua *acid gas* terolah pada BSRU, sehingga limbah *acid gas* sisa dari BSRU dibakar pada TOX.

Thermal Oxidizer (TOX) memiliki peran penting dalam mengatasi waste gas. Kinerja TOX ditentukan dari proses

pembakaran yang terjadi pada *burner* harus sempurna serta suhu oksidasi *waste gas* pada *chamber* harus sesuai. Pada umumnya jumlah udara akan dilebihkan dari jumlah stoikiometri yang dibutuhkan, hal ini untuk mencegah pembakaran tidak sempurna. Jumlah udara tambahan (*excess air*) yang diberikan pada *burner* TOX harus diperhitungkan, karena *excess air* dengan jumlah yang tidak tepat bisa merugikan reaksi pembakaran dan suhu pada *chamber* tidak sesuai. Energi panas gas buang (*flue gas*) dimanfaatkan pada *Waste Heat Recovery Unit* (WHRU) yang berada diatas *chamber*. WHRU tersebut berupa *heat exchanger* yang digunakan untuk memanaskan *hot oil*. Peran WHRU dalam memanaskan *hot oil* hingga 350°F (449,817K) juga sangat penting, karena *hot oil* digunakan pada *Solvent Regenerator Reboiler*.

Kondisi operasional pembakaran pada TOX di CPP Gundih saat ini, jumlah input sangat berbeda dengan desain awal TOX dan suhu pembakaran sangat tinggi, yaitu diatas 1.600°F (1.144,261K). Sementara itu WHRU belum berjalan secara normal yang mengakibatkan energi panas flue gas banyak yang terbuang sia-sia sehingga suhu keluaran dari *stack* masih sangat tinggi, yaitu lebih dari 700°F (644,261K), serta suhu hot oil pada outlet WHRU hanya 330-340°F (438,706-444,261K). Pada kondisi operasional sekarang, hot oil yang berasal dari outlet WHRU hanya digunakan untuk satu unit Solvent Regenerator Reboiler sehingga untuk saat ini suhu outlet yang berkisar 330-340°F masih mencukupi kebutuhan. Namun, untuk kedepannya CPP Gundih berencana menggunakan dua unit Solvent Regenerator Reboiler untuk peningkatan produksi natural gas, sehingga perlu dilakukan peningkatan suhu hot oil menjadi 350°F. Berdasarkan kondisi TOX saat ini di CPP Gundih, pembakaran pada TOX serta pemanfaatan energi panas pada WHRU perlu dilakukan evaluasi dengan analisa heat balance. Analisa heat balance dilakukan dengan analisa termodinamika pada sistem pembakaran TOX dan analisa perpindahan panas pada WHRU.

1.2 Perumusan Masalah

Berdasarkan kondisi operasional Thermal Oxidizer saat ini yang sangat berbeda dari desain serta pentingnya peran TOX dalam mengatasi limbah gas berbahaya, analisa pembakaran TOX serta WHRU perlu dilakukan. Pada penelitian Tugas Akhir ini, analisa pembakaran dilakukan dengan analisa termodinamika pada jumlah bahan bakar, air fuel ratio, dan jumlah excess air untuk mendapatkan pembakaran sempurna dan suhu ideal pada *chamber* (1.088,706-1.144,261K). vaitu 1.500-1.600°F Selain itu pemanfaatan energi panas flue gas pada WHRU dilakukan analisa supaya suhu hot oil keluar WHRU mencapai 350°F (499,817K) dan suhu flue gas keluar dari stack ±408°F (482K). Analisa WHRU dilakukan dengan analisa perpindahan panas serta menganalisa flowrate dari hot oil.

1.3 Tujuan dan Manfaat Penelitian

Berdasarkan perumusan masalah dari penelitian Tugas Akhir ini, memiliki tujuan yaitu untuk mendapatkan jumlah bahan bakar, *air fuel ratio*, dan jumlah *excess air* yang tepat pada sistem pembakaran TOX sehingga pembakaran sempurna dan suhu *chamber* 1.500-1.600°F (1.088,706-1.144,261K), serta untuk mendapatkan desain WHRU yang sesuai sehingga energi panas *flue gas* dapat dimanfaatkan untuk mencapai suhu *hot oil* sebesar 350°F (499,817K) dan suhu *flue gas* keluar dari *stack* ±408°F (482K). Manfaat dari penelitian Tugas Akhir ini diharapkan penulis dapat menerapkan ilmu termodinamika dan perpindahan panas pada analisa TOX dan WHRU, serta mampu memberikan rekomendasi kepada perusahaan dalam mengoperasikan TOX supaya kinerjanya kembali dalam kondisi ideal.

1.4 Batasan Masalah

Pada analisa penelitian *Thermal Oxidizer* CPP Gundih digunakan batasan masalah supaya memperjelas ruang lingkup analisa. Batasan masalah yang digunakan adalah

- 1. Analisa berdasarkan data desain awal dan data operasi harian TOX dan WHRU di CPP Gundih.
- 2. Kondisi operasi steady state.
- 3. Analisa dilakukan ketika operasi *normal case* TOX menggunakan *natural gas*, bukan ketika *start up* menggunakan minyak diesel.
- 4. Kondisi instrumentasi yang ada pada TOX diasumsikan bekerja dengan baik tanpa ada kerusakan.
- 5. Analisa pembakaran tidak meninjau bentuk aliran dari udara, *natural gas*, dan *waste gas* pada *burner*.
- 6. Gas alam, udara pembakaran, *waste gas* dan gas buang hasil pembakaran diasumsikan sebagai gas ideal.
- 7. WHRU tipe *compact* dengan jenis aliran *cross flow*.
- 8. Faktor *human error* pada pengoperasian TOX diasumsikan tidak ada.

1.5 Sistematika Laporan

Laporan penelitian Tugas Akhir ini akan disusun secara sistematis dibagi dalam beberapa bab, dengan perincian sebagai berikut :

BAB I Pendahuluan

Bab ini berisi penjelasan latar belakang, perumusan masalah, tujuan dan manfaat penelitian, batasan masalah, dan sistematika laporan.

BAB II Tinjauan Pustaka

Bab ini berisikan teori-teori penunjang dan penelitian terdahulu yang digunakan sebagai rujukan dalam penyelesaian masalah pada penelitian Tugas Akhir ini.

BAB III Metodologi Penelitian

Dalam bab ini akan dijelaskan mengenai detail tahapan atau metodologi yang harus dilakukan untuk mencapai tujuan dan simpulan akhir dari penelitian.

BAB IV Analisa Data dan Pembahasan

Dalam bab ini diuraikan analisa termodinamika dan perpindahan panas pada permasalahan penelitian Tugas Akhir ini, serta dilakukan pembahasan mengenai hasil analisa.

BAB V Kesimpulan dan Saran

Dalam bab ini berisi tentang kesimpulan dari seluruh analisa yang telah dilakukan dalam penelitian Tugas Akhir ini, dan saran yang dapat dijadikan masukan bagi perusahaan dan pengembangan penelitian selanjutnya.

(halaman ini sengaja dikosongkan)

BAB II TINJAUAN PUSTAKA

2.1 Thermal Oxidizer (TOX)

Thermal Oxidizer (TOX) merupakan alat yang berfungsi untuk membakar limbah gas berbahaya (*waste gas*) yang memiliki kandungan racun tinggi menjadi gas buang (*flue gas*) dengan konsentrasi racun rendah yang memenuhi syarat lingkungan dari Peraturan Menteri Lingkungan Hidup. Pada kilang gas CPP Gundih milik PT Pertamina EP Asset 4 Field Cepu, *Thermal Oxidizer* yang digunakan tipe *direct fired* dengan arah pembakaran vertikal. TOX di CPP Gundih dilengkapi dengan *Waste Heat Recovery Unit* (WHRU) untuk memanfaatkan energi panas yang dimiliki *flue gas* sebelum dibuang ke atmosfir. Oleh karena itu, TOX CPP Gundih memiliki 2 fungsi utama, yaitu untuk membakar *waste gas* (*acid gas* dan *vent gas*) berbahaya sehingga dihasilkan gas buang yang relatif lebih aman, dan untuk memberikan energi panas ke *hot oil*.

Pembakaran pada TOX dilakukan dengan suhu 1.500-1.600°F (1.088,706-1.144,261K) untuk memastikan *acid gas* dan *vent gas* terbakar dan teroksida dengan sempurna. *Acid gas* merupakan H₂S yang berasal dari *Acid Gas Removal Unit* (AGRU). Sebelum masuk ke TOX, H₂S diolah terlebih dahulu di *Biological Sulphur Recovery Unit* (BSRU) dan *Sulphur Melter & Solidification Unit* untuk menyerap sebagian sulfur dimanfaatkan menjadi butiran sulfur padat yang memiliki nilai jual. Sedangkan *vent gas* merupakan gas-gas sisa pemrosesan yang berasal dari berbagai unit pengolahan yang ditampung pada *Vent KO Drum* sebelum dialirkan ke TOX. *Vent gas* ini terdiri dari berbagai hidrokarbon dengan sedikit kandungan H₂S. H₂S yang telah dibakar akan menjadi SO₂ dengan kandungan maksimum 2.600 mg/Nm³ berdasarkan baku mutu emisi Peraturan Menteri Lingkungan Hidup.

TOX dapat beroperasi dalam 3 kondisi, yaitu seluruh *plant* beroperasi secara normal, BSRU *trip case*, dan *plant emergency*

case & start up case. TOX di CPP Gundih menggunakan 2 jenis bahan bakar, yaitu minyak diesel dan gas alam. Minyak diesel digunakan hanya ketika *start up* dan kondisi *emergency*, sedangkan gas alam yang digunakan secara kontinyu. Gas alam digunakan karena efisiensinya lebih tinggi dan lebih ekonomis jika dibandingkan dengan minyak diesel.

2.2 Waste Heat Recovery Unit (WHRU)

WHRU merupakan alat berupa *heat exchanger* tipe *compact* jenis aliran *cross flow*, untuk memanaskan *hot oil* dari suhu *inlet* 297,5°F (420,65K) hingga suhu *outlet* menjadi 350°F (499,817K). WHRU terletak antara *chamber* dan *stack*. *Hot oil* yang digunakan tipe "Total Seriola 1510", yang selanjutnya sebagai media pemanas Solvent Regenerator Reboiler.

Gambar 2.1 Thermal Oxidizer di CPP Gundih

Gambar 2.2 Waste Heat Recovery Unit pada TOX CPP Gundih

2.3 Analisa Termodinamika Siklus Terbuka / Volume Atur

Pada peralatan yang terdapat aliran massa, secara prinsip dapat dianalisa dengan mempelajari sejumlah tertentu dari zat (sistem tertutup) pada saat mengalir melalui peralatan tersebut, tetapi umumnya lebih mudah mengambil satu daerah dalam ruang dimana massa mengalir melaluinya (volume atur). Perpindahan energi melalui volume atur dapat terjadi dalam bentuk kerja dan panas seperti halnya sistem tertutup. Selain itu, satu bentuk lain perpindahan energi, yaitu energi yang dibawa masuk atau keluar harus juga diperhitungkan.

Prinsip kekekalan massa volume atur diperkenalkan dengan menggunakan Gambar 2.3, dimana tampak sebuah sistem berupa jumlah massa tetap *m* yang menempati ruang yang berbeda pada satu waktu *t* dan beberapa saat kemudian $t+\Delta t$. Jumlah massa yang berada di dalam daerah berlabel *i* dan *e* tidak harus sama, dan jumlah massa yang terdapat di dalam volume atur mungkin sudah berubah. Walaupun sistem pada Gambar 2.3a dan 2.3b menempati daerah yang berbeda dalam ruang, pada waktu yang berbeda, sistem tersebut terdiri dari zat yang sama jumlahnya, sesuai persamaan.

$$m_{cv}(t) + m_i = m_{cv}(t + \Delta t) + m_e \quad \leftrightarrow \quad m_{cv}(t + \Delta t) - m_{cv}(t) = m_i - m_e$$
(2.1)

dimana $m_{cv}(t)$: massa pada volume atur pada waktu t

 $m_{cv}(t + \Delta t)$: massa pada volume atur pada waktu $t + \Delta t$

m_i : massa masuk volume atur pada daerah i

 m_e : massa masuk volume atur pada daerah e

Gambar 2.3 Ilustrasi yang digunakan untuk mengembangkan prinsip kekekalan massa pada satu volume atur; (a) pada waktu *t* dan (b) pada waktu $t+\Delta t$

Persamaan (2.1) adalah satu neraca perhitungan massa yang menyatakan bahwa perubahan pada volume atur selama selang waktu Δt adalah sama dengan jumlah massa masuk dikurangi jumlah massa keluar. Secara umum, tempat untuk aliran massa masuk ataupun keluar pada batas volume atur dapat berada di beberapa lokasi. Hal ini dapat diperhitungkan dengan penjumlahan persamaan

$$\frac{dm_{cv}}{dt} = \sum_{i} \dot{m}_{i} + \sum_{e} \dot{m}_{e} \tag{2.2}$$
dimana $\frac{dm_{cv}}{dt}$ adalah laju perubahan massa dalam volume atur, sedangkan \dot{m}_i dan \dot{m}_e adalah laju massa pada sisi masuk (*inlet*) dan sisi keluar (*outlet*). Persamaan (2.2) adalah neraca laju massa untuk volume atur.

Banyak sistem teknik dapat diidealisasikan sebagai dalam keadaan tunak, yang berarti bahwa semua sifatnya tidak berubah terhadap waktu. Untuk satu volume atur dalam keadaan tunak, identitas dari zat di dalam volume atur terus menerus berubah, tetapi jumlah total yang ada pada setiap saat konstan, dengan demikian $dm_{cv}/dt = 0$ dan persamaan (2.2) dapat disederhanakan menjadi

$$\sum_{i} \dot{\mathbf{m}}_{i} = \sum_{e} \dot{\mathbf{m}}_{e} \tag{2.3}$$

Dengan demikian, laju aliran massa total yang masuk dan keluar adalah sama.

Gambar 2.4 Ilustrasi prinsip kekekalan energi suatu volume atur

Prinsip kekekalan energi suatu volume atur dapat diperkenalkan dengan menggunakan Gambar 2.4, yang menunjukkan suatu sistem terdiri dari zat dengan jumlah tetap m, yang mengisi daerah yang berbeda pada waktu t dan kemudian $t+\Delta t$.

$$E(t) = E_{cv}(t) + m_i \left(u_i + \frac{V_i^2}{2} + g z_i \right)$$
(2.4a)

$$E(t + \Delta t) = E_{cv}(t + \Delta t) + m_e(u_e + \frac{V_e}{2} + gz_e) \quad (2.4b)$$

Dimana E(t) adalah total energi pada waktu t hasil dari penjumlahan energi volume atur pada waktu t dengan energi dalam, energi kinetik, dan energi potensial dari massa i pada waktu t. Sedangkan $E(t + \Delta t)$ adalah total energi pada waktu $t+\Delta t$ hasil dari penjumlahan energi volume atur pada waktu $t+\Delta t$ dengan energi dalam, energi kinetik, dan energi potensial dari massa e pada waktu $t+\Delta t$.

Walaupun massa total *m* dalam pembahasan volume atur mengisi ruang dari daerah berbeda pada waktu berbeda, tetapi jumlah zat yang ada adalah tetap. Dengan demikian, neraca energi sistem tertutup dapat diaplikasikan.

$$E(t + \Delta t) - E(t) = Q - W \qquad (2.5)$$

Dengan memasukkan persamaan (2.4a) dan (2.4b) dan memisahkan energi pada volume atur pada sisi kiri, maka didapatkan persamaan

$$E_{cv}(t + \Delta t) - E_{cv}(t) = Q - W + m_i \left(u_i + \frac{v_i^2}{2} + gz_i \right) - m_e \left(u_e + \frac{v_e^2}{2} + gz_e \right)$$
(2.6)

Dari persamaan (2.6) dengan mengubah dalam bentuk laju terhadap waktu, maka didapatkan persamaan laju energi untuk volume atur dalam Gambar 2.4 yaitu

$$\frac{dE_{cv}}{dt} = \dot{Q} - \dot{W} + \sum \dot{m}_i \left(u_i + \frac{V_i^2}{2} + gz_i \right) - \sum \dot{m}_e \left(u_e + \frac{V_e^2}{2} + gz_e \right)$$
(2.7)

Pada suatu volume atur dalam keadaan tunak, kondisi massa yang ada tidak akan berubah terhadap waktu. Pada keadaan tunak $dE_{cv}/dt = 0$, $\dot{m}_i = \dot{m}_e = \dot{m}$, dengan mengelompokan masing-masing energi, aliran pada sisi masuk adalah 1, dan pada sisi keluar adalah 2, kemudian $\dot{W} = \dot{W}_{cv} + \dot{m}_e(p_e v_e) - \dot{m}_i(p_i v_i)$, dengan mengubah u + pv = h, maka persamaan dapat disederhanakan menjadi

$$0 = \frac{\dot{q}_{cv}}{\dot{m}} - \frac{\dot{W}_{cv}}{\dot{m}} + (h_1 - h_2) + \left(\frac{V_1^2 - V_2^2}{2}\right) + g(z_1 - z_2)$$
(2.8)

2.4 Prinsip Dasar Pembakaran 2.4.1 Pembakaran dan Bahan Bakar

Ketika terjadi pembakaran kimia, ikatan-ikatan di dalam molekul-molekul dari reaktan menjadi terputus, serta atom-atom dan elektron-elektron tersusun ulang menjadi produk-produk. Di dalam reaksi pembakaran, elemen-elemen bahan bakar yang mudah terbakar mengalami oksidasi yang cepat sehingga menghasilkan pelepasan energi bersamaan dengan terbentuknya produk hasil pembakaran.

Pembakaran adalah reaksi kimia eksotermik antara bahan bakar dan oksigen / udara yang menghasilkan panas dan cahaya. Tiga elemen kimia utama yang mudah tebakar di dalam bahan bakar yang paling umum ditemukan adalah karbon, hidrogen dan sulfur. Sulfur biasanya merupakan kontributor yang relatif tidak penting dalam pelepasan energi, tetapi menjadi signifikan karena pemasalahan dengan polusi dan korosi yang disebabkannya. Pembakaran dituntaskan ketika semua karbon yang terkandung di dalam bahan bakar telah habis terbakar menjadi air, dan semua sulfur telah habis terbakar menjadi sulfur dioksida, dan semua elemenelemen yang mudah terbakar lainnya telah teroksidasi. Jika kondisinya tidak terpenuhi maka pembakaran menjadi tidak tuntas.

Gambar 2.5 Piramida pembakaran

Reaksi-reaksi pembakaran dinyatakan dalam persamaan kimia di dalam bentuk [reaktan \rightarrow produk] atau [bahan bakar+pengoksidasi \rightarrow produk]. Ketika menangani reaksi kimia, terjadi konservasi massa sehingga massa dari produk berjumlah sama dengan massa dari reaktan. Massa total dari setiap elemen kimia harus sama pada kedua sisi dari persamaan, walaupun elemen-elemen tersebut terkandung di dalam senyawa kimia yang berbeda di dalam reaktan dan produk. Namun, jumlah mol dari produk dapat berbeda dengan jumlah mol reaktan. Pendekatan reaksi kimia pembakaran sempurna sebagai berikut

$$C_{x}H_{y}S_{z} + \left(x + \frac{y}{4} + z\right)(O_{2} + 3,76N_{2}) \xrightarrow{panas} xCO_{2} + \frac{y}{2}H_{2}O + zSO_{2} + \left(x + \frac{y}{4} + z\right)3,76N_{2}$$
(2.9)

Bahan bakar singkatnya adalah zat yang mudah terbakar. Bahan bakar yang digunakan pada umumnya adalah hidrokarbon yang memiliki bentuk cair, gas, dan padat. Bahan bakar cair pada umumnya dihasilkan dari minyak mentah melalui proses distilasi dan *crakcing*. Bahan bakar berbentuk gas diperoleh dari sumursumur gas alam atau diproduksi melalui proses kimia tertentu. Gas alam biasanya terdiri dari beberapa hidrokarbon yang berbeda. Komposisi dari bahan bakar gas biasanya diberikan di dalam bentuk fraksi mol. Bahan bakar gas merupakan bahan bakar yang sangat optimal karena hanya memerlukan sedikit pengoperasian pada sistem pembakaran yang sederhana, dan hampir bebas perawatan. Komponen utama gas alam adalah metana (CH₄) yang merupakan molekul hidrokarbon rantai terpendek dan teringan. Gas alam juga mengandung molekul hidrokarbon yang lebih berat.

Komponen	Fraksi mol (%)
Nitrogen	78,08
Oksigen	20,95
Argon	0,93
Karbon dioksida	0,03
Neon, Helium, Metana dan lain-lain	0,01

Tabel 2.1 Perkiraan Komposisi dari Udara Kering

Oksigen dibutuhkan di dalam setiap reaksi pembakaran. Oksigen murni digunakan hanya dalam aplikasi-aplikasi khusus seperti pemotongan dan pengelasan. Pada kebanyakan aplikasi pembakaran, udara menyediakan oksigen yang dibutuhkan. Komposisi dari sampel udara kering yang sederhana diberikan di dalam Tabel 2.1. Namun, pada biasanya untuk mempermudah perhitungan pembakaran, komponen udara selain oksigen digabungkan bersama dengan nitrogen. Sehingga udara dianggap terdiri dari 21% oksigen dan 79% nitrogen, dengan idealisasi ini rasio molar nitrogen terhadap oksigen adalah 0,79/0,21 = 3,76. Udara yang dimaksud di sini adalah udara kering, tidak mengandung uap air. Jika udara lembab dipakai dalam pembakaran, uap air yang terkandung harus diperhitungkan di dalam analisa pembakaran.

Nitrogen yang terkandung di dalam udara untuk pembakaran biasanya tidak mengalami proses kimia, artinya nitrogen dianggap *inert*. Walaupun demikian, nitrogen di dalam produk mengalami perubahan kondisi jika produk-produk hasil pembakaran memiliki temperatur yang berbeda dengan temperatur udara sebelum pembakaran. Jika dicapai pembakaran yang cukup tinggi, nitrogen dapat membentuk senyawa seperti nitrit oksida dan nitrogen dioksida. Sisa-sisa oksida nitrogen yang terbentuk di pembuangan pembakaran dapat menjadi sumber polusi.

2.4.2 Kebutuhan Udara Proses Pembakaran

Rasio udara-bahan bakar (*air fuel ratio*) adalah rasio jumlah udara di dalam reaksi pembakaran terhadap jumlah bahan bakar. *Air fuel ratio* dapat dituliskan dengan basis molar (mol udara dibagi dengan mol bahan bakar) atau dengan basis massa (massa udara dibagi dengan massa bahan bakar). Konversi di antara kedua nilai ini dilakukan dengan menggunakan berat molekuler dari udara (M_{udara}) dan bahan bakar ($M_{bahan \ bakar}$).

$$\frac{massa udara}{massa bahan bakar} = \frac{mol udara x M_{udara}}{mol bahan bakar x M_{bahan bakar}} = \frac{mol udara}{mol udara} \left(\frac{M_{udara}}{M_{bahan bakar}}\right)$$
$$AF = \overline{AF} \left(\frac{M_{udara}}{M_{bahan bakar}}\right)$$
(2.10)

atau

dimana \overline{AF} adalah rasio udara-bahan bakar dengan basis molar, dan AF adalah rasio udara-bahan bakar dengan basis massa.

Jumlah minimum udara yang memberikan oksigen yang cukup untuk pembakaran tuntas disebut jumlah udara teoritis. Untuk pembakaran tuntas dengan jumlah udara teoritis, produk yang dihasilkan terdiri dari karbon dioksida, sulfur dioksida, nitrogen yang menyertai oksigen di dalam udara, dan setiap nitrogen yang terkandung di dalam bahan bakar. Oksigen bebas tidak akan muncul sebagai salah satu produk pembakaran apabila suplai udara tepat sesuai kebutuhan udara teoritis.

Jumlah udara aktual yang disuplai biasanya dinyatakan dalam bentuk persentase udara teoritis, misalnya udara teoritis 150% berarti udara aktual yang disuplai adalah 1,5 kali jumlah udara teoritis. Jumlah udara suplai dapat dinyatakan sebagai *percent excess* atau *percent deficiency* udara. Oksigen bebas akan muncul pada pembakaran dengan jumlah udara lebih banyak (*excess air*).

2.4.3 Campuran Gas Ideal

Terdapat banyak sistem yang melibatkan campuran gas dari dua atau lebih komponen. Untuk menerapkan prinsip-prinsip termodinamika, dibutuhkan sebuah evaluasi pada sistem tersebut mengenai properti campuran. Berbagai cara dapat digunakan untuk menentukan properti campuran dari komposisi campuran dan properti dari setiap komponen murni yang berbentuk campuran.

Untuk menentukan keadaan dari sebuah campuran dibutuhkan komposisi dan nilai dari dua properti independen seperti temperatur dan tekanan. Sebuah sistem tertutup yang terdiri dari sebuah campuran gas dari dua atau lebih komponen, komposisi dari campuran tersebut dapat dideskripsikan dengan melihat massa atau jumlah mol dari setiap komponen yang ada. Massa, jumlah mol, dan berat molekul dari sebuah komponen *i* memiliki hubungan sebagai berikut

$$n_i = \frac{m_i}{M_i} \tag{2.11}$$

dimana m: massa, n: jumlah mol, dan M: berat molekul. Jumlah massa total campuran adalah $m = m_1 + m_2 + ... + m_j = \sum_{i=1}^j m_i$. Jumlah mol total dari sebuah campuran adalah $n = n_1 + n_2 + ... + n_j = \sum_{i=1}^j n_i$. Fraksi massa dari sebuah komponen ididefinisikan sebagai

$$mf_i = \frac{m_i}{m}$$
 dimana $\sum_{i=1}^j mf_i = 1$ (2.12)
ksi mol dari sebuah komponen *i* didefinisikan sebagai

Fraksi mol dari sebuah komponen *i* didefinisikan sebagai $y_i = \frac{n_i}{n}$ dimana $\sum_{i=1}^{j} y_i = 1$ (2.13) Dari berbagai persamaan diatas, maka berat molekul dapat dirumuskan

$$M = \sum_{i=1}^{j} y_i M_i \tag{2.14}$$

Model Dalton menjelaskan, tekanan parsial dari komponen i, p_i , adalah tekanan yang akan diberikan oleh n_i mol dari komponen i jika komponen berada sendirian dalam volume V pada temperatur T. Tekanan parsial dapat dihitung dengan persamaan gas ideal

$$p_i = \frac{n_i \bar{R}T}{v} \tag{2.15}$$

$$p_i = y_i p \tag{2.16}$$

Jika
$$\sum_{i=1}^{j} p_i = p \sum_{i=1}^{j} y_i$$
; dengan $\sum_{i=1}^{j} y_i = 1$; sehingga
 $p = \sum_{i=1}^{j} p_i$ (2.17)

Model Amagat menjelaskan, volume parsial dari komponen i, V_i , adalah volume yang akan ditempati oleh n_i mol dari komponen i jika komponen berada sendirian dalam tekanan p pada temperatur T. Volume parsial dapat dihitung dengan persamaan gas ideal

$$V_i = \frac{n_i \bar{R}T}{p} \tag{2.18}$$

dimana

dimana

$$V_i = y_i V \tag{2.19}$$

Jika $\sum_{i=1}^{j} V_i = V \sum_{i=1}^{j} y_i$; dengan $\sum_{i=1}^{j} y_i = 1$; sehingga

$$\mathbf{V} = \sum_{i=1}^{j} \mathbf{V}_i \tag{2.20}$$

Untuk menghitung energi dalam spesifik per mol, entalpi spesifik per mol, entropi spesifik per mol, dan kalor spesifik per mol dalam analisa sebuah campuran basis fraksi molar dan basis berat molekuler dapat dihitung menggunakan persamaanpersamaan berikut

$$\bar{u} = \sum_{i=1}^{J} y_i \bar{u}_i \qquad \bar{u}_i = M_i u_i \qquad (2.21a)$$

$$\bar{h} = \sum_{i=1}^{j} y_i \bar{h}_i \qquad \quad \bar{h}_i = M_i h_i \qquad (2.21b)$$

$$\bar{c}_{v} = \sum_{i=1}^{J} y_{i} \bar{c}_{v,i}$$
 $\bar{c}_{v,i} = M_{i} c_{v,i}$ (2.21c)

$$\bar{c}_p = \sum_{i=1}^{J} y_i \bar{c}_{p,i}$$
 $\bar{c}_{p,i} = M_i c_{p,i}$ (2.21d)

$$\bar{s} = \sum_{i=1}^{J} y_i \bar{s}_i \qquad \bar{s}_i = M_i s_i \qquad (2.21e)$$

Sedangkan untuk menghitung energi dalam, entalpi, dan entropi pada suatu kondisi *x* dapat dihitung menggunakan persamaan

$$U_x = \sum_{i=1}^J n_i \bar{u}_i(T_x) \tag{2.22a}$$

$$H_x = \sum_{i=1}^j n_i \bar{h}_i(T_x) \tag{2.22b}$$

$$S_x = \sum_{i=1}^{J} n_i \bar{s}_i (T_x; p_{i,x})$$
 (2.22c)

Ketika kalor spesifik komponen $\bar{c}_{v,i}$ dan $\bar{c}_{p,i}$ dianggap konstan, perubahan energi internal, entalpi, dan entropi spesifik dari campuran dan komponen campuran dituliskan sebagai

$$\Delta \bar{u}_i = \bar{c}_{\nu,i} (T_2 - T_1) \tag{2.23a}$$

$$\Delta \bar{h}_i = \bar{c}_{p,i} (T_2 - T_1) \tag{2.23b}$$

$$\Delta \bar{s}_i = \bar{c}_{p,i} \ln \frac{T_2}{T_1} - \bar{R} \frac{p_2}{p_1}$$
(2.23c)

2.5 Konversi Energi Sistem Reaktif 2.5.1 Evaluasi Entalpi Sistem Reaktif

Suatu datum entalpi untuk studi mengenai sistem reaktif dapat ditetapkan dengan memberikan secara sembarang nilai nol kepada entalpi dari elemen-elemen yang stabil pada suatu kondisi yang disebut kondisi referensi standar dan didefinisikan oleh $T_{ref} = 298,15K (25^{\circ}C) \text{ dan } p_{ref} = 1 \text{ atm}$. Istilah stabil memiliki arti bahwa elemen yang dimaksud berada di dalam bentuk yang stabil secara kimia, sebagai contoh pada kondisi standar bentuk stabil hidrogen, oksigen, dan nitrogen adalah H_2 , O_2 , N_2 , dan bukan bentuk monoatomik H, O, dan N.

Dengan menggunakan datum yang diperkenalkan di atas, nilai entalpi dapat diberikan kepada senyawa untuk digunakan di dalam studi mengenai sistem reaktif. Entalpi dari suatu senyawa pada kondisi standar adalah sama dengan entalpi pembentukannya, yang diberi simbol \bar{h}_{f}^{o} . Entalpi pembentukan adalah energi yang dilepaskan atau diserap ketika senyawa terbentuk dari elemen-elemen pembentuknya, dimana senyawa dan elemen-elemen tersebut berada pada T_{ref} dan p_{ref} . Pada tabel sifat termokemis dari zat terpilih, nilai entalpi pembentukan untuk beberapa senyawa masing-masing dalam satuan kJ/kmol dan Btu/lbmol, superscript ° digunakan untuk menunjukkan properti-properti pada latm. Untuk kasus entalpi pembentukan, temperatur referensi T_{ref} juga ditunjukkan dengan simbol tersebut.

