

TUGAS AKHIR - TE 141599

ANALISA DAN SIMULASI DISTRIBUSI TEGANGAN IMPULS PADA BELITAN TRANSFORMATOR JENIS INTERLEAVED DAN CONTINUOUS DISC

Muhammad Irfan NRP 2213100022

Dosen Pembimbing Dr.Eng. I Made Yulistya Negara, ST., M.Sc. Daniar Fahmi, ST., MT.

DEPARTEMEN TEKNIK ELEKTRO Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - TE 141599

ANALYSIS AND SIMULATION OF IMPULSE VOLTAGE DISTRIBUTION IN TRANSFORMERS WINDING TYPE INTERLEAVED AND CONTINUOUS DISC

Muhammad Irfan NRP 2213100022

Advisors Dr.Eng. I Made Yulistya Negara, ST., M.Sc. Daniar Fahmi, ST., MT.

DEPARTMENT OF ELECTRICAL ENGINEERING Faculty of Electrical Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Tugas Akhir saya dengan judul "**Analisa dan Simulasi Distribusi Tegangan Impuls Pada Belitan Transformator Jenis** *Interleaved* **dan** *Continuous Disc*" adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak diijinkan dan bukan karya pihak lain yang saya akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, 4 Juni 2017

Muhammad Irfan NRP. 2213100022 ---Halaman ini sengaja dikosongkan---

ANALISA DAN DISTRIBUSI TEGANGAN IMPULS PADA BELITAN TRANSFORMATOR JENIS INTERLEAVED DAN CONTINUOUS DISC

TUGAS AKHIR

Diajukan Guna Memenuhi Sebagian Persyaratan Untuk Memperoleh Gelar Sarjana Teknik

> Pada Bidang Teknik Sistem Tenaga Departemen Teknik Elektro Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember

> > Menyetujui :

Dosen Pembimbing I

Dosen Pembimbing II

Dr.Eng. I Made Yulistya Negara, ST., M.Sc. NIP.19700712 199802 1 001 Daniar Fahmi, ST., MT. NIP.19890925 201404 1 002

DEPARTEMEN EKNIK ELEKTS

---Halaman ini sengaja dikosongkan---

ANALISA DAN SIMULASI DISTRIBUSI TEGANGAN IMPULS PADA BELITAN TRANSFORMATOR JENIS INTERLEAVED DAN CONTINUOUS DISC

Nama : Muhammad Irfan Pembimbing I : Dr.Eng. I Made Yulistya Negara, ST. M.Sc. Pembimbing II: Daniar Fahmi, ST. M.Sc.

ABSTRAK

Pada studi ini dipelajari dan dianalisa distribusi tegangan impuls pada trafo dengan jenis belitan *continuous disc* dan *interleaved*. Jenis belitan *continuous disc* dan *interleaved* dimodelkan dan disimulasikan pada perangkat lunak ATP. Parameter yang terdapat pada pemodelan tersebut adalah kapasitansi seri (Cs), Kapasitansi *ground* (Cg), Resistansi (R), dan induktansi (L). Pemodelan dari belitan trafo tersebut diberikan sumber berupa impuls yang besarnya menyesuaikan dengan aturan dari BIL pada setiap tingkat tegangannya.

Hasil studi menunjukan nilai kapasitansi seri dari jenis belitan *interleaved* yaitu 72.3001 nF lebih besar dibandingkan dengan jenis belitan *continuous disc* yaitu 0.712875 nF. Hal tersebut mempengaruhi selisih tegangan pada piringan dimana selisih tegangan antar piringan pada jenis belitan *interleaved* relatif menurun. Sedangkan selisih tegangan maksimum pada jenis belitan *continuous disc* lebih fluktuatif. Nilai tegangan maksimum pada jenis belitan *continuous disc* berada pada piringan terakhir, yaitu piringan ke-70 sebesar 885kV. Sedangkan nilai maksimum dari jenis belitan *interleaved* berada pada piringan pertama yaitu sebesar 623kV. Hal tersebut menunjukan bahwa pada belitan *continuous disc*, nilai tegangan akan terus meningkat sampai pada piringan terakhir, sedangkan pada *interleaved*, nilai tegangan akan teredam.

