Sistem Pengendalian Inverter Buck-Boost Satu Fasa (Ibbsf) Berbasis Neuro-Fuzzy

Hamidah, Yusnia (2015) Sistem Pengendalian Inverter Buck-Boost Satu Fasa (Ibbsf) Berbasis Neuro-Fuzzy. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
2411100013-Undergraduated Thesis.pdf - Published Version

Download (2MB) | Preview

Abstract

Solusi dari krisis energi yang terjadi di Indonesia salah satunya adalah pemanfataan renewable energy, yang sumber energinya dapat disimpan dalam bentuk baterai. Keluaran baterai yang berupa arus DC perlu diubah menjadi arus AC dengan menggunakan IBBSF. IBBSF mampu menghasilkan tegangan keluaran yang lebih besar maupun lebih kecil dari baterai. Tegangan keluaran yang dihasilkan IBBSF belum sesuai dengan yang diinginkan, sehingga perlu dilakukan pengendalian. Banyak metode dalam pengendalian tegangan IBBSF, diantaranya PI, SMC, neural network dan fuzzy. Pada tugas akhir ini metode pengendali yang digunakan adalah ANFIS yang merupakan gabungan dari neural network dan fuzzy logic. Teknik switching yang digunakan dalam IBBSF adalah SPWM. Perancangan dan pengujian sistem dilakukan dengan menggunakan Matlab, kemudian dibandingkan dengan PSIM sebagai software acuan. Tegangan keluaran IBBSF tanpa pengendali dengan tegangan sumber 12V adalah sebesar 100V. Menggunakan ANFIS dengan set point 220V dan pemilihan mf 7, dihasilkan tegangan keluaran IBBSF sebesar 200V, dengan error 9%, dan settling time 5,1 detik. ============================================================================================ The solution of the energy crisis that happened in Indonesia, one of which is the renewable energy utilization, the energy source can be stored in the form of batteries. Output DC current in the form of batteries need to be changed being AC current by using IBBSF. IBBSF is capable of producing a voltage that is larger or smaller than the battery. The resulting IBBSF output voltage has not been in accordance with the desired, so that the control needs to be done. There are a lot of control voltage methods in IBBSF, including PI, SMC, neural network and fuzzy. In this final task, the control method that used is ANFIS, which is the combination of neural network and fuzzy logic. Switching techniques used in IBBSF is SPWM. Design and testing of the system is performed using Matlab, then compared with PSIM software as a reference. Output voltage IBBSF without controlling using voltage source 12V is 100V. Using ANFIS with set point 220V and election mf 7, generated IBBSF output voltage of 200V, with error value 9% and settling time 5,1 second.

Item Type: Thesis (Undergraduate)
Additional Information: RSF 621.381 532 2 Ham s
Uncontrolled Keywords: AC, ANFIS, IBBSF, SPWM.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ223_Programmable controllers
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3226 Transients (Electricity)
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7872 Electric current converters, Electric inverters.
Divisions: Faculty of Industrial Technology > Physics Engineering > (S1) Undergraduate Theses
Depositing User: Mr. Tondo Indra Nyata
Date Deposited: 13 Jun 2017 01:37
Last Modified: 13 Jun 2017 01:37
URI: http://repository.its.ac.id/id/eprint/41605

Actions (login required)

View Item View Item