Sebuah reaksi yang terjadi secara eksotermik, supaya produk dapat keluar pada temperatur yang sama dengan elemen-elemen yang masuk, diperlukan adanya perpindahan panas dari reaktor ke lingkungan sekitarnya. Laju perpindahan kalor dan entalpi dari aliran yang masuk dan keluar saling berhubungan dengan kesetimbangan laju energi.

$$0 = \dot{Q}_{cv} - \dot{W}_{cv} + \dot{m}_R h_R - \dot{m}_P h_P \tag{2.24}$$

$$0 = \dot{Q}_{cv} - \dot{W}_{cv} + \dot{n}_R \bar{h}_R - \dot{n}_P \bar{h}_P \tag{2.25}$$

dimana R adalah reaktan, P adalah produk, dan notasi - menunjukkan satuan per mol. Jika menyelesaikan persamaan tersebut untuk entalpi spesifik per mol dari produk, maka didapatkan

$$\bar{h}_P = \frac{\dot{q}_{cv} - \dot{W}_{cv}}{\dot{n}_P} + \frac{\dot{n}_R}{\dot{n}_P} \bar{h}_R \tag{2.26}$$

Jika terjadi perpindahan kalor dari reaktor dimana senyawa terbentuk dari elemen-elemen pembentuknya (reaksi eksotermik), entalpi pembentukan memiliki tanda negatif. Jika yang diperlukan adalah perpindahan panas kalor ke reaktor (reaksi endodermik), entalpi pembentukan memiliki nilai positif.

Entalpi spesifik dari sebuah senyawa pada kondisi standar dapat diperoleh dengan menambahkan perubahan entalpi spesifik $\Delta \bar{h}$ antara kondisi standar dan kondisi yang diinginkan ke nilai entalpi pembentukan

 $\bar{h}(T,p) = \bar{h}_f^o + [\bar{h}(T,p) - \bar{h}(T_{ref},p_{ref})] = \bar{h}_f^o + \Delta \bar{h}$ (2.27) Entalpi dari sebuah senyawa terdiri dari \bar{h}_f^o yang merupakan pembentukan senyawa tersebut dari elemen-elemen pembentukannya, $\Delta \bar{h}$ yang merupakan perubahan kondisi pada komposisi konstan. Nilai $\Delta \bar{h}$ dapat dihitung dari tabel-tabel sumber seperti tabel uap, tabel gas ideal jika sesuai, dan seterusnya.

2.5.2 Kesetimbangan Energi Untuk Sistem Reaktif Volume Atur pada Kondisi Tunak

Bahan bakar memasuki reaktor di dalam suatu aliran yang terpisah dari udara pembakaran, yang diasumsikan sebagai gas ideal. Produk-produk hasil pembakaran juga diasumsikan membentuk campuran gas ideal. Efek energi kinetik dan energi potensial diabaikan. Dengan idealisasi tersebut, kesetimbangan laju massa dan energi untuk reaktor pada volume atur dari persamaan (2.25) dapat dirumuskan

 $\frac{\dot{Q}_{cv}}{\dot{n}_F} - \frac{\dot{W}_{cv}}{\dot{n}_F} = \sum_P n_e \left(\bar{h}_f^o + \Delta\bar{h}\right)_e - \sum_R n_i \left(\bar{h}_f^o + \Delta\bar{h}\right)_i \quad (2.28)$

dimana *i* menunjukkan bahan bakar dan aliran udara yang masuk dan *e* produk-produk hasil pembakaran yang keluar; \dot{n}_F menunjukkan laju aliran molar bahan bakar; n_i dan n_e merupakan koefisien dari persamaan reaksi yang memberikan jumlah reaktan dan produk per mol bahan bakar.

2.5.3 Temperatur Api Adiabatik

Pada suatu reaktor yang bekerja pada kondisi tunak, apabila tanpa adanya kerja \dot{W}_{cv} serta efek energi kinetik dan potensial, energi yang dilepaskan ketika terjadi pembakaran dipindahkan dari reaktor hanya melalui dua cara, yaitu melalui energi yang menyertai produk hasil pembakaran yang keluar dan melalui perpindahan kalor ke lingkungan sekitar. Makin kecil perpindahan

kalor yang terjadi, makin besar energi yang dibawa keluar bersama-sama dengan produk hasil pembakaran sehingga makin besar temperatur dari produk tersebut. Temperatur yang akan dicapai oleh produk hasil pembakaran di dalam limit pengoperasian adiabatik dari reaktor tersebut disebut dengan temperatur api adiabatik atau temperatur pembakaran adiabatik.

Temperatur api adiabatik dapat ditentukan dengan menggunakan prinsip-prinsip konversi massa dan konversi energi. Untuk mengilustrasikan prosedur tersebut, asumsikan bahwa udara pembakaran dan produk masing-masing membentuk campuran gas ideal. Selanjutnya, dengan asumsi-asumsi lainnya yang disebutkan, kesetimbangan laju energi dengan basis per mol bahan bakar, didapatkan persamaan sederhana ke dalam bentuk $\bar{h}_P = \bar{h}_R$, yaitu $\sum_P n_e \bar{h}_e = \sum_R n_i \bar{h}_i$ (2.29)

dengan memasukkan persamaan (2.27) ke dalam persamaan (2.29), didapatkan persamaan lengkap

 $\sum_{P} n_e (\Delta \bar{h})_e = \sum_{R} n_i (\Delta \bar{h})_i + \sum_{R} n_i \bar{h}_{fi}^o - \sum_{P} n_e \bar{h}_{fe}^o$ (2.30) Suku sisi sebelah kanan dapat dievaluasi, sedangkan pada sisi kiri nilai $(\Delta \bar{h})_e$ memperhitungkan entalpi produk dari T_{ref} ke temperatur api adiabatik yang tidak diketahui. Temperatur api adiabatik ditentukan dengan cara iterasi karena temperatur yang tidak diketahui tersebut muncul di dalam setiap suku di dalam penjumlahan di sisi kiri persamaan (2.30).

2.6 Prinsip Dasar Perpindahan Panas dan Kekekalan Energi

Berdasarkan hukum termodinamika pertama dengan kondisi volume atur, keadaan tunak. Aliran tunak, energi kinetik dan potensial diabaikan, maka didapatkan persamaan

$$\delta \dot{Q} = \dot{m} \, di \tag{2.31}$$

Jika fluida tidak mengikuti perubahan fase dan memiliki *spesific heat* konstan, maka di = $c_p dT_i$, sehinga persamaan menjadi

$$\dot{Q} = \dot{m}c_p.\left(T_2 - T_1\right) \tag{2.32}$$

Hukum kesetimbangan energi menyatakan bahwa laju perubahan energi yang tersimpan di dalam suatu sistem adalah sebanding dengan laju perubahan energi yang masuk ke dalam sistem dijumlahkan dengan energi yang dibangkitkan oleh sistem itu sendiri kemudian dikurangi dengan laju perubahan energi keluar dari sistem.

$$\dot{E}_{st} = \dot{E}_{in} + \dot{E}_g - \dot{E}_{out} \tag{2.33}$$

dimana $\dot{E}_{st} = \rho V c \frac{dT}{dt}$ adalah laju perubahan energi yang tersimpan dalam sistem

 $\dot{E}_{in} = \dot{m}_{in} c_{in} T_{in}$ adalah laju perubahan energi yang masuk sistem

$$\dot{E}_{out} = \dot{m}_{out} c_{out} T_{out}$$
 adalah laju perubahan energi yang keluar sistem

 \dot{E}_g adalah energi yang dibangkitkan oleh proses pada suatu sistem itu sendiri, biasanya ditimbulkan oleh proses-proses kimia, listrik, elektromagnetik, dan nuklir.

2.7 Analisa Perpindahan Panas pada Heat Exchanger

Heat exchanger adalah alat penukar panas yang dapat digunakan untuk melakukan perpindahan energi panas dari suatu aliran fluida dengan temperatur tinggi ke aliran fluida dengan temperatur lebih rendah. Compact heat exchanger merupakan salah satu dari jenis alat penukar panas, dimana tube bank yang disusun secara aligned atau staggered dengan salah satu jenis fin yang tepasang.

Gambar 2.6 Heat exchanger jenis compact

Dalam analisa perpindahan panas pada *heat exchanger* terdapat 2 jenis perpindahan panas yang diperhitungkan, yaitu konduksi pada dinding *tube* dan konveksi dari aliran fluida pada *shell* maupun *tube*. Konveksi tersebut dianalisa dengan metode *external flow* pada bagian luar *tube* dan *internal flow* pada bagian dalam *tube*.

Dalam analisa *heat exchanger* perlu didefinisikan koefisien perpindahan panas total, dapat dihitung berdasarkan persamaan

$$\frac{1}{UA} = \frac{1}{(hA)_c} + \frac{R_{f.c}}{A_c} + R_w + \frac{R_{f.h}}{(\eta_o A)_h} + \frac{1}{(\eta_o hA)_h}$$
(2.34)

dimana *subscript c* dan *h* menunjukkan fluida dingin dan panas, R_w adalah resistansi konduksi, R_f adalah *fouling factor*, η_o adalah *overall surface efficiency* dari permukaan dengan *fin*. Nilai η_o dapat dihitung dengan persamaan

$$\eta_o = 1 \frac{A_f}{A} (1 - \eta_f) \tag{2.35}$$

dimana A_f adalah luas permukaan *fin*, dan η_f adalah efisiensi dari sebuah *fin* yang dapat dihitung dengan persamaan

$$\eta_f = \frac{\tanh(mL)}{mL} \tag{2.36}$$

dimana $m = \left(\frac{2h}{kt}\right)^{1/2}$ dan *t* adalah tebal *fin*. Untuk efisiensi jenis *annular fin* dapat dilihat pada lampiran.

2.7.1 Konduksi Satu Dimensi pada Silinder Kondisi Tunak

Pada aplikasi yang biasa ditemui yaitu silinder berlubang yang permukaan dalam dan luar terkena aliran fluida yang berbeda temperatur seperti ditunjukkan Gambar 2.7. Untuk kondisi tunak dengan tidak adanya energi bangkitan, persamaan perpindahan panas adalah

$$\frac{1}{r}\frac{d}{dr}\left(kr\frac{dT}{dr}\right) = 0 \tag{2.37}$$

dimana k adalah konduktivitas silinder. Dari persamaan (2.37), laju perpindahan energi secara konduksi melalui permukaan silinder dapat dirumuskan

$$q_r = -kA\frac{dT}{dr} = -k(2\pi rL)\frac{dT}{dr}$$
(2.38)

dimana $A = 2\pi rL$ adalah luas perpindahan panas ke arah normal bidang.

Gambar 2.7 Silinder berlubang dengan kondisi konveksi permukaan

Distribusi temperatur pada permukaan silinder bisa didapatkan dengan penurunan persamaan (2.37) dan penerapan *boundary conditions*. Dengan nilai *k* konstan, maka penurunan persamaan (2.37) menghasilkan persamaan distribusi temperatur berikut

$$T(r) = \frac{T_{s,1} - T_{s,2}}{\ln(r_1/r_2)} \ln\left(\frac{r}{r_2}\right) + T_{s,2}$$
(2.39)

Jika persamaan distribusi temperatur tersebut digunakan pada hukum Fourier, maka persamaan (2.39) dapat dituliskan untuk laju perpindahan panas

$$q_r = \frac{2\pi Lk(T_{s,1} - T_{s,2})}{\ln(r_2/r_1)} \tag{2.40}$$

Dari persamaan (2.40) maka diketahui *thermal resistance* untuk konduksi radial permukaan silinder adalah

$$R_{t,cond} = \frac{\ln(r_2/r_1)}{2\pi Lk}$$
 (2.41)

Sedangkan untuk konveksi ke arah radial silinder, *thermal resistance* dapat dihitung dengan persamaan

 $R_{t,conv,i} = \frac{1}{2\pi r_i L h_i} \quad \text{dan} \quad R_{t,conv,o} = \frac{1}{2\pi r_o L h_o} \quad (2.42)$ dimana *i* dan *o* menunjukkan konveksi pada aliran dalam (*inner*) dan luar (*outer*).

Untuk sebuah silinder yang disusun secara komposit dari beberapa material, susunan distribusi temperatur dan *thermal resistance* ditunjukkan pada Gambar 2.8.

Gambar 2.8 Distribusi temperatur untuk sebuah dinding silinder komposit

2.7.2 External Flow Melewati Tube

Perpindahan panas yang terjadi di luar *tube* dari *heat exchanger* tipe *compact* dianalisa berdasarkan perpindahan panas konveksi *external flow* melewati silinder. Perpindahan panas secara konveksi tergantung pada koefisien konveksi yang dipengaruhi jenis aliran (laminar atau turbulen) dan susunan *tube* (*aligned* atau *staggered*). Aliran yang semakin turbulen akan membuat koefisien konveksi semakin tinggi, tetapi *pressure drop* juga meningkat, sehingga perlu dilakukan perhitungan yang cermat dalam mendesain atau menganalisa *heat exchanger*. Untuk susunan *tube* jenis *staggered* memiliki koefisien konveksi lebih tinggi, karena bentuknya yang berliku membuat aliran fluida banyak yang mengenai *tube* dan aliran juga lebih turbulen.

(b)

Gambar 2.9 Aliran fluida melalui susunan *tube*, (a) susunan *aligned* dan (b) susunan *staggered*

Secara umum koefisien konveksi perpindahan panas ratarata untuk aliran melewati susunan *tube* yang memiliki sepuluh baris atau lebih dapat menggunakan persamaan

$$\bar{\mathbf{h}} = \frac{\overline{Nu}_D xk}{D} \tag{2.43}$$

Nusselt number yang melewati sebuah silinder (*tube*) dapat dihitung menggunakan persamaan

$$\overline{Nu}_D = CRe_D^m Pr^{1/3} \tag{2.44}$$

Persamaan (2.45) digunakan untuk $Pr \ge 0.7$, $0.4 \le Re_D \le 4 \times 10^5$, dengan mengevaluasi properti pada temperatur film (T_f). Kontanta C dan m dapat dilihat pada tabel lampiran.

Pada tube bank, Nusselt number rata-rata dapat dihitung tergantung pada besar Reynold number dan Prandtl number yang terjadi.

$$\overline{Nu}_{D} = C_{1}Re_{D.max}^{m}Pr^{0,36}(\frac{Pr}{Pr_{s}})^{1/4}$$
(2.45)
$$\begin{bmatrix} N_{L} \ge 20 \\ 0.7 \le Pr \le 500 \\ 10 \le Re_{D.max} \le 2x10^{6} \end{bmatrix}$$

dengan ketentuan

dimana N_L adalah jumlah baris *tube*, C_1 dan *m* adalah konstanta yang dapat dilihat pada tabel lampiran. Semua properti kecuali Pr_s dievaluasi dengan rata-rata aritmatik dari temperatur fluida masuk (T_i) dan keluar (T_o) .

Untuk susunan *tube* dengan jumlah baris kurang dari 20, $N_L \le 20$, koefisien perpindahan panas rata-rata mengalami penurunan dengan menerapkan faktor koreksi, sesuai dengan persamaan

$$\overline{Nu}_D|_{(N_L \le 20)} = C_2 \overline{Nu}_D|_{(N_L \le 20)}$$
(2.46)

dengan C_2 adalah faktor koreksi sesuai dengan tabel pada lampiran.

Untuk nilai Nusselt number pada tube bank dengan annular fin digunakan persamaan

$$\overline{Nu}_D = 0,134Re^{0,681}Pr^{1/3}\left(\frac{s}{l}\right)^{0,2}\left(\frac{s}{t}\right)^{0,1134}$$
(2.47)

Untuk mendapatkan nilai Reynold number menggunakan persamaan

$$Re_{D.max} = \frac{\rho V_{max} D_h}{\mu} \tag{2.48}$$

$$D_h = 4 \frac{T_2 A_0}{A_{total}} \tag{2.49}$$

$$A_{0} = \left[\left(\frac{L_{s}}{S_{T}} - 1 \right) z' + S_{T} - D_{o} - \left(D_{f} - D_{o} \right) t_{f} N_{f} \right] L (2.50)$$

$$A_{total} = \pi D_{o} \left(L - t_{f} N_{f'} L \right) N_{T} + \left[\frac{2\pi \left(D_{f}^{2} - D_{o}^{2} \right)}{4} + \pi D_{f} t_{f} \right] N_{f'} L N_{T}$$

$$(2.51)$$

dimana Dh merupakan diameter hidraulik, A_0 merupakan *minimum free flow area*, A_{total} merupakan luasan total *tube* ditambah *fin*. Nilai z' ditentukan dengan cara

$$z' = 2x'$$
 jika $2x' < 2y'$ dan $z' = 2y'$ jika $2x' > 2y'$ (2.52)

$$2x' = (S_T - D_o) - (D_f - D_o)t_f N_{f'}$$
(2.53)

$$y' = \left[\left(\frac{S_T}{2}\right)^2 + S_L^2\right]^{0.5} - D_o - (D_f - D_o)t_f N_{f'}$$
(2.54)

Row 1

Row 2 Row 3

(b)

Gambar 2.10 Susunan tube bank, (a) aligned dan (b) staggered

Persamaan 2.50-2.54 untuk *tube* dengan susunan *staggered* dimana detail dimensinya ditunjukkan pada gambar 2.11.

Gambar 2.11 Detail dimensi compact HE aliran crossflow dengan annular fin

Besarnya kecepatan maksimal aliran pada *shell* yang melewati *tube*, tergantung pada luasan yang dilewati, yaitu A_1 atau A_2 . Pada susunan *aligned*, kecepatan maksimum terjadi pada A_1 , sehingga V_{max} dapat dihitung dengan persamaan

$$V_{max} = \frac{S_T}{S_T - D} \ x \ V \tag{2.55}$$

Sedangkan untuk susunan *staggered*, kecepatan terjadi pada A_2 apabila

$$2(S_D - D) < (S_T - D) \tag{2.56}$$

Faktor untuk 2 hasil dari bifurkasi yang dialami oleh fluida bergerak dari bidang A_1 ke A_2 , V_{max} dapat terjadi pada A_2 bila

$$S_D = [S_L^2 + \left(\frac{s_T}{2}\right)^2]^{1/2} < \frac{s_T + D}{2}$$
(2.57)

Untuk menghitung V_{max} pada A_2 menggunakan persamaan

$$V_{max} = \frac{S_T}{2(S_T - D)} \ x \ V \tag{2.58}$$

2.7.3 Intenal Flow pada Tube

Perpindahan panas dari fluida yang mengalir di dalam *tube* termasuk pada *internal flow*, yaitu aliran fluida dimana *boundary layer* tidak memungkinkan untuk berkembang karena dibatasi oleh permukaan *tube*. *Internal flow* juga terdiri dari dua jenis aliran, yaitu aliran laminar dan turbulen. Untuk mengetahui jenis aliran tersebut dengan menghitung nilai *Reynold number* dengan persamaan

$$Re = \frac{\rho VD}{\mu} \tag{2.59}$$

Dengan nilai $\dot{m} = \rho V A_c$, maka *Reynold number* juga dapat dituliskan

$$Re = \frac{4\dot{m}}{\pi D\mu} \tag{2.60}$$

Untuk aliran dalam *tube* dinyatakan laminar bila Re < 2300, dan dinyatakan turbulen bila Re > 2300.

Perpindahan panas pada aliran laminar dalam *tube* dapat ditinjau dengan dua kondisi, yaitu saat *heat flux* permukaan konstan dan saat temperatur permukaan konstan. *Nusselt number* pada aliran laminar dalam *tube* mempunyai nilai konstan, hanya tergantung jenis kondisi tersebut.

Gambar 2.12 Ilustrasi aliran di dalam sebuah tube

$$Nu_D = \frac{hD}{k} = 4,36$$
 untuk q" = konstan
 $Nu_D = \frac{hD}{k} = 3,66$ untuk T_s = konstan (2.61)

Pada aliran turbulen dalam *tube*, *Nusselt number* dapat dihitung menggunakan persamaan dari Dittus-Boelter, dengan jenis perpindahan panas (pemanasan atau pendinginan) menjadi faktor yang diperhitungkan.

$$Nu_{D} = 0,023Re_{D}^{4/5}Pr^{n}$$
(2.62)
$$\begin{bmatrix} 0,6 \le Pr \le 160 \\ Re_{D} \ge 10.000 \\ \frac{L}{D} \ge 10 \end{bmatrix}$$

dimana n=0,4 untuk proses pemanasan dan n=0,3 untuk proses pendinginan.

2.7.4 Analisa *Heat Exchanger* dengan Menggunakan Metode LMTD

Untuk mendesain atau memprediksi performa *heat exchanger*, penting untuk menghubungkan total laju perpindahan panas ke kuantitas, seperti temperatur fluida masuk dan keluar, *overall heat transfer coefficient*, dan total luas permukaan perpindahan panas. Laju perpindahan panas yang melalui fluida panas maupun fluida dingin dapat dihitung dengan persamaan

$$\dot{Q} = \dot{m}_h c_{p.h} (T_{h.i} - T_{h.o}) \tag{2.63}$$

$$\dot{Q} = \dot{m}_c c_{p.c} (T_{c.o} - T_{c.i}) \tag{2.64}$$

Dengan menggunakan variabel *overall heat transfer coefficient* dan total luas permukaan perpindahan panas, laju perpindahan panas dapat dihitung dengan metode LMTD (*Log Mean Temperature Difference*).

$$\dot{Q} = UA\Delta T_{lm} \tag{2.65}$$

dimana ΔT_{lm} dihitung dengan persamaan

$$\Delta T_{lm} = \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)} \tag{2.66}$$

Nilai ΔT_1 dan ΔT_2 dipengaruhi oleh jenis alirannya, *counter flow* atau *parallel flow*, dan nilainya dapat diketahui berdasarkan Gambar 2.14 dan 2.15.

Untuk *heat exchanger* tipe *compact cross flow*, digunakan $\Delta T_{\rm lm}$ *counter flow* dengan faktor koreksi F dalam perhitungan laju aliran panas, sehingga

$$\dot{Q} = UAF\Delta T_{lm.cf} \tag{2.67}$$

Nilai F didapatkan lampiran dengan menentukan rasio P dan R yang dihitung persamaan

$$P = \frac{T_{c2} - T_{c1}}{T_{h1} - T_{c1}} \tag{2.68}$$

$$R = \frac{T_{h1} - T_{h2}}{T_{c2} - T_{c1}} \tag{2.69}$$

Gambar 2.13 Distribusi temperatur untuk parallel flow

Gambar 2.14 Distribusi temperatur untuk counter flow

2.8 Penelitian Terdahulu

Junxiong Qi (2014) dalam jurnalnya yang berjudul "Research and Improvement on Calculation Method of Optimal Excess Air Ratio" melakukan penelitian tentang analisa hubungan excess air ratio (α) terhadap kerugian dalam sistem pembakaran di boiler. Kerugian tersebut yaitu kerugian panas akibat exhaust gas (q₂), pembakaran tidak sempurna secara kimia (q₃), dan potensi bahan bakar yang terbuang (q₄).

Sekarang ini efisiensi panas pada *boiler* hanya dapat mencapai 80% dan banyak faktor yang mempengaruhi efisiensi panas. Dari sejumlah faktor tersebut, dampak dari efisiensi pembakaran selama operasi terhadap efisiensi panas dari *boiler* tidak bisa diabaikan, dan faktor paling penting yang mempengaruhi efisiensi pembakaran adalah *excess air ratio*. Oleh karena itu, penelitian tentang *excess air ratio* untuk menentukan nilai optimal sangat penting.

Gambar 2.15 Pengaruh *excess air ratio* terhadap kerugian pembakaran dan hubungan *excess air ratio* dengan *unburned carbon*

Pada gambar 2.15 terlihat bahwa pengaruh *excess air ratio* terhadap kerugian panas, ketika *excess air ratio* meningkat maka jumlah kerugian panas awalnya akan menurun dan kemudian naik, dimana terdapat nilai minimum yang merupakan *excess air ratio* optimal. Dalam penelitian ini diambil contoh pada analisa *boiler* kapasitas 300MW.

Hasil penelitian hubungan antara *excess air ratio* dan kerugian panas akibat potensi bahan bakar yang terbuang dalam padatan / *fly ash* (q₄) ditunjukkan pada tabel 2.2. Sedangkan untuk hubungan *excess air ratio* dan kerugian panas terhadap *exhaust gas* (q₂) ditunjukkan pada tabel 2.3. Sementara itu, hubungan *excess air ratio* dan kerugian panas akibat pembakaran tidak sempurna secara kimia (q₃) dapat diabaikan karena pengaruhnya sangat kecil, semakin tinggi *excess air* maka q₃ akan semakin rendah mendekati 0, dapat dianggap nilai q₃ = 0.

Tabel 2.2 Nilai q4 dalam Kasus Kandungan Fly Ash Berbeda									
α	1.1	1.15	1.2	1.25	1.3	1.35	1.4	1.45	1.5
C_{fh} ,%	5.90	5.10	4.75	4.6	4.55	4.50	4.45	4.43	4.50
<i>q</i> ₄ ,%	1.21	1.04	0.97	0.94	0.93	0.92	0.91	0.90	0.92

Gambar 2.16 *Fitting curve* antara α dan q_4

Tabel 2.3 Nilai q_2 untuk Variasi α									
α	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45	1.50
$q_{2},%$	5.89	5.92	5.96	5.99	6.03	6.06	6.10	6.14	6.17

Gambar 2.17 *Fitting curve* antara α dan $q_2+q_3+q_4$

Dalam penelitian ini juga diperhitungkan faktor koreksi dari q₄ yang mengakibatkan sebagian bahan bakar tidak terbakar sehingga hanya $(1 - \frac{q_4}{100})$ kg per 1kg *fuel* dalam reaksi pembakaran. Penggabungan ketiga kerugian terhadap α dapat diekspresikan dalam rumus $q_2 + q_3 + q_4 = -22,9\alpha^3 + 94,9\alpha^2 - 130,1\alpha +$ 66,57 untuk mendapatkan nilai spesifik *excess air ratio*. Dari penggabungan q₂, q₃, dan q₄ terhadap *excess air ratio* dapat disimpulkan bahwa nilai dari *excess air ratio* optimal dapat meningkatkan efisiensi pembakaran sekaligus efisiensi panas *boiler*.

Guanqun Zhang (2015) dalam jurnalnya yang berjudul "Study on Optimum Excess Air Coefficient for Power Plant Boilers" melakukan penelitian tentang pengaruh excess air coefficient terhadap total kerugian panas pada boiler dengan beban berbeda.

Pada analisa kerugian panas pada *exhaust gas* (q_2) dengan beban yang berbeda, didapatkan hubungan *excess air ratio* dengan q_2 ditunjukkan pada tabel 2.4 dimana keduanya memiliki hubungan linier. Sedangkan analisa pada kerugian panas pembakaran tidak sempurna pada *flammable gas* (q_3) ditunjukkan pada tabel 2.5. Untuk analisa kerugian panas pembakaran tidak sempurna dalam bentuk padatan ditunjukkan pada tabel 2.6.

Tuber 201 Herughan 42 ternadup Deban Derbeda						
Load (MW)	Exhaust gas heat loss					
298	$(4.123\alpha + 0.273)\%$					
245.3	$(3.992\alpha + 0.265)\%$					
215.8	$(3.716\alpha + 0.246)\%$					
192.3	$(3.601\alpha + 0.239)\%$					

Tabel 2.4 Kerugian q2 terhadap Beban Berbeda

Taber 2	2.5	Kerugian Pa	anas	Pembakaran	паак	Sempurna	pada	
		Flammable C	Gas					
Boiler load[]	17377]	flue gas oxygen		CO content (%)	V. [m3/		[lt]/bo]	a. (%

1 1

Boiler load[MW]	content (%)	CO content (%)	V _{dg} [m³/kg]	Q₃[kJ/kg]	q₃ (%)
298	5.21	1.04	8.29	1086.18	4.34
245.3	5.08	1.21	8.19	1251.34	5.00
215.8	5.88	0.15	8.85	166.66	0.67
192.3	6.84	0.02	8.94	22.59	0.09

TP: 1 1

C

 Tabel 2.6 Data Eksperimen Kandungan Fly Ash Carbon dan Excess Air Coefficient

α	1.1	1.15	1.2	1.25	1.3	1.35	1.4	1.45	1.5
C_{fa}	5.9	5.1	4.75	4.6	4.55	4.5	4.45	4.43	4.5

Dalam menentukan *excess air coefficient* optimal digabungkan seluruh kerugian panas yang terjadi. Contoh pada beban 298MW didapatkan grafik masing-masing kerugian panas dan total kerugian ditunjukkan pada gambar 2.19. Sedangkan untuk masing-masing beban ditunjukkan pada gambar 2.20.

Gambar 2.18 Grafik hubungan α dan kerugian panas pada beban 298MW

Gambar 2.19 Grafik hubungan α dan total kerugian pada beban berbeda

Ekadewi Anggraini H. (2000) dalam jurnalnya yang berjudul "Pengaruh Kecepatan Aliran Terhadap Efektivitas *Sheel-and-Tube Heat Exchanger*" melakukan penelitian tentang pengaruh *flow rate* terhadap *effectiveness* penukar panas. Metodologi yang digunakan pada penelitian ini yaitu dengan mengalirkan udara panas bersuhu 165°C dan udara dingin bersuhu 27°C dengan udara sekitar bersuhu 27°C, kemudian dengan mengubah aliran udara panas di *shell* menjadi di *tube*. Dari penelitian tersebut didapatkan hasil ditunjukkan pada tabel 2.7.

Percobaan ke	No.	V _{tube} (m/s)	V _{shell} (m/s)	т _{с,о} (^о с)	т _{h,o} ([°] С)
	1	5	0,74	83,7	63,6
	2	8	1,18	85,5	67,5
	3	10	1,47	107,2	93,1
	4	13	1,92	97,8	92,8
	5	15	2,21	94,3	89,6
1	1	5	0,74	84,4	64,2
	2	8	1,18	86,4	68,9
	3	10	1,47	108,4	93,0
	4	13	1,92	98,1	91,7
	5	15	2,21	93,2	90,4

Percobaan ke	No.	V _{tube} (m/s)	V _{shell} (m/s)	т _{с,о} (^о с)	т _{h,o} ([°] С)
-	1	5	0,74	69,5	46,8
	2	8	1,18	74,6	67,0
	3	10	1,47	76,1	74,4
	4	13	1,92	80,0	78,1
	5	15	2,21	97,3	97,6
=	1	5	0,74	70,6	47,2
	2	8	1,18	73,1	67,0
	3	10	1,47	76,8	73,5
	4	13	1,92	80,0	77,2
	5	15	2.21	96.4	97.3

Gambar 2.20 Grafik efektivitas dan temperatur keluar sebagai fungsi kecepatan udara di *tube* (a) udara panas mengalir pada sisi *shell* dan (b) udara panas mengalir pada sisi *tube*

Gambar 2.21 Grafik efektivitas fungsi kecepatan udara di tube

Dari penelitian ini dapat diambil kesimpulan yaitu efektivitas *shell-and-tube heat exchanger* meningkat jika fluida, baik di sisi *shell* maupun di sisi *tube*, mengalir dengan kecepatan lebih tinggi hingga suatu harga maksimum dan kemudian akan menurun meskipun kecepatan fluida meningkat terus. Selain itu, efektivitas *shell-and-tube heat exchanger* lebih tinggi jika udara panas mengalir di *tube* dan udara dingin mengalir di *shell*.

