Persamaan Diferensial Fraksional Tipe Caputo Serta Aplikasinya Pada Proses Pendinginan Semi-Infinite Oleh Radiasi

Hijrah, Dwi Afifah Rahmatul (2016) Persamaan Diferensial Fraksional Tipe Caputo Serta Aplikasinya Pada Proses Pendinginan Semi-Infinite Oleh Radiasi. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 1211100068-Undergraduate-Thesis.pdf]
Preview
Text
1211100068-Undergraduate-Thesis.pdf - Published Version

Download (3MB) | Preview

Abstract

Persamaan diferensial fraksional telah menjadi alat yang
penting didalam permodelan matematika. Namun, penelitian
tentang teori dasar dari persamaan diferensial fraksional belum
banyak dilakukan. Kajian dasar teori persamaan diferensial
fraksional dilakukan dengan membuktikan keseimbangan
persamaan antara integral volterra dengan persamaan
diferensial fraksional serta membuktikan sifat-sifat dari
persamaan diferensial tersebut. Dengan menggunakan
persamaan integral volterra dan masalah nilai batas didapat
hasil dari persamaan diferensial fraksional linier tipe Caputo
pada order 0 < < 1 . Sedangkan untuk persamaan diferensial
fraksional nonlinier digunakan fraksional deret Taylor untuk
mendapatkan hasil numerik. Pada Tugas Akhir ini hasil numerik
dari fraksional deret Taylor digunakan untuk menyelesaikan
model untuk proses pendinginan semi-infinite oleh radiasi.
==================================================================================================================
Fractional differential equations have become an important
tool in mathematics modelling. However, there are have still not
much study about basic theory of fractional different equations.
Study about basic theory of fractional differential equations has
been doing with born out the balance of the equations between
volterra integral and fractional differential equations and borrn
out the properties from the differential equations. Within volterra
integral and boundary initial problem will gain the result of
Caputo linear fractional differential equations order 0 < < 1 .
Whereas for nonlinear used fractional Taylor series to get
numeric result. In this final project the numeric result from
fractional Taylor series has been using to solved the process of
semi-infinite cooling by radiation.

Item Type: Thesis (Undergraduate)
Additional Information: RSMa 515.35 Hij p
Uncontrolled Keywords: Fraksional Deret Taylor, Integral Volterra, Masalah Nilai Batas, Persamaan Diferensial Fraksional, Pendinginan Semi-Infinite
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Mathematics and Science > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Users 13 not found.
Date Deposited: 09 Jun 2017 04:55
Last Modified: 26 Dec 2018 08:48
URI: http://repository.its.ac.id/id/eprint/41563

Actions (login required)

View Item View Item