Kata Kunci: Interleaved, Continuous disc, Kapasitansi seri, Kapasitansi ground, ATPDraw, BIL, Impuls

[Halaman Ini Sengaja Dikosongkan]

ANALYSIS AND SIMULATION OF IMPULSE VOLTAGE DISTRIBUTION IN TRANSFORMERS WINDING TYPE INTERLEAVED AND CONTINUOUS DISC

Name: Muhammad Irfan1st Advisor: Dr.Eng. I Made Yulistya Negara, ST. M.Sc.2nd Advisor: Daniar Fahmi, ST. M.Sc.

ABSTRACT

This study is implemented to know how impuls voltage distributed on transformers winding type interleaved and continuous disc. Transformers winding type interleaved and continuous disc modeled and simulated on software ATP. Parameters that found in this transformers winding modeling are Series Capacitance (Cs), Ground Capacitance (Cg), Resistance (R), and Inductance (L). Modeling of transformers winding is given impulse source that based on BIL standards.

Results of study shows that series capacitance in winding type interleaved that is 72.3001 nF is bigger than series capacitance in winding type continuous disc that is 0.712875 nF. Those things affect voltage in each disc. Voltage different in each disc on winding type interleaved are decreased. Voltage different in each disc on winding type continuous disc are fluctuating. Maximum voltage of continuous disc type is on 70th disc that is the last disc are 885 kV. Meanwhile, maximum voltage of interleaved type is on 1st disc are 623 kV. Those value show that in continuous disc type, the maximum voltage in each disc will increase until the last disc but in interleaved type, the maximum voltage in each disc will be damped.

Keywords: Interleaved, Continuous disc, Series Capacitance, Ground Capacitance, ATP, BIL, Impulse

[Halaman Ini Sengaja Dikosongkan]

KATA PENGANTAR

Segala puji dan syukur, kehadirat Allah Subhanahu wa ta'ala yang telah memberikan rahmat dan hidayah-Nya Shalawat serta salam tidak lupa penulis panjatkan kepada Rasulullah Muhammad shallallahu 'alaihi wa sallam, sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul, "Analisa dan Simulasi Distribusi Tegangan Impuls Pada Belitan Transformator Jenis Interleaved dan Continuous Disc".

Pengerjaan Tugas Akhir di disusun untuk memenuhi persyaratan untuk menyelesaikan pendidikan sarjana pada bidang Teknik Sistem Tenaga, Departemen Teknik Elektro, Jurusan Teknik Elektro, Institut Teknologi Sepuluh Nopember.

Dalam pelaksanaan dan pembuatan dari Tugas Akhir ini, penulis mendapat banyak bantuan dari berbagai pihak. Untuk itu penulis akan mengucapkan terima kasih kepada:

- 1. Bapak I Made Yulistya Negara, Bapak Daniar Fahmi dan seluruh dosen dari Laboratorium Tegangan Tinggi atas segala waktu dan ilmu yang diberikan dan senantiasa membimbing penulis hingga dapat terselesaikannya Tugas Akhir ini,
- 2. Kedua orang tua penulis, Bapak Adi Pramudyo dan Mama Laura Jassin yang senantiasa memberikan dukungan moral, dukungan materil, nasihat, dan doa kepada penulis saat menyelesaikan Tugas Akhir ini.
- 3. Adik Syifa Nurfitriani yang senantiasa memberikan doa dan dukungan selama mengerjakan Tugas Akhir ini.
- 4. Seluruh dosen dan karyawan Departemen Teknik Elektro FTE-ITS yang tidak dapat disebutkan satu persatu.
- 5. Teman-teman angkatan 2013 atas semua kebersamaan dan motivasi selama berkuliah di jurusan Teknik Elektro
- 6. Teman-teman Laboratorium Tegangan Tinggi yang selalu menghibur dan memberikan motivasi selama proses perkuliahan dan pengerjaan Tugas Akhir.
- 7. Sahabat 2013 Laboratorium Tegangan Tinggi Maul, Ayyub, Akbar, Mamad, Dio, Azmi, Jo, Adit, Ikhlas, Nisa, dan Ichan yang banyak memberikan saran dan menghibur dikala penat.
- 8. Sahabat eclus yang telah menemani dan menghibur selama masa perkuliahan di jurusan Teknik Elektro.
- 9. Pihak PT. Bambang Djaja khususnya Bapak Nus dan Bapak Supri yang telah banyak memberikan bantuan untuk Tugas Akhir.