(halaman ini sengaja dikosongkan)

BAB III METODOLOGI PENELITIAN

3.1 Tahap-Tahap Penelitian Tugas Akhir

Metodologi yang digunakan dalam penyusunan Tugas Akhir "Analisa *Heat Balance Thermal Oxidizer* dengan *Waste Heat Recovery Unit* (Studi Kasus *Central Processing Plant* Gundih)" adalah sebagai berikut.

a. Studi Kasus

Studi kasus dilakukan untuk memahami permasalahan mengenai kinerja *Thermal Oxidizer* dan *Waste Heat Recovery Unit* di *Central Processing Plant* Gundih. Informasi tentang permasalahan TOX dan WHRU diperoleh berdasarkan observasi aktual di lapangan, wawancara dengan pegawai, dokumentasi data operasional, dan pemantauan pada DCS (*Distributed Control System*).

b. Studi Literatur

Studi literatur dilakukan untuk meninjau literatur yang bersangkutan dengan topik penelitian Tugas Akhir. Literatur yang digunakan yaitu buku-buku, jurnal hasil penelitian, tugas akhir, serta artikel di internet. Studi literatur dilakukan dengan membaca, merangkum, dan menyimpulkan semua referensi tentang termodinamika pada sistem pembakaran TOX dan perpindahan panas pada penukar panas WHRU.

c. Pengambilan Data

Untuk melakukan penelitian Tugas Akhir perlu didukung dengan pengambilan data yang cukup. Data yang diperlukan yaitu spesifikasi lengkap dan *drawing* peralatan TOX dan WHRU, P&ID TOX, data operasi pada bulan Juni-Juli 2016, dan foto peralatan di *plant*.

d. Analisa Data

Dari data yang diperoleh tersebut bisa diolah untuk menyelesaikan permasalahan dan mendapatkan hasil akhir yang diinginkan. Data utama yang digunakan dalam analisa pembakaran pada TOX yaitu data *waste gas (acid gas dan vent gas)* yang berasal dari berbagai unit proses pengolahan di CPP Gundih, data ini berupa *flow rate*, suhu dan tekanan dari setiap *input waste gas* ke dalam ruang bakar. Data yang digunakan berikutnya adalah *flow rate*, suhu dan tekanan dari bahan bakar dan udara yang digunakan dalam pengoperasian TOX saat ini, data tersebut akan dihitung ulang dengan analisa termodinamika untuk mengetahui kesesuaian antara teoritis dan kondisi aktual. Setelah itu, akan dilakukan perhitungan jumlah bahan bakar dan *air fuel ratio* secara termodinamika dan dilakukan variasi jumlah *excess air* untuk pembakaran TOX, dengan tujuan untuk mendapatkan nilai yang tepat dalam pembakaran.

Setelah dilakukan analisa pada pembakaran TOX, selanjutnya dilakukan analisa pada WHRU dengan analisa perpindahan panas. Data yang digunakan berupa *flow rate*, suhu dan tekanan dari *flue gas*, spesifikasi bentuk penukar panas, serta *flow rate*, suhu dan tekanan dari *hot oil* di sisi *tube*. Analisa awal akan dilakukan perhitungan ulang kondisi operasi saat ini untuk mengetahui kesesuaian antara teoritis dan kondisi aktual. Selanjutnya akan dilakukan perhitungan *flow rate* dari *hot oil* pada sisi *tube* untuk mendapatkan suhu *outlet* 350°F (176,6°C).

e. Penyusunan Laporan Tugas Akhir

Pada penyusunan laporan ini akan membahas secara detail hasil dari analisa data yang telah dilakukan sebelumnya. Laporan ini akan digunakan untuk menjawab semua perumusan masalah yang ada. Setelah itu akan diambil kesimpulan dan rekomendasi pengoperasian TOX dan WHRU.

Gambar 3.1 Diagram alir tahap penelitian Tugas Akhir

Gambar 3.2 Drawing dari TOX di CPP Gundih
3.2 Tahap Perhitungan Thermal Oxidizer

Gambar 3.3 Diagram alir perhitungan sistem pembakaran TOX

Gambar 3.4 Diagram alir perhitungan perpindahan panas WHRU

(halaman ini sengaja dikosongkan)

BAB IV ANALISA DATA DAN PEMBAHASAN

4.1 Data Desain dan Data Aktual Operasional Thermal Oxidizer dan Waste Heat Recovery Unit

Data desain TOX dan WHRU digunakan ketika kondisi normal, dimana untuk *input* dari Unit 2 (*Acid gas from AGRU*) tidak dibakar dalam TOX. Skema input TOX ditunjukkan pada gambar 4.1, kesetimbangan energi dan massa TOX ditunjukkan pada gambar 4.2. Data desain TOX diberikan pada tabel 4.1 dan data desain WHRU diberikan pada tabel 4.2.

Data aktual operasional TOX dan WHRU didapatkan dari rata-rata pengambilan data tanggal 27 Juni hingga 10 Juli 2016, sedangkan %mol kandungan komponen-komponen *waste gas* didapatkan pada pengambilan *gas sample* pada Februari dan September 2015. Pada kondisi aktual, *input* dari unit 4, 8, dan 9 tidak ada. Data aktual TOX diberikan pada tabel 4.3 dan data aktual WHRU diberikan pada tabel 4.4.

Gambar 4.1 Skema input TOX kondisi normal

Keterangan Gambar 4.1 :

- 1. Acid Gas dari BSRU
- 2. Acid Gas dari AGRU
- 3. Acid Gas dari GSU
- 4. Vent Gas dari DHU Still Column
- 5. Vent Air dari BSRU Bioreaktor
- 6. Flash Gas dari AGRU
- 7. LP Fuel Gas
- 8. Vent Gas dari CTU
- 9. Vent Gas Dari WAO

[H-1] Hot oil masuk

[H-2] Hot oil keluar

[IA/PA] Instrument air dan plant air

Gambar 4.2 Kesetimbangan energi dan massa pada TOX dan WHRU

I and A'I Dala DC	salli inpul	npd vor	a isuiluis	INUITIAL				
Stream No. (Reff Oly)	1	8	4	5	9	7	8	6
Description	Acid Gas From BSRU	Acid Gas From GSU	Vent Gas from DHU Still Column	Vent Air from BSRU Bioreactor	Flash Gas from Agru	LP Fuel Gas	Vent Gas from CTU	Vent Gas from WAO
Temperature, ^{oF}	104	148,6	283,97	181,2	85,9	106,4	124	138,6
Pressure, psig	5,96	20	7,01	s	5	'n	7	5
Flowrate MMSCFD	15,334	0,5379	0,2382	4,4015	0,0038	2,53	0,11	0,0725
Component, %mole								
C02	95,313	8,6192	0	13,8109	5,2605	0	0	0,126
N2	0,055	3,7334	0,8055	65,9507	2,6303	4,6011	84,8822	90,8654
02	0	0	0	12,9092	0	0	11,2031	4,3306
Methane	0,174	74,244	8,7093	0,0181	81,5782	89,6796	0,1635	
Ethane	0,01	3,1782	0,4608	0	2,6303	3,3901	0,0233	
Propanes	0,004	1,4437	0,2378	0	0	1,222	0,0185	
Butanes	0,002	0,9804	0,0778	0	0	0,5679	0,0134	
Pentanes	0	0,6954	0,0301	0	0	0,2232	0,0055	
Hexanes	100,0	0,8857	0,0182	0	0	0,1251	0,0051	
Heptanes	0	0,4292	0,0096	0	0	0,0689	0,0332	
Octane	0	0,058	0,0025	0	0	0,0211	0,0192	
Nonane	0	8900'0	0,0003	0	0	0,0028	0,0024	
C10+	0,001	0,0031	0,0008	0	0	0,0086	0,1635	
B-T-X	0,029	0,6291	2,5801	0,0231	0	0,0753	0,0079	
Dimethyldisulfide	0,005	0	0	0,006	0	0	0,2453	
Diethyldisulfide	0	0	0	0	0	0	0,0818	
Prophyldisulfide	0	0	0,0019	0	0	0	0,0244	
H2S, ppmv (max)	50	6161,4	0	1,0054	0	0	0	

Normal
Condisi
pada K
t TOX
Inpu
Desain
1 Data
4
Tabe

2
utan
lanj
.
el 4
ab

Tabel 4.1 (lanjutan	(1							
Methylmercaptan, ppmv (max)	0	677,82	1,8194	0	26302,6	0,0933	0	
Ehylmercaptan, ppmv (max)	110	2752,1	16,904	80,485	26302,6	0,639	0	
2-Propylmercaptan, ppmv (max)	50	2191,2	190,76	50,27	26302,6	0	0	
COS	0,005	6100'0	0,0112	100'0	0	0,0003	0	
Water	4,383	2,6957	87,0258	7,2807	0,01	0,0133	3,1074	4,1573
Sulfur dioxide		•		•		-		0,0004
Notrous Oxide	-			•		-		0,0006
Other Hydrocarbon		0,0003	0,0073			0,0005		0,5197
TOTAL COMPONEN, % mole	100	100	100	100	100	100	100	100
Total Sulfur, ppmw	0,0271	167,4	551,3	0,0056	1084,2	6,8321	7842,03	496,22

Stream No. (reff only)	H-1	H-2
Description	Heating Medium In	Heating Medium Out
Fluid Service	Hot Oil	Hot Oil
Temperature, oF	297,5	350
Pressure, psig	130,8	115,8
flowrate,lb/hr	2763394,1	2763394,1
Density, lb/ft3	49,0141	47,8941
Viscosity, cP	1,95	1,3427
Heat Capacity, Btu/lboF	0,5991	0,6299

Tabel 4.2 Data Desain WHRU

Tabel 4.3 Data Operasional TOX

Stream No. (Reff Oly)	1	3	5	6	7
	Acid Gas	Acid Gas	Vent Air	Flash Gas	
Decerintian	From	From	from BSRU	from	LP Fuel
Description	BSRU	GSU	Bioreactor	Agru	Gas
	(D-0401)	(D-0104)	(K-0402)	(V-0203)	
Temperature oF	104	91,58	181,2	110,49	106,4
Pressure, psig	7	134,52	5	147,22	5,16
Flowrate MMSCFD	11,8	0,00469	3,81	0,4563	1,4789
Component, %mole					
CO2	96,7498	8,6192	48,5947	0,34	0
N2	0,1891	3,7334	49,4268	0,38	0,5
02	0	0	10,1846	0,01	0
Methane (CH4)	0,9382	74,244	1,0376	92,55	93,74
Ethane (C2H6)	0,0513	3,1782	0,0172	3,33	3,35
Propanes (C3H8)	0,3792	1,4437	0,0819	1,15	1,15
Butanes (C4H10)	0,0053	0,9804	0	0,34	0,3
iso-Butane (C4H10)	0	0	0	0,25	0,24
Pentane (C5H12)	0	0,6954	0	0,13	0,1
iso-Pentane (C5H12)	0	0	0	0,15	0,13
Hexane (C6H14)	0	0,8857	0	0,22	0,49
Heptane (C7H16)	0,006	0,4292	0,0036	0,16	0
Octane (C8H18)	0,1371	0,058	0,0871	0,15	0
Nonane (C9H20)	0,0032	0,0068	0,0033	0,05	0
Decane (C10H22)	0,0006	0,0031	0,0003	0,01	0
M-C Pentane (C6H12)	0,0024	0	0,0013	0,06	0
Cyclohexane (C6H12)	0,0016	0	0,0031	0,09	0
M-C Hexane (C7H14)	0,3431	0	0,3878	0,14	0
H2S	0,7359	0,6161	0	0	0
Benzene (C6H6)	0,429	0,2097	0,3293	0,29	0

IPBZ, NPBZ, 124TB (C9H12)	0,0032	4,477	0,0035	0	0
Toluene (C7H8)	0,0008	0,2097	0,0009	0,18	0
Xylene (C8H10)	0,0241	0,2097	0,0217	0,03	0
TOTAL COMPONEN, % mole	100	100	100	100	100

Tabel 4.4 Data Operasinal WHRU

Stream No. (reff only)	H-1	H-2
Description	Heating Medium In	Heating Medium Out
Fluid Service	Hot Oil	Hot Oil
Temperature, oF	288,68	342,16
Pressure, psig	130,8	115,8
Flowrate, BPD	187.850,61	187.850,61

4.2 Analisa Pembakaran pada Thermal Oxidizer

Pembakaran pada TOX yang akan dianalisa berupa data desain dan data operasional. Untuk data desain tidak dilakukan variasi karena hanya untuk pengecekan, sedangkan untuk data operasional akan dilakukan variasi *excess air* antara 10-35% dengan kenaikan 5% dan variasi *flowrate* 60%-100% *fuel gas* dari *flowrate* operasional dengan kenaikan 20%. Untuk contoh perhitungan pada analisa pembakaran TOX akan menggunakan data desain.

4.2.1 Stoikiometri Pembakaran pada TOX

Dalam kesetimbangan reaksi kimia pembakaran dibutuhkan sejumlah udara pembakaran untuk menghasilkan pembakaran sempurna. Perhitungan dalam menetapkan jumlah udara pembakaran dilakukan pada setiap unit *input* karena masing-masing memiliki kebutuhan udara yang berbeda-beda. Dari data desain kondisi normal, *other hydrocarbon* yang berjumlah sangat kecil dapat dieliminasi. Contoh stoikiometri pembakaran akan ditunjukkan pada *input* unit 1 sebagai berikut.

 $10^{-2}[95,313CO_2 + 0,055N_2 + 0,174CH_4 + 0,01C_2H_6 + 0,004C_3H_8 + 0,002C_4H_{10} + 0,001C_6H_{14} + 0,001C_{10}H_{22} +$

 $\begin{array}{l} 0,00967(C_6H_6+C_7H_8+C_8H_{10})+0,005C_2H_6S_2+0,005H_2S+\\ 0,011C_2H_6S+0,005C_3H_8S+0,005COS+4,383H_2O]+\\ e(O_2+3,76N_2)\rightarrow aCO_2+bH_2O+cSO_2+dN_2 \end{array}$

Dalam reaksi pembakaran tersebut, udara pembakaran yang belum diketahui jumlahnya ditunjukkan dengan simbol e, sedangkan produk pembakaran yang juga belum diketahui jumlahnya ditunjukkan dalam simbol a, b, c, dan d. Nilai yang belum diketahui dapat dihitung dengan menjumlah atom C, O, H, N, dan S.

 $C \to 0.95798 = a$ $O \to 1.95014 + 2e = 2a + b + 2c$ $H \to 0.09988 = 2b$ $N \to 0.0011 + 2(3.76e) = 2d$ $S \to 0.00036 = c$

Dari persamaan atom C, H, O, N, dan S, didapatkan nilai a = 0.958; b = 0.0499; c = 0.00036; d = 0.0315; dan e = 0.00824. Sehingga reaksi stoikiometri dari unit 1 yaitu $10^{-2}[95,313CO_2 + 0.055N_2 + 0.174CH_4 + 0.01C_2H_6 + 0.004C_3H_8 + 0.002C_4H_{10} + 0.001C_6H_{14} + 0.001C_{10}H_{22} + 0.00967(C_6H_6 + C_7H_8 + C_8H_{10}) + 0.005C_2H_6S_2 + 0.005H_2S + 0.011C_2H_6S + 0.005C_3H_8S + 0.005COS + 4.383H_2O] +$

 $0,00824(O_2 + 3,76N_2) \rightarrow 0,95798CO_2 + 0,04994H_2O + 0,00036SO_2 + 0,0315N_2$

Pada desain TOX nilai *excess air* yaitu 15%, sehingga [jumlah udara aktual = (1+15%) x *e*], didapatkan reaksi pembakaran aktual.

 $10^{-2}[95,313CO_{2} + 0,055N_{2} + 0,174CH_{4} + 0,01C_{2}H_{6} + 0,004C_{3}H_{8} + 0,002C_{4}H_{10} + 0,001C_{6}H_{14} + 0,001C_{10}H_{22} + 0,00967(C_{6}H_{6} + C_{7}H_{8} + C_{8}H_{10}) + 0,005C_{2}H_{6}S_{2} + 0,005H_{2}S + 0,011C_{2}H_{6}S + 0,005C_{3}H_{8}S + 0,005COS + 4,383H_{2}O] +$

 $\begin{array}{l} 0,009476(O_2+3,76N_2) \rightarrow 0,95798CO_2+0,04994H_2O+\\ 0,00036SO_2+0,0362N_2+0,001236O_2 \end{array}$

4.2.2 Perhitungan Berat Molekuler Waste Gas

Berat molekuler dihitung pada masing-masing unit *input* TOX. Contoh perhitungan untuk *input* unit 1, nilai hasil perhitungan untuk semua *input* terdapat pada lampiran tabel hasil perhitungan.

Diketahui : *M* masing-masing komponen, dengan satuan kg/kmol % mol masing-masing komponen.

Penyelesaian :

 $M_i = M x \% mol$, dengan satuan kg/kmol

 $M_{unit1} = \sum_{i=1}^{27} M_i$, merupakan jumlah berat molekuler dari 27 komponen, dengan satuan kg/kmol.

= 42,834 kg/kmol

4.2.3 Perhitungan Rasio Udara-Bahan Bakar Teori dan Aktual

Dari hasil reaksi pembakaran *input* unit 1, didapatkan rasio udara-bahan bakar dengan basis molar dan basis massa sebagai berikut.

mol bahan bakar = jumlah seluruh hidrokarbon pada reaktan, terdapat pada lampiran

= 0,00252mol udara teori = 0,00824 x (1+3,76) = 0,0392 Sehingga $\overline{AF}_{teori} = \frac{mol \, udara \, teori}{mol \, bahan \, bakar} = \frac{0,0392}{0,00252}$ =15,564 kmol(udara) / kmol(bahan bakar) $AF_{teori} = \overline{AF}_{teori} \left(\frac{M_{udara}}{M_{bahan \, bakar}}\right)$ = 15,564 $\left(\frac{28,97}{32,9}\right)$ = 13,705 kg(udara)/kg(bahan bakar)

Dari hasil reaksi pembakaran *input* unit 1 dengan *excess air* 15%, didapatkan rasio udara-bahan bakar aktual dengan basis molar dan basis massa sebagai berikut.

mol bahan bakar = jumlah seluruh hidrokarbon pada reaktan = 0,00252 mol udara teori = 1,15 x 0,00824 x (1+3,76) = 0,0451 Sehingga $\overline{AF}_{aktual} = \frac{mol \, udara \, aktual}{mol \, bahan \, bakar} = \frac{0,0451}{0,00252}$ = 17,899 kmol(udara) / kmol(bahan bakar) $AF_{aktual} = \overline{AF}_{aktual} \left(\frac{M_{udara}}{M_{bahan \, bakar}}\right)$ = 17,899 $\left(\frac{28,97}{32,9}\right)$ = 15,761 kg(udara)/kg(bahan bakar)

4.2.4 Perhitungan Laju Aliran Massa Waste Gas

Laju aliran massa *input* TOX dihitungan pada masingmasing unit karena memiliki *flowrate* dan kondisi yang berbeda. Contoh perhitungan untuk *input* unit 1, nilai hasil perhitungan untuk semua *input* terdapat pada lampiran tabel hasil perhitungan. Diketahui : unit 1, flowrate (\dot{V}_{unit1}) = 15,334 MMSCFD

= 15,334 MMSCFD x 1177,17
$$\frac{m^3/Jam}{MMSCFD}$$

= 18.050,725 m³/jam

 $P_{unit1} = 5,96psig = 142.361,625\ Pa\ ;\ T_{unit1} = 104^{o}F = 313,15K$ Penyelesaian :

$$\begin{aligned} \rho_{unit1} &= \frac{m}{v} = \frac{P}{\left(\bar{R}/_{M}\right)T} \\ &= \frac{142.361,625 Pa}{\left(\frac{8314J/kmolK}{42,8354kg/kmol}\right)^{313,15K}} = 2,342 \ kg/m^{3} \\ \dot{m}_{unit1} &= \rho \dot{V} = 2,342 \ kg/m^{3} \ .18.050,725 \ m^{3}/jam \\ &= 42.279,306 \ kg/jam \end{aligned}$$

4.2.5 Perhitungan Laju Aliran Massa dan Volume Udara Teori dan Aktual

Laju aliran massa dan volume udara dihitung berdasarkan AF_{teori} dan AF_{aktual} pada masing-masing unit *input*. Contoh perhitungan untuk *input* unit 1, nilai hasil perhitungan untuk semua *input* terdapat pada lampiran tabel hasil perhitungan.

Diketahui : $\dot{m}_{BB+HK} = 81,832$ kg/jam, merupakan laju aliran massa bahan bakar dan hidrokarbon hanya yang membutuhkan udara pembakaran.

 $AF_{teori} = 13,704 \text{ kg}(\text{udara})/\text{kg}(\text{bahan bakar})$ $AF_{aktual} = 15,761 \text{ kg}(\text{udara})/\text{kg}(\text{bahan bakar})$

 $\rho_{udara} = 1,139 \text{ kg/m}^3$, densitas udara pembakaran

Penyelesaian :

 $\dot{V}_{udara\ teori} = \dot{m}_{udara\ teori} / \rho_{udara} = 984,625 \text{ m}^3/\text{jam}$ $\dot{V}_{udara\ aktual} = \dot{m}_{udara\ aktual} / \rho_{udara} = 1.132,319 \text{ m}^3/\text{jam}$

4.2.6 Perhitungan Perubahan Entalpi

Perubahan entalpi dihitung dengan entalpi pembentukan dan $\Delta \bar{h}$ masing-masing komponen gas. *Waste gas* yang masuk ke dalam TOX tidak dalam kondisi standar 25°C 1atm, sehingga $\Delta \bar{h}$ tidak bisa dieliminasi. Untuk $\Delta \bar{h}$ udara dieliminasi karena udara masuk pada kondisi standar. Perhitungan untuk entalpi pembentukan dan $\Delta \bar{h}$ dilakukan per unit *input* karena memiliki %mol dan kondisi yang berbeda.

Untuk perhitungan entalpi pembentukan reaktan, udara, dan produk sebagai berikut.

Diketahui : \bar{h}_{f}^{o} , entalpi pembentukan dari masing-masing komponen gas, dengan satuan kJ/kmol

- *M*, berat molekuler dari masing-masing komponen gas, dengan satuan kg/kmol.
- M_i , berat molekuler dari masing-masing komponen gas sesuai % mol, dengan satuan kg/kmol.
- M_{unit} , berat molekuler gas dari sebuah unit *input*, dengan satuan kg/kmol.

Penyelesaian : $\%mass = M_i/M_{unit}$ $h_f^o = (\bar{h}_f^o/M) \times \%mass$; dengan satuan kJ/kg $[h_f^o]_{reaktan} = \sum h_f^o$

Untuk udara yg terdiri dari O₂ dan N₂, nilai $[h_f^o]_{O_2} = 0$ dan $[h_f^o]_{N_2} = 0$ sehingga dapat dieliminasi. Untuk entalpi pembentukkan produk dihitung sama dengan cara perhitungan entalpi pembentukan reaktan. Dari tabel hasil perhitungan yang terdapat pada lampiran, didapatkan pada unit 1 $[h_f^o]_{reaktan} = -9.052,232 \text{ kJ/kg}.$

 $[h_f^o]_{produk} = -8.851,005 \text{ kJ/kg}.$

Untuk perhitungan Δh reaktan dan udara sebagai berikut.

Diketahui : $\overline{c_p}$, kalor spesifik dari masing-masing komponen gas, dengan satuan kJ/kmolK

- ΔT , perbedaan kondisi suhu *input* dengan suhu referensi 25°C
- *M*, berat molekuler dari masing-masing komponen gas, dengan satuan kg/kmol.
- M_i , berat molekuler dari masing-masing komponen gas sesuai % mol, dengan satuan kg/kmol.
- M_{unit} , berat molekuler gas dari sebuah unit *input*, dengan satuan kg/kmol.

Penyelesaian :

%mass = M_i/M_{unit} $\Delta h = \{(\bar{c_p}\Delta T)/M\} x \%mass \text{ dengan satuan kJ/kg}$ $[\Delta h]_{reaktan} = \sum \Delta h$

Dari tabel hasil perhitungan yang terdapat pada lampiran, didapatkan pada unit 1

 $\Delta h_{reaktan} = 13,958 \text{ kJ/kg}.$

4.2.7 Perhitungan Laju Aliran Panas (\dot{Q})

Laju aliran panas dihitung berdasarkan masing-masing unit *input*, karena memiliki laju aliran massa yang berbeda.

Diketahui : \dot{m} masing-masing unit, dengan satuan kg/jam

 h_f^o masing-masing unit, dengan satuan kJ/kg

 Δh masing masing unit, dengan satuan kJ/kg

Penyelesaian

 $\dot{Q} = \dot{m}(h_f^o + \Delta h)$, dengan satuan kJ/jam

Dari *input* unit 1, jumlah $\dot{Q}_{reaktan}$ sebesar -382.120.389,056 kJ/jam dan $\dot{Q}_{h_f produk}$ sebesar -384.135.793,51 kJ/jam. Untuk hasil masing-masing per unit terdapat pada lampiran tabel hasil perhitungan.

4.2.8 Perhitungan Laju Aliran Massa Produk Pembakaran

Laju aliran massa produk merupakan jumlah dari laju aliran massa reaktan dan udara pembakaran.

Diketahui : $\dot{m}_{reaktan}$ dan \dot{m}_{udara} masing-masing unit, dengan satuan kg/jam

Penyelesaian :

 $\dot{m}_{produk} = \dot{m}_{reaktan} + \dot{m}_{udara}$

Untuk *input* unit 1 didapatkan laju aliran massa produk pembakaran sebagai berikut.

 $\dot{m}_{produk \, unit1} = 42.278,028 kg/jam + 1.121,488 kg/jam = 43.399,516 kg/jam$

4.2.9 Temperatur Flue Gas

Dalam perhitungan temperatur *flue gas*, digunakan metode temperatur adiabatik dimana pada saat pembakaran (sebelum *flue gas* naik ke WHRU) diasumsikan tidak ada kalor yang terbuang. Sehingga didapatkan

 $\dot{m}_{reaktan}(h_f^o + \Delta h)_{reaktan} + \dot{m}_{udara}(h_f^o + \Delta h)_{udara} = \dot{m}_{produk}(h_f^o + \Delta h)_{produk}$ dimana $h_f^o = 0$ dan $\Delta h_{udara} = 0$, maka $\dot{m}_{udara}(h_f^o + \Delta h)_{udara}$ tereliminasi.

 $\dot{m}_{reaktan}(h_f^o + \Delta h)_{reaktan} = \dot{m}_{produk}(h_f^o + \Delta h)_{produk}$

$$\frac{\dot{Q}_{reaktan} = \dot{Q}_{h_f produk} + \dot{m}_{produk} \Delta h_{produk}}{\frac{\dot{Q}_{reaktan} - \dot{Q}_{h_f produk}}{\dot{m}_{produk}}} = \Delta h_{produk}$$

Untuk mendapatkan Δh_{produk} dihitungan secara keseluruhan *input* pada TOX, sehingga $\dot{Q}_{reaktan}$, $\dot{Q}_{h_f produk}$, dan \dot{m}_{produk} merupakan total dari seluruh input.

UNIT	Qrate hf+∆h Reaktan (kJ/jam)	Qrate hf flue gas (kJ/jam)	mass rate flue gas teori (kg/jam)	udara EA 15% (kg/jam)
1	-382.120.389,05	-384.129.324,97	43.399,516	168,223
3	-5.836.775,682	-37.272.193,824	16.276,141	2.258,979
4	-2.593.729,247	-4.906.158,307	997,665	112,908
5	-17.394.457,983	-40.968.923,768	7.135,165	0,000
6	-21.486,533	-222.376,222	74,351	10,363
7	-11.175.608,552	-139.865.431,61	46.692,207	6.586,002
8	-65.748,285	-313.953,057	205,699	0,000
9	-47.711,093	-56.663,542	116,482	0,000
Jumlah	-419.255.906,42	-607.735.025,30	114.897,227	9.136,475
	Δh flue gas		1.519,580	kJ/kg

Tabel 4.5 Perhitungan ⊿h Data Desain TOX

Untuk data desain TOX dengan *excess air* 15% didapatkan $\Delta h_{produk} = 1.519,580 kJ/kg$.

Setelah didapatkan Δh_{produk} dari perhitungan diatas, dilakukan perhitungan Δh_{produk} berdasarkan komponen *flue gas* hasil reaksi stoikiometri pembakaran dari seluruh data desain dengan *excess air* 15%.

Tabel 4.6 Komponen Flue Gas dan Entalpi Kondisi Referensi
(Excess Air 15%)

Komponen Produk dengan EA 15%	koefisien mol	M (kg/kmol)	mass	Mi (kg/kmol)	%mass	h at 298K (kJ/kmol)
CO2	4,7150	44,01	207,505	4,775	0,1691	9.364
H2O	7,2912	18,02	131,387	3,023	0,1070	9.904
SO2	0,0987	64,06	6,324	0,145	0,0051	9.616
N2	30,3481	28	849,745	19,555	0,6925	8.669
02	1,0019	32	32,061	0,738	0,0261	8.682
JUMLAH	43,454		1.227,024	28,237	1,000	

Temperatur *flue gas* dapat ditentukan melalui prosedur iterasi dengan mencoba entalpi *flue gas* antara antara 1100-2000K.

Tabel 4.7 Entalpi Komponen Flue Gas pada 1.100K hingga1.500K

Komponen Produk dengan EA 15%	h at 1100K (kJ/kmol)	h at 1200K (kJ/kmol)	h at 1300K (kJ/kmol)	h at 1400K (kJ/kmol)	h at 1500K (kJ/kmol)
CO2	48.258,0	53.848,0	59.522,0	65.271,0	71.078,0
H2O	40.071,0	44.380,0	48.807,0	53.351,0	57.999,0
SO2	40.902,0	46.002,0	51.102,0	56.202,0	61.302,0
N2	33.426,0	36.777,0	40.170,0	43.605,0	47.073,0
02	34.899,0	38.447,0	42.033,0	45.648,0	49.292,0

Tabel 4.8 Entalpi Komponen Flue Gas pada 1.600K hingga2.000K

Komponen Produk dengan EA 15%	h at 1600K (kJ/kmol)	h at 1700K (kJ/kmol)	h at 1800K (kJ/kmol)	h at 1900K (kJ/kmol)	h at 2000K (kJ/kmol)
CO2	76.944,0	82.856,0	88.806,0	94.793,0	100.804,0
H2O	62.748,0	67.589,0	72.513,0	77.571,0	82.593,0
SO2	66.402,0	71.502,0	76.602,0	81.702,0	86.802,0
N2	50.571,0	54.099,0	57.651,0	61.220,0	64.810,0
02	52.961,0	56.652,0	60.371,0	64.116,0	67.881,0

Perubahan entalpi pada masing-masing suhu *flue gas* dapat dihitung menggunakan rumus

 $\Delta h = \{(\overline{c_p}\Delta T)/M\} \times \% mass$, perubahan entalpi masing-masing komponen *flue gas* pada suhu tertentu dengan satuan kJ/kg $[\Delta h]_{produk} = \sum \Delta h$, jumlah perubahan entalpi seluruh komponen flue gas pada suhu tertentu.

∆ <i>h</i> at 1100K (kJ/kg)	∆h at 1200K (kJ/kg)	∆ <i>h</i> at 1300K (kJ/kg)	∆h at 1400K (kJ/kg)	∆h at 1500K (kJ/kg)
1.485,012	1.690,112	1.898,435	2.109,905	2.323,963
∆h at 1600K	∆h at 1700K	Δh at 1800K	Δh at 1900K	Δh at 2000K
(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)
2.540,466	2.759,252	2.979,971	3.202,813	3.426,293

Tabel 4.9 Nilai *∆h Flue Gas* pada Setiap Suhu

Nilai Δh_{produk} yang sesuai terletak antara suhu 1.100K dan 1.200K, vaitu sebesar 1.485,012kJ/kg dan 1.690,112kJ/kg.

Selanjutnya dilakukan interpolasi antara suhu 1.100K dan 1.200K, $T_{flue\ gas} = 1.100 + \frac{(1.200 - 1.100)(1.519, 58 - 1.485, 012)}{(1.690, 112 - 1.485, 012)}$

= 1.116,854 K

Dari perhitungan diatas didapatkan suhu flue gas (sebelum naik ke WHRU) sebesar 1.116,854K (1.550,667°F).

4.2.10 Heat Loss Pada Dinding TOX

Flue gas hasil pembakaran naik menuju WHRU akan terjadi kehilangan panas yang melalui dinding TOX. Dinding TOX dibagi menjadi dua bagian yaitu lower chamber dan upper chamber, diasumsikan sebagai silinder komposit dengan susunan bahan firebrick dan kaolite. Tabel 4.10 menunjukkan susunan dinding TOX.

	U		
Bagian	В	Tinggi (m)	
Lower Chamber	4,5"-80 Firebrick	4"-Kaolite 2500-HS	10,548
Upper Chamber	-	6"- Kaolite 2500HS	4,736

Tabel 4.10 Susunan Dinding TOX

Contoh perhitungan akan dilakukan untuk data desain.

