Persamaan Diferensial Fraksional Tipe Caputo Serta Aplikasinya Pada Proses Pendinginan Semi-Infinite Oleh Radiasi

Hijrah, Dwi Afifah Rahmatul (2016) Persamaan Diferensial Fraksional Tipe Caputo Serta Aplikasinya Pada Proses Pendinginan Semi-Infinite Oleh Radiasi. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
1211100068-Undergraduate-Thesis.pdf - Published Version

Download (3MB) | Preview

Abstract

Persamaan diferensial fraksional telah menjadi alat yang penting didalam permodelan matematika. Namun, penelitian tentang teori dasar dari persamaan diferensial fraksional belum banyak dilakukan. Kajian dasar teori persamaan diferensial fraksional dilakukan dengan membuktikan keseimbangan persamaan antara integral volterra dengan persamaan diferensial fraksional serta membuktikan sifat-sifat dari persamaan diferensial tersebut. Dengan menggunakan persamaan integral volterra dan masalah nilai batas didapat hasil dari persamaan diferensial fraksional linier tipe Caputo pada order 0 < < 1 . Sedangkan untuk persamaan diferensial fraksional nonlinier digunakan fraksional deret Taylor untuk mendapatkan hasil numerik. Pada Tugas Akhir ini hasil numerik dari fraksional deret Taylor digunakan untuk menyelesaikan model untuk proses pendinginan semi-infinite oleh radiasi. ================================================================================================================== Fractional differential equations have become an important tool in mathematics modelling. However, there are have still not much study about basic theory of fractional different equations. Study about basic theory of fractional differential equations has been doing with born out the balance of the equations between volterra integral and fractional differential equations and borrn out the properties from the differential equations. Within volterra integral and boundary initial problem will gain the result of Caputo linear fractional differential equations order 0 < < 1 . Whereas for nonlinear used fractional Taylor series to get numeric result. In this final project the numeric result from fractional Taylor series has been using to solved the process of semi-infinite cooling by radiation.

Item Type: Thesis (Undergraduate)
Additional Information: RSMa 515.35 Hij p
Uncontrolled Keywords: Fraksional Deret Taylor, Integral Volterra, Masalah Nilai Batas, Persamaan Diferensial Fraksional, Pendinginan Semi-Infinite
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Mathematics and Science > Mathematics > (S1) Undergraduate Theses
Depositing User: Users 13 not found.
Date Deposited: 09 Jun 2017 04:55
Last Modified: 26 Dec 2018 08:48
URI: http://repository.its.ac.id/id/eprint/41563

Actions (login required)

View Item View Item