10. Pihak-pihak lain yang tidak dapat penulis sebutkan satu per satu.

Penulis berharap Tugas Akhir ini bermanfaat dan berguna bagi penulis khususnya dan juga bagi para pembaca pada umumnya.

Surabaya, Juni 2017

Penulis

DAFTAR ISI

HALAMAN JUD	UL	
LEMBAR PERY	ATAAN	
LEMBAR PENG	ESAHAN	
ABSTRAK		i
ABSTRACT		iii
KATA PENGAN	ΓAR	v
DAFTAR ISI		vii
DAFTAR GAMB	AR	xi
DAFTAR TABEI	_	xiii
BAB 1 PENDAH	ULUAN	
1.1 Lata	ar Belakang	1
1.2 Sist	ematika Penulisan	2
BAB 2 TRANSFO	DRMATOR DAN GELOMANG IMPULS	
2.1 Tra	nsformator	3
2.1.1	Pengertian Transformator	3
2.1.2	Konstruksi Transformator dan Bagian-bagian Transformator	3
2.1.3	Transformator Ideal	5
2.1.4	Transformator Tidak Ideal	6
2.1.4.1	Rugi-Rugi Tembaga	6
2.1.4.2	Rugi-Rugi Arus Eddy	7
2.1.4.3	Rugi-Rugi Histerisis	7
2.1.4.4	Fluks Bocor	7
2.1.5 R	angkaian Ekivalen	7
2.1.6 Ti	afo Daya	10

2.2 Gelombang Impuls dan Gelomban	g Berjalan 10
2.2.1 Sumber-Sumber Gelombang Imp	ouls 10
2.2.2 Karakteristik Gelombang Impuls	11
2.2.3 Gelombang Berjalan	13
2.2.3.1 Bentuk Gelombang Ber	ialan 13
2.2.3.2 Gelombang Berjalan Pa	nda Titik Peralihan 14
2.3 Belitan Transformator	15
2.3.1 Jenis Belitan Transformator	15
2.3.2 Penyusunan Belitan Transformat	or 19
2.3.2.1 Penyambungan Kumpat	an Bertindih 19
2.3.2.2 Penyambungan Elemen	Kumparan Berlapis 19

BAB 3 PEMODELAN BELITAN TRAFO DAN KAPASITANSI PADA BELITAN

3.1	Distribusi Tegangan Impuls Pada Belitan Trafo	23
3.2	Pemodelan Belitan Transformator Pada ATP	24
3.3	Nilai Kapasitansi Pada Belitan Transformator	26
3.3.1	Belitan Continuous Disc	27
3.3.2	2 Belitan Interleaved	27
3.4	Gelombang Berjalan dan Basic Insulation Level (BIL)	29
3.5	ATP	30
3.5.1	Modul Terintegrasi Program ATP	30

BAB 4 SIMULASI DAN ANALISA

4.1	Data Transformator dan Perhitungan Nilai Kapasitansi	35
4.1.1	Jenis Belitan Continuous Disc	35
4.1.2	Jenis Belitan Interleaved	39
4.2	Analisa dan Simulasi Pada ATP	43

4.	.2.1	Jenis Belitan Continuous Disc	43
4.	.2.1	Jenis Belitan Interleaved	54
BAB 5 PE	NUTU	P	
5.1	Ke	simpulan	67
5.2	Sar	an	67

DAFTAR PUSTAKA	69
RIWAYAT HIDUP PENULIS	71

[Halaman Ini Sengaja Dikosongkan]

DAFTAR ISI

<i>TITLE</i>		
STATEMENT	" SHEET	
APPROVAL	SHEET	
ABSTRAK		i
ABSTRACT		<i>iii</i>
PREFACE		v
TABLE OF C	CONTENT	vii
LIST OF FIC	URES	xi
LIST OF TAI	3LES	xiii
CHAPTER I	PRFFACE	
1.1	Background	1
1.2	Systematic Of Report Writing	2
CHAPTER II	TRANSFORMERS AND IMPULSE WAVE	
2.1	Transformers	3
2.1.	1 Definitions of Transformers	3
2.1.2	2 Contruction and Part Of Transformers	3
2.1	3 Ideal Transformers	5
2.1.4	4 Non-Ideal Transformers	6
2	1.4.1 Copper Losses	7
2	1.4.2 Eddy Current Losses	7
2	1.4.3 Hysterisis Losses	7
2	1.4.4 Leakage Flux	7
2.1	5 Equivalent Cicuit Of Transformer	8
2.1.0	5 Power Trafo	10
2.2	Impulse Wave and Traveling Wave	10