 $\frac{Lower Chamber}{k_{80firebrick} = 0,31W/mK}$ $k_{kaolite2500HS} = 0,485W/mK$ $\dot{m}_{fluegas} = 124.033,702 \text{ kg/jam}$ $V_{udara luar} = 12km/jam = 3,333 \text{ m/s}$ $T_{flue gas} = 1.116,854K$ $T_{udara} = 298,15K$ $D_{TOX} = 4,88m$ $D_{firebrick} = 5,1086m$ $D_{kaolite} = 5,3118m$

Penyelesaian :

$$\begin{aligned} Re_{flue\ gas} &= \frac{4m}{\pi D \mu} = \frac{4 \times 124.033,702 \frac{kg}{jam} \times \frac{1}{3600} \frac{jam}{s}}{\pi \times 4,88m \times 0,429 \times 10^{-4} Ns/m^2} = 209.541,58 \\ Nu_{flue\ gas} &= 0,023 \times Re^{\frac{4}{5}} \times Pr^{0,3} \\ &= 0,023 \times 209.541,58^{4/5} \times 0,738^{0,3} = 379,456 \\ h_{flue\ gas} &= \frac{Nu\ k}{D} = \frac{379,456 \times 0,0748}{4,88} = 5,816\ W/m^2K \\ Re_{udara\ luar} &= \frac{\rho\ V\ D}{\mu} = \frac{1,139 \times 3,33 \times 5,3118}{0,0000185} = 1.089.025,236 \\ Nu_{udara\ luar} &= C\ Re^m\ Pr^n\ \left(\frac{Pr}{Pr_s}\right)^{\frac{1}{4}} \\ &= 0,076\ x\ 1.089.025,36^{0,7}\ x\ 0,707^{0,37}\ x\ \left(\frac{0,707}{0,686}\right)^{1/4} \\ &= 1.133.181 \\ h_{udara\ luar} &= \frac{Nu\ k}{D} = \frac{1.133,181 \times 0,0263}{5,3118} = 5,611\ W/m^2K \\ U &= 1/\left[\frac{1}{h_{flue}} + \frac{r1}{k_1}\ln\frac{r2}{r_1} + \frac{r1}{k_2}\ln\frac{r3}{r_2} + \frac{r1}{r_3}\frac{1}{h_{udara}}\right] \\ U &= 1/\left[\frac{1}{5,816} + \frac{2,44}{0,31}\ \ln\frac{2,5543}{2,44} + \frac{2,44}{0,485}\ \ln\frac{2,6559}{2,5543} + \frac{2,44}{2,6559}\ \frac{1}{5,611}\right] \\ U &= 1,121\ W/m^2K \\ A &= 2\pi r_1L = 2\pi\ x\ 2,44m\ x\ 10,548m = 161,711\ m^2 \\ \dot{Q} &= UA(T_{flue} - T_{udara}) \end{aligned}$$

= 1,121 x 161,711 x (1.116,854 - 298,15) = 148,413,049 W $\dot{Q} = 148,413 kJ/s = 534.286,977 kJ/jam$ Suhu flue gas setelah melewati lower chamber dapat dihitung dengan rumus $\dot{Q} = \dot{m}c_p\Delta T$ $T_{flue gas 2} = T_{flue gas} - \frac{\dot{Q}}{\dot{m}c_p}$ $= 1.116,854K - \frac{534.286,977 kJ/jam}{124.033,702kg/jam.1,32 kJ/kgK}$ $T_{flue gas 2} = 1.116,854K - 3,263K = 1.113,591 K$

 $\begin{array}{l} \underline{Upper\ Chamber} \\ k_{kaolite2500HS} = 0,485 W/mK \\ \dot{m}_{fluegas} = 124.033,702 \ kg/jam \\ V_{udara\ luar} = 12 km/jam = 3,333 \ m/s \\ T_{flue\ gas\ 2} = 1.113,591 \ K \\ T_{udara} = 298,15 K \\ D_{TOX} = 4,88 m \\ D_{kaolite} = 5,1848 m \end{array}$

Penyelesaian :

$$\begin{split} h_{flue\ gas} &= 5,816\ W/m^2 K\\ Re_{udara\ luar} &= \frac{\rho\ V\ D}{\mu} = \frac{1,139\ x\ 3,33\ x\ 5,1848}{0,0000185} = 1.062.987,696\\ Nu_{udara\ luar} &= C\ Re^m\ Pr^n\ \left(\frac{Pr}{Pr_s}\right)^{\frac{1}{4}}\\ &= 0,076\ x\ 1.062.987,696^{0,7}\ x\ 0,707^{0,37}\ x\ \left(\frac{0,707}{0,686}\right)^{1/4}\\ &= 1.114,147\\ h_{udara\ luar} &= \frac{Nu\ k}{D} = \frac{1.114,147\ x\ 0,0263}{5,1848} = 5,652\ W/m^2 K\\ U &= 1/[\frac{1}{h_{flue}} + \frac{r1}{k_1}ln\frac{r2}{r_1} + \frac{r1}{r2}\frac{1}{h_{udara}}]\\ &= 1/[\frac{1}{5,816} + \frac{2,44}{0,485}\ ln\frac{2,5924}{2,44} + \frac{2,44}{2,5924}\ \frac{1}{5,652}] \end{split}$$

$$U = 1,5542 W/m^{2}K$$

$$A = 2\pi r_{1}L = 2\pi x 2,44m x 4,736m = 72,608 m^{2}$$

$$\dot{Q} = UA(T_{flue} - T_{udara})$$

$$= 1,5542 x 72,608 x (1.113,591 - 298,15) = 92.020,359 W$$

$$\dot{Q} = 92,02 kJ/s = 331.273,292 kJ/jam$$
Suhu flue gas setelah melewati upper chamber dapat dihitung dengan rumus
$$\dot{Q} = \dot{m}c_{p}\Delta T$$

$$T_{in WHRU} = T_{flue gas 2} - \frac{\dot{Q}}{\dot{m}c_{p}}$$

$$= 1.113,591K - \frac{331.273,292 kJ/jam}{124.033,702kg/jam.1,32 kJ/kgK}$$

$$T_{in WHRII} = 1.113,591K - 2,023K = 1.111,568 K$$

4.3 Hasil Variasi pada Kondisi Operasional TOX

Data operasional akan dilakukan variasi *excess air* antara 10-35% dengan kenaikan 5% dan variasi *flowrate* 60%-100% *fuel gas* dari *flowrate* operasional dengan kenaikan 20%. Variasi pada *excess air* dan *flowrate fuel gas* akan berpengaruh pada laju aliran massa dan suhu *flue gas* hasil pembakaran. Langkah-langkah perhitungan sama seperti perhitungan data desain yang telah dibahas sebelumnya. Hasil lengkap perhitungan data operasional dapat dilihat pada lampiran tabel hasil perhitungan.

Pada perhitungan data operasional didapatkan *heat rate flue gas* untuk 60% *fuel gas* sebesar 309.097.072,064 kJ/jam, untuk 80% *fuel gas* sebesar 324.929.142,315 kJ/jam dan untuk 100% *fuel gas* sebesar 340.761.212,566 kJ/jam.

Tabel 4.11 Hasil Perhitungan Δh Flue Gas 100% Flowrate Fuel Gas

Excess Air	0%	10%	15%	20%	25%	30%	35%
∆h flue gas (kJ/kg)	2.108,9	1.970,9	1.908,5	1.849,9	1.794,8	1.742,9	1.693,9

Excess Air	0%	10%	15%	20%	25%	30%	35%
∆h flue gas (kJ/kg)	2.084,9	1.950,1	1.889,0	1.831,7	1.777,7	1.726,8	1.678,8

Tabel 4.12 Hasil Perhitungan *∆h Flue Gas* 80% *Flowrate Fuel Gas*

Tabel 4.13 Hasil Perhitungan *∆h Flue Gas* 60% *Flowrate Fuel Gas*

Excess Air	0%	10%	15%	20%	25%	30%	35%
Δh flue gas (kJ/kg)	2.059,0	1.927,6	1.868,0	1.812,0	1.759,2	1.709,4	1.662,4

Tabel 4.14 Hasil Perhitungan *∆h Flue Gas* untuk *Excess Air* 10% pada Setiap Suhu

∆ <i>h</i> at 1100K	<i>∆h</i> at 1200K	<i>∆h</i> at 1300K	<i>∆h</i> at 1400K	<i>∆h</i> at 1500K
(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)
1.420,709	1.616,982	1.816,311	2.018,621	2.223,369

Tabel 4.15 Hasil Perhitungan *∆h Flue Gas* untuk *Excess Air* 15% pada Setiap Suhu

∆ <i>h</i> at 1100K	∆h at 1200K	∆h at 1300K	∆h at 1400K	∆ <i>h</i> at 1500K
(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)
1.471,099	1.674,196	1.880,432	2.089,727	2.301,524

Tabel 4.16 Hasil Perhitungan ∆h Flue Gas untuk Excess Air 20%pada Setiap Suhu

<i>∆h</i> at 1100K	∆ <i>h</i> at 1200K	<i>∆h</i> at 1300K	<i>∆h</i> at 1400K	<i>∆h</i> at 1500K
(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)
1.521,593	1.731,515	1.944,658	2.160,940	2.379,788

Tabel 4.17 Hasil Perhitungan ∆h Flue Gas untuk Excess Air 25%pada Setiap Suhu

∆h at 1100K	∆h at 1200K	∆h at 1300K	∆ <i>h</i> at 1400K	∆ <i>h</i> at 1500K
(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)
1.572,044	1.788,793	2.008,845	2.232,114	2.458,013

Tabel 4.18 Hasil Perhitungan ∆h Flue Gas untuk Excess Air 30%pada Setiap Suhu

- · · · ·	A			
<i>∆h</i> at 1100K	∆ <i>h</i> at 1200K	<i>∆h</i> at 1300K	<i>∆h</i> at 1400K	<i>∆h</i> at 1500K
(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)
1.622,501	1.846,077	2.073,039	2.303,296	2.536,249

Tabel 4.19 Hasil Perhitungan ∆h Flue Gas untuk Excess Air 35%pada Setiap Suhu

∆h at 1100K	∆h at 1200K	∆h at 1300K	∆ <i>h</i> at 1400K	∆h at 1500K
(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)
1.672,963	1.903,367	2.137,240	2.374,486	2.614,492

 Tabel 4.20 Hasil Suhu Flue Gas Pembakaran TOX pada Data

 Operasional

Flowrate Fuel Gas	Excess Air	T Flue Gas (K)	T in WHRU (K)
	0%	1.495,811	1.489,241
	10%	1.355,029	1.349,495
	15%	1.293,970	1.288,872
60%	20%	1.237,772	1.233,067
	25%	1.186,581	1.182,228
	30%	1.138,908	1.134,875
	35%	1.095,440	1.091,694
	0%	1.509,288	1.502,852
	10%	1.366,145	1.360,732
	15%	1.304,103	1.299,120
80%	20%	1.247,010	1.242,415
	25%	1.194,900	1.190,652
	30%	1.146,675	1.142,741
	35%	1.102,534	1.098,884
	0%	1.521,766	1.515,459
	10%	1.376,456	1.371,160
	15%	1.313,435	1.308,564
100%	20%	1.255,564	1.251,003
	25%	1.202,746	1.198,599
	30%	1.153,857	1.150,019
	35%	1.109,091	1.105,532

4.4 Pembahasan Grafik Pengaruh Variasi Bahan Bakar dan Excess Air terhadap Perubahan Entalpi dan Suhu Flue Gas

4.4.1 Pengaruh Variasi Excess Air terhadap Ah Flue Gas

Gambar 4.3 Grafik $\Delta h_{flue gas} = f(EA)$ pada 60% *fuel gas*

Gambar 4.4 Grafik $\Delta h_{flue gas} = f(EA)$ pada 80% *fuel gas*

Gambar 4.5 Grafik $\Delta h_{flue gas} = f(EA)$ pada 100% *fuel gas*

Pada gambar 4.3, gambar 4.4 dan gambar 4.5 merupakan grafik yang menunjukkan besar perubahan entalpi (Δh) pada *flue gas* yang dihasilkan pada berbagai variasi *excess air*. Gambar 4.3 menunjukkan untuk *flowrate fuel gas* sejumlah 60%, gambar 4.4 menunjukkan untuk *flowrate fuel gas* sejumlah 80%, serta gambar 4.5 menunjukkan untuk *flowrate fuel gas* sejumlah 100%.

Pada gambar 4.3-4.5 diperoleh nilai tertinggi perubahan entalpi (Δh) flue gas pada 60%-100% fuel gas terdapat pada excess air sebesar 0%, sedangkan nilai terendah perubahan entalpi (Δh) flue gas pada 60%-100% fuel gas terdapat pada excess air sebesar 35%. Nilai tertinggi Δh flue gas pada 60% fuel gas sebesar 2.059,016 kJ/kg, nilai tertinggi Δh flue gas pada 80% fuel gas sebesar 2.084,915 kJ/kg, dan nilai tertinggi Δh flue gas pada 100% fuel gas sebesar 2.108,977 kJ/kg. Sementara itu, nilai terendah Δh flue gas pada 60% fuel gas sebesar 1.662,456 kJ/kg, nilai terendah Δh flue gas pada 80% fuel gas sebesar 1.678,802 kJ/kg, dan nilai terendah Δh flue gas pada 100% fuel gas sebesar 1.693,909 kJ/kg. Perubahan entalpi pada data desain dan data operasional terdapat perbedaan yang cukup jauh, hal tersebut dikarenakan input operasional lebih tinggi dibandingkan input desain awal TOX. Pada grafik 60%-100% *fuel gas* terlihat penurunan perubahan entalpi (Δh) *flue gas* seiring dengan meningkatnya *excess air*. Hal tersebut terjadi karena pada saat *excess air* meningkat, maka laju aliran massa pada *flue gas* juga akan meningkat. Selain itu pada saat *excess air* meningkat, *heat rate* dari entalpi pembentukan produk tidak mengalami perubahan, hal tersebut dikarenakan entalpi pembentukan produk dihitung berdasarkan udara teori yang dibutuhkan pembakaran. Oleh karena itu, sesuai dengan rumusan dibawah.

$$\Delta h_{produk} = \frac{\dot{Q}_{reaktan} + \dot{Q}_{udara} - \dot{Q}_{h_f produk}}{\dot{m}_{produk}}$$

Pada grafik hasil perhitungan sesuai dengan teori, yaitu semakin besar jumlah *excess air*, maka perubahan entalpi (Δh) flue gas akan semakin rendah. Analisa perhitungan yang digunakan merupakan proses pembakaran secara teoritis, sehingga nilai terbaik terdapat pada stoikiometri (*excess air* 0%), penambahan *excess air* mengurangi panas pembakaran.

4.4.2 Pengaruh Variasi Excess Air terhadap Suhu Flue Gas

Gambar 4.6 Grafik $T_{\text{flue gas}} = f(EA)$ pada 60% *fuel gas*

Gambar 4.7 Grafik $T_{\text{flue gas}} = f(EA)$ pada 80% *fuel gas*

Gambar 4.8 Grafik $T_{\text{flue gas}} = f(EA)$ pada 100% *fuel gas*

Pada gambar 4.6, gambar 4.7 dan gambar 4.8 merupakan grafik yang menunjukkan suhu pada *flue gas* yang dihasilkan pada berbagai variasi *excess air*. Gambar 4.6 menunjukkan untuk *flowrate fuel gas* sejumlah 60%, gambar 4.7 menunjukkan untuk *flowrate fuel gas* sejumlah 80%, sedangkan gambar 4.8 menunjukkan untuk *flowrate fuel gas* sejumlah 100%.

Pada gambar 4.6-4.8 diperoleh nilai tertinggi suhu *flue gas* pada 60%-100% *fuel gas* terdapat pada *excess air* sebesar 0%, sedangkan nilai terendah suhu *flue gas* pada 60%-100% *fuel gas*

terdapat pada *excess air* sebesar 35%. Nilai suhu tertinggi pada 60% *fuel gas* sebesar 1.495,811K, nilai suhu tertinggi pada 80% *fuel gas* sebesar 1.509,288K, dan nilai suhu tertinggi pada 100% *fuel gas* sebesar 1.521,766K. Sementara itu, nilai suhu terendah pada 60% *fuel gas* sebesar 1.095,44K, nilai suhu terendah pada 80% *fuel gas* sebesar 1.102,534K, dan nilai suhu terendah pada 100% *fuel gas* sebesar 1.109,091K.

Pada grafik 60% *fuel gas*, 80% *fuel gas*, maupun 100% *fuel gas* terlihat penurunan suhu *flue gas* seiring dengan meningkatnya *excess air*. Hal tersebut terjadi karena pada saat *excess air* meningkat, maka laju aliran massa pada *flue gas* juga akan meningkat. Ketika laju aliran massa *flue gas* meningkat akan mengakibatkan kehilangan panas pada pembakaran juga meningkat. Oleh karena itu, suhu *flue gas* akan mengalami punurunan. Analisa perhitungan yang digunakan merupakan proses pembakaran secara teoritis, sehingga nilai terbaik terdapat pada stoikiometri (*excess air* 0%), penambahan *excess air* mengurangi panas pembakaran.

4.4.3 Perbandingan Δh dan Suhu Flue Gas dengan Variasi Flowrate Fuel Gas

Gambar 4.9 Grafik perbandingan $\Delta h_{flue gas} = f(EA)$ pada 60%, 80% dan 100% *fuel gas*

Gambar 4.10 Grafik perbandingan $T_{flue gas} = f(EA)$ pada 60%, 80% dan 100% *fuel gas*

Pada gambar 4.9 merupakan grafik yang menunjukkan perbandingan perubahan entalpi (Δh) pada *flue gas* antara 60%, 80% dan 100% *fuel gas*. Pada gambar 4.10 merupakan grafik yang menunjukkan perbandingan perubahan suhu pada *flue gas* antara 60%, 80% dan 100% *fuel gas*.

Dari gambar 4.9 diperoleh ketiga grafik mengalami penurunan, selain itu terlihat selisih perubahan entalpi (Δh) flue gas antara 60%-100% fuel gas. Selisih perubahan entalpi pada setiap variasi excess air juga berbeda-beda, semakin besar excess air terlihat perbedaan semakin kecil, serta semakin kecil jumlah fuel gas terlihat perbedaan semakin besar. Selisih terbesar terdapat pada excess air 0% antara fuel gas 60% dan 80% sebesar 25,9 kJ/kg, sedangkan selisih terkecil terdapat pada excess air 35% antara fuel gas 80% dan 100% sebesar 7,4 kJ/kg.

Dari gambar 4.10 diperoleh ketiga grafik mengalami penurunan, selain itu terlihat selisih suhu *flue gas* antara 60%, 80%, dan 100% *fuel gas*. Selisih perubahan entalpi pada setiap variasi *excess air* juga berbeda-beda, semakin besar *excess air* terlihat perbedaan semakin kecil, serta semakin kecil *fuel gas* terlihat

perbedaan semakin besar. Selisih terbesar terdapat pada *excess air* 0% antara *fuel gas* 60% dan 80% sebesar 13,477K, sedangkan selisih terkecil terdapat pada *excess air* 35% antara *fuel gas* 80% dan 100% sebesar 6,557K.

Pada dasarnya perubahan jumlah bahan bakar tidak mempengaruhi nilai perubahan entalpi (Δh) dan suhu pembakaran. Namun, pembakaran yang terjadi pada TOX terdapat *input waste gas* yang merupakan senyawa tidak menngalami reaksi pembakaran, seperti CO₂ dan N₂. Oleh karena itu, pembakaran pada TOX ketika dilakukan variasi penurunan jumlah bahan bakar terjadi sedikit penurunan perubahan entalpi (Δh) dan suhu. Dari gambar 4.9 dan 4.10 menunjukkan bahwa mengurangi *flowrate fuel gas* sebesar 20% tidak berdampak banyak pada perubahan entalpi dan suhu pada *flue gas*. Sehingga, pengurangan jumlah *fuel gas* bisa dilakukan untuk menghemat konsumsi bahan bakar.

4.5 Analisa Perpindahan Panas Waste Heat Recovery Unit

Analisa perpindahan panas pada WHRU yang akan dilakukan berupa data desain dan data operasional. Untuk data desain tidak dilakukan variasi karena hanya untuk pengecekan, sedangkan untuk data operasional akan dilakukan variasi suhu *flue gas* dari hasil analisa pembakaran TOX. Dalam melakukan analisa, tentunya dibutuhkan detail desain dari *heat exchanger* pada WHRU serta sifat-sifat termodinamika dari *oil* yang sebagai fluida dingin di dalam *tube*.

Detail desain WHRU :

- Fluida panas : *flue gas*, berada dalam *shell*
- Fluida dingin : *oil*, berada dalam *tube*
- Diameter dalam tube : 6,065in = 0,1541m
- Tebal *tube* : 0,28in = 0,00711m
- Diameter luar tube : 6,625in = 0,1683m
- Panjang tube : 4,8768m ; jumlah tube : 126; jumlah baris : 14
- Susunan *tube* : *staggered*
- S_T : 304,8mm; S_L : 264mm; S_D : 304,8mm
- Bahan *tube* : ASTM A106B, konduktivitas thermal : 51W/mK
- Bentuk *fin* : *annular fin*
- jumlah fin : 960 fin/tube
- Tebal fin: 0.05in = 0.00127m
- diameter *fin* : baris 4-5 : 0,1937m ; baris 6-7 : 0,2064m ; baris 8-14 : 0,2191m
- Jenis *oil* (fluida dingin) : TOTAL Seriola 1510
- Dimensi *shell* (P x L x T): 4,8768m x 2,8956m x 3,9343m
- Suhu *flue gas* masuk WHRU : desain 1.111,568K = 1.541,152°F; operasional : sesuai analisa pembakaran
- Suhu *flue gas* keluar *stack* : 408°F = 482K ; *mass rate* : 124.033,702 kg/jam
- Suhu *oil* masuk : desain : 297,5°F = 420,65K ; aktual : 288,68°F = 415,75K
- Suhu *oil* keluar : 350° F = 449,82K
- *Pressure* masuk *oil* :130,8psig = 1.003.159,255 Pa
- *Pressure* keluar *oil* : 115,8psig = 899.737,895 Pa
- *Pressure drop* max : 35psig = 342.641,506 Pa
- Laju aliran massa *oil* : normal : 2.960.950lb/jam = 1.343.064,328kg/jam ; max : 3.366.619lb/jam = 1.527.072,691 kg/jam

• *Fouling factor* : 0,001 jam.ft².F/BTU =0,00017611 m²K/W <u>Sifat termodinamika TOTAL Seriola 1510 :</u>

- Massa jenis : $49,63 \text{ lb/ft}^3 = 794,996 \text{ kg/m}^3$
- Kalor spesifik : 0,561 BTU/lb.F = 2,349 kJ/kgK
- Konduktivitas thermal : 0,0713 BTU/jam.ft.F = 0,1234 W/mK
- *Process fluid mass velocity* : normal : 681,8 lb/s.ft² ; max : 775 lb/s.ft²
- Viskositas : $1,79cp = 0,00179Ns/m^2$

Gambar 4.11 Susunan tube pada WHRU

4.5.1 Analisa Data Desain WHRU

• Perhitungan reynold number dan nusselt number fluida dingin $Re_{D_{cold}} = \frac{4m}{N_{in} \pi D_i \mu} = \frac{4 \times 1.343.064,328 \frac{kg}{jam} x_{3600s}^{1jam}}{6 \times \pi \times 0,1541m \times \frac{0,00179Ns}{m^2}} = 287.010,32$ $Nu_{cold} = 0,023Re_D^{4/5}Pr^n$; dengan n = 0,4 karena pemanasan sedangkan nilai *Prandtl Number*: $Pr = \frac{c_p \mu}{k} = \frac{2,359kJ/kgK \times 0,00179Ns/m^2}{0,1234W/mK} = 34,219$ $Nu_{cold} = 0,023x287.010,32^{4/5}x34,219^{0,4} = 2.196,609$

• Perhitungan koefisien perpindahan panas konveksi fluida dingin

$$h_{cold} = \frac{Nuk}{D_i} = \frac{2.196,609x0,1234W/mK}{0,1541m} = 1.758,998 W/m^2 K$$

• Perhitungan luasan *tube* bagian dalam

 $A_{in} = A_{cold} = \pi D_i L = \pi x \ 0.1541m \ x \ 4.8768m = 2.361m^2$ $A_{in.total} = 2.361m^2 \ x \ 126 \ tube = 297.486m^2$

• Perhitungan kecepatan maksimal fluida panas

$$\frac{S_T + D_o}{2} = \frac{0.3048m + 0.1683m}{2} = 0.23655 ; \text{ karena } S_D > \frac{S_T + D}{2} \text{ maka}$$

$$V_{max} = \frac{S_T}{S_T - D_o} V$$

$$=\frac{0,3048m}{0,3048m-0,1683m}x\frac{\frac{124.033,702kg}{jam}x\frac{1jam}{3600s}}{0,767\frac{kg}{m^3}x(4,8768m \times 2,8956m)}=7.103m/s$$

• Perhitungan luasan *tube* bagian luar (tanpa fin) $A_{out} = A_{hot} = \pi D_o L = \pi x 0,1683m x 4,8768m = 2,579m^2$ $A_{out,total} = 2,579m^2 x 126 = 324,954m^2$

WHRU yang digunakan berupa *compact HE* dengan *fin* bertungkat, dimana baris 1-3 tidak memiliki *fin*, baris 4-5 panjang *fin* 0,0127m, baris 6-7 panjang *fin* 0,01905m, dan baris 8-14 panjang *fin* 0,0254m.

Baris 1-3 : unfinned

• Perhitungan *reynold number* dan *nusselt number* fluida panas $D_h = D_0$, karena tidak memiliki *fin*

$$Re_{Dhot} = \frac{\rho V_{max} D_h}{\mu} = \frac{\frac{0.767 kg}{m^3} x \frac{7.103m}{s} x_{0.1683m}}{\frac{0.0000429Ns}{m^2}}$$

 $\begin{aligned} Re_{Dhot} &= 21.372,927\\ \overline{Nu}_{hot} &= C_1 C_2 Re_{D,max}^m Pr^{0,36} (\frac{Pr}{Pr_s})^{1/4} ; \text{ berdasarkan susunan } tube, \\ \text{nilai Re dan jumlah baris}\\ C_1 &= 0,35 \left(\frac{S_T}{S_L}\right)^{\frac{1}{5}} = 0,35 \left(\frac{0,3048}{0,264}\right)^{\frac{1}{5}} = 0,36\\ C_2 &= 0,983 ; m = 0,6\\ \overline{Nu}_{hot} &= 0,36 . \ 0,983 . \ 21.372,927^{0,6} 0,738^{0,36} (\frac{0,738}{0,736})^{1/4}\\ \overline{Nu}_{hot} &= 125,768\\ \bullet \quad \text{Perhitungan koefisien perpindahan panas konveksi fluida}\\ panas\\ \overline{h}_{hot} &= \frac{\overline{Nuk}}{D_h} = \frac{125,768 \times 0,0748W/mK}{0,1683} = 55,897 \, W/m^2 K\\ \bullet \quad \text{Perhitungan koefisien perpindahan panas total}\\ \frac{1}{UA} &= \frac{1}{(hA)_c} + \frac{R_{fc}^*}{A_c} + \frac{\ln(\frac{D_0}{D_l})}{2\pi kL} + \frac{1}{(hA)_h}\\ \frac{1}{UA} &= \frac{1}{1.758,998x2,361} + \frac{0,00017611}{2.361} + \frac{\ln(\frac{0,1683}{0,1541})}{2\pi x51x4.8768} + \frac{1}{55.897x^2.579} \end{aligned}$

$$\begin{aligned} \frac{1}{UA} &= \frac{1}{4.152,994} + \frac{0,00017611}{2,361} + \frac{0,0881}{1.562,734} + \frac{1}{144,158} \\ \frac{1}{UA} &= 7,309 \times 10^{-3} K/W \rightarrow UA = 136,825 W/K \\ \end{aligned}$$

$$\begin{aligned} & \mathcal{B}aris 4.5 : D_{f} = 0,1937 \\ 1 &= \frac{D_{f} - D_{o}}{2} = \frac{0,1937 - 0,1683}{2} = 0,0127m ; \text{ panjang } fin \\ \bullet \quad \text{Perhitungan diameter hidraulik} \\ 2x' &= (S_{T} - D_{o}) - (D_{f} - D_{o}) tN_{f'} \\ \text{dimana } N_{f'} \text{ adalah jumlah } fin \text{ setiap satuan panjang (m)} \\ 2x' &= (0,3048 - 0,1683) - (0,1937 - 0,1683) \times 0,00127 \times 196,85 \\ &= 0,130 \\ y' &= [(\frac{S_{T}}{2})^{2} + S_{L}^{2}]^{0.5} - D_{o} - (D_{f} - D_{o}) tN_{f}, \\ y' &= [(\frac{0.3048}{2})^{2} + 0,264^{2}]^{0.5} - 0,1683 - (0,1937 - 0,1683) \times 0,00127 \times 196,85 = 0,130 \\ \text{Karena } 2x' < 2y' \text{ maka } z' = 2x' = 0,130 \\ \text{Karena } 2x' < 2y' \text{ maka } z' = 2x' = 0,130 \\ \text{Karena } 2x' < 2y' \text{ maka } z' = 2x' = 0,130 \\ \text{A}_{0} &= [(\frac{L_{S}}{S_{T}} - 1) z' + S_{T} - D_{o} - (D_{f} - D_{o}) tN_{f_{f}}] L \\ A_{0} &= [(\frac{2.8956}{0,3048} - 1) \times 0,130 + 0,3048 - 0,1683 - (0,1937 - 0,1683) \times 0,00127 \times 196,855] 4,8768 \\ A_{0} &= 6,024 m^{2} \\ A_{total} &= \pi D_{o}(L - tN_{f'}L)N_{T} + [\frac{2\pi (D_{f}^{2} - D_{o}^{2})}{4} + \pi D_{f}t] N_{f'}LN_{T} \\ A_{total} &= \pi x_{0,1683x}(4,8768 - 0,00127 \times 196,85 \times 4,8768) \times 18 + [\frac{2\pi (0,1937^{2} - 0,1683^{2})}{4} + \pi x_{0,1937} \times 0,00127] \times 196,85 \times 4,8768 \times 18 \\ A_{total} &= 297,742 m^{2} \\ D_{h} &= 4 \frac{T_{2}A_{o}}{A_{total}} = 4 \frac{0.61155 \times 6.024}{297,742} = 0,0495 \\ \text{dimana } T_{2} \text{ adalah tinggi dari tube baris } 4-5 \\ \bullet \quad \text{Perhitungan reynold number dan nusselt number} \\ Re_{D_{hot}} &= \frac{\rho V_{max}D_{h}}{\mu} = \frac{0.767 kg/m^{3} x^{7.103}}{0.000429 NS}} \\ \frac{0.0000429 NS}{m^{2}} \\ Re_{D_{hot}} &= 6.286,155 \\ \end{array}$$

$$\overline{Nu}_{hot} = 0,134Re^{0,681}Pr^{1/3} \left(\frac{s}{l}\right)^{0,2} \left(\frac{s}{t}\right)^{0,1134}$$

$$\overline{Nu}_{hot} = 0,134x6.286,155^{0,681}x0,738^{1/3} \left(\frac{0,00381}{0,0127}\right)^{0,2} \left(\frac{0,00381}{0,00127}\right)^{0,1134}$$

$$\overline{Nu}_{hot} = 41,625$$

• Perhitungan koefisien perpindahan panas konveksi fluida panas

$$\bar{\mathbf{h}}_{hot} = \frac{\overline{Nuk}}{D_h} = \frac{41,625 \times 0,0748W/mK}{0,0495m} = 62,9 W/m^2 K$$

• Perhitungan efisiensi fin

$$r_{f.c} = r_f + \frac{t}{2} = 0,09685m + \frac{0,00127m}{2} = 0,09745m$$

 $l_c = l + \frac{t}{2} = 0,0127 + \frac{0,00127}{2} = 0,0133m$
 $\frac{r_{fc}}{D_0/2} = \frac{0,09745}{0,08415} = 1,158$
 $A_p = l_c t = 0,0133m \cdot 0,00127m = 0,0000169m^2$
 $l_c \frac{3/2}{k_{A_p}} \binom{h}{k_{A_p}}^{1/2} = 0,0133^{3/2} \cdot (\frac{62,9}{51.0,0000169})^{1/2} = 0,414$

