Rekalkulasi Dimensi Heat Exchanger Pada Pulverized-Coal Boiler Kapasitas 32 Mwe Berdasarkan Analisis Termodinamika Dan Perpindahan Panas

Akbar, Arif Maulana (2016) Rekalkulasi Dimensi Heat Exchanger Pada Pulverized-Coal Boiler Kapasitas 32 Mwe Berdasarkan Analisis Termodinamika Dan Perpindahan Panas. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2113106038-Undergraduate-Thesis.pdf] Text
2113106038-Undergraduate-Thesis.pdf - Published Version
Restricted to Repository staff only

Download (2MB)

Abstract

Berdasarkan data statistik ketenagalistrikan 2014, pada
tahun 2013 pembangkit listrik tenaga uap (PLTU) batubara
menyumbang 45 % kebutuhan listrik nasional, sehingga perhatian
kepada PLTU batubara dianggap penting. Salah satu komponen
penting dari PLTU adalah boiler. Boiler berfungsi untuk
menghasilkan uap untuk menggerakkan turbin yang dikopel
dengan generator sehingga dapat menghasilkan listrik. Boiler
pada umumnya memliki beberapa komponen utama yaitu dapur
pembakaran bahan bakar (furnace) dan water wall tube,
superheater, economizer, dan air preheater seperti yang dimiliki
oleh boiler PT Petrokimia Gresik. Mengamati konstruksi dari
boiler PT Petrokimia Gresik yang memiliki tinggi 28 m dengan
panjang dan lebar masing-masing sebesar 7 m untuk
menghasilkan energi listrik sebesar 32 MWe, menjadi perhatian
awal dalam penelitian ini. Tujuan dari penelitian ini adalah untuk
mempelajari proses kalkulasi dan analisis untuk mengetahui
kebutuhan luas area perpindahan panas dari tiap komponen heat
exchanger serta dimensi dari ruang bakar sehingga bisa diketahui
kebutuhan dari dimensi boiler secara keseluruhan. Metode yang digunakan dalam penelitian ini yaitu
analisis berdasarkan termodinamika dan perpindahan panas
mengacu pada kondisi existing pada boiler PT Petrokimia Gresik.
Tahap awal dari metode ini adalah menentukan panas diserap oleh tiap komponen boiler. Setelah itu dilakukan perhitungan
losses berdasarkan ASME PTC 4-1, dimana outputnya berupa air
fuel ratio dan losses boiler. Selanjutnya menghitung temperatur
fluida melewati masing-masing heat exchanger. Setelah
dilakukan perhitungan temperatur fluida pada sisi external dan
internal tube, bisa dilakukan perhitungan heat transfer coefficient
untuk mendapatkan luas area perpindahan panas dari tiap-tiap
heat exchanger antara lain, superheater, economizer, air
preheater, dan waterwall tube.
Hasil yang diperoleh dari proses rekalkulasi ini antara
lain persentase besar panas yang diserap oleh tiap heat exchanger
mulai dari platen superheater sebesar 5,36 %, superheater class 2
sebesar 8,9 %, superheater class 1 sebesar 10,7 %, high pressure
economizer sebesar 8,53 %, top air preheater sebesar 6,67 %, low
pressure economizer sebesar 2,35 %, middle air preheater sebesar
2,76 %, bottom air preheater sebesar 2,94 %, waterwall tube
sebesar 51,78 %. Dari hasil perhitungan, panjang dan lebar
furnace didapat sebesar 6,9 m dan tinggi furnace sebesar 28,9 m.Perhitungan luas area perpindahan panas dari masing-masing heat
exchanger yaitu Platen Superheater sebesar 251,84 m2,
Superheater Class 2 sebesar 609,66 m2, Superheater Class 1
sebesar 873,17 m2, High Pressure Economizer sebesar 831,27 m2.
Top Air Preheater sebesar 1646,85 m2, Low Pressure Economizer
sebesar 1082,93 m2, Middle Air Preheater sebesar 710,78 m2,
Bottom Air Preheater sebesar 689,8 m2, Waterwall Tube sebesar
1633,09 m2. Berdasarkan hasil perbandingan dengan kondisi
existing luas area tube boiler PT petrokimia, nilai ketidaksesuaian
terhadap existing terbesar yaitu pada perhitungan komponen top
air preheater sebesar 68,81 % dimana hasil perhitungan pada
komponen tersebut lebih kecil daripada kondisi existing. Nilai
ketidaksesuaian paling kecil yaitu pada perhitungan superheater
class 2 yaitu sebesar 4,26 %.
==================================================================================================================
Based on statistical data of electricity in 2014, in 2013
coal-fired power plant accounted for 45% of national demand,
thus attention to the coal-fired power plant is considered
important. One important component of the plant is a boiler.
Boiler is used to generate steam to drive a turbine coupled with a
generator that can produce electricity. Boiler generally possess
some of the main components like furnace and the water wall
tubes, superheater, economizer and air preheater as owned by the
boiler PT. Petrokimia Gresik (PKG). Observing the construction
of the boiler PT PKG which has a 28 m high with length and
width of each of 7 m to generate 32 MW electricity (MWe), as a
concern in this research. The purpose of this research is to study
the process of calculation and analysis to determine the area of
heat transfer needed of each component of the heat exchanger and
furnace dimensions so they can know the needs of the overall
dimensions of the boiler.
The method used in this research is the analysis based on
thermodynamics and heat transfer refers to the existing condition
of the boiler PT PKG. The initial step of this method is to
determine the heat absorbed by each component of the boiler.
Then calculation of losses based on ASME PTC 4-1, where the
output is air fuel ratio and boiler losses. Next calculate the
temperature of the fluid passing through each heat exchanger. After calculating the fluid temperature in the external and internal
side of the tube, can be calculated overall heat transfer coefficient
to obtain the heat transfer area of each heat exchanger, among
others superheater, economizer, air preheater, and waterwall tube.
The results of this recalculation process, among others a
percentage of the heat absorbed by each heat exchanger from
platen superheater amounted to 5.36%, superheater class 2 is
8.9%, superheater class 1 of 10.7%, high pressure economizer for
8.53%, top air preheater at 6.67%, a low pressure economizer of
2.35%, middle air preheater by 2.76%, bottom water preheater at
2.94%, and waterwall tube amounted to 51.78%. From the
calculation, the length and width of furnace is 6.9 m and furnace
height is 28.9 m. Calculation of heat transfer area of each heat
exchanger which amounted to 251.84 m2 platen superheater,
superheater Class 2 amounted to 609.66 m2, superheater Class 1
of 873.17 m2, high pressure economizer of 831.27 m2, top air
preheater of 1646.85 m2, low pressure economizer of 1082.93 m2,
middle air preheater of 710.78 m2, bottom air preheater of 689.8
m2, and waterwall tube 1633,09 m2. Based on the results of the
comparison with the existing condition of the area of the boiler
tube PT PKG, the most discrepancy with existing is 68.81% in calculation of the top air preheater, where the results of the
calculation of this component is smaller than the existing
condition. The smallest discrepancy is 4.26% in calculation of the
superheater class 2.

Item Type: Thesis (Undergraduate)
Additional Information: RSM 621.402 5 Akb r
Uncontrolled Keywords: pulverized-coal boiler, rekalkulasi boiler, heat exchanger, dimensi furnace
Subjects: T Technology > TN Mining engineering. Metallurgy > TN752.I5 Steel--Heat treatment
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Users 13 not found.
Date Deposited: 04 Jul 2017 03:04
Last Modified: 29 Dec 2017 08:19
URI: http://repository.its.ac.id/id/eprint/41858

Actions (login required)

View Item View Item