2.2.1 Source	e Of Impulse Wave	11
2.2.2 Chara	cteristic Of Impulse Wave	11
2.2.3 Travel	ing Wave	13
2.2.3.1	Form Of Traveling Wave	13
2.2.3.2	Traveling Wave at Transition	14
2.3 Transfor	rmer Winding	16
2.3.1 Type (Of Transformers Winding	16
2.3.2 Transf	formers Winding Arrangement	20
2.3.2.1	Overlap Coil Connection	20
2.3.2.2	Layered Coil Element Connection	21

CHAPTER III TRANSFORMERS WINDING MODELING AND CAPACITANCE IN WINDING

Impulse Voltage Distribution In Transformers Windi	ng 23
Transformers Winding Modeling On ATP	25
Capacitance On Transformers Winding	27
Continuous Disc Winding	28
2 Interleaved Winding	28
Traveling Wave and Basic Insulation Level (BIL)	29
ATP	32
Integration Modul In Software ATP	33
	Impulse Voltage Distribution In Transformers Windi Transformers Winding Modeling On ATP Capacitance On Transformers Winding Continuous Disc Winding Interleaved Winding Traveling Wave and Basic Insulation Level (BIL) ATP Integration Modul In Software ATP

CHAPTER IV SIMULATION AND ANALYSIS

4.1 Tr	ansformers Data and Capacitance Calculation	35
4.1.1	Continuous Disc Type Winding	35
4.1.2	Interleaved Disc Type Winding	39
4.2 An	alysis and Simulation On ATP	43
4.2.1	Continuous Disc Type Winding	43

4.	2.1 Interleaved Type Winding	55
CHAPTER	2 V CLOSING	
5.1	Conclusion	67
5.2	Suggestions	67
BIBLIOGR	RAPHY	69
BIOGRAP	НҮ	71

[Halaman Ini Sengaja Dikosongkan]

DAFTAR GAMBAR

Gambar 2.1	Transformator tipe <i>core</i> 4
Gambar 2.2	Transformator tipe shell4
Gambar 2.3	Ekivalen Transformator Ideal6
Gambar 2.4	Kurva Histerisis8
Gambar 2.5	Ekivalen Trafo dengan Belitan8
Gambar 2.6	Ekivalen Trafo Tanpa Belitan9
Gambar 2.7	Ekivalen Trafo Sederhana9
Gambar 2.8	Karakteristik Tegangan Impuls12
Gambar 2.9	(a), (b), (c), (d), dan (e) Berbagai Bentuk
	dari Gelombang Berjalan14
Gambar 2.10	Gelombang Pantul Akibat Perubahan Impedansi15
Gambar 2.11	Belitan crossover16
Gambar 2.12	(a) Belitan spiral digulung pada sisi datar,
	(b) Belitan spiral digulung pada ujungnya,
	(c) Belitan spiral dengan 2 <i>layer</i> 16
Gambar 2.13	(a) Belitan helical dengan satu lapisan,
	(b) Belitan helical dengan dua lapisan17
Gambar 2.14	Belitan jenis continuous disk18
Gambar 2.15	Belitan interleaved dengan 2 piringan per grup18
Gambar 2.16	Belitan interleaved dengan 4 piringan per grup18
Gambar 2.17	Susunan Kumparan Tegangan Tinggi19
Gambar 2.18	Cara penyambungan elemen kumparan bertindih20
Gambar 2.19	Cara Penyambungan Elemen Belitan Berlapis21
Gambar 3.1	Grafik Distribusi Tegangan Impuls pada
	belitan trafo24
Gambar 3.2	Pemodelan Belitan Trafo Pada Rangkaian Listrik25
Gambar 3.3	Pemodelan belitan trafo dengan L26
Gambar 3.4	Pemodelan belitan trafo dengan R dan L26
Gambar 3.5	Pemodelan Belitan Trafo Pada ATP26
Gambar 3.6	(a) Ilustrasi dari C _D , (b) Ilustrasi dari C _T 27
Gambar 3.7	Gelombang Berjalan Pada Titik Peralihan30
Gambar 4.1	Grafik Tegangan Maksimum Pada Tiap Piringan Trafo
	Jenis Belitan Continuous Disc 47
Gambar 4.2	Grafik Selisih Tegangan Pada Tiap Piringan Trafo Jenis
	Belitan Continuous Disc