Berdasarkan efisiensi *annular fin* yang terdapat pada lampiran, didapatkan

$$\begin{split} \eta_f &= 88\% \\ A_f &= 2\pi \left\{ \left(r_{f.c} \right)^2 - \left(\frac{D_o}{2} \right)^2 \right\} = 2\pi \left\{ (0,09745)^2 - \left(\frac{0,1683m}{2} \right)^2 \right\} \\ A_f &= 0,0152m^2 \\ A_{tube} &= N_f A_f + \left(A_{out} - \pi D_o t N_f \right) \\ A_{tube} &= 960x0,0152 + (2,579 - \pi x0,1683x0,00127x960) \\ &= 16,526 m^2 \\ \eta_o &= 1 - \frac{A_{f.total}}{A_{tube}} \left(1 - \eta_f \right) = 1 - \frac{0,0152x960}{16,526} \left(1 - 0,86 \right) = 0,876 \\ \bullet \quad \text{Perhitungan koefisien perpindahan panas total} \\ \frac{1}{UA} &= \frac{1}{(hA)_c} + \frac{R_{fc}^r}{A_c} + \frac{\ln(\frac{D_o}{D_i})}{2\pi kL} + \frac{1}{(\eta_o hA)_h} \\ \frac{1}{UA} &= \frac{1}{1.758,998x2,361} + \frac{0,00017611}{2,361} + \frac{\ln(\frac{0,1683}{0,1541})}{2\pi x51x4,8768} + \frac{1}{0,876x62,9x16,526} \\ \frac{1}{UA} &= 1,474x10^{-3}K/W \rightarrow UA = 678,522 W/K \end{split}$$

$$\begin{array}{l} & \underset{l=0}{\underline{Baris}\ 6-7:\ D_f=0.2064}{l=\frac{D_f-D_o}{2}} = \frac{0.2064-0.1683}{2} = 0.01905m \ ; \ panjang\ fin \\ & \text{Perhitungan diameter hidraulik} \\ & 2x' = (S_T - D_o) - (D_f - D_o)tN_{f'} \ ; \ dimana\ N_{f'} \ adalah \ jumlah\ fin \\ & \text{setiap satuan panjang (m)} \\ & 2x' = (0.3048 - 0.1683) - (0.2064 - 0.1683)x0.00127x196.85 \\ & = 0.127 \\ & y' = [\left(\frac{S_T}{2}\right)^2 + S_L^2\right]^{0.5} - D_o - (D_f - D_o)tN_{f'} \\ & y' = [\left(\frac{0.3048}{2}\right)^2 + 0.264^2\right]^{0.5} - 0.1683 - (0.2064 - 0.1683)x0.00127x196.85 \\ & = 0.127 \\ & y' = [\left(\frac{0.3048}{2}\right)^2 + 0.264^2\right]^{0.5} - 0.1683 - (0.2064 - 0.1683)x0.00127x196.85 \\ & = 0.127 \\ & \text{Karena\ } 2x' < 2y' \ maka\ z' = 2x' = 0.127 \\ & \text{Karena\ } 2x' < 2y' \ maka\ z' = 2x' = 0.127 \\ & \text{Karena\ } 2x' < 2y' \ maka\ z' = 2x' = 0.127 \\ & \text{A}_0 = \left[\left(\frac{2.8956}{0.3048} - 1\right)x0.127 + 0.3048 - 0.1683 - (0.2064 - 0.1683)x0.00127x196.85\right] \\ & \text{A}_0 = 5.884\ m^2 \\ & \text{A}_{total} = \pi D_o (L - tN_{f'}L)N_T + \left[\frac{2\pi (D_f^2 - D_o^2)}{4} + \pi D_f t\right]N_{f'}LN_T \\ & \text{A}_{total} = \pi x0.1683x(4.8768 - 0.00127x196.85x4.8768)x18 + \left[\frac{2\pi (0.264^2 - 0.1683^2)}{4} + \pi x0.2064x0.00127\right]x196.85x4.8768x18 \\ & \text{A}_{total} = 436.54\ m^2 \\ & D_h = 4\frac{T_3A_o}{A_{total}} = 4\frac{0.61155x5.884}{436.54} = 0.033 \\ & \text{dimana\ } T_3 \ adalah \ tinggi\ dari\ tube\ baris\ 6-7 \\ \bullet \ Perhitungan\ reynold\ number\ dan\ nusselt\ number \\ & \text{Re}_{Dhot} = \frac{\rho V_{max}D_h}{\mu} = \frac{0.767kg/m^3 x^{7.103m} x0.033m}{\frac{0.000429Ns}{m^2}} \\ & \text{Re}_{Dhot} = 0.134Re^{0.681}Pr^{1/3}\left(\frac{5}{l}\right)^{0.2}\left(\frac{5}{l}\right)^{0.1134} \\ & \overline{Nu}_{hot} = 0.134Re^{0.681}Pr^{1/3}\left(\frac{5}{l}\right)^{0.2}\left(\frac{5}{0.033}\right)^{0.1134} \\ & \overline{Nu}_{hot} = 0.134x4.190.77^{0.681}x0.738^{1/3}\left(\frac{0.00381}{0.00127}\right)^{0.134} \end{aligned}$$

 $\overline{Nu}_{hot} = 31,582$

• Perhitungan koefisien perpindahan panas konveksi fluida panas

$$\bar{h}_{hot} = \frac{\overline{Nuk}}{D_h} = \frac{31,582 \times 0,0748W/mK}{0,033} = 71,585 W/m^2 K$$
• Perhitungan efisiensi *fin*
 $r_{f.c} = r_f + \frac{t}{2} = 0,1032m + \frac{0,00127m}{2} = 0,1038m$
 $l_c = l + \frac{t}{2} = 0,01905 + \frac{0,00127}{2} = 0,019685m$
 $\frac{r_{f.c}}{D_0/2} = \frac{0,1038}{0,08415} = 1,234$
 $A_p = l_c t = 0,019685m \cdot 0,00127m = 0,000025m^2$
 $l_c \frac{3/2}{k_{A_p}} (\frac{h}{k_{A_p}})^{1/2} = 0,019685^{3/2} \cdot (\frac{71,585}{51.0,000025})^{1/2} = 0,654$

Berdasarkan efisiensi *annular fin* yang terdapat pada lampiran, didapatkan

$$\begin{split} \eta_f &= 78\% \\ A_f &= 2\pi \left\{ \left(r_{fc} \right)^2 - \left(\frac{D_0}{2} \right)^2 \right\} = 2\pi \left\{ (0,1038)^2 - \left(\frac{0,1683m}{2} \right)^2 \right\} \\ A_f &= 0,0232m^2 \\ A_{tube} &= N_f A_f + \left(A_{out} - \pi D_o t N_f \right) \\ &= 960x0,0232 + (2,579 - \pi x0,1683x0,00127x960) \\ A_{tube} &= 24,206m^2 \\ \eta_o &= 1 - \frac{A_{fTotal}}{A_{tube}} \left(1 - \eta_f \right) = 1 - \frac{0,0232x960}{24,206} \left(1 - 0,78 \right) = 0,798 \\ \bullet \quad \text{Perhitungan koefisien perpindahan panas total} \\ \frac{1}{UA} &= \frac{1}{(hA)_c} + \frac{R_{fc}^r}{A_c} + \frac{\ln(\frac{D_0}{D_l})}{2\pi kL} + \frac{1}{(\eta_o hA)_h} \\ \frac{1}{UA} &= \frac{1}{1.758,998x2,361} + \frac{0,00017611}{2,361} + \frac{\ln(\frac{0,1683}{0,1541})}{2\pi x51x4,8768} + \frac{1}{0,798x71,585x24,206} \\ \frac{1}{UA} &= 1,099x10^{-3}K/W \rightarrow UA = 910,093 W/K \end{split}$$

$$\begin{split} & \frac{Baris 8 \cdot 14 : D_f = 0.2191}{2} \\ l = \frac{D_f - D_o}{2} = \frac{0.2191 - 0.1683}{2} = 0.0254m ; \text{panjang } fin \\ & \text{Perhitungan diameter hidraulik} \\ 2x' = (S_T - D_o) - (D_f - D_o)tN_{f'} \\ \text{dimana } N_{f'} \text{ adalah jumlah } fin \text{ setiap satuan panjang (m)} \\ 2x' = (0.3048 - 0.1683) - (0.2191 - 0.1683)x0.00127x196.85 \\ = 0.124 \\ y' = [(\frac{S_T}{2})^2 + S_L^2]^{0.5} - D_o - (D_f - D_o)tN_{f}, \\ y' = [(\frac{0.3048}{2})^2 + 0.264^2]^{0.5} - 0.1683 - (0.2191 - 0.1683)x0.00127x196.85 = 0.124 \\ \text{Karena } 2x' < 2y' \text{ maka } z' = 2x' = 0.124 \\ A_0 = [(\frac{L_s}{S_T} - 1)z' + S_T - D_o - (D_f - D_o)tN_{f'}]L \\ A_0 = [(\frac{2.8956}{0.3048} - 1)x0.124 + 0.3048 - 0.1683 - (0.2191 - 0.1683)x0.00127x196.85]]4.8768 \\ A_0 = 5.744 m^2 \\ A_{total} = \pi D_o(L - tN_{f'}L)N_T + [\frac{2\pi (D_f^2 - D_o^2)}{4} + \pi D_f t]N_{f'}LN_T \\ A_{total} = \pi x0.1683x(4.8768 - 0.00127x196.85x4.8768)x63 + [\frac{2\pi (0.2191^2 - 0.1683^2)}{2.044.328} + \pi x0.2191x0.00127]x196.85x4.8768x63 \\ A_{total} = 2.044.328 m^2 \\ D_h = 4 \frac{T_3A_o}{4 total} = 4 \frac{1.96726x5.744}{2.044.328} = 0.0221 \\ \text{dimana } T_3 \text{ adalah tinggi dari tube baris } 6-7 \\ \bullet \text{ Perhitungan } reynold number \text{ dan nusselt number} \\ Re_{D_{hot}} = \frac{\rho V_{max}D_h}{\mu} = \frac{0.767 Kg/m^3 x^{7.103m} x0.0221m}{\frac{0.0000429Ns}{m^2}} \\ Re_{D_{hot}} = 0.134Re^{0.681}Pr^{1/3} (\frac{5}{l})^{0.2} (\frac{5}{l})^{0.1134} \\ \overline{Nu}_{hot} = 0.134x2.806.546^{0.681}x0.738^{1/3} (\frac{0.00381}{0.0127})^{0.2} (\frac{0.00381}{0.00127})^{0.1134} \\ \end{array}$$

 $\overline{Nu}_{hot} = 24,036$

• Perhitungan koefisien perpindahan panas konveksi fluida panas

$$\bar{h}_{hot} = \frac{\bar{Nu}k}{D_h} = \frac{24,036 \times 0.0748W/mK}{0.0221} = 81,352 W/m^2 K$$
• Perhitungan efisiensi *fin*
 $r_{f.c} = r_f + \frac{t}{2} = 0,10955m + \frac{0.00127m}{2} = 0,1102m$
 $l_c = l + \frac{t}{2} = 0,0254 + \frac{0.00127}{2} = 0,026m$
 $\frac{r_{f.c}}{D_0/2} = \frac{0.1102}{0.08415} = 1,309$
 $A_p = l_c t = 0,026m \cdot 0,00127m = 0,000033m^2$
 $l_c \frac{3/2}{k_{A_p}} (\frac{h}{k_{A_p}})^{1/2} = 0,026^{3/2} \cdot (\frac{81,352}{51 \cdot 0.000033})^{1/2} = 0,922$

Berdasarkan efisiensi *annular fin* yang terdapat pada lampiran, didapatkan n = 6504

$$\begin{split} \eta_f &= 65\% \\ A_f &= 2\pi \left\{ \left(r_{f,c} \right)^2 - \left(\frac{D_o}{2} \right)^2 \right\} = 2\pi \left\{ (0,1102)^2 - \left(\frac{0,1683m}{2} \right)^2 \right\} \\ A_f &= 0,0318m^2 \\ A_{tube} &= N_f A_f + \left(A_{out} - \pi D_o t N_f \right) \\ &= 960x0,0318 + (2,579 - \pi x0,1683x0,00127x960) \\ A_{tube} &= 32,462 m^2 \\ \eta_o &= 1 - \frac{A_{fTotal}}{A_{tube}} \left(1 - \eta_f \right) = 1 - \frac{0,0318x960}{32,462} \left(1 - 0,65 \right) = 0,671 \\ \bullet \quad \text{Perhitungan koefisien perpindahan panas total} \\ \frac{1}{UA} &= \frac{1}{(hA)_c} + \frac{R_{fc}^*}{A_c} + \frac{\ln(\frac{D_o}{D_i})}{2\pi kL} + \frac{1}{(\eta_o hA)_h} \\ \frac{1}{UA} &= \frac{1}{1.758,998x2,361} + \frac{0,00017611}{2,361} + \frac{\ln(0,00017611)}{2\pi x51x4,8768} + \frac{1}{UA} \\ &= 0,94x10^{-3} \ K/W \rightarrow UA = 1.063,908 \ W/K \end{split}$$

• Perhitungan perbedaan temperatur rata-rata logaritmik

$$\Delta T_{lm,cf} = \frac{(T_{h2} - T_{c1}) - (T_{h1} - T_{c2})}{\ln\left[\frac{(T_{h2} - T_{c1})}{(T_{h1} - T_{c2})}\right]}$$
$$= \frac{(482K - 420,65K) - (1.111,568K - 449,82K)}{\ln\left[\frac{(482K - 420,65K)}{(1.111,568K - 449,82K)}\right]}$$
$$\Delta T_{lm,cf} = \frac{-600,398}{-2.378} = 252,48K$$

• Faktor koreksi *compact crossflow* dimana fluida panas *mixed* dan fluida dingin *unmixed*.

$$P = \frac{T_{c2} - T_{c1}}{T_{h1} - T_{c1}} = \frac{449,82K - 420,65K}{1.111,568K - 420,65K} = 0,042$$

$$R = \frac{T_{h1} - T_{h2}}{T_{c2} - T_{c1}} = \frac{1.111,568K - 482K}{449,82K - 420,65K} = 21,583$$

Dari lampiran didapatkan F = 0,85

• Laju aliran panas pada WHRU

$$\dot{Q}_1 = N_T UAF \Delta T_{lm.cf}$$

 $= 27x \frac{136,825W}{K} x0,85x252,48K = 792.820,969 W$
 $\dot{Q}_2 = N_T UAF \Delta T_{lm.cf}$
 $= 18x \frac{678,522 W}{K} x0,85x252,48K = 2.621.092,489 W$
 $\dot{Q}_3 = N_T UAF \Delta T_{lm.cf}$
 $= 18x \frac{910,093W}{K} x0,85x252,48K = 3.515.638,294 W$
 $\dot{Q}_4 = N_T UAF \Delta T_{lm.cf}$
 $= 63x \frac{1.063,908W}{K} x0,85x252,48K = 14.384.359,59 W$
 $\dot{Q}_{total} = Q_1 + Q_2 + Q_3 + Q_4 = 21.313.911,34 W$
 $= 76.730.080,82 kJ/jam$

4.5.2 Analisa Data Operasional WHRU

Pada analisa data operasional WHRU dilakukan perhitungan untuk mencari laju aliran massa yang sesuai dengan data operasional TOX yang telah divariasikan. Contoh perhitungan :

Contoh perhitungan dilakukan untuk 100% *flowrate* bahan bakar dan *excess air* 15%

$$\begin{split} \dot{m}_{fg} &= 178.544,524 \frac{kg}{jam} \\ T_{in \, WHRU} &= 1.308,564 \, K \\ \text{Asumsi} : T_{stack} &= 482K \\ T_{in \, oil} &= 288,68^{o}F = \ 415,75K \ ; T_{out \, oil} = 350^{o}F = \ 449,817K \end{split}$$

Perhitungan untuk mencari Re_{hot}, Nu_{hot}, h_{hot}, dan UA sama seperti pada perhitungan desain. Nilai UA dihitung tanpa menggunakan resistansi konveksi dari fluida dingin karena belum diketahui laju aliran massa fluida dingin yang dibutuhkan, digunakan simbol $\left(\frac{1}{UA_s}\right)$ untuk menunjukkan UA sementara. Pada data operasional 100% *flowrate* bahan bakar dengan *excess air* 15% didapatkan nilai-nilai perhitungan pada tabel 4.20-4.21.

Tabel 4.21 Nilai h_{Flue Gas} pada 100% Bahan Bakar dengan ExcessAir 15%

	hl	hot	
Baris 1-3	Baris 4-5	Baris 6-7	Baris 8-14
69,249	80,268	84,236	90,376

$$\frac{1}{UA} - R_{conv.cold} = \frac{R_{fc}}{\eta_o A_c} + \frac{\ln(\frac{D_o}{D_i})}{2\pi kL} + \frac{1}{(\eta_o hA)_h} \longrightarrow \frac{1}{UA_s}$$

Tabel 4.22 Nilai $\left(\frac{1}{UA} - R_{conv.cold}\right)$ pada 100% Bahan Bakar dengan *Excess Air* 15%

(1/	′UA)s = (1/L	JA) - Rconv.	cold
Baris 1-3	Baris 4-5	Baris 6-7	Baris 8-14
0,00573	0,00099	0,00075	0,00064

Nilai energi panas yang dibutuhkan untuk menaikkan suhu *oil* dari 415,75K ke 449,817K dihitung dengan data desain pada perhitungan subbab 4.5.1 dengan suhu masuk *oil* yang berbeda.

$$\begin{split} \dot{Q}_{420,65K} &= 76.730.080,82 \ kJ/jam \\ \dot{Q}_{\max 420,65K} &= \dot{m}_h c_{p,h} (T_{h \ in} - T_{c \ in}) \\ \dot{Q}_{\max 420,65K} &= \frac{124.033,702 kg}{jam} x \frac{1,32 kJ}{kgK} x (1.111,568 - 420,65) K \\ &= 113.120.194,9 \ kJ/jam \\ \varepsilon &= \frac{\dot{Q}}{\dot{Q}_{max}} = \frac{76.730.080,82 \ kJ/jam}{113.120.194,9 \ kJ/jam} = 0,678 \\ \dot{Q}_{\max 415,75K} &= \frac{124.033,702 kg}{jam} x \frac{1,32 kJ}{kgK} x (1.111,568 - 415,75) K \\ &= 113.922.444,8 \ kJ/jam \\ \dot{Q}_{415,75K} &= \varepsilon \dot{Q}_{\max 415,75K} = 0,678 x 113.922.444,8 \frac{kJ}{jam} \\ &= 77.239.417,6 \ kJ/jam \end{split}$$

Untuk mendapatkan nilai laju aliran massa fluida dingin, dilakukan perhitungan $R_{\rm conv.cold}$ dengan cara sebagai berikut

$$UA = \frac{\dot{Q}}{N_T F \Delta T_{lm}} \rightarrow R_{conv} = \frac{1}{UA_s} - \frac{N_T F \Delta T_{lm}}{\dot{Q}}$$

Metode iterasi dan interpolasi dilakukan untuk mendapatkan nilai laju aliran massa *oil* dalam tube. Pada data operasional 100% *flowrate* bahan bakar dengan *excess air* 15% didapatkan hasil iterasi dan interpolasi ditunjukkan pada lampiran.

Jumlah BB	Excess Air	Tin WHRU (K)	mass rate flue gas (kg/jam)	T stack (K)	Mass rate oil (kg/jam)
	10%	1.349,495	160.350,010	482	696.659,45
	15%	1.288,872	165.465,601	482	800.286,47
CO 0/	20%	1.233,067	170.581,192	482	925.994,02
60%	25%	1.182,228	175.696,782	482	1.074.008,67
	30%	1.134,875	180.812,373	482	1.257.720,86
	35%	1.091,694	185.927,964	482	1.481.420,93
	10%	1.360,732	166.619,267	482	644.742,15
	15%	1.299,120	172.005,063	482	735.912,75
0.00/	20%	1.242,415	177.390,858	482	844.291,00
80%	25%	1.190,652	182.776,654	482	971.693,77
	30%	1.142,741	188.162,449	482	1.126.232,03
	35%	1.098,884	193.548,245	482	1.312.368,34
	10%	1.371,160	172.888,524	482	598.556,02
	15%	1.308,564	178.544,524	482	681.919,50
100%	20%	1.251,003	184.200,524	482	778.247,02
100%	25%	1.198,599	189.856,525	482	889.520,68
	30%	1.150,019	195.512,525	482	1.024.180,16
	35%	1.105,532	201.168,525	482	1.183.629,75

Tabel 4.23 Hasil Perhitungan Laju Aliran Massa dari Oil

4.5.3 Pembahasan Grafik Laju Aliran Massa *Oil* terhadap Variasi pada Pembakaran TOX

Gambar 4.12 Grafik hasil laju aliran massa oil dalam WHRU

••• • • • • 60% fuel gas – = 80% fuel gas – • 100% fuel gas

Pada gambar 4.12 merupakan grafik yang menunjukkan hasil laju aliran massa *oil* pada suhu masuk dan laju aliran massa *flue gas* yang berbeda-beda hasil analisa pembakaran TOX. Laju aliran massa *oil* tersebut merupakan jumlah yang dibutuhkan untuk mencapai suhu keluar WHRU sebesar 350°F (449,817K).

Dari gambar 4.12 diperoleh nilai laju aliran massa *oil* tertinggi pada 60%, 80%, maupun 100% *fuel gas*, terdapat ketika *excess air* 35%, yaitu sebesar 1.481.420,93 kg/jam, 1.312.368,34kg/jam dan 1.183.629,75kg/jam. Sedangkan untuk laju aliran massa *oil* nilai terendah pada 60%, 80%, maupun 100% *fuel gas*, terdapat ketika *excess air* 10%, yaitu sebesar 696.659,45kg/jam, 644.742,15kg/jam, dan 598.556,02K. Pada desain WHRU diketahui batas maksimal *mass flowrate* yang diperbolehkan pada *oil*, yaitu sebesar 1.527.072,691 kg/jam. Oleh

karena itu, berdasarkan batasan tersebut pada semua variasi *excess air* untuk 60%-100% *fuel gas* dapat digunakan dalam operasional.

Pada grafik hasil laju aliran massa *oil* terlihat nilai yang terus mengalami peningkatan seiring bertambahnya *excess air* pada pembakaran TOX. Hal tersebut terjadi karena suhu *flue gas* yang semakin kecil ketika *excess air* semakin besar, sehingga dibutuhkan *mass flowrate* yang lebih banyak untuk tetap mencapai suhu *oil* 350°F. Selain itu nilai *mass flowrate* pada *flue gas* semakin besar mengakibatkan diperlukan *mass flowrate oil* yang lebih besar agar tidak mengalami kenaikan suhu pada *outlet oil*. (halaman ini sengaja dikosongkan)

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil analisa *heat balance* pada *Thermal Oxidizer* dan *Waste Heat Recovery Unit*, dapat diambil beberapa kesimpulan sebagai berikut

- 1. Jika meninjau suhu *flue gas* hasil pembakaran TOX dari data operasional, variasi terbaik yang mendekati desain awal (1.500-1600°F atau 1.088-1.144K) yaitu pada 60% *flowrate* bahan bakar dengan *excess air* antara 30% hingga 35%.
- 2. Dari variasi 60% *flowrate* bahan bakar dengan *excess air* antara 30% hingga 35%, didapatkan suhu *flue gas* hasil pembakaran antara 1.095,440K hingga 1.138,908K, serta suhu *flue gas* masuk WHRU antara 1.091,694K hingga 1.134,875K.
- 3. Dari hasil tinjauan suhu *flue gas*, maka laju aliran massa yang dapat diterapkan untuk mendapat suhu *outlet oil* sebesar 350°F adalah sebagai berikut
 - 60% bahan bakar, 30% excess air → 1.257.720,86 kg/jam
 - 60% bahan bakar, 35% excess air → 1.481.420,93 kg/jam

Jika berdasarkan data desain, laju aliran massa *oil* tersebut masih dibawah kondisi maksimal yaitu 1.527.072,691 kg/jam, sehingga aman digunakan dalam operasional.

4. Jumlah bahan bakar (*fuel gas*) sebesar 60%, dapat menghemat konsumsi bahan bakar pada pembakaran di *Thermal Oxidizer*.

5.2 Saran

Beberapa saran yang bisa diberikan setelah dilakukan penelitian antara lain sebagai berikut

- 1. Pada *stack* TOX diharapkan terdapat alat pengukur kadar SO₂ dan O₂ yang berjalan dengan baik.
- 2. Perlu dilakukan uji kandungan gas buang sehingga lebih mengetahui kondisi pembakaran, berjalan dengan sempurna atau tidak.
- 3. Untuk penelitian selanjutnya diharapkan bisa menggunakan variasi pembakaran yang lebih banyak yang akan membuat hasil perhitungan lebih akurat.

DAFTAR PUSTAKA

- Bahadori, A., dan Vuthaluru, H. B. 2010. "Estimation of Energy Conservation Benefits Controlled Gas-Fired Systems". Fuel Processing Technology 91 (2010) 1198-1203.
- Bartok, W., dan Sarofim, A. F. 1991. Fossil Fuel Combustion : A Source Book. Canada : John Wiley & Sons.
- Benarji, N., Balaji, C., dan Ventakateschan, P. 2008. "Optimum Design of Cross Flow Shell and Tube Heat Exchanger with Low Fin Tubes". Heat Transfer Engineering 29:10 864-872.
- Djojodihardjo, H. 1987. Termodinamika Teknik : Aplikasi dan Termodinamika Statistik. Jakarta : Gramedia.
- Handoyo, E. A. 2000. "Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger". Jurnal Teknik Mesin Vol. 2, No.2, Okober 2000 : 86-90.
- Incropera, F. P., dan Dewitt, D. P. 2011. Fundamental of Heat and Mass Transfer 7th Edition. New Jersey : John Wiley & Sons.
- Kakac, S., Liu, H., dan Pramuanjaroenkij, A. 2012. Heat Exchanger : Selection, Rating, and Thermal Design. Boca Raton : CRC Press.
- Moran, M. J., dan Shapiro, H. N. 2006. Fundamental of Engineering Thermodynamics 5th Edition. Chichester : John Wiley & Sons.
- Proyek Pengembangan Gas Jawa. **Operating Manual Book CPP Gundih PT Pertamina EP Asset 4 Field Cepu**. Cepu, Kabupaten Blora.
- Qi, J. 2014. "Research and Improvement on Calculation Method of Optimal Excess Air Ratio". **Applied Mechanics and Materials** Vols 536-537 (2014) pp 1583-1586.
- Tseng, S., dan Kang, S. 2006. "Analysis of Effectiveness and Pressure Drop in Micro Cross-Flow Heat Exchanger". **Applied Thermal Engineering** 27 (2007) 877-885.

- Thulukkanam, K. 2013. **Heat Exchanger Design Handbook**. Boca Raton : CRC Press.
- Zhang, G. 2015. "Study in Optimum Excess Air Coefficient Power Plant Boilers". International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2015).

LAMPIRAN

 $Rectangular^{a} \\ A_{f} = 2\pi (r_{2c}^{2} - r_{1}^{2}) \\ r_{2c} = r_{2} + (t/2) \\ V = \pi (r_{2}^{2} - r_{1}^{2})t$

 $\eta_f = C_2 \frac{K_1(mr_1)I_1(mr_{2c}) - I_1(mr_1)K_1(mr_{2c})}{I_0(mr_1)K_1(mr_{2c}) + K_0(mr_1)I_1(mr_{2c})}$ $C_2 = \frac{(2r_1/m)}{(r_{2c}^2 - r_1^2)}$

Temperature Efficiency, P

LAMPIRAN C Hasil Stoikiometri Pembakaran pada TOX Data Desain

```
[UNIT 1] dengan EA 0%
```

 $\begin{array}{l} 10^{-2}[95,313CO_2+0,055N_2+0,174CH_4+0,01C_2H_6+0,004C_3H_8+\\ 0,002C_4H_{10}+0,001C_6H_{14}+0,001C_{10}H_{22}+0,00967(C_6H_6+C_7H_8+C_8H_{10})+0,005C_2H_6S_2+0,005H_2S+0,011C_2H_6S+0,005C_3H_8S+\\ 0,005COS+4,383H_2O]+0,00824(O_2+3,76N_2)\rightarrow 0,95798CO_2+\\ 0,04994H_2O+0,00036SO_2+0,0315N_2 \end{array}$

[UNIT 3] dengan EA 0%

$$\begin{split} 10^{-2}[5,&6192CO_2+3,&7334N_2+74,&244CH_4+3,&1782C_2H_6+\\ 1,&4437C_3H_8+0,&9804C_4H_{10}+0,&6954C_5H_{12}+0,&8857C_6H_{14}+\\ 0,&4292C_7H_{16}+0,&058C_8H_{18}+0,&0068C_9H_{20}+0,&0031C_{10}H_{22}+\\ 0,&2097(C_6H_6+C_7H_8+C_8H_{10})+0,&6161H_2S+0,&0678CH_4S+\\ 0,&2752C_2H_6S+0,&2191C_3H_8S+0,&0019COS+3,&6957H_2O]+\\ 2,&0212(O_2+3,&76N_2)\rightarrow 1,&1551CO_2+1,&918H_2O+0,&0118SO_2+\\ 7,&6369N_2 \end{split}$$

[UNIT 4] dengan EA 0%

 $10^{-2}[0,8055N_2 + 8,7093CH_4 + 0,4608C_2H_6 + 0,2378C_3H_8 +$ $0,0778C_4H_{10} + 0,0301C_5H_{12} + 0,0182C_6H_{14} + 0,0096C_7H_{16} +$ $0,0025C_8H_{18} + 0,0003C_9H_{20} + 0,0008C_{10}H_{22} + 0,86(C_6H_6 + C_7H_8 + C_8H_8)$ C_8H_{10} + 0,0019 $C_6H_{14}S_2$ + 0,00018 CH_4S + 0,0017 C_2H_6S + $0,0191C_3H_8S + 0,0112COS + 87,0258H_2O] + 0,4468(O_2 + 0,0191C_3H_8S + 0,0112COS + 87,0258H_2O]$ $(3,76N_2) \rightarrow 0,2918CO_2 + 1,18H_2O + 0,000359SO_2 + 1,6879N_2)$ [UNIT 5] dengan EA 0% 10^{-2} [13,8109*CO*₂ + 65,9507*N*₂ + 12,9092*O*₂ + 0,0181*CH*₄ + $0,0077(C_6H_6 + C_7H_8 + C_8H_{10}) + 0,006C_2H_6S_2 + 0,0001005H_2S +$ $0,0081C_2H_6S + 0,005C_3H_8S + 0,001COS + 7,2807H_2O] \rightarrow$ $0,1404CO_2 + 0,7047H_2O + 0,000262SO_2 + 0,1871N_2 +$ $0,1256(O_2 + 3,76N_2)$ [UNIT 6] dengan EA 0% 10^{-2} [6,2605*CO*₂ + 2,6303*N*₂ + 81,5782*CH*₄ + 2,6303*C*₂*H*₆ + $0,263CH_4S + 0,263C_2H_6S + 0,263C_3H_8S + 0,01H_2O] + 2,0787(O_2 + 0,01H_2O)$ $(3,76N_2) \rightarrow 1,0788CO_2 + 1,9473H_2O + 0,0789SO_2 + 7,8422N_2)$ [UNIT 7] dengan EA 0% 10^{-2} [4,6011N₂ + 89,6796CH₄ + 3,3901C₂H₆ + 1,222C₃H₈ + $0,5679C_4H_{10} + 0,2232C_5H_{12} + 0,1251C_6H_{14} + 0,0689C_7H_{16} +$

 $0,0211C_8H_{18} + 0,0028C_9H_{20} + 0,0086C_{10}H_{22} + 0,0251(C_6H_6 + 0,0086C_{10}H_{22} + 0,0251(C_6H_6 + 0,0086C_{10}H_{22} + 0,$

