Deteksi Kerusakan Batang Rotor Pada Motor Induksi Sangkar Bajing Menggunakan Metode Standar Deviasi Berbasis Analisis Empirical Mode Decomposition

Azisputri, Nabila Ardhana Iswari (2016) Deteksi Kerusakan Batang Rotor Pada Motor Induksi Sangkar Bajing Menggunakan Metode Standar Deviasi Berbasis Analisis Empirical Mode Decomposition. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2212100096-Undergraduate-Theses.pdf]
Preview
Text
2212100096-Undergraduate-Theses.pdf

Download (1MB) | Preview

Abstract

Kerusakan batang rotor mencapai 5% - 10% dari seluruh kasus
gangguan motor induksi. Oleh karena itu, perlu adanya diagnosa awal
yang mendeteksi adanya gangguan pada rotor motor induksi sangkar
bajing, agar langkah perbaikan lebih cepat dan tanggap sebelum terjadi
gangguan yang lebih besar.
Hingga saat ini sudah banyak metode untuk mendeteksi kerusakan
batang rotor motor induksi yaitu melalui MCSA (Motor Current
Signature Analysis). Dalam Tugas Akhir ini akan dikembangkan teori
MCSA dengan Analisis EMD (Empirical Mode Decomposition) yang
akan menguraikan sinyal arus stator motor ke dalam bentuk IMF
(Intrinsic Mode Function). Metode ini berbasis penguraian statistika
dengan keluaran berupa standar deviasi dari arus stator. Arus stator
terdekomposisi ditelusuri letak dan periode zero crossing-nya untuk
diperhitungkan nilai standar deviasinya. Metode ini dapat menunjukkan
perbedaan standar deviasi arus antar jumlah batang rotor yang rusak
sehingga mampu mendeteksi adanya kerusakan secara lebih akurat.
Hasil yang didapatkan dari tugas akhir ini berupa grafik persebaran
nilai standar deviasi dan kurva PDF (Probability Density Function) dalam
distribusi normal. Pada motor normal, nilai standar deviasi yang
didapatkan menyebar secara luas. Sedangkan pada motor dengan broken
rotor bar, persebaran standar deviasi cenderung stagnan. Hal ini
dipengaruhi oleh adanya harmonisa yang bersifat secara periodik akibat
adanya kecacatan pada rotor bar.

=================================================================================

Broken rotor bar reaches 5% - 10% of all cases of induction
motor faults. Therefore, we need early diagnosis that detects disturbance
in the rotor squirrel cage induction motor, so that corrective actions can
be taken faster and responsive before the greater disorder.
Until now many methods are done for detecting damage to the
induction motor rotor bar, through MCSA (Motor Current Signature
Analysis). In this final project will be developed from MCSA theory with
EMD (Empirical Mode Decomposition) analysis, which will decompose
the current signal of motor stator into the IMF (Intrinsic Mode Function)
form. This method is based on statistical decomposition with the output
of a standard deviation of stator current. The decomposed stator current
is traced and its zero crossing period is processed into standard deviation
values. This method can show the standard deviation of the difference
between the normal rotor bar and damaged rotor bar so can detect any
damage more accurately.
Results that are obtained from this final assignment are in the
form of standard deviation scatter graphs and PDF (Probability Density
Function) curves in a normal distribution. On a normal motor, the
obtained standard deviation values are widely spread. While on the motor
with broken rotor bars, standard deviation of the distribution tends to
stagnate. This is influenced by the presence of harmonics that are
happened periodically due to defects in the rotor bars.

Item Type: Thesis (Undergraduate)
Additional Information: RSE 621.313 6 Azi d
Uncontrolled Keywords: Motor Induksi; Electrical Mode Decomposition; Intrinsic Mode Function; Standar Deviasi; Induction motor; Electrical Mode Decomposition; Intrinsic Mode Function; Standard deviation
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: Faculty of Industrial Technology > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Anis Wulandari
Date Deposited: 02 Jun 2017 07:18
Last Modified: 26 Dec 2018 06:44
URI: http://repository.its.ac.id/id/eprint/41473

Actions (login required)

View Item View Item