Gambar 4.3	Grafik Distribusi Tegangan Impuls Pada Jenis	
	Belitan Continuous Disc	48
Gambar 4.4	Safety Factor	49
Gambar 4.5	(a) & (b) Respon Impuls Pada Piringan 1	
	Continuous Disc	50
Gambar 4.6	(a)&(b) Respon Impuls Pada Piringan 11	
	Continuous Disc	51
Gambar 4.7	(a)&(b) Respon Impuls Pada Piringan 31	
	Continuous Disc	52
Gambar 4.8	(a)&(b) Respon Impuls Pada Piringan 51	
	Continuous Disc	53
Gambar 4.9	(a)&(b) Respon Impuls Pada Piringan 70	
	Continuous Disc	54
Gambar 4.10	Respon Impuls Pada Piringan 1, 11, 31, 51,	
	dan 70 Continuous disc	55
Gambar 4.11	Grafik Nilai Tegangan Maksimum Tiap Piringan	
	Pada Jenis Belitan Interleaved	59
Gambar 4.12	Grafik Selisih Tegangan Antar Piringan Pada	
	Jenis Belitan Interleaved	59
Gambar 4.13	Distribusi Tegangan Pada Jenis Belitan	
	Interleaved	60
Gambar 4.14	Respon Impuls Pada Piringan 1 Interleaved	61
Gambar 4.15	Respon Impuls Pada Piringan 11 Interleaved	62
Gambar 4.16	Respon Impuls Pada Piringan 31 Interleaved	63
Gambar 4.17	Respon Impuls Pada Piringan 51 Interleaved	64
Gambar 4.18	Respon Impuls Pada Piringan 70 Interleaved	65
Gambar 4.19	Respon Impuls Pada Piringan 1, 11, 31, 51, dan 7	0
	Jenis Belitan Interleaved	66

DAFTAR TABEL

Tabel 3.1	Standard BIL Meurut IEC 60076-3	.31
Tabel 4.1	Nilai Cg pada belitan jenis continuous disc	.36
Tabel 4.2	Nilai Cg tiap piringan dari belitan interleaved	.40
Tabel 4.3	Nilai Tegangan Maksimum Tiap Piringan Dan	
	Selisih Tegangan Antar Piringannya Jenis Continuous	
	Disc	.44
Tabel 4.4	Nilai Tegangan Maksimum Tiap Piringan	
	Dan Selisih Tegangan Antar Piringannya Pada Jenis	
	Interleaved	.56

[Halaman Ini Sengaja Dikosongkan]

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Pada masa kini, energi listrik sudah menjadi hal yang penting dalam menjalankan kehidupan sehari-hari. Dari sektor perumahan hingga industri semuanya membutuhkan listrik. Untuk mendapatkan energi listrik yang siap pakai, terdapat berbagai macam peralatan listrik yang digunakan, salah satunya transformator. Transformator digunakan untuk menaikkan dan menurunkan tegangan dalam proses transmisi dan distribusi dari energi listrik. Karena peran dari transformator sangatlah penting, maka kontinuitas dari transformator haruslah dijaga. Dibutuhkan pengamanan yang baik untuk dapat menjaga kontinuitas kinerja dari transformator.

Pengamanan yang baik sangatlah dibutuhkan oleh transformator karena dalam praktiknya, transformator akan mengalami berbagai macam kejadian transient *over-voltage*, salah satunya adalah gelombang impuls[1]. Tegangan lebih impuls adalah tegangan impuls dengan bentuk gelombang yang diberikan pada isolasi sehingga terjadi kegagalan pada isolasi tersebut [2]. Setelah terkena gelombang impuls, gelombang impuls tersebut akan terdistribusi pada belitan trafo. Distribusi tegangan impuls yang tidak merata akan menyebabkan *electrical stress* yang tidak merata pula [1]. Dalam hal ini, distribusi tegangan impuls yang tidak merata dapat menyebabkan kerusakan pada isolasi dan belitan transformator sehingga menyebabkan terganggunya sistem pendistribusian listrik.