 $C_7H_8 + C_8H_{10}$ + 0,000009 CH_4S + 0,000064 C_2H_6S + 0,0003COS +

 $\begin{array}{l} 0,0133H_2O] + 2,0587(O_2 + 3,76N_2) \rightarrow 1,0555CO_2 + 2,0065H_2O + \\ 0,00000373SO_2 + 7,7868N_2 \\ [UNIT 8] dengan EA 0% \\ 10^{-2}[84,8822N_2 + 11,2031O_2 + 0,1635CH_4 + 0,0233C_2H_6 + \\ 0,0185C_3H_8 + 0,0134C_4H_{10} + 0,0055C_5H_{12} + 0,0051C_6H_{14} + \\ 0,0332C_7H_{16} + 0,0192C_8H_{18} + 0,0024C_9H_{20} + 0,1635C_{10}H_{22} + \\ 0,0026(C_6H_6 + C_7H_8 + C_8H_{10}) + 0,2453C_2H_6S_2 + 0,0818C_4H_{10}S_2 + \\ 0,0244C_6H_{14}S_2 + 3,1074H_2O] \rightarrow 0,0344CO_2 + 0,0732H_2O + \\ 0,00703SO_2 + 0,6626N_2 + 0,0495(O_2 + 3,76N_2) \\ [UNIT 9] dengan EA 0% \\ 10^{-2}[0,0126CO_2 + 90,8654N_2 + 4,3306O_2 + 4,1573H_2O + \\ 0,0004SO_2 + 0,0006N_2O] \rightarrow 0,0013CO_2 + 0,0416H_2O + \\ 0,00004SO_2 + 0,7458N_2 + [0,043309(O_2 + 3,76N_2)] \end{array}$

LAMPIRAN D Hasil Stoikiometri Pembakaran pada TOX Data Operasional

[UNIT 1] $10^{-2}[96,75CO_2 + 0,189N_2 + 0,938CH_4 + 0,0513C_2H_6 +$ $0,379C_{3}H_{8} + 0,0053C_{4}H_{10} + 0,006C_{7}H_{16} + 0,137C_{8}H_{18} +$ $0,0032C_9H_{20} + 0,0006C_{10}H_{22} + 0,004C_6H_{12} + 0,343C_7H_{14} +$ $0,736H_2S + 0,429C_6H_6 + 0,0032C_9H_{12} + 0,0008C_7H_8 +$ $0,0241C_8H_{10}$ + $0,141(O_2 + 3,76N_2) \rightarrow 1,054CO_2 + 0,0949H_2O +$ $0,00736SO_2 + 0,531N_2$ [UNIT 3] $10^{-2}[8,619CO_2 + 3,733N_2 + 74,244CH_4 + 3,178C_2H_6 +$ $1,444C_{3}H_{8} + 0,98C_{4}H_{10} + 0,6954C_{5}H_{12} + 0,886C_{6}H_{14} +$ $0,429C_7H_{16} + 0,058C_8H_{18} + 0,0068C_9H_{20} + 0,0031C_{10}H_{22} +$ $0,616H_2S + 0,2097C_6H_6 + 4,477C_9H_{12} + 0,21C_7H_8 + 0,21C_8H_{10} +$ $2,531(O_2 + 3,76N_2) \rightarrow 1,545CO_2 + 2,131H_2O + 0,00616SO_2 +$ 9,553N₂ [UNIT 5] 10^{-2} [48,595*CO*₂ + 49,427*N*₂ + 10,185*O*₂ + 1,038*CH*₄ + $0,0172C_2H_6 + 0,0819C_3H_8 + 0,0036C_7H_{16} + 0,0871C_8H_{18} + 0,0036C_7H_{16} + 0,0036C_7H_{16} + 0,0871C_8H_{18} + 0,0036C_7H_{16} + 0,0871C_8H_{18} + 0,00871C_8H_{18} + 0,$ $0,0033C_9H_{20} + 0,0003C_{10}H_{22} + 0,0044C_6H_{12} + 0,388C_7H_{14} +$ $0,329C_6H_6 + 0,0035C_9H_{12} + 0,0009C_7H_8 + 0,0217C_8H_{10} +$ $0,00399(O_2 + 3,76N_2) \rightarrow 0,556CO_2 + 0,0717H_2O + 0,509N_2$ [UNIT 6] $10^{-2}[0.34CO_2 + 0.38N_2 + 0.01O_2 + 92.55CH_4 + 3.33C_2H_6 +$ $1,15C_{3}H_{8} + 0,59C_{4}H_{10} + 0,28C_{5}H_{12} + 0,22C_{6}H_{14} + 0,16C_{7}H_{16} + 0,16C_{7}H_$ $0,29C_6H_6 + 0,18C_7H_8 + 0,03C_8H_{10} + 2,221(O_2 + 3,76N_2) \rightarrow$ $1,161CO_2 + 2,127H_2O + 8,354N_2$ [UNIT 7] $10^{-2}[0,5N_2 + 93,74CH_4 + 3,35C_2H_6 + 1,15C_3H_8 + 0,54C_4H_{10} +$ $0,23C_5H_{12} + 0,49C_6H_{14} + 2,1496(O_2 + 3,76N_2) \rightarrow 1,101CO_2 +$ $2,096H_2O + 8,088N_2$

(Acid	
Jnit 1	
nput l	
dari i	
t rate	
n hea	
lpi da	
ental	
bahan	
ı peru	
Desair	RU)
Data I	m BS
ngan I	us Fro
erhitur	Ğ
Ξ1. Ре	
abel I	
Ë	

										_		_	_	_	_	_			_		_	_	_					
									delta h (kJ/kg)	12,743	0,006	0,022	0,002	0,001	0,001	0,001	0,001	0,005	0,005	0,005	0,003	0,001	0,005	0,003	0,001	1,156	13,958	590.123,39
									cp (kJ/kmolK)	38,18	29,192	36,411	54,78	77,619	104,88	199,65	320,02	136,08	161,23	147,1	146,11	34,817	118	145,35	42,983	75,291		Q rate (kJ/jam)
									jumlah hf (kJ/kg)	-8.755,768	0,000	-3,041	-0,196	-0,098	-0,059	-0,046	-0,070	0,111	0,030	-0,054	-0,073	-0,024	-0,189	-0,124	-0,162	-292,467	-9.052,232	512,450
						_			hf (kJ/kmol)	-393.500,0	0'0	-74.870,0	-84.000,0	-104.700,0	-125.600,0	-198.100,0	-301.000,0	49.000,0	13.100,0	-24.100,0	-62.300,0	-20.600,0	-73.680,0	-106.600,0	-138.410,0	-285.830,0		-382.710
	MMSCFD	m3/jam	kg/m3	kg/jam	К				%mass	0,97926651	0,00035952	0,00065155	7,0199E-05	4,1172E-05	2,7136E-05	2,0093E-05	3,3202E-05	0,00017629	0,00020796	0,00023962	0,00010996	3,978E-05	0,00015957	8,891E-05	7,0117E-05	0,01843842	1	kJ/jam)
	15,334	18.050,725	2,342	42.278,028	15				Mi (kg/kmol)	41,9460	0,0154	0,0279	0,0030	0,0018	0,0012	0,0009	0,0014	0,0076	0,0089	0,0103	0,0047	0,0017	0,0068	0,0038	0,0030	0,7898	42,8341	Q rate (
SRU)	1	FIOWFATE	density	mass rate	ΔT				M (kg/kmol)	44,01	28	16,04	30,07	44,09	58,12	86,07	142,22	78,12	92,15	106,18	94,2	34,08	62,14	76,17	60,07	18,02		.389,056
From B.	Psig	Atm	Pa	F	С	¥	298,15 K		lom%	95,313	0,055	0,174	0,01	0,004	0,002	0,001	0,001	0,009667	0,009667	0,009667	0,005	0,005	0,011	0,005	0,005	4,383	100,003	-382.120
Gas	5,960	1,405	142.361,625	104	40	313,15	25 C	1 atm	Komponen	C02	N2	CH4	C2H6	C3H8	C4H10	C6H14	C10+	H6 (Benzena)	'H8 (Toluene)	3H10 (Xylene)	(dimethyl disulfide)	H2S	(ethyl mercaptan)	-prophyl mercaptan)	Carbonyl Sulfide)	H20	JUMLAH	input unit 1 (kJ/kg)
		٩			F		Tref	Pref										90 C	C7	80	C2H6S2		C2H6S	C3H8S (2-	cos (Q rate i

LAMPIRAN E Tabel Hasil Perhitungan

Tabel E2. Perhitungan Data Desain perubahan entalpi dan heat rate dari input Unit 3 (Acid Gas From GSU)

								delta h (kJ/kg)	5,995	1,929	49,143	3,262	2,117	1,942	1,712	3,281	1,826	0,279	0,036	0,018	0,530	0,626	0,545	0,384	0,087	0,464	0,563	0,001	4,926	79,667	96.897,722
								cp (kJ/kmolK)	39,361	29,235	37,456	58,076	82,961	112,07	139,33	209,61	240,77	271,86	302,86	333,94	143,09	169,06	147,1	35,295	72,82	95,47	145,35	44,356	75,428		Q rate (kJ/jam)
								jumlah hf (kJ/kg)	-1.506,757	00000	-2.469,453	-118,602	-67,151	-54,705	-45,352	-77,948	-42,673	-6,434	-0,830	-0,415	4,565	1,220	-2,245	-5,639	-0,687	-5,642	-10,377	-0,117	-469,284	-4.878,525	573,404
					-			hf (kJ/kmol)	-393.500,0	0'0	-74.870,0	-84.000,0	-104.700,0	-125.600,0	-146.800,0	-198.100,0	-223.800,0	-249.700,0	-274.800,0	-301.000,0	49.000,0	13.100,0	-24.100,0	-20.600,0	-22.800,0	-46.150,0	-106.600,0	-138.410,0	-285.830,0		-5.933.(
MMSCFD	m3/jam	kg/m3	kg/jam	K				%mass	0,1685194	0,0464402	0,5290507	0,0424567	0,028278	0,025314	0,0222865	0,0338665	0,0190846	0,0029405	0,0003871	0,0001959	0,0072777	0,0085847	0,0098917	0,0093285	0,0014487	0,0075974	0,0074148	5,07E-05	0,0295858	1	kJ/jam)
0,5379	633,200	1,921	1.216,284	39,778				Mi (kg/kmol)	3,8016	1,0476	11,9347	0,9578	0,6379	0,5711	0,5028	0,7640	0,4305	0,0663	0,0087	0,0044	0,1642	0,1937	0,2231	0,2104	0,0327	0,1714	0,1673	0,0011	0,6674	22,5588	Q rate (
Claurate	LIOWIDE	density	mass rate	ΔT				M (kg/kmol)	44,01	28	16,04	30,07	44,09	58,12	72,14	86,07	100,09	114,12	128,14	142,22	78,12	92,15	106,18	34,08	48,11	62,14	76,17	60,07	18,02		.775,682
psig	atm	Ра	щ	c	¥	298,15 K		%mol	8,6192	3,7334	74,244	3,1782	1,4437	0,9804	0,6954	0,8857	0,4292	0,058	0,0068	0,0031	0,2097	0,2097	0,2097	0,61614	0,067782	0,27521	0,21912	0,0019	3,6957	99,782	-5.836
20	2,361	239.228,325	148,6	64,778	337,928	25 C	1 atm	Komponen	C02	N2	CH4	C2H6	C3H8	C4H10	C5H12	C6H14	C7H16	C8H18	C9H20	C10+	6H6 (Benzena)	7H8 (Toluene)	8H10 (Xylene)	H2S	Methyl Mercaptan)	(ethyl mercaptan)	-prophyl mercaptan)	Carbonyl Sulfide)	H20	JUMLAH	input unit 3 (kJ/kg)
	٩			F		Tref	Pref														CE	5	ö		CH4S (I	C2H6S	C3H8S (2	cos (Q rate

Tabel E3. Perhitungan entalpi pembentukan dari Flue Gas Data Desain Unit 1 (Acid GasFrom BSRU)

Komponen Produk	koefisien	Δ	125.00	0/ m.r.r	Mi	hf	jumlah hf
dengan EA 0%	mol	(kg/kmol)	22011	22011102	(kg/kmol)	(kJ/kmol)	(kJ/kg)
C02	0,95798	44,01	42,1607	0,95893	40,54645	-393.500,0	-8.573,900
H20	0,04994	18,02	0,8999188	0,02047	0,86546	-241.820,0	-274,674
S02	0,00036	64,06	0,0230616	0,00052	0,02218	-296.810,0	-2,430
N2	0,031532	28	0,8829072	0,02008	0,84910	0'0	0,000
02	0	32	0	0,00000	0,00000	0,0	0,000
JUMLAH	1,0398124		43,966587		42,283		-8.851,005
				Q rate	(kJ/jam)	-384.12	9.324,978

Tabel E4. Perhitungan entalpi pembentukan dari Flue Gas Data Desain Unit 3 (Acid Gas From GSU)

jumlah hf	(kJ/kg)	-1.515,127	-1.546,083	-11,677	0,000	0,000	-3.072,887	93,824
hf	(kJ/kmol)	-393.500,0	-241.820,0	-296.810,0	0,0	0,0		-37.272.1
Mi	(kg/kmol)	4,74123	3,22352	0,07051	19,94392	0,00000	27,979	(kJ/jam)
0/ 201101	CCD1110%	0,16946	0,11521	0,00252	0,71281	0,00000,0		Q rate
1.00	CCDIII	50,83387	34,56152	0,756005	213,8321	0	299,9835	
Σ	(kg/kmol)	44,01	18,02	64,06	28	32		
koefisien	lom	1,15505262	1,91795314	0,01180152	7,63686067	0	10,72166795	
Komponen Produk	dengan EA 0%	CO2	H2O	S02	N2	02	JUMLAH	

	Udis Fron	י טחע מ	1111 COLU	(uuu					
	10'1	psig	Elouroto	0,2382	MMSCFD				
٩	1,477	atm	LIOWIDIE	280,402	m3/jam				
	149.657,025	Pa	density	0,874	kg/m3				
	283,97	ш	mass rate	244,944	kg/jam				
_	139,983	J	ΔT	114,983	к				
	413,133	Х				-			
Tref	25 C	298,15 K							
Pref	1 atm								
	Komponen	%mol	M (kg/kmol)	Mi (kg/kmol)	%mass	hf (kJ/kmol)	jumlah hf (kJ/kg)	cp (kJ/kmolK)	delta h (kJ/kg)
	N2	0,8055	28	0,2256	0,0112504	0'0	000'0	29,312	1,354
	CH4	8,7093	16,04	1,3971	0,0696836	-74.870,0	-325,262	41,413	20,687
	C2H6	0,4608	30,07	0,1386	0,0069118	-84.000,0	-19,308	67,409	1,782
	C3H8	0,2378	44,09	0,1049	0,0052299	-104.700,0	-12,419	97,015	1,323
	C4H10	0,0778	58,12	0,0452	0,0022555	-125.600,0	-4,874	128,99	0,576
	C5H12	0,0301	72,14	0,0217	0,0010831	-146.800,0	-2,204	158,32	0,273
	C6H14	0,0182	86,07	0,0157	0,0007814	-167.100,0	-1,517	189,45	0,198
	C7H16	0,0096	100,09	0,0096	0,0004793	-187.800,0	-0,899	221,34	0,122
	C8H18	0,0025	114,12	0,0029	0,0001423	-249.700,0	-0,311	310,34	0,044
	C9H20	0,0003	128,14	0,0004	1,918E-05	-274.800,0	-0,041	344,22	0,006
	C10+	0,0008	142,22	0,0011	5,675E-05	-301.000,0	-0,120	378,85	0,017
ð	6H6 (Benzena)	0,860033	78,12	0,6719	0,0335135	82.900,0	35,564	117,59	5,800
U	7H8 (Toluene)	0,860033	92,15	0,7926	0,0395324	50.100,0	21,493	148,02	7,301
σ	8H10 (Xylene)	0,860033	106,18	0,9133	0,0455513	-24.100,0	-10,339	147,1	7,256
C6H145	S2 (propyl disulfide)	0,0019	150,32	0,0029	0,0001425	-142.500,0	-0,135	262,46	0,029
CH4S (I	Methyl Mercaptan)	0,000182	48,11	0,0001	4,366E-06	-22.800,0	-0,002	72,82	0,001
C2H6S	s (ethyl mercaptan)	0,00169	62,14	0,0011	5,24E-05	-46.150,0	-0,039	95,47	0,009
C3H8S (2	2-prophyl mercaptan)	0,019076	76,17	0,0145	0,0007248	-76.940,0	-0,732	131,37	0,144
cos ((Carbonyl Sulfide)	0,0112	60,07	0,0067	0,0003356	-138.410,0	-0,773	46,608	0,030
	H2O	87,0258	18,02	15,6832	0,7822499	-241.820,0	-10.497,430	36,731	183,340
	JUMLAH	99,993		20,0488	1		-10.819,350		230,293
Q rate	input unit 4 (kJ/kg)	-2.593.7	729,247	Q rate	(kJ/jam)	-2.650.	138,114	Q rate (kJ/jam)	56.408,867

 Tabel E5. Perhitungan Data Desain perubahan entalpi dan heat rate dari input Unit 4 (Vent Gas From DHI Still Column)

xxvii

Tabe	el E6. Perhitung	gan Data	Desain p	erubahar	n entalpi e	dan heat r	<i>rate</i> dari <i>i</i>	nput Unit	Ś
	(Vent A	ir From	BSRU B	ioreactor	÷				
	5	psig	- Lauranta	4,4015	MMSCFD				
٩	1,34	atm	FIOWFALE	5.181,314	m3/jam				
	135.775,500	Ра	density	1,377	kg/m3				
	181,2	ч	mass rate	7.135,165	kg/jam				
F	82,889	c	ΔT	57,889	К				
	356,039	К							
Tref	25 C	298,15 K							
Pref	1 atm								
	, account	0/ me o	Μ	Mi	0/	hf	jumlah hf	cb	
	мошропец	7011101	(kg/kmol)	(kg/kmol)	2011102	(kJ/kmol)	(kJ/kg)	(kJ/kmolK)	
	CO3	13 8109	44.01	6 0774	0 202426	-393 500 0	-1 809 925	39 861	

	135.//.00	Ра	density	1,3//	kg/m3				
	181,2	щ	mass rate	7.135,165	kg/jam				
F	82,889	С	ΔΤ	57,889	к				
	356,039	к							
Tref	25 C	298,15 K							
Pref	1 atm								
	Komponen	%mol	M (kg/kmol)	Mi (kg/kmol)	%mass	hf (kJ/kmol)	jumlah hf (kJ/kg)	cp (kJ/kmolK)	delta h (kJ/kg)
	C02	13,8109	44,01	6,0774	0,202426	-393.500,0	-1.809,925	39,861	10,614
	N2	65,9507	28	18,4638	0,614994	0'0	000'0	29,215	37,146
	02	12,9092	32	4,1304	0,137576	0'0	0,000	29,784	7,413
	CH4	0,0181	16,04	0,0029	9,67E-05	-74.870,0	-0,451	38,343	0,013
C	6H6 (Benzena)	0,0077	78,12	0,0060	0,0002	49.000,0	0,126	148,45	0,022
C	7H8 (Toluene)	0,0077	92,15	0,0071	0,000236	13.100,0	0,034	175,05	0,026
ö	8H10 (Xylene)	0,0077	106,18	0,0082	0,000272	-24.100,0	-0,062	147,1	0,022
C2H6S2	(dimethyl disulfide)	0,006	94,2	0,0057	0,000188	-62.300,0	-0,124	146,11	0,017
	H2S	0,000101	34,08	0,0000	1,14E-06	-20.600,0	-0,001	35,184	0,000
C2H6S	6 (ethyl mercaptan)	0,008049	62,14	0,0050	0,000167	-46.150,0	-0,124	95,47	0,015
C3H8S (2	2-prophyl mercaptan)	0,005027	76,17	0,0038	0,000128	-76.940,0	-0,129	131,37	0,013
cos ((Carbonyl Sulfide)	0,001	60,07	0,0006	2E-05	-138.410,0	-0,046	44,615	0,001
	H20	7,2807	18,02	1,3118	0,043694	-285.830,0	-693,066	75,645	10,618
	JUMLAH	100,013		30,0227	1		-2.503,768		65,919
Q rate	input unit 5 (kJ/kg)	-17.394.	457,983	Q rate	(kJ/jam)	-17.864.	801,285	Q rate (kJ/jam)	470.343,303

te Gas Data Desain Unit 4 (Vent Gas	
dari Flu	
7. Perhitungan entalpi pembentukan	From DHU Still Column)
Tabel E7	

jumlah hf	(kJ/kg)	-1.409,870	-3.506,458	-1,311	000'0	0,000	-4.917,639	5.158,307
hf	(kJ/kmol)	-393.500,0	-241.820,0	-296.810,0	0'0	0,0		-4.906
IMI	(kg/kmol)	4,06105	6,72951	0,00729	14,95660	0,00000	25,754	: (kJ/jam)
0/ 00-55	2011102	0,15768	0,26130	0,00028	0,58074	0,00000		Q rate
221.00	CCDIII	12,83208	21,26388	0,023029	47,25981	0	81,3788	
Μ	(kg/kmol)	44,01	18,02	64,06	28	32		
koefisien	mol	0,291571907	1,180015391	0,000359483	1,687850	0	3,159797146	
Komponen Produk	dengan EA 0%	C02	H2O	S02	N2	02	JUMLAH	

 Tabel E8. Perhitungan entalpi pembentukan dari Flue Gas Data Desain Unit 5 (Vent Air

 From BSRU Bioreactor)

(kJ/kmol) -393.500,0	kmol) 6.500,0 1.820,0	00,0 20,0 10,0			┫┼┼┼┼┟
	-393 -241	-393.50 -241.82 -296.83	-393.500 -241.820 -296.810 0,0	-393.500,0 -241.820,0 -296.810,0 0,0 0,0	-393.500,0 -241.820,0 -296.810,0 0,0 0,0
15,34882	15,34882 3,34570	15,34882 3,34570 0,04167	15,34882 3,34570 0,04167 13,01794	15,34882 3,34570 0,04167 13,01794 0,00000	15,34882 3,34570 0,04167 13,01794 13,01794 0,00000 31,754
0,48336	0,48336 0,10536	0,48336 0,10536 0,00131	0,48336 0,10536 0,00131 0,40996	0,48336 0,10536 0,00131 0,40996 0,00000	0,48336 0,10536 0,00131 0,40996 0,00000
6,17675	6,17675 1,346392	6,17675 1,346392 0,016768	6,17675 1,346392 0,016768 5,238744	6,17675 1,346392 0,016768 5,238744 0	6,17675 1,346392 0,016768 5,238744 0 12,77865
44,01	44,01 18,02	44,01 18,02 64,06	44,01 18,02 64,06 28	44,01 18,02 64,06 28 32	44,01 18,02 64,06 28 32
0,14034878	0,14034878 0,07471654	0,14034878 0,07471654 0,00026176	0,14034878 0,07471654 0,00026176 0,18709801	0,14034878 0,07471654 0,00026176 0,18709801 0,18709801	0,14034878 0,07471654 0,00026176 0,18709801 0,18709801 0
CO2	CO2 H2O	CO2 H2O SO2	CO2 H2O SO2 N2	C02 H20 S02 N2 O2	C02 H2O S02 N2 UMLAH
	0,07471654 18,02 1,346392 0,10536 3,345	0,07471654 18,02 1,346392 0,10536 3,345 0,00026176 64,06 0,016768 0,00131 0,041	0,07471654 18,02 1,346392 0,10536 3,345 0,00026176 64,06 0,016768 0,00131 0,041 0,18709801 28 5,238744 0,40996 13,017	0,07471654 18,02 1,346392 0,10536 3,345 0,00026176 64,06 0,016768 0,00131 0,041 0,18709801 28 5,238744 0,40996 13,017 0 32 0 32 0 0,000	0,07471654 18,02 1,346392 0,10536 3,345 0,00026176 64,06 0,016768 0,00131 0,041 0,18709801 28 5,238744 0,40996 13,017 0 0 32 0 0,0000 0,0001 H 0,40242509 12,77865 31,75 31,75

e dari input Unit 6	
heat rate	
alpi dan	
uhan ent:	
n peruba	RU)
ta Desai	rom AG
ngan Da	h Gas F
Perhitu	(Flas)
Tabel E9.	

0,002 9,600 50,517	75,299 Q rate (kJ/jam)	-1,309 -1,309 -4.092,791 37,049	-285.830,0 -285.830,0 -21.53	8,254E-05 1 kJ/jam)	21,8328 Q rate (18,02 86,533	0,01 100,000 -21.4	JUMLAH input unit 6 (kJ/kg)	Q rate
0,866	145,35	-128,424	-106.600,0	0,091764 8 2545-05	2,0035	76,17	2,63026	2-prophyl mercaptan)	C3H8S (2
0,703	118	-88,764	-73.680,0	0,0748617	1,6344	62,14	2,63026	is (ethyl mercaptan)	C2H6S
0,434	72,82	-27,468	-22.800,0	0,0579594	1,2654	48,11	2,63026	Methyl Mercaptan)	CH4S (
0,319	53,562	-101,199	-84.000,0	0,0362267	0,7909	30,07	2,6303	C2H6	
6,653	36,016	-2.797,511	-74.870,0	0,5993332	13,0851	16,04	81,5782	CH4	
0,174	29,188	0,000	0,0	0,0337329	0,7365	28	2,6303	N2	
0,450	37,753	-948,116	-393.500,0	0,1060396	2,3151	44,01	5,2605	C02	
delta h (kJ/kg)	cp (kJ/kmolK)	jumlah hf (kJ/kg)	hf (kJ/kmol)	%mass	Mi (kg/kmol)	M (kg/kmol)	%mol	Komponen	
								1 atm	Pref
							298,15 K	25 C	Tref
			_				К	303,094	
				К	4,944	ΔT	С	29,944	⊢
				kg/jam	5,262	mass rate	Ł	85,9	
				kg/m3	1,176	density	Ра	135.775,500	
				m3/jam	4,473	Flowrate	atm	1,34	Р
				MMSCFD	0,0038		bsig	5	

											_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_		
									delta h	(kJ/kg)	1,218	29,651	1,688	0,862	0,541	0,350	0,227	0,144	0,050	0,007	0,025	0,031	0,037	0,033	0,000	0,000	0,000	0,009	34,875	97.145,052
									cb	(kJ/kmolK)	29,189	36,46	54,919	77,819	105,04	172,69	200,17	230,89	261,24	290,99	320,76	136,43	161,65	147,1	72,82	118	43,001	75,294		Q rate (kJ/jam)
									jumlah hf	(kJ/kg)	0'000	-3.727,952	-158,110	-71,037	-39,603	-21,476	-13,760	-8,561	-2,925	-0,427	-1,437	0,683	0,183	-0,336	0'000	-0,003	-0,023	-2,111	-4.046,898	.753,603
						_			hf	(kJ/kmol)	0'0	-74.870,0	-84.000,0	-104.700,0	-125.600,0	-173.300,0	-198.100,0	-223.800,0	-249.700,0	-274.800,0	-301.000,0	49.000,0	13.100,0	-24.100,0	-22.800,0	-73.680,0	-138.410,0	-285.830,0		-11.272.
	MMSCFD	m3/jam	kg/m3	kg/jam	К				9/ more	CCD110/	0,07153006	0,79866912	0,05659979	0,02991439	0,01832594	0,00894003	0,0059783	0,00382894	0,00133694	0,00019921	0,00067909	0,00108869	0,00128422	0,00147974	2,4922E-07	2,2047E-06	1,0006E-05	0,00013307	1	(kJ/jam)
	2,53	2.978,240	0,935	2.785,530	16,333				Mi	(kg/kmol)	1,2883	14,3847	1,0194	0,5388	0,3301	0,1610	0,1077	0,0690	0,0241	0,0036	0,0122	0,0196	0,0231	0,0267	0000'0	0,0000	0,0002	0,0024	18,0108	Q rate
		FIOWFATE	density	mass rate	ΔT				Μ	(kg/kmol)	28	16,04	30'02	44,09	58,12	72,14	86,07	100,09	114,12	128,14	142,22	78,12	92,15	106,18	48,11	62,14	60,07	18,02		608,552
el Gas)	psig	atm	Ра	н	C	К	298,15 K		10 m /0	/01110/	4,6011	89,6796	3,3901	1,222	0,5679	0,2232	0,1251	0,0689	0,0211	0,0028	0,0086	0,0251	0,0251	0,0251	9,33E-06	6,39E-05	0,0003	0,0133	666'66	-11.175.
(LP Fu)	5	1,34	135.775,500	106,4	41,333	314,483	25 C	1 atm	Vomnonon	אמוויליווא	N2	CH4	C2H6	C3H8	C4H10	C5H12	C6H14	C7H16	C8H18	C9H20	C10+	6H6 (Benzena)	7H8 (Toluene)	8H10 (Xylene)	Methyl Mercaptan)	(ethyl mercaptan)	(Carbonyl Sulfide)	H20	JUMLAH	input unit 7 (kJ/kg)
		٩			F		Tref	Pref														ö	5	ö	CH4S (I	C2H6S	cos (Q rate

Tabel E10. Perhitungan Data Desain perubahan entalpi dan heat rate dari input Unit 7

xxxi

Tabel E11. Perhitungan entalpi pembentukan dari Flue Gas Data Desain Unit 6 (FlashGas From AGRU)

jumlah hf (kJ/kg)	-1.381,843	-1.532,830	-76,237	0000	0,000	-2.990,910	376.222
hf (kJ/kmol)	-393.500,0	-241.820,0	-296.810,0	0'0	0,0		-222
Mi (kg/kmol)	4,33701	3,20539	0,46174	20,05826	0,00000	28,062	e (kJ/jam)
%mass	0,15455	0,11422	0,01645	0,71477	0,00000		Q rate
mass	47,47837	35,09028	5,054834	219,583	0	307,2065	
M (kg/kmol)	44,01	18,02	64,06	28	32		
koefisien mol	1,0788086	1,9472964	0,0789078	7,842251	0	10,9472639	
Komponen Produk dengan EA 0%	C02	H20	S02	N2	02	JUMLAH	

Tabel E12. Perhitungan entalpi pembentukan dari Flue Gas Data Desain Unit 7 (LP Fuel ζ

Uas)								
Komponen Produk	koefisien	Μ		0/	Mi	hf	jumlah hf	
dengan EA 0%	mol	(kg/kmol)	IIId55	20111055	(kg/kmol)	(kJ/kmol)	(kJ/kg)	
C02	1,055538371	44,01	46,45424	0,15452	4,28195	-393.500,0	-1.381,555	
H20	2,006503104	18,02	36,15719	0,12027	3,33281	-241.820,0	-1.613,918	
S02	3,7323E-06	64,06	0,000239	0,00000	0,00002	-296.810,0	-0,004	
N2	7,786819	28	218,0309	0,72522	20,09712	0'0	0,000	
02	0	32	0	0,00000	0,00000	0,0	0,000	
JUMLAH	10,84886467		300,6426		27,712		-2.995,477	
				Q rate	: (kJ/jam)	-139.86	5.431,612	

Tabel E13. Perhitungan Data Desain perubahan entalpi dan heat rate dari input Unit 8(Vent Gas From CTU)

