Rekalkulasi Dimensi Heat Exchanger Pada Pulverized-Coal Boiler Kapasitas 32 Mwe Berdasarkan Analisis Termodinamika Dan Perpindahan Panas

Akbar, Arif Maulana (2016) Rekalkulasi Dimensi Heat Exchanger Pada Pulverized-Coal Boiler Kapasitas 32 Mwe Berdasarkan Analisis Termodinamika Dan Perpindahan Panas. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
2113106038-Undergraduate-Thesis.pdf - Published Version
Restricted to Repository staff only

Download (2MB)

Abstract

Berdasarkan data statistik ketenagalistrikan 2014, pada tahun 2013 pembangkit listrik tenaga uap (PLTU) batubara menyumbang 45 % kebutuhan listrik nasional, sehingga perhatian kepada PLTU batubara dianggap penting. Salah satu komponen penting dari PLTU adalah boiler. Boiler berfungsi untuk menghasilkan uap untuk menggerakkan turbin yang dikopel dengan generator sehingga dapat menghasilkan listrik. Boiler pada umumnya memliki beberapa komponen utama yaitu dapur pembakaran bahan bakar (furnace) dan water wall tube, superheater, economizer, dan air preheater seperti yang dimiliki oleh boiler PT Petrokimia Gresik. Mengamati konstruksi dari boiler PT Petrokimia Gresik yang memiliki tinggi 28 m dengan panjang dan lebar masing-masing sebesar 7 m untuk menghasilkan energi listrik sebesar 32 MWe, menjadi perhatian awal dalam penelitian ini. Tujuan dari penelitian ini adalah untuk mempelajari proses kalkulasi dan analisis untuk mengetahui kebutuhan luas area perpindahan panas dari tiap komponen heat exchanger serta dimensi dari ruang bakar sehingga bisa diketahui kebutuhan dari dimensi boiler secara keseluruhan. Metode yang digunakan dalam penelitian ini yaitu analisis berdasarkan termodinamika dan perpindahan panas mengacu pada kondisi existing pada boiler PT Petrokimia Gresik. Tahap awal dari metode ini adalah menentukan panas diserap oleh tiap komponen boiler. Setelah itu dilakukan perhitungan losses berdasarkan ASME PTC 4-1, dimana outputnya berupa air fuel ratio dan losses boiler. Selanjutnya menghitung temperatur fluida melewati masing-masing heat exchanger. Setelah dilakukan perhitungan temperatur fluida pada sisi external dan internal tube, bisa dilakukan perhitungan heat transfer coefficient untuk mendapatkan luas area perpindahan panas dari tiap-tiap heat exchanger antara lain, superheater, economizer, air preheater, dan waterwall tube. Hasil yang diperoleh dari proses rekalkulasi ini antara lain persentase besar panas yang diserap oleh tiap heat exchanger mulai dari platen superheater sebesar 5,36 %, superheater class 2 sebesar 8,9 %, superheater class 1 sebesar 10,7 %, high pressure economizer sebesar 8,53 %, top air preheater sebesar 6,67 %, low pressure economizer sebesar 2,35 %, middle air preheater sebesar 2,76 %, bottom air preheater sebesar 2,94 %, waterwall tube sebesar 51,78 %. Dari hasil perhitungan, panjang dan lebar furnace didapat sebesar 6,9 m dan tinggi furnace sebesar 28,9 m.Perhitungan luas area perpindahan panas dari masing-masing heat exchanger yaitu Platen Superheater sebesar 251,84 m2, Superheater Class 2 sebesar 609,66 m2, Superheater Class 1 sebesar 873,17 m2, High Pressure Economizer sebesar 831,27 m2. Top Air Preheater sebesar 1646,85 m2, Low Pressure Economizer sebesar 1082,93 m2, Middle Air Preheater sebesar 710,78 m2, Bottom Air Preheater sebesar 689,8 m2, Waterwall Tube sebesar 1633,09 m2. Berdasarkan hasil perbandingan dengan kondisi existing luas area tube boiler PT petrokimia, nilai ketidaksesuaian terhadap existing terbesar yaitu pada perhitungan komponen top air preheater sebesar 68,81 % dimana hasil perhitungan pada komponen tersebut lebih kecil daripada kondisi existing. Nilai ketidaksesuaian paling kecil yaitu pada perhitungan superheater class 2 yaitu sebesar 4,26 %. ================================================================================================================== Based on statistical data of electricity in 2014, in 2013 coal-fired power plant accounted for 45% of national demand, thus attention to the coal-fired power plant is considered important. One important component of the plant is a boiler. Boiler is used to generate steam to drive a turbine coupled with a generator that can produce electricity. Boiler generally possess some of the main components like furnace and the water wall tubes, superheater, economizer and air preheater as owned by the boiler PT. Petrokimia Gresik (PKG). Observing the construction of the boiler PT PKG which has a 28 m high with length and width of each of 7 m to generate 32 MW electricity (MWe), as a concern in this research. The purpose of this research is to study the process of calculation and analysis to determine the area of heat transfer needed of each component of the heat exchanger and furnace dimensions so they can know the needs of the overall dimensions of the boiler. The method used in this research is the analysis based on thermodynamics and heat transfer refers to the existing condition of the boiler PT PKG. The initial step of this method is to determine the heat absorbed by each component of the boiler. Then calculation of losses based on ASME PTC 4-1, where the output is air fuel ratio and boiler losses. Next calculate the temperature of the fluid passing through each heat exchanger. After calculating the fluid temperature in the external and internal side of the tube, can be calculated overall heat transfer coefficient to obtain the heat transfer area of each heat exchanger, among others superheater, economizer, air preheater, and waterwall tube. The results of this recalculation process, among others a percentage of the heat absorbed by each heat exchanger from platen superheater amounted to 5.36%, superheater class 2 is 8.9%, superheater class 1 of 10.7%, high pressure economizer for 8.53%, top air preheater at 6.67%, a low pressure economizer of 2.35%, middle air preheater by 2.76%, bottom water preheater at 2.94%, and waterwall tube amounted to 51.78%. From the calculation, the length and width of furnace is 6.9 m and furnace height is 28.9 m. Calculation of heat transfer area of each heat exchanger which amounted to 251.84 m2 platen superheater, superheater Class 2 amounted to 609.66 m2, superheater Class 1 of 873.17 m2, high pressure economizer of 831.27 m2, top air preheater of 1646.85 m2, low pressure economizer of 1082.93 m2, middle air preheater of 710.78 m2, bottom air preheater of 689.8 m2, and waterwall tube 1633,09 m2. Based on the results of the comparison with the existing condition of the area of the boiler tube PT PKG, the most discrepancy with existing is 68.81% in calculation of the top air preheater, where the results of the calculation of this component is smaller than the existing condition. The smallest discrepancy is 4.26% in calculation of the superheater class 2.

Item Type: Thesis (Undergraduate)
Additional Information: RSM 621.402 5 Akb r
Uncontrolled Keywords: pulverized-coal boiler, rekalkulasi boiler, heat exchanger, dimensi furnace
Subjects: T Technology > TN Mining engineering. Metallurgy > TN752.I5 Steel--Heat treatment
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Users 13 not found.
Date Deposited: 04 Jul 2017 03:04
Last Modified: 29 Dec 2017 08:19
URI: http://repository.its.ac.id/id/eprint/41858

Actions (login required)

View Item View Item