Pada belitan transformator, seakan –akan terdapat kapasitansi seri antar belitan dan kapasitansi paralel ke tanah saat terkena impuls[3]. Distribusi tegangan pada belitan transformator saat mendapatkan gelimbang impuls hanya dipengaruhi oleh nilai kapasitansinya. Masingmasing jenis belitan transformator akan mempunyai nilai kapasitansi seri dan kapasitansi paralel yang berbeda pula. Dalam aplikasinya, terdapat berbagai jenis belitan transformator, seperti *Interleaved* dan *Continuous Disk*.

Permasalahan yang muncul pada belitan transformator apabila terkena gelombang impuls adalah distribusi tegangan impuls yang tidak merata pada belitan transformator. Distribusi tegangan impuls pada belitan transformator di pengaruhi oleh nilai kapasitansi yang muncul pada belitan tersebut, yaitu kapasitansi seri dan kapasitansi parallel sehingga perlu mencari nilai kapasitansi yang sesuai agar distribusi tegangan impuls lebih merata.

Pada studi ini, akan dilakukan pemodelan pada jenis belitan Interleaved dan Continuous Disk dan di simulasikan menggunakan ATPDraw. Hasil keluaran dari simulasi pada ATPD akan di olah dan di analisa dimana hasil penelitian dapat dijadikan rekomendasi kepada perusahaan manufaktur transformator.

1.2 Sistematika Penulisan

Penelitian yang dilakukan pada studi ini terdiri dari 5 bab. Setiap bab memiliki pembahasan yang berbeda-beda.

Bab pertama membahas mengenai pendahuluan yang meliputi latar belakang masalah, permasalahan, tujuan penelitian, metodologi, sistematika penulisan, dan relevansi dari penelitian.

Bab kedua membahas mengenai dasar teori dan tinjauan pustaka mengenai transformator, gelombang impuls, dan jenis belitan transformator.

Bab ketiga membahas mengenai nilai kapasitansi pada tiap belitan, distribusi tegangan impuls pada belitan, gelombang berjalan, *Basic Insulation Level*, dan program ATP.

Bab keempat membahas mengenai hasil simulasi program ATP dan analisa data dari hasil penelitian.

Bab kelima membahas mengenai kesimpulan dari keseluruhan penelitian.

BAB 2

TRANSFORMATOR DAN GELOMBANG IMPULS

2.1 Transformator

2.1.1 Pengertian Transformator

Transformator merupakan peralatan listrik yang bekerja untuk meningkatkan atau menurunakan level tegangan dari suatu sistem. Transformator terdiri atas kumparan primer, kumparan sekunder, dan inti trafo. Apabila suatu transformator mendapatkan suatu tegangan bolakbalik bertegangan rendah pada sisi primer, transformator dapat mengubahnya menjadi tegangan tinggi dengan sebelumnya mengubah listrik menjadi energi magnetik yang nantinya menginduksi belitan pada sisi sekunder.

Dengan adanya transformator, proses distribusi dan transmisi tenaga listrik dapat bekerja sesuai kondisi optimalnya masing-masing. Terdapat transformator step-up dan step-down. Transformator step-up berguna untuk menaikkan level tegangan dan step-down untuk menurunkan level tegangan. Transformator dapat di klasifikasikan sebagai transformator step-up atau step-down dilihat dari jumlah belitan sekundernya. Apabila jumlah belitan sekunder lebih banvak dibandingkan dengan jumlah primer, maka transformator tersebut merupakan transformator step-up, begitu pula sebaliknya. Pada sistem transmisi, transformator dapat meningkatkan tegangan dari listrik yang di kirimkan dari pembangkit menuju gardu induk. Pada sistem distribusi nantinya listrik dari sistem transmisi akan di turunkan level tegangannya agar lebih aman saat di distribusikan ke konsumen.

2.1.2 Konstruksi Transformator dan Bagian-bagian Transformator [4]

Dalam penggunaanya, terdapat dua jenis transformator yang dibedakan dari bentuk inti, yaitu tipe shell dan tipe core. Pada tipe core, belitan trafo primer dan sekunder terpisah pada sisi lengan trafo yang berbeda seperti yang di ilustrasikan pada gambar 2.1. Sedangkan pada tipe shell, belitan primer dan sekunder berada pada sisi yang sama seperti yang di ilustrasikan pada gambar 2.2. Berikut gambar dari masing-masing tipe inti trafo.