5.970,189	Q rate (kJ/jam)	8,474	-71.718	e (kJ/jam)	Q rat	18,285	-65.74	input unit 8 (kJ/kg)	Q rate
29,024		-348,657		1	28,6354		100,000	JUMLAH	
2,135	75,332	-310,173	-285.830,0	0,01955467	0,5600	18,02	3,1074	H20	
0,058	262,46	-1,214	-142.500,0	0,00128087	0,0367	150,32	0,0244	S2 (propyl disulfide)	C6H14
0,152	204,01	-3,425	-119.900,0	0,0034925	0,1000	122,26	0,0818	S2 (diethyl disulfide)	C4H10
0,327	146,11	-5,337	-62.300,0	0,00806951	0,2311	94,2	0,2453	(dimethyl disulfide)	C2H6S2
0,004	147,1	-0,022	-24.100,0	9,7644E-05	0,0028	106,18	0,002633	(SH10 (Xylene)	C
0,004	164,69	0,012	13.100,0	8,4742E-05	0,0024	92,15	0,002633	(7H8 (Toluene)	C
0,003	139,11	0,045	49.000,0	7,184E-05	0,0021	78,12	0,002633	6H6 (Benzena)	Ū
0,486	326,19	-17,186	-301.000,0	0,00812039	0,2325	142,22	0,1635	C10+	
0,006	295,87	-0,230	-274.800,0	0,0001074	0,0031	128,14	0,0024	C9H20	
0,046	265,58	-1,674	-249.700,0	0,00076518	0,0219	114,12	0,0192	C8H18	
0,071	234,92	-2,595	-223.800,0	0,00116045	0,0332	100,09	0,0332	C7H16	
600'0	204,02	-0,353	-198.100,0	0,00015329	0,0044	86,07	0,0051	C6H14	
0,007	133	-0,282	-146.800,0	0,00013856	0,0040	72,14	0,0055	C5H12	
0,013	107,52	-0,588	-125.600,0	0,00027197	0,0078	58,12	0,0134	C4H10	
0,013	79,779	-0,676	-104.700,0	0,00028485	0,0082	44,09	0,0185	C3H8	
0,012	56,15	-0,683	-84.000,0	0,00024467	0,0070	30,07	0,0233	C2H6	
0,055	36,878	-4,275	-74.870,0	0,00091584	0,0262	16,04	0,1635	CH4	
3,022	29,582	0,000	0'0	0,12519493	3,5850	32	11,2031	02	
22,599	29,198	0'000	0'0	0,82999069	23,7671	28	84,8822	N2	
delta h (kJ/kg)	cp (kJ/kmol K)	jumlah hf (kJ/kg)	hf (kJ/kmol)	%mass	Mi (kg/kmol)	M (kg/kmol)	%mol	Komponen	
							Notions.	1 atm	Pref
							798 15 K	35 C	Trof
			_				×	324.261	
				K	26,111	ΔT	c	51,111	F
				kg/jam	205,699	mass rate	F	124	
				kg/m3	1,589	density	Ра	149.555,700	
				m3/jam	129,489	Howrate	atm	1,476	٩
				MMSCFD	0,11		psig	7	

xxxiii

									jumlah hf
						_			μf
	MMSCFD	m3/jam	kg/m3	kg/jam	К				
	0,0725	85,345	1,365	116,482	34,222				Mi
n WAO	ī	Flowrate	density	mass rate	ΔT				M
ias Froi	Bisd	atm	еd	Ч	С	Х	298,15 K		170
(Vent C	5	1,34	135.775,500	138,6	59,222	332,372	25 C	1 atm	2
		٩.			F		Tref	Pref	

5	
Unit	
input l	
dari	
rate	
heat	
dan	
entalpi	
perubahan	
Desain	(OAO)
Data	rom
Perhitungan	(Vent Gas F
14.	
ЫE	
abe	

											LO LO
		delta h	(kJ/kg)	0,061	32,855	1,589	3,881	0,000	0,000	38,386	4.471,26
		đ	(kJ/kmolK)	38,936	29,196	29,624	75,386	42,633	40,333		Q rate (kJ/jam)
		jumlah hf	(kJ/kg)	-17,943	00000	0,000	-430,019	-0,043	0,018	-447,987	2,358
		μf	(kJ/kmol)	-393.500,0	0'0	0'0	-285.830,0	-296.810,0	82.050,0		-52.18
		222.000 70	20mass	0,0020067	0,9207146	0,0501495	0,0271103	9,273E-06	9,554E-06	1	(kJ/jam)
		IM	(kg/kmal)	0,0557	25,5752	1,3930	0,7531	0,0003	0,0003	27,7776	Q rate
		Μ	(kg/kmol)	44,01	28	32	18,02	64,06	44		11,093
Υ.Υ		~~~ <u>70</u>	1011101	0,126	90,8654	4,3306	4,1573	0,0004	0,0006	99,480	Ľ.74-
25 C	1 atm	Versions	vomponen	CO2	N2	02	H2O	SO2	(Nitrous Oxide)	JUMLAH	input unit 9 (kJ/kg)
Tref	Pref								N20		Q rate i
Tabel E1	I E15. Perhitungan entalpi pembentukan dari I	lue Gas Data Desain Unit 8 (Vent									
----------	---	----------------------------------									
	Gas From CTID										

	jumlah hf	(kJ/kg)	-619,813	-810,900	-95,558	0,000	0,000	-1.526,272	953.057
	Чf	(kJ/kmol)	-393.500,0	-241.820,0	-296.810,0	0'0	0'0		-313,9
	Mi	(kg/kmol)	1,94755	1,69766	0,57942	23,86980	0,00000	28,094	e (kJ/jam)
	2000-70		0,06932	0,06043	0,02062	0,84963	0,00000		Q rate
	22000	CCDIII	1,51368	1,31946	0,450342	18,55218	0	21,83566	
	Μ	(kg/kmol)	44,01	18,02	64,06	28	32		
1	koefisien	mol	0,034394	0,073222	0,00703	0,66257792	0	0,77722392	
	Komponen Produk	dengan EA 0%	C02	H2O	S 02	N2	02	JUMLAH	

Tabel E16. Perhitungan entalpi pembentukan dari Flue Gas Data Desain Unit 9 (VentGas From WAO)

	jumlah hf	(kJ/kg)	-22,861	-463,542	-0,055	0'000	0,000	-486,458	63,542
	hf	(kJ/kmol)	-393.500,0	-241.820,0	-296.810,0	0'0	0,0		-56.6
	Mi	(kg/kmol)	0,07031	0,94990	0,00032	26,47914	0,00000	27,500	e (kJ/jam)
	33E UU 70	/011102	0,00256	0,03454	0,00001	0,96289	0,00000		Q rate
	336 W	CCDIII	0,055453	0,749145	0,000256	20,88291	0	21,68776	
	Μ	(kg/kmol)	44,01	18,02	64,06	28	32		
·	koefisien	mol	0,00126	0,041573	0,000004	0,74581816	0	0,78865516	
	Komponen Produk	dengan EA 0%	C02	H20	S02	N2	02	JUMLAH	

Kanada			M	i hidrokarb	on (kg/kmc	ol)		-
Komponen	Unit 1	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9
CH4	11,075	14,222	11,487	4,730	14,208	15,081	3,250	0,000
C2H6	1,193	1,141	1,139	0,000	0,859	1,069	0,868	0,000
C3H8	0,700	0,760	0,862	0,000	0,000	0,565	1,011	0,000
C4H10	0,461	0,681	0,372	0,000	0,000	0,346	0,965	0,000
C5H12	0,000	0,599	0,179	0,000	0,000	0,169	0,492	0,000
C6H14	0,342	0,910	0,129	0,000	0,000	0,113	0,544	0,000
C7H16	0,000	0,513	0,079	0,000	0,000	0,072	4,118	0,000
C8H18	0,000	0,079	0,023	0,000	0,000	0,025	2,715	0,000
C9H20	0,000	0,010	0,003	0,000	0,000	0,004	0,381	0,000
C10+	0,564	0,005	0,009	0,000	0,000	0,013	28,814	0,000
C6H6	2,997	0,196	5,525	9,801	0,000	0,021	0,255	0,000
C7H8	3,535	0,231	6,517	11,561	0,000	0,024	0,301	0,000
C8H10	4,073	0,266	7,509	13,321	0,000	0,028	0,346	0,000
C2H6S2								
(dimethyl	1,869	0,000	0,000	9,209	0,000	0,000	28,634	0,000
disulfide)								
C4H10S2								
(diethyl	0,000	0,000	0,000	0,000	0,000	0,000	12,393	0,000
disulfide)								
C6H14S2								
(propyl	0,000	0,000	0,023	0,000	0,000	0,000	4,545	0,000
disulfide)								
H2S	0,676	0,251	0,000	0,056	0,000	0,000	0,000	0,000
CH4S (Methyl	0,000	0,039	0,001	0,000	1,374	0,000	0,000	0,000
Mercaptan)								
C2H6S (ethyl	2,712	0,204	0,009	8,149	1,775	0,000	0,000	0,000
course								
(2 prophyl	1 5 1 1	0 100	0 1 1 0	6 220	2 1 7 5	0.000	0.000	0.000
(2-propriy)	1,511	0,199	0,119	0,235	2,175	0,000	0,000	0,000
COS (Carbonyl								
Sulfide)	1,192	0,001	0,055	0,979	0,000	0,000	0,000	0,000
N2O (Nitrous								
Oxide)	0,000	0,000	0,000	0,000	0,000	0,000	0,000	44,000
Jumlah	32,901	20,308	34,040	64,043	20,390	17,529	89,631	44,000

Tabel E17. Hasil Perhitungan Berat Molekuler dan %massHidrokarbon Masing-Masing Unit Pada Data Desain

Kanananan		%mass l	kandungan	hidrokarboı	n terhadap s	seluruh kom	nponen	
Komponen	Unit 1	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9
CH4	0,00065	0,52905	0,06968	0,00010	0,59933	0,79867	0,00092	0,0
C2H6	0,00007	0,04246	0,00691	0,00000	0,03623	0,05660	0,00024	0,0
C3H8	0,00004	0,02828	0,00523	0,00000	0,00000	0,02991	0,00028	0,0
C4H10	0,00003	0,02531	0,00226	0,00000	0,00000	0,01833	0,00027	0,0
C5H12	0,00000	0,02229	0,00108	0,00000	0,00000	0,00894	0,00014	0,0
C6H14	0,00002	0,03387	0,00078	0,00000	0,00000	0,00598	0,00015	0,0
C7H16	0,00000	0,01908	0,00048	0,00000	0,00000	0,00383	0,00116	0,0
C8H18	0,00000	0,00294	0,00014	0,00000	0,00000	0,00134	0,00077	0,0
C9H20	0,00000	0,00039	0,00002	0,00000	0,00000	0,00020	0,00011	0,0
C10+	0,00003	0,00020	0,00006	0,00000	0,00000	0,00068	0,00812	0,0
C6H6	0,00018	0,00728	0,03351	0,00020	0,00000	0,00109	0,00007	0,0
C7H8	0,00021	0,00858	0,03953	0,00024	0,00000	0,00128	0,00008	0,0
C8H10	0,00024	0,00989	0,04555	0,00027	0,00000	0,00148	0,00010	0,0
C2H6S2	0.00011	0.00000	0.00000	0.00010	0.00000	0.00000	0.00807	0.0
disulfide)	0,00011	0,00000	0,00000	0,00019	0,00000	0,00000	0,00807	0,0
C4H10S2 (diethyl disulfide)	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00349	0,0
C6H14S2 (propyl disulfide)	0,00000	0,00000	0,00014	0,00000	0,00000	0,00000	0,00128	0,0
H2S	0,00004	0,00933	0,00000	0,00000	0,00000	0,00000	0,00000	0,0
CH4S (Methyl Mercaptan)	0,00000	0,00145	0,00000	0,00000	0,05796	0,00000	0,00000	0,0
C2H6S (ethyl mercaptan)	0,00016	0,00760	0,00005	0,00017	0,07486	0,00000	0,00000	0,0
C3H8S (2-prophyl mercaptan)	0,00009	0,00741	0,00072	0,00013	0,09176	0,00000	0,00000	0,0
COS (Carbonyl Sulfide)	0,00007	0,00005	0,00034	0,00002	0,00000	0,00001	0,00000	0,0
N2O (Nitrous Oxide)	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00001
Jumlah	0,00194	0,75545	0,20650	0,00131	0,86014	0,92834	0,02526	0,00001

Tabel E17. (lanjutan)

Data Desain
ıra Pada I
tuhan Uda
gan Kebu
Perhitung
18. Hasil
Fabel E

	•							
	Unit 1	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9
mol udara teori	0,039	9,621	2,127	0'000	9,895	9,800	0'000	0,000
AFR mol teori	15,564	11,490	17,486	0,000	10,743	10,274	0,000	0,000
AFR mass toeri	13,705	16,390	14,882	0'000	15,264	16,979	0,000	0,000
mol udara aktual (EA15%)	0,045	11,064	2,446	0,000	11,379	11,269	0'00	0,000
AFR mol aktual (EA15%)	17,899	13,213	20,109	000'0	12,355	11,815	0,000	0,000
AFR mass aktual (EA15%)	15,761	18,848	17,114	0,000	17,554	19,526	0,000	0,000
mass rate BB+HK (kg/jam)	81,832	918,848	50,581	9,341	4,526	2.585,910	5,196	0,001
density udara (kg/m3)	1,139	1,139	1,139	1,139	1,139	1,139	1,139	1,139
m rate udara Teori (kg/jam)	1.121,488	15.059,857	752,721	000'0	69,088	43.906,677	0,000	0,000
Vol rate udara Teori (m3/jam)	984,625	13.221,999	660,861	000'0	60,657	38.548,443	0'00	0,000
m rate udara aktual (EA15%) (kg/jam)	1.289,712	17.318,835	865,629	0,000	79,452	50.492,679	0,000	0,000
Vol rate udara aktual (EA15%) (m3/jam)	1.132,319	15.205,299	759,991	0,000	69,756	44.330,710	0,000	0,000
m rate flue teori (kg/jam)	43.399,516	16.276,141	997,665	7.135,165	74,351	46.692,207	205,699	116,482
m rate flue aktual (EA15%) (kg/jam)	43.567,740	18.535,120	1.110,573	7.135,165	84,714	53.278,208	205,699	116,482

xxxviii

I auci Lilv. Jul	In TUILI III III	tata tatitua	iiaii paua p	I UUUUN Dal	a Desalli			
Komponen				Koefisien r	nol			
Udara di Produk dg EA 15%	Unit 1	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9
N2	0,00464736	1,139929	0,2519693	0,0019465	1,172392	1,16112127	0,035249	0
02	0.001236	0.3031776	0.0670131	0.0005177	0.311806	0.30880885	0.009375	C

Tabel E19. Jumlah mol udara tambahan pada produk Data Desain

Tabel E20. Perhitungan Kelebihan Udara Pada Unit 5 Data Desain

_						
a (02 + 3,76N2)					kg/jam	
a terdapat kelebihan udar	0,00345131	0,1251230	0,5955854	0,57212913	4.082,236	
Pada Unit 5, komponen O2 sudah mencukupi, sehingg	%mol pemakaian 02 EA 0%	%mol O2 sisa EA 15%	%mol udara sisa EA 15%	%mass udara sisa EA 15%	mass rate udara sisa EA 15%	

Tabel E21. Perhitungan Kelebihan Udara Pada Unit 8 Data Desain

lara (02 + 3,76N2)					kg/jam
sehingga terdapat kelebihan uc	0,062498	0,0401583	0,1911535	0,192521771	39,602
Pada Unit 8, komponen O2 sudah mencukupi,	%mol pemakaian 02	%mol 02 sisa	%mol udara sisa	%mass udara sisa	mass rate udara sisa

Pada Unit 9, komponen O2 suda	h mencukupi, sehingga	terdapat kelebihan udara
%mol pemakaian O2	0	
%mol O2 sisa	0,0433090	
%mol udara sisa	0,2061508	
%mass udara sisa	0,214038048	
mass rate udara sisa	24,932	kg/jam

Tabel P22. Perhitungan Kelebihan Udara Pada Unit 9 Data Desain

Tabel P23. Perhitungan Jumlah Udara Pada Unit 3 Data Desain

6		
Udara aktual dikurangi suplai	udara dari unit lain	
mol udara unit lain	0,99288979	
m udara teori minus unit lain	10.913,088	kg/jam
m udara aktual minus unit lain	13.172,066	kg/jam
Vol udara minus unit lain	11.564,589	m3/jam
m rate flue gas aktual	14.388,351	kg/jam
m rate flue gas teori	12.129,372	kg/jam

								delta h	(M/KB)	12,556	0,019	0,116	0,010	0,100	0,002	0,005	0,122	0,003	0,001	0,001	0,001	0,215	0,087	0,199	0,002	0,000	0,012	13,452	473.392,010
								cp 111/1111-1117		38,15	29,195	36,457	54,924	77,864	105,24	230,75	261,09	290,82	320,57	157,66	161,85	184,38	34,85	136,34	214,72	161,54	147,1		Q rate (kJ/jam)
								jumlah hf	(RV/KB)	-8.634,154	0,000	-15,930	279,0-	-9,004	-0,151	-0,305	-7,764	-0,199	-0,041	-0,075	-0,057	-14,800	-3,438	4,767	-0,028	0,002	-0,132	-8.682,285	.470,838
					_			hf An Anna - A		-393.500,0	0,0	-74.870,0	-84.000,0	-104.700,0	-125.600,0	-223.800,0	-249.700,0	-274.800,0	-301.000,0	-137.700,0	-157.700,0	-190.200,0	-20.600,0	49.000,0	-38.400,0	13.100,0	-24.100,0		-305.538
MMSCFD	m3/jam	kg/m3	kg/jam	К				%mass		0,96566484	0,00120081	0,00341291	0,00034985	0,0037917	6,986E-05	0,0001362	0,00354833	9,2995E-05	1,9352E-05	4,595E-05	3,0633E-05	0,00766369	0,00568779	0,00760054	8,7501E-05	1,6719E-05	0,00058034	1	(kJ/jam)
11,8	13.890,606	2,533	35.191,019	15				Mi ////	(RE/ RITIOI)	42,5796	0,0529	0,1505	0,0154	0,1672	0,0031	0,0060	0,1565	0,0041	6000'0	0,0020	0,0014	0,3379	0,2508	0,3351	0,0039	0,0007	0,0256	44,0936	Q rate
	LIOWIALE	density	mass rate	ΔΤ				M M	(Rg/ KITIOI)	44,01	28	16,04	30,07	44,09	58,12	100,09	114,12	128,14	142,22	84,42	84,42	98,49	34,08	78,12	120,57	92,15	106,18		5.078,828
psig	atm	Ра	F	С	К	298,15 K		%mol		96,7498	0,1891	0,9382	0,0513	0,3792	0,0053	0,006	0,1371	0,0032	0,0006	0,0024	0,0016	0,3431	0,7359	0,429	0,0032	0,0008	0,0241	100,000	-305.06
7,000	1,476	149.588,299	104	40	313,15	25 C	1 atm	omponen		C02	N2	thane (CH4)	nane (C2H6)	panes (C3H8)	anes (C4H10)	tane (C7H16)	ane (C8H18)	nane (C9H20)	ane (C10H22)	entane (C6H12)	rexane (C6H12)	lexane (C7H14)	H2S	izene (C6H6)	, NPBZ, 124TB (C9H12)	uene (C7H8)	ene (C8H10)	JUMLAH	te input unit 1 (kJ/kg)
	Р			F		Tref	Pref	X				Me	Eth	Prop	Buta	Hept	Oct	Non	Dece	M-C Pe	Cycloh	M-CH		Ben	IPBZ,	Tolı	Xylt		Q rat

Tabel E25. Perhitungan Data Operasional perubahan entalpi dan heat rate dari inputUnit 3 (Acid Gas From GSU)

								delta h (kJ/kg)	1,056	0,333	8,267	0,553	0,391	0,426	0,355	0,525	0,294	0,045	0,006	0,003	0,073	0,085	2,898	0,101	0,093	15,504	929,356
								cp (kJ/kmolK)	40,64	29,573	36,937	57,751	89,866	144,22	169,49	196,8	227,43	257,54	286,83	321,58	39,2	134,31	214,72	159,05	147,1		Q rate (kJ/jam)
								jumlah hf (kJ/kg)	-1.262,251	0,000	-2.068,727	-99,356	-56,255	-54,001	-44,850	-65,299	-35,748	-5,390	-0,695	-0,347	-4,723	3,824	-63,981	1,022	-1,881	-3.758,657	00,421
								hf (kJ/kmol)	-393.500,0	0'0	-74.870,0	-84.000,0	-104.700,0	-148.000,0	-173.300,0	-198.100,0	-223.800,0	-249.700,0	-274.800,0	-301.000,0	-20.600,0	49.000,0	-38.400,0	13.100,0	-24.100,0		-225.30
MMSCED	m3/jam	kg/m3	kg/jam	К				%mass	0,1411732	0,0389042	0,4431999	0,0355671	0,0236892	0,0212062	0,01867	0,0283708	0,0159876	0,0024633	0,0003243	0,0001641	0,0078142	0,0060967	0,2008909	0,0071916	0,0082866	1	kJ/jam)
0.00469	5,521	10,857	59,942	8,1				Mi (kg/kmol)	3,7933	1,0454	11,9088	0,9557	0,6365	0,5698	0,5017	0,7623	0,4296	0,0662	0,0087	0,0044	0,2100	0,1638	5,3980	0,1932	0,2227	26,8701	Q rate (
	Flowrate	density	mass rate	ΔT				M (kg/kmol)	44,01	28	16,04	30,07	44,09	58,12	72,14	86,07	100,09	114,12	128,14	142,22	34,08	78,12	120,57	92,15	106,18		71,066
ncig	atm	Ра	ш	С	×	298,15 K		%mol	8,6192	3,7334	74,244	3,1782	1,4437	0,9804	0,6954	0,8857	0,4292	0,058	0,0068	0,0031	0,6161	0,2097	4,477	0,2097	0,2097	666'66	-224.3
134.520	10,153	1.028.807,712	91,58	33,1	306,25	25 C	1 atm	Komponen	C02	N2	ethane (CH4)	hane (C2H6)	panes (C3H8)	tanes (C4H10)	itane (C5H12)	xane (C6H14)	otane (C7H16)	tane (C8H18)	nane (C9H20)	cane (C10H22)	H2S	nzene (C6H6)	Z, NPBZ, 124TB (C9H12)	luene (C7H8)	lene (C8H10)	JUMLAH	ste input unit 3 (kJ/kg)
	٩			⊢		Tref	Pref				ž	Ш	Pro	But	Pen	He	Hep	00	Noi	Dec		Bel	IPBZ	To	Xy		Q ra

xlii

Tabel E26. Perhitungan entalpi pembentukan dari Flue Gas Data Opearasional Unit 1 (Acid Gas From BSRU)

mark		(
Komponen Produk	koefisien	W	22000	200 m 70	Mi	hf	jumlah hf
dengan EA 0%	mol	(kg/kmol)	CCDIII	CCD110/	(kg/kmol)	(kJ/kmol)	(kJ/kg)
C02	1,053499	44,01	46,364491	0,73107	27,48392	-393.500,0	-6.536,578
H20	0,094856	18,02	1,7093051	0,02695	1,01324	-241.820,0	-361,683
S02	0,007359	64,06	0,4714175	0,00743	0,27945	-296.810,0	-34,440
N2	0,53125388	28	14,875109	0,23455	8,81766	0'0	0,000
02	0	32	0	0,00000	0,00000	0,0	0,000
JUMLAH	1,68696788		63,420322		37,594		-6.932,701
				Q rate	(kJ/jam)	-351.38	7.651,595

Tabel E27. Perhitungan entalpi pembentukan dari Flue Gas Data Opearasional Unit 3 (Acid Gas From GSU)

jumlah hf	11/1/1/		0 -1.624,506	/ (M/Kg) 0 -1.624,506 0 -1.376,937	0 -1.624,506 -1.376,937 -0 -4,886	/ (v/vg/ 0 -1.624,506 0 -1.376,937 0 -4,886 0,000	/ (13/14) 0 -1.624,506 0 -1.376,937 0 -4,886 0,000 0,000	/ /////// 0 -1.624,506 0 -1.376,937 0 -4,886 0,000 0,000 -3.006,329
hf	(kJ/kmol)	-393.500,	-241.820,	-296.810,	0,0	0,0		5 C-
Mi	(kg/kmol)	5,13795	2,90161	0,02982	20,20950	0,00000	28,279	e (kJ/jam)
/0/	CCBIII02	0,18169	0,10261	0,00105	0,71465	0,00000		O rat
	SCEIII	68,0046	38,40493	0,394674	267,4876	0	374,2918	
Μ	(kg/kmol)	44,01	18,02	64,06	28	32		
koefisien	mol	1,545208	2,131239	0,006161	9,55312884	0	13,2357368	
Komponen Produk	dengan EA 0%	C02	H20	S 02	N2	02	JUMLAH	

Tabel E28. Perhitungan Data Operasional perubahan entalpi dan heat rate dari

									delta h (kJ/kg)	28,408	21,178	4,449	0,583	0,015	0,103	0,013	0,358	0,015	0,002	0,003	0,008	1,049	0,717	0,011	0,002	0,047	56,961	419,447,941
									cp (kJ/kmolK)	39,86	29,215	29,784	38,343	60,092	85,86	248,97	280,61	312,47	344,51	157,66	181,76	184,38	148,45	214,72	175,05	147,1		Q rate (kJ/jam)
									jumlah hf (kJ/kg)	-4.844,515	0,000	0,000	-19,681	-0,366	-2,172	-0,204	-5,510	-0,230	-0,023	-0,045	-0,124	-18,687	4,088	-0,034	0,003	-0,132	-4.887,633	183,008
I CUMUDI)									hf (kJ/kmol)	-393.500,0	0'0	0'0	-74.870,0	-84.000,0	-104.700,0	-223.800,0	-249.700,0	-274.800,0	-301.000,0	-137.700,0	-157.700,0	-190.200,0	49.000,0	-38.400,0	13.100,0	-24.100,0		-35.991.
	MMSCFD	m3/jam	kg/m3	kg/jam	К				%mass	0,5418224	0,3506204	0,0825678	0,0042165	0,000131	0,0009148	9,129E-05	0,0025182	0,0001071	1,081E-05	2,78E-05	6,63E-05	0,0096765	0,0065173	0,0001069	2,101E-05	0,0005837	1	d/jam)
1110110	3,81	4.485,018	1,642	7.363,724	57,889				Mi (kg/kmol)	19,4097	12,5603	2,9578	0,1510	0,0047	0,0328	0,0033	0,0902	0,0038	0,0004	0,0010	0,0024	0,3466	0,2335	0,0038	0,0008	0,0209	35,8230	Q rate (
V EIN UN	Florento	LIOWIALE	density	mass rate	ΔΤ				M (kg/kmol)	44,01	28	32	16,04	30,07	44,09	100,09	114,12	128,14	142,22	84,42	84,42	98,49	78,12	120,57	92,15	106,18		.735,067
	psig	atm	Ра	F	С	к	298,15 K		%mol	48,5947	49,4268	10,1846	1,0376	0,0172	0,0819	0,0036	0,0871	0,0033	0,0003	0,0013	0,0031	0,3878	0,3293	0,0035	6000'0	0,0217	110,185	-35.571
mdun	5,000	1,340	135.798,785	181,2	82,889	356,039	25 C	1 atm	omponen	C02	N2	<mark>02</mark>	thane (CH4)	ane (C2H6)	anes (C3H8)	ane (C7H16)	ane (C8H18)	ane (C9H20)	ne (C10H22)	entane (C6H12)	exane (C6H12)	exane (C7H14)	zene (C6H6)	NPBZ, 124TB (C9H12)	tene (C7H8)	ene (C8H10)	IUMLAH	e input unit 5 (kJ/kg)
		٩			F		Tref	Pref	Kc				Met	Eth	Prop	Hept	Octa	Noné	Deca	M-C Pe	Cyclohe	M-C He	Benz) ZBJ	Tolu	Xyle		Q rate

input Unit 5 (Vent Gas From BSRU Bioreaktor)

Tabel E29. Perhitungan Data Operasional perubahan entalpi dan heat rate dari input Unit 6 (Flash Gas From AGRU)

							delta h	olk) (kJ/kg)	8 0,141	3 0,113	6 0,003	8 34,875	1,979	7 1,054	7 0,507	6 0,374	2 0,227	3 0,259	6 0,446	9 0,374	3 0,396	3 0,147	5 0,032	6 0,095	9 0,148	8 0,260	9 0,400	3 0,295	L 0,045	42,171	e 177.852,968 n)
							cb	(kJ/kmo	40,98	29,58	29,96	37,35	58'9	90,89	147,9	148,3	173,1	170,9	200,7	231,5	262,0	291,9	321,8	157,6	163,0	184,3	136,8	162,2	147,:		Q rat (kJ/jar
							jumlah hf	(kJ/kg)	-72,533	0,000	0,000	-3.756,635	-151,649	-65,277	-27,281	-20,898	-12,214	-14,540	-23,628	-19,413	-20,306	-7,449	-1,632	-4,479	-7,695	-14,436	7,704	1,278	-0,392	-4.211,475	1.411,606
							hf	(kJ/kmol)	-393.500,0	0,0	0,0	-74.870,0	-84.000,0	-104.700,0	-148.000,0	-154.190,0	-173.300,0	-178.800,0	-198.100,0	-223.800,0	-249.700,0	-274.800,0	-301.000,0	-137.700,0	-157.700,0	-190.200,0	49.000,0	13.100,0	-24.100,0		-17.76
MMSCFU m3/jam	kg/m3	kg/jam	К				%mass		0,0081123	0,0057684	0,0001735	0,8048141	0,0542866	0,0274886	0,0107132	0,0078774	0,0050843	0,0058665	0,0102657	0,0086821	0,0092804	0,0034735	0,000771	0,0027461	0,0041191	0,0074754	0,0122822	0,0089925	0,0017269	1	kJ/jam)
0,4563 537,143	7,852	4.217,385	18,606				Mi 	(kg/kmol)	0,1496	0,1064	0,0032	14,8435	1,0012	0'2010	0,1976	0,1453	8860'0	0,1082	0,1893	0,1601	0,1712	0,0641	0,0142	0,0506	0,0760	0,1379	0,2265	0,1659	0,0319	18,4434	Q rate (
Flowrate	density	mass rate	ΔT				" " W	(kg/kmol)	44,01	28	32	16,04	30,07	44,09	58,12	58,12	72,14	72,14	86,07	100,09	114,12	128,14	142,22	84,42	84,42	98,49	78,12	92,15	106,18		3.558,638
psig atm	Ра	F	С	K	298,15 K		%mol		0,34	0,38	0,01	92,55	3,33	1,15	0,34	0,25	0,13	0,15	0,22	0,16	0,15	0,05	0,01	0,06	0,09	0,14	0,29	0,18	0,03	100,010	-17.58
147,220 11,018	1.116.371,126	110,49	43,606	316,756	25 C	1 atm	Komponen		C02	N2	02	ethane (CH4)	chane (C2H6)	panes (C3H8)	tanes (C4H10)	3utane (C4H10)	itane (C5H12)	entane (C5H12)	xane (C6H14)	otane (C7H16)	tane (C8H18)	nane (C9H20)	ane (C10H22)	Pentane (C6H12)	hexane (C6H12)	Hexane (C7H14)	nzene (C6H6)	luene (C7H8)	lene (C8H10)	JUMLAH	ite input unit 6 (kJ/kg)
٩			F		Tref	Pref						Ň	Et	Pro	But	iso-E	Pen	iso-P	He	Hep	ő	Ň	Dec	M-CF	Cyclo	M-C	Be	To	xγ		Qra

Tabel E30. Perhitungan entalpi pembentukan dari Flue Gas Data Opearasional Unit 5 (Vent Air From BSRU Bioreactor)

Komponen Produk	koefisien	Μ		0/	Mi	hf	jumlah hf
dengan EA 0%	mol	(kg/kmol)	SSBIII	20111d	(kg/kmol)	(kJ/kmol)	(kJ/kg)
C02	0,555953	44,01	24,46749	0,61141	21,52188	-393.500,0	-5.466,734
H20	0,071654	18,02	1,291205	0,03227	1,13576	-241.820,0	-432,990
S02	0	64,06	0	0,00000	0,00000	-296.810,0	0,000
N2	0,50925912	28	14,25926	0,35632	12,54260	0'0	0,000
02	0	32	0	0,00000	0,00000	0,0	0,000
JUMLAH	1,13686612		40,01795		35,200		-5.899,724
				Q rate	(kJ/jam)	-44.049	.649,337

Tabel E31. Perhitungan entalpi pembentukan dari Flue Gas Data Opearasional Unit 6 (Flash Gas From AGRU)

koefisien	Μ	22000	2000-70	Mi	hf	jumlah hf	
mol	(kg/kmol)	ccbIII	CCDIII0/	(kg/kmol)	(kJ/kmol)	(kJ/kg)	_
1,1607	44,01	51,082407	0,15799	4,38780	-393.500,0	-1.412,613	
2,1272	18,02	38,332144	0,11856	3,29260	-241.820,0	-1.590,959	
0	64,06	0	0'00000	0,00000	-296.810,0	0,000	
8,354008	28	233,912224	0,72345	20,09226	0'0	0,000	
0	32	0	0,00000	0,00000	0,0	0,000	
11,641908		323,326775		27,773		-3.003,571	
			Q rate	(kJ/jam)	-222.08	9.731,622	
	koefisien mol 1,1607 2,1272 2,1272 0 8,354008 0 11,641908	koefisien M mol (kg/kmol) 1,1607 44,01 2,1272 18,02 0 64,06 8,354008 28 0 32 11,641908 32	koefisien mol M (kg/kmol) mass 1,1607 44,01 51,082407 1,1607 18,02 38,332144 2,1272 18,02 38,332144 0 64,06 0 0 8,354008 28 233,912224 0 32 32,351724 11,641908 32,323,315775 323,326775	koefisien mol M (kg/kmol) mass mass %mass 1,1607 44,01 51,082407 0,15799 2,1272 18,02 38,332144 0,11856 2,1272 18,02 38,332144 0,11856 8,354008 28 233,912224 0,72345 0 32 0 0,00000 0 11,641908 323,326775 0,000000 0,000000	koefisien mol M (kg/kmol) mass mass %mass %mass Mi 1,1607 44,01 51,082407 0,15799 4,38780 1,1607 44,01 51,082407 0,11856 3,29260 2,1272 18,02 38,332144 0,11856 3,29260 0 64,06 0 0 0,00000 0,00000 8,354008 28 233,912224 0,77345 20,09226 0 32 0 0,00000 0,00000 11,641908 32 323,32575 A 27,773	koefisien mol M (kg/kmol) mass mass %mass %mass M (kg/kmol) hf h(kl/kmol) 1,1607 44,01 51,082407 0,15799 4,38780 -393.500,0 2,1272 18,02 38,332144 0,11856 3,29260 -241.820,0 0 64,06 0 0,00000 0,00000 -296.810,0 8,354008 28 233,912224 0,72455 20,09226 0,0 0 32 0 0,00000 0,00000 0,0 0 0 32 32,326775 A 27,773 A -222.08 11,641908 323,326775 A Crate (kl/jam) -222.08	koefisien M Mass Mi hf jumlah hf mol (kg/kmol) mass %mass Mi hf jumlah hf mol (kg/kmol) mass %mass %mass Mi hf jumlah hf 1,1607 44,01 51,082407 0,15799 4,38780 -393:500,0 -1.412,613 2,1272 18,02 38,332144 0,11856 3,29260 -241.820,0 -1.412,613 2,1272 18,02 38,332144 0,11856 3,29260 -241.820,0 -1.412,613 2,1272 18,02 38,332144 0,11856 3,29260 -241.820,0 -1.412,613 0 64,06 0 0,00000 0,00000 -206.810,0 0,000 8,354008 28 233,912224 0,72345 20,09226 0,0 0,000 0 323,326775 0,000000 0,000 0,0 0,000 0,000 11,641908 323,326775 Q rate (kl/jam) -222.089.731,622 -

MMSCFD

1,4789

psig

5,160

	ODT'C	8 Sicri		T/4/02	ININISCED				
٩	1,351	atm	LIOWIALE	1.740,917	m3/jam				
	136.901,946	Ра	density	££6'0	kg/m3				
	106,4	Ł	mass rate	1.623,755	kg/jam				
F	41,333	С	ΔT	15	K				
	314,483	к							
Tref	25 C	298,15 K							
Pref	1 atm								
			Μ	Mi		hf	jumlah hf	cb	delta h
	componen	%mol	(kg/kmol)	(kg/kmol)	%mass	(kJ/kmol)	(kJ/kg)	(kJ/kmolK)	(kJ/kg)
	N2	<u>0,5</u>	28	0,1400	0,0079583	0'0	0'000	29,19	0,136
Me	ethane (CH4)	93,74	16,04	15,0359	0,854711	-74.870,0	-3.989,540	36,461	31,734
Et	hane (C2H6)	3,35	30,07	1,0073	0,0572622	-84.000,0	-159,961	54,922	1,708
Pro	panes (C3H8)	1,15	44,09	0,5070	0,0288223	-104.700,0	-68,444	77,828	0,831
But	anes (C4H10)	£' 0	58,12	0,1744	0,0099114	-125.600,0	-21,419	105,07	0,293
iso-B	utane (C4H10)	0,24	58,12	0,1395	2626700,0	-134.200,0	-18,309	103,03	0,230
Pen	tane (C5H12)	0,1	72,14	0,0721	0,0041008	-173.300,0	-9,851	172,69	0,160
iso-P€	entane (C5H12)	0,13	72,14	0,0938	0,005331	-154.000,0	-11,380	128,73	0,155
He	kane (C6H14)	0,49	86,07	0,4217	0,0239739	-198.100,0	-55,179	200,17	0,911
	JUMLAH	100,000		17,5918	1		-4.334,082		36,157
Qra	te input unit 7 (kJ/kg)	-6.978	.779,321	Q rate (kJ/jam)	1/201/-	189,323	Q rate (kJ/jam)	58.710,002

Tabel E33. Perhitungan entalpi pembentukan dari Flue Gas Data Opearasional Unit 7(LP Fuel Gas)

Σ	macc	%macc	Mi	hf	jumlah hf
(kg/kmol)	CCDIII	CCD110/	(kg/kmol)	(kJ/kmol)	(kJ/kg)
44,01	48,47261	0,15501	4,29520	-393.500,0	-1.385,997
18,02	37,77713	0,12081	3,34746	-241.820,0	-1.621,209
64,06	0	0'00000	0,00000	-296.810,0	0,000
28	226,4499	0,72418	20,06592	0'0	000'0
32	0	0,00000	0,00000	0,0	0,000
	312,6996		27,709		-3.007,206
		Q rate	: (kJ/jam)	561.38-	.130,575

Hidrokarl Operasion	oon Masin nal	ng-Masi	ng Unit	: Pada E	Data
Komponon		Mi hidrol	karbon (kg	/kmol)	
Komponen	Unit 1	Unit 3	Unit 5	Unit 6	Unit 7
Methane (CH4)	4,916278	13,587	8,412	14,953	15,111
Ethane (C2H6)	0,50395	1,090	0,261	1,009	1,012
Propanes (C3H8)	5.461917	0.726	1.825	0.511	0.510

0,650

0,000

0,572

0,000

0,870

0,490

0,076

0,010

0,005

0,000

0,000

0,000

0,240

0,187

6,159

0,220

0,254

25,136

0,000

0,000

0,000

0,000

0,000

0,233

6,261

0,130

0,014

0,070

0,148

23,963

0,000

5,672

0,085

0,028

0,835

47,937

0,199

0,182

0,113

0,151

0,253

0,207

0,215

0,039

0,009

0,064

0,085

0,172

0,000

0,100

0,000

0,113

0,023

18,397

0,175

0,174

0,087

0,131

0,562

0,000

0,000

0,000

0,000

0,000

0,000

0,000

0,000

0,000

0,000

0,000

0,000

17,762

0,100632

0

0

0

0

0,196191

5,111353

0,133959

0,027877

0,06619

0,044127

11,0395

8,193228

10,94854

0,126045

0,024084

0,835981

47,730

Tabel P34. Hasil Perhitungan Berat Molekuler dan %mass untuk

Juml	ah	
Tabel P34.	(lan	jutan)

Butanes (C4H10)

iso-Butane (C4H10)

Pentane (C5H12)

iso-Pentane (C5H12)

Hexane (C6H14)

Heptane (C7H16)

Octane (C8H18)

Nonane (C9H20)

Decane (C10H22)

M-C Pentane (C6H12)

Cyclohexane (C6H12)

M-C Hexane (C7H14)

H2S

Benzene (C6H6)

IPBZ, NPBZ, 124TB (C9H12)

Toluene (C7H8)

Xylene (C8H10)

Komponen	%mas	s kandungan	hidrokarbor komponen	n terhadap se	eluruh
	Unit 1	Unit 3	Unit 5	Unit 6	Unit 7
Methane (CH4)	0,00341	0,44320	0,00422	0,80142	0,84409
Ethane (C2H6)	0,00035	0,03557	0,00013	0,05406	0,05655
Propanes (C3H8)	0,00379	0,02369	0,00092	0,02737	0,02846
Butanes (C4H10)	0,00007	0,02121	0,00000	0,01067	0,00979
iso-Butane (C4H10)	0,00000	0,00000	0,00000	0,00974	0,00972
Pentane (C5H12)	0,00000	0,01867	0,00000	0,00604	0,00483
iso-Pentane (C5H12)	0,00000	0,00000	0,00000	0,00811	0,00730
Hexane (C6H14)	0,00000	0,02837	0,00000	0,01355	0,03139
Heptane (C7H16)	0,00014	0,01599	0,00012	0,01107	0,00000
Octane (C8H18)	0,00355	0,00246	0,00314	0,01152	0,00000
Nonane (C9H2O)	0,00009	0,00032	0,00007	0,00211	0,00000
Decane (C10H22)	0,00002	0,00016	0,00001	0,00050	0,00000

M-C Pentane (C6H12)	0,00005	0,00000	0,00004	0,00344	0,00000
Cyclohexane (C6H12)	0,00003	0,00000	0,00007	0,00458	0,00000
M-C Hexane (C7H14)	0,00766	0,00000	0,01202	0,00924	0,00000
H2S	0,00569	0,00781	0,00000	0,00000	0,00000
Benzene (C6H6)	0,00760	0,00610	0,00285	0,00534	0,00000
IPBZ, NPBZ, 124TB (C9H12)	0,00009	0,20089	0,00004	0,00000	0,00000
Toluene (C7H8)	0,00002	0,00719	0,00001	0,00604	0,00000
Xylene (C8H10)	0,00058	0,00829	0,00042	0,00123	0,00000
Jumlah	0,033	0,820	0,024	0,986	0,992

Tabel P35. Hasil Perhitungan Jumlah Kebutuhan Udara dan Jumlah Flue Gas Data Operasional

	Excess Air	Unit 1	Unit 3	Unit 5	Unit 6
mol udara teori		0,67015	12,047	0,019	10,571
AFR mol teori		21,8932	13,744	0,959	10,648
AFR mass toeri		13,2882	15,841	0,580	16,767
	10%	0,737	13,251	0,021	11,628
	15%	0,771	13,854	0,022	12,157
امتنام متعامينا متعا	20%	0,804	14,456	0,023	12,685
moi udara aktual	25%	0,838	15,058	0,024	13,214
	30%	0,871	15,661	0,025	13,742
	35%	0,905	16,263	0,026	14,271
	10%	24,083	15,119	1,055	11,712
	15%	25,177	15,806	1,103	12,245
	20%	26,272	16,493	1,151	12,777
AFR MOI aktual	25%	27,367	17,181	1,199	13,310
	30%	28,461	17,868	1,247	13,842
	35%	29,556	18,555	1,295	14,374
	10%	14,617	17,425	0,638	18,444
	15%	15,281	18,217	0,667	19,282
	20%	15,946	19,009	0,696	20,121
AFR mass aktual	25%	16,610	19,801	0,725	20,959
	30%	17,275	20,593	0,754	21,797
	35%	17,939	21,385	0,783	22,636
mass rate BB+HK (kg/jam)		1.166,031	49,148	177,116	4.158,363
density udara (kg/m3)		1,139	1,139	1,139	1,139
m rate udara Teori (kg/jam)		15.494,51	778,531	102,667	69.724,50

Vol rate udara Teori (m3/jam)		13.603,61	683,521	90,138	61.215,54
	10%	1.549,451	77,853	10,267	6.972,451
	15%	2.324,177	116,780	15,400	10.458,67
m rate udara	20%	3.098,902	155,706	20,533	13.944,90
(kg/ipm)	25%	3.873,628	194,633	25,667	17.431,12
(Kg/Jalli)	30%	4.648,354	233,559	30,800	20.917,35
	35%	5.423,079	272,486	35,934	24.403,57
	10%	1.360,361	68,352	9,014	6.121,555
	15%	2.040,542	102,528	13,521	9.182,332
Vol rate udara	20%	2.720,722	136,704	18,028	12.243,10
(m3/iam)	25%	3.400,903	170,880	22,535	15.303,88
(mo)jam)	30%	4.081,083	205,056	27,041	18.364,66
	35%	4.761,264	239,232	31,548	21.425,44
m rate flue teori (kg/jam)		50.685,53	838,473	7.466,39	73.941,89
	10%	52.234,98	916,326	7.476,65	80.914,34
	15%	53.009,70	955,252	7.481,79	84.400,56
m rate flue	20%	53.784,43	994,179	7.486,92	87.886,79
aktual (kg/jam)	25%	54.559,15	1.033,10	7.492,05	91.373,02
	30%	55.333,88	1.072,03	7.497,19	94.859,24
	35%	56.108,61	1.110,95	7.502,32	98.345,47

Tabel P36. Hasil Perhitungan Jumlah Kebutuhan Udara danJumlah Flue Gas Data Operasional Variasi Unit 7

	excess	l	Unit 7 (fuel gas)
	air	60%	80%	100%
mass rate BB+HK (kg/jam)		966,596	1.288,795	1.610,994
m rate udara teori (kg/jam)		16.212,288	21.616,384	27.020,480
vol rate udara teori		14.233,791	18.978,388	23.722,985
	10%	1.621,229	2.161,638	2.702,048
	15%	2.431,843	3.242,458	4.053,072
m rate udara tambahan	20%	3.242,458	4.323,277	5.404,096
(kg/jam)	25%	4.053,072	5.404,096	6.755,120
	30%	4.863,686	6.484,915	8.106,144
	35%	5.674,301	7.565,734	9.457,168
	10%	1.423,379	1.897,839	2.372,299
vol rate udara tambahan	15%	2.135,069	2.846,758	3.558,448
(kg/jam)	20%	2.846,758	3.795,678	4.744,597
	25%	3.558,448	4.744,597	5.930,746

	30%	4.270,137	5.693,516	7.116,896
	35%	4.981,827	6.642,436	8.303,045
m rate flue gas teori (kg/jam)		17.186,541	22.915,389	28.644,236
	10%	18.807,770	25.077,027	31.346,284
	15%	19.618,385	26.157,846	32.697,308
	20%	20.428,999	27.238,665	34.048,332
m rate flue gas aktual (kg/jam)	25%	21.239,613	28.319,485	35.399,356
	30%	22.050,228	29.400,304	36.750,380
	35%	22.860,842	30.481,123	38.101,404

Tabel P37. Jumlah mol komponen udara tambahan Data Operasional

Komponen Udara	Excess		K	oefisien m	ol	
tambahan di Produk	Air	Unit 1	Unit 3	Unit 5	Unit 6	Unit 7
	10%	0,0529	0,9515	0,0014	0,8350	0,8082
	15%	0,0794	1,4273	0,0022	1,2525	1,2123
ND	20%	0,1058	1,9031	0,0029	1,6700	1,6164
NZ	25%	0,1323	2,3789	0,0037	2,0875	2,0206
	30%	0,1588	2,8547	0,0044	2,5050	2,4247
	35%	0,1852	3,3305	0,0052	2,9225	2,8288
	10%	0,0140	0,2530	0,0003	0,2220	0,2149
	15%	0,0211	0,3796	0,0005	0,3331	0,3224
01	20%	0,0281	0,5061	0,0007	0,4441	0,4299
02	25%	0,0351	0,6326	0,0009	0,5552	0,5374
	30%	0,0422	0,7592	0,0011	0,6662	0,6448
	35%	0,0492	0,8857	0,0013	0,7772	0,7523

nlah Qrate re	eaktan unit 7	Orate hf produk unit 7	Qrate reaktan total	Orate hf produk total
BB (k	a/jam)	(kJ/jam)	(kJ/jam)	(kJ/jam)
100% -6	.978.779,321	-86.139.130,575	-365.423.522,919	-706.184.735,485
80% -5	.583.023,456	-68.911.304,460	-364.027.767,055	-688.956.909,370
60% -4	.187.267,592	-51.683.478,345	-362.632.011,191	-671.729.083,255

Tabel E38. Hasil Perhitungan *Heat Rate* Data Operasional Variasi Jumlah Bahan Bakar

Tabel E39. Perhitungan Koefisien Perpindahan Panas Konveksi Udara Sekitar TOX

n) 11	D2 firebrick (m)	D3 kaolite (m)	Tinggi (m)	Re udara	Nu udara	h udara (W/m2K)	A (m2)
88	5,1086	5,3118	10,548	1.090.006,34	1.133,895	5,61418799	161,732
88	0	5,1848	4,736	1.063.945,34	1.114,849	5,65509444	72,617
	2 2 8 8 2 1	1 D2 firebrick 1 (m) 88 5,1086 38 0	1 D2 firebrick D3 kaolite n) (m) (m) 88 5,1086 5,3118 38 0 5,1848	1 D2 firebrick D3 kaolite Tinggi (m) n) (m) (m) (m) 88 5,1086 5,3118 10,548 38 0 5,1848 4,736	1 D2 firebrick (m) D3 kaolite (m) Tinggi (m) Re udara 1) (m) (m) 10,548 1.090.006,34 38 5,1086 5,3118 10,548 1.090.006,34 38 0 5,1848 4,736 1.063.945,34	1 D2 firebrick D3 kaolite (m) Tinggi (m) Re udara Nu udara n) (m) (m) 10,548 1.090.006,34 1.133,895 38 5,1086 5,3118 10,548 1.063.945,34 1.14,849 38 0 5,1848 4,736 1.063.945,34 1.14,849	1 D2 firebrick D3 kaolite (m) Tinggi (m) Re udara hu udara n) (m) (m) (m) (m/m2K) 88 5,1086 5,3118 10,548 1.090.006,34 1.133,895 5,61418799 38 0 5,1848 4,736 1.063.945,34 1.114,849 5,65509444

Tabel E40. Perhitungan Heat Loss Pada Dinding TOX dan suhu Flue Gas Data Operasional

т			•				
Flournatio Final Can	Evenes Air	mass rate flue	T Flue Gas	β	k	(C/ SIV/	cb
		gas (kg/jam)	(K)	(kg/m3)	(W/mK)	(2007/10/20)	(kJ/kgK)
	%0	150.118,829	1.495,811	1,1805	0,0736	0,0000421	1,3260
	10%	160.350,010	1.355,029	1,3031	0,0743	0,0000426	1,3131
	15%	165.465,601	1.293,970	1,3650	0,0746	0,0000429	1,3074
80%	20%	170.581,192	1.237,772	1,4275	0,0749	0,0000432	1,3021
	25%	175.696,782	1.186,581	1,4895	0,0752	0,0000434	1,2972
	30%	180.812,373	1.138,908	1,5522	0,0754	0,0000436	1,2926
	35%	185.927,964	1.095,440	1,6142	0,0757	0,0000438	1,2884
	%0	155.847,676	1.509,288	1,1699	0,0736	0,0000421	1,3260
	10%	166.619,267	1.366,145	1,2925	0,0743	0,0000426	1,3131
	15%	172.005,063	1.304,103	1,3544	0,0746	0,0000429	1,3074
80%	20%	177.390,858	1.247,010	1,4169	0,0749	0,0000432	1,3021
	25%	182.776,654	1.194,900	1,4791	0,0752	0,0000434	1,2972
	30%	188.162,449	1.146,675	1,5417	0,0754	0,0000436	1,2926
	35%	193.548,245	1.102,534	1,6038	0,0757	0,0000438	1,2884
	%0	161.576,523	1.521,766	1,1594	0,0736	0,0000421	1,3260
	10%	172.888,524	1.376,456	1,2828	0,0743	0,0000426	1,3131
	15%	178.544,524	1.313,435	1,3448	0,0746	0,0000429	1,3074
100%	20%	180.795,691	1.255,564	1,4072	0,0749	0,0000432	1,3021
	25%	189.856,525	1.202,746	1,4695	0,0752	0,0000434	1,2972
	30%	195.512,525	1.153,857	1,5321	0,0754	0,0000436	1,2926
	35%	201.168,525	1.109,091	1,5944	0,0757	0,0000438	1,2884

an)
anjut
40. (1
el E4
Tab

Re flue	Nu flue	h flue (W/m2K)	U lower (W/m2K)	Qrate loss lower (kJ/jam)	T flue gas 2 (K)	U upper (W/m2K)	Qrate loss upper (kJ/jam)	T in WHRU (K)
770	449,074	6,774	1,152	803.511,695	1.491,774	1,616	504.203,738	1.489,241
L,370	467,638	7,121	1,162	714.996,720	1.351,633	1,635	450.247,694	1.349,495
5,621	476,970	7,294	1,166	676.300,122	1.290,844	1,644	426.583,988	1.288,872
5,853	486,321	7,465	1,171	640.490,245	1.234,888	1,652	404.636,607	1.233,067
3,697	495,685	7,636	1,175	607.729,884	1.183,915	1,661	384.523,229	1.182,228
5,626	505,055	7,806	1,179	577.054,628	1.136,439	1,669	365.646,762	1.134,875
167,79	514,425	7,976	1,183	548.980,544	1.093,148	1,676	348.345,037	1.091,694
t1,147	462,733	6,980	1,158	816.654,418	1.505,337	1,627	513.548,698	1.502,852
13,881	482,209	7,343	1,168	726.097,025	1.362,827	1,646	458.210,286	1.360,732
80,397	491,992	7,523	1,172	686.534,020	1.301,050	1,655	433.956,001	1.299,120
91,280	501,792	7,703	1,176	649.929,507	1.244,196	1,664	411.464,956	1.242,415
41,114	511,601	7,882	1,181	616.370,606	1.192,300	1,672	390.807,506	1.190,652
25,332	521,413	8,059	1,184	585.157,299	1.144,269	1,680	371.553,335	1.142,741
40,053	531,224	8,236	1,188	556.474,682	1.100,302	1,687	353.831,358	1.098,884
12,524	476,291	7,184	1,164	828.983,460	1.517,897	1,638	522.358,806	1.515,459
66,393	496,670	7,563	1,173	736.516,771	1.373,211	1,657	465.719,741	1.371,160
24,173	506,900	7,751	1,178	696.092,318	1.310,453	1,666	440.877,215	1.308,564
56,993	509,482	7,821	1,179	657.304,510	1.252,772	1,669	416.553,198	1.251,003
8,532	527,394	8,125	1,186	624.564,775	1.200,210	1,683	396.785,071	1.198,599
15,039	537,645	8,310	1,190	592.740,282	1.151,512	1,690	377.106,737	1.150,019
2,314	547,892	8,495	1,193	563.483,620	1.106,917	1,698	358.986,216	1.105,532

		С							
			h fluo	11 lower	Qrate loss	T flue gas	ll unner	Qrate loss	T in WHRII
Pr	Re flue	Nu flue	(W/m2K)	(W/m2K)	lower (kJ/jam)	2 (K)	(W/m2K)	upper (kJ/jam)	(K)
0,7379	258.669,770	449,074	6,774	1,152	803.511,695	1.491,774	1,616	504.203,738	1.489,241
0,7353	272.461,370	467,638	7,121	1,162	714.996,720	1.351,633	1,635	450.247,694	1.349,495
0,7342	279.436,621	476,970	7,294	1,166	676.300,122	1.290,844	1,644	426.583,988	1.288,872
0,7331	286.455,853	486,321	7,465	1,171	640.490,245	1.234,888	1,652	404.636,607	1.233,067
0,7321	293.513,697	495,685	7,636	1,175	607.729,884	1.183,915	1,661	384.523,229	1.182,228
0,7312	300.605,626	505,055	7,806	1,179	577.054,628	1.136,439	1,669	365.646,762	1.134,875
0,7304	307.727,791	514,425	7,976	1,183	548.980,544	1.093,148	1,676	348.345,037	1.091,694
0,7379	268.541,147	462,733	6,980	1,158	816.654,418	1.505,337	1,627	513.548,698	1.502,852
0,7353	283.113,881	482,209	7,343	1,168	726.097,025	1.362,827	1,646	458.210,286	1.360,732
0,7342	290.480,397	491,992	7,523	1,172	686.534,020	1.301,050	1,655	433.956,001	1.299,120
0,7331	297.891,280	501,792	7,703	1,176	649.929,507	1.244,196	1,664	411.464,956	1.242,415
0,7321	305.341,114	511,601	7,882	1,181	616.370,606	1.192,300	1,672	390.807,506	1.190,652
0,7312	312.825,332	521,413	8,059	1,184	585.157,299	1.144,269	1,680	371.553,335	1.142,741
0,7304	320.340,053	531,224	8,236	1,188	556.474,682	1.100,302	1,687	353.831,358	1.098,884
0,7379	278.412,524	476,291	7,184	1,164	828.983,460	1.517,897	1,638	522.358,806	1.515,459
0,7353	293.766,393	496,670	7,563	1,173	736.516,771	1.373,211	1,657	465.719,741	1.371,160
0,7342	301.524,173	506,900	7,751	1,178	696.092,318	1.310,453	1,666	440.877,215	1.308,564
0,7331	303.608,993	509,482	7,821	1,179	657.304,510	1.252,772	1,669	416.553,198	1.251,003
0,7321	317.168,532	527,394	8,125	1,186	624.564,775	1.200,210	1,683	396.785,071	1.198,599
0,7312	325.045,039	537,645	8,310	1,190	592.740,282	1.151,512	1,690	377.106,737	1.150,019
0,7304	332.952,314	547,892	8,495	1,193	563.483,620	1.106,917	1,698	358.986,216	1.105,532

WHRU
Perhitungan
E41.
Tabel

auei E4	7. IICI a	r nfert is	AIII all F alias le	allauap Massa			
ATT	c	c		Q total (kJ/jam)	pada mass flow oil	masing-masing	
AIIM.CT	r	Y	500.000 kg/jam	600.000 kg/jam	700.000 kg/jam	800.000 kg/jam	900.000 kg/jam
319,491	0,0365	25,462	70.012.194,28	74.044.530,95	77.349.832,94	80.119.921,38	82.482.387,35
304,392	0,0390	23,683	67.394.960,68	71.316.210,33	74.533.842,27	77.232.818,59	79.536.344,91
290,281	0,0417	22,045	64.911.116,27	68.724.905,72	71.857.560,25	74.487.492,17	76.733.709,54
277,230	0,0445	20,553	62.587.447,45	66.299.403,58	69.351.439,33	71.915.808,19	74.107.564,98
264,892	0,0474	19,163	60.354.357,73	63.966.372,35	66.939.098,87	69.438.838,58	71.576.815,70

jam 7,35 1,91

86

69.207.500,16

67.120.459.32 82.005.364,40 79.033.271,34 76.206.900,41 73.551.460,17 71.014.048,88 68.626.787,26 83.817.790,50 80.759.261,93 77.853.148,73

64.681.895,59

61.784.186,44

58.266.619,36 71.534.360,72 68.844.129,02 66.290.948,42 63.895.721.39 61.611.531,89

17,895

0,0504

253,472

25,792 23,984 22,319 20,800 19,394

0,0361

322,266

0,0386 0,0412

306,961

292,659

0,0440 0,0469 0,0499 0,0357 0,0382 0,0408

279,407

266,955

255,385 324,834 309,322 294,840

75.707.058,37

79.131.925,42

76.234.190,70 73.480.044,34

72.900.911,36 70.235.569,45 70.893.491,04 68.423.257,54

65.345.755,96

67.733.623.91

63.101.009,80 77.301.645,62

66.100.051,24 80.843.261,96

81.424.479,86 78.538.112,82 75.825.396,23 73.232.045,85 70.791.401.36 86.359.243,36 83.236.188,54 80.267.364,90 77.486.164,22 74.821.413,93 72.311.634,50

84.458.248.77

Massa
terhadap
Panas
Aliran
Laju
Iterasi
E42.
Tabel

72.525.220,56 75.131.558,83

> 69.845.585,55 67.458.534,74

19,607 18,301

268,858

257,150

0,0435 0,0464 0,0494

281,454

75.031.783,23 72.381.835,88

77.862.465,77

74.416.498,50 71.678.469,95 69.116.435,60 66.666.029,86 64.360.848,86

72.992.175,32 70.227.933,86 67.606.782,52 65.155.509,39 62.813.022,02 60.610.631,63

26,098 24,261 22,571 21,033

59.465.430,41

18,106

70.071.256,67

	Q tot	al (kJ/jam) pada mas	ss flow oil masing-ma	asing	
1.000.000 kg/jam	1.100.000 kg/jam	1.200.000 kg/jam	1.300.000 kg/jam	1.400.000 kg/jam	1.500.000 kg/jam
84.525.974,82	86.314.624,67	87.895.747,16	89.305.343,21	90.571.306,57	91.715.626,25
81.530.220,75	83.276.331,84	84.820.607,90	86.197.954,80	87.435.438,05	88.554.408,14
78.679.187,96	80.383.838,62	81.892.166,56	83.238.022,42	84.447.672,57	85.541.850,72
76.007.022,05	77.672.226,33	79.146.336,34	80.462.204,53	81.645.340,81	82.715.894,55
73.430.756,12	75.056.892,56	76.497.070,86	77.783.168,77	78.939.956,37	79.987.010,87
71.018.309,32	72.607.410,09	74.015.410,40	75.273.268,15	76.405.054,82	77.429.807,00
86.581.746,15	88.441.631,95	90.086.734,24	91.554.169,44	92.872.722,45	94.065.103,99
83.495.926,35	85.311.249,37	86.917.735,88	88.351.361,36	89.640.047,09	90.805.837,44
80.558.859,49	82.330.726,01	83.899.516,38	85.300.106,55	86.559.584,44	87.699.350,71
77.797.703,32	79.528.022,42	81.060.751,21	82.429.721,96	83.661.230,80	84.776.066,32
75.156.982,10	76.846.623,12	78.344.008,09	79.681.959,62	80.886.006,93	81.976.345,03
72.671.099,77	74.321.870,87	75.785.465,27	77.093.747,02	78.271.516,63	79.338.404,72
88.561.113,20	90,490.940,08	92.198.919,10	93.723.244,36	95.093.563,31	96.333.286,21
85.383.565,68	87.266.713,20	88.934.223,17	90.423.101,71	91.762.096,26	92.973.922,18
82.361.712,66	84.199.381,13	85.827.421,43	87.281.696,08	88.590.084,95	89.774.632,77
79.530.068,11	81.324.448,67	82.914.901,12	84.336.206,48	85.615.423,52	86.773.961,75
76.815.817,76	78.567.666,38	80.121.145,34	81.509.986,90	82.760.452,46	83.893.333,90
74.258.702,68	75.969.852,32	77.487.930,80	78.845.673,85	80.068.584,57	81.176.867,03

· ~ ·
~
9
_
~
~
-
~.
~
~
6
· · ·
\sim
•
~1
• •
_
$\overline{\mathbf{T}}$
[T]
A)
-
-
-
~
_~~
r .

BIODATA PENULIS

Alfian Bani Susiloputra lahir di Pekalongan pada 26 Maret 1994. merupakan anak pertama dari tiga bersaudara. Riwayat pendidikan penulis dimulai pada tahun 1998 di TK Sudirman Pekalongan. Lalu penulis pendidikan melanjutkan di SDN Medono 07 Pekalongan, SMPN 2 Pekalongan, dan menyelesaikan pendidikan menengah atas di SMAN 1 Pekalongan pada tahun 2012. Penulis melanjutkan studi tingkat perguruan tinggi pada tahun 2012 di Institut Teknologi Sepuluh Nopember

Surabaya, mengambil jurusan S1 Teknik Mesin - FTI. Penulis mengambil bidang studi Konversi Energi. Selama belajar di bangku kuliah, penulis aktif di Unit Kegiatan Mahasiswa (UKM) Workshop Entrepreneurship & Technology (WE&T) sebagai anggota pada tahun 2013-2014 dan Sekretaris Departemen WE&T Corporation pada tahun 2014-2015. Penulis juga aktif sebagai grader mata kuliah Gambar Mesin (semester 3), asisten dosen mata kuliah Statika (semester 4), dan asisten praktikum mata kuliah Perpindahan Panas (semester 6-7). Penulis pernah melakukan Kerja Praktek di PT Pertamina EP Asset 4 Field Cepu pada tahun 2015. Untuk informasi lebih lanjut dan saran dapat menghubungi penulis melalui alamat email alfianbani26@gmail.com.