Transformator sama seperti peralatan lainnya, terdiri dari beberapa bagian yang mempunyai fungsi masing-masing. Terdapat

Gambar 2.1 Transformator tipe core

Gambar 2.2 Transformator tipe shell

bagian utama, peralatan bantu, dan peralatan proteksi. Berikut adalah bagian-bagian yang terdapat pada trafo:

a) Inti Besi

Inti besi berfungsi sebagai tempat belitan primer dan sekunder. Selain itu inti besi juga berfungsi untuk mempermudah jalan fluks dan menangkap fluks bocor (pada jenis inti shell).

b) Belitan Trafo

Tembaga yang dililit menjadi sekelompok belitan dalam sebuah trafo dan mempunyai isolasi. Terdapat belitan primer dan sekunder dalam trafo. Dalam praktiknya, belitan primer mendapat suplai tegangan yang nantinya akan diubah menjadi fluks dan menginduksi belitan sekunder yang disambungkan pada beban. c) Minyak trafo

Belitan trafo dan inti trafo di rendam dalam minyak trafo. Fungsi minyak trafo adalah sebagai isolasi dan juga sebagai media pendingin. Terdapat berbagai jenis minyak trafo, sintetis, mineral dan organik. Hal-hal yang harus di perhatikan dari minyak trafo adalah:

- Kekuatan Isolasi
- Penyalur panas yang baik
- Viskositas yang rendah
- Titik didih yang tinggi
- Tidak merusak belitan dan inti trafo
- d) Bushing

Bushing trafo merupakan konduktor dari trafo yang di selubungi dengan isolator. Bushing tersebut berguna tempat input trafo tersebut dan juga tempat outputnya.

e) Tangki dan Konservator Trafo

Tangki adalah tempat di mana diletakkannya inti dan belitan trafo yang nantinya akan direndam oleh minyak trafo.

Konservator merupakan tangki pemeliharaan yang berfungsi sebagai tempat masuk dan keluarnya minyak trafo.

f) Tap Changer

Tap changer merupakan alat yang dapat mengubah perbandingan belitan transformator untuk mendapatkan output tegangan pada belitan sekunder yang sesuai. Tap changer dapat dilakukan dalam kondisi berbeban maupun tidak berbeban.

2.1.3 Transformator Ideal

Transformator ideal merupakan peralatan yang diasumsikan tidak mempunyai rugi-rugi. Karena tidak terdapat rugi-rugi, maka nilai dari energi listrik yang masuk dari sisi primer akan sama dengan energi yang keluar dari sisi sekunder. Ilustrasi dari trafo ideal terdapat pada gambar 2.3. Pada trafo ideal, diasumsikan tidak terdapat *fluks* bocor pada induksi dari sisi primer ke sisi sekunder. Semua fluks diasumsikan berada pada belitan. e_1 merupakan gaya gerak listrik pada belitan primer dan e_2 merupakan gaya gerak listrik pada belitan sekunder. Besarnya tegangan

terinduksi sama dengan besarnya gaya gerak listrik (GGL), dan gaya gerak listrik sebanding dengan jumlah kumparan dan *fluks* berbanding dengan perubahan waktu. GGL pada belitan primer adalah sebagai berikut.

$$e_1 = N_1 \frac{d\phi}{dt} \tag{2.1}$$

GGL yang terinduksi pada belitan sekunder adalah

$$e_2 = N_2 \frac{d\phi}{dt} \tag{2.2}$$

Dari kedua persamaan diatas, karena GGL sama dengan tegangan yang terinduksi, maka

$$\frac{e_1}{e_2} = \frac{v_1}{v_2} = \frac{N_1}{N_2} \tag{2.3}$$

Dari persamaan 2.3, dapat disimpulkan bahwa:

- a) Apabila $N_1 > N_2$, maka $v_1 > v_2$. Trafo tersebut merupakan trafo *step-down*.
- b) Apabila $N_1 < N_2$, maka $v_1 < v_2$. Trafo tersebut merupakan trafo *step-up*.

Gambar 2.3 Ekivalen Transformator Ideal

2.1.4 Transformator Tidak Ideal

Pada penggunaannya, tidak ada peralatan listrik yang mempunyai efisiensi 100%. Begitu juga dengan trafo, untuk trafo tidak ideal, rugi-rugi di perhitungkan. Terdapat rugi-rugi tembaga, rugi-rugi arus eddy, rugi-rugi histerisis, dan fluks bocor [5].

2.1.4.1 Rugi-Rugi Tembaga

Pada belitan trafo primer dan sekunder, terdapat resistansi walaupun nilainya kecil. Apabila dialiri listrik, maka akan terdapat panas

yang disebabkan oleh rugi-rugi tembaga. Hal tersebut terjadi karena akan berlaku I²R pada belitan trafo primer dan sekunder. Semakin besar nilai resistansi, semakin besar rugi-rugi yang terjadi pada tembaga.

2.1.4.2 Rugi-Rugi Arus Eddy

Pada inti trafo, mengalir arus yang menyebabkan panas dan menyebabkan rugi-rugi yang disebut rugi-rugi arus eddy. Energi yang seharusnya diubah lagi menjadi energi listrik terbuang menjadi energi panas pada inti trafo. Untuk mengurangi rugi-rugi arus eddy, maka inti trafo dibuat berlapis-lapis.

2.1.4.3 Rugi-Rugi Histerisis

Rugi-rugi histerisis terjadi karena bahan yang digunakan pada inti trafo. Idealnya, saat di magnetisasi, kuat medan dan kerapatan fluks sama-sama menjadi nol. Namun pada kenyataanya terdapat fluks sisa pada inti trafo yang menyebabkan fluks tidak nol saat kuat medan sudah nol. Untuk mengurangi fluks, diberikan arus dengan arah yang berlawanan, namun hal tersebut menyebabkan inti termagnetisasi ke arah berlawanan. Saat di demagnetisasi, hal yang sama berulang kembali dan apabila dibuat grafiknya, akan terdapat luasan di grafiknya yang menunjukan rugi-rugi histerisis.

Pada hal ini, yang menyebabkan terjadinya rugi-rugi histerisis adalah bahan yang digunakan untuk inti trafo, maka memilih bahan untuk inti trafo merupakan hal yang penting juga. Namun sampai sekarang, belum ada bahan atau metode yang dapat membuat tidak terdapat fluks sisa pada inti trafo. Gambar 2.4 dibawah menunjukan kurva histerisis suatu inti trafo.

2.1.4.4 Fluks Bocor

Pada proses induksi, fluks dari belitan primer tidak semuanya menginduksi belitan sekunder, hal tersebut mengakibatkan kebocoran fluks. Hal tersebut terjadi karena saat terdapat arus di belitan, sekelilingnya terdapat fluks yang membentuk lingkaran. Karena tidak semua daerah yang terdapat fluks berpotongan dengan belitan sekunder maupun inti trafo, hal tersebut menyebabkan fluks yang terbuang.

2.1.5 Rangkaian Ekivalen

Pada rangkaian ekivalen trafo, trafo dianggap tidak ideal dan

Gambar 2.4 Kurva Histerisis

mempunyai nilai rugi-rugi. Rangkaian ekivalen dan penyederhanaannya akan ditunjukan pada gambar 2.5, gambar 2.6, dan gambar 2.7.

Dari gambar 2.5, dapat dilihat ekivalen dari trafo dengan belitan primer dan sekunder. Terdapat nilai resistansi pada primer dan sekunder, induktansi pada primer dan sekunder, dan nilai resistansi dan induktansi pada inti trafo.

Dari gambar 2.6, dapat di lihat bahwa belitan hilang dan digantikan dengan nilai a, dimana:

$$\frac{Np}{Ns} = a \tag{2.4}$$

Gambar 2.5 Ekivalen Trafo dengan Rangkaian Magnetik

Dalam rangkaian diatas, trafo dilihat dari sisi primer, maka nilai perbandingannya muncul pada sisi sekundernya.

Gambar 2.7 menunjukan rangkaian ekivalen trafo yang sudah disederhanakan. Inti trafo dihilangkan karena nilai Rc sangatlah besar, jadi arus yang mengalir menuju inti trafo sangatlah kecil dan akhirnya dianggap tidak ada. Pada rangkaian diatas juga terdapat nilai ekivalen apabila dilihat dari sisi primer dari resistansi dan induktansi dimana:

$$Reqp = Rp + a^2 Rs \tag{2.5}$$

$$jXeqp = Xp + a^2Xs \tag{2.6}$$

Dan didapatkan nilai dari Vp adalah

$$Vp = Reqp * Ip + jXeqp * Ip + aVs$$
(2.7)

Gambar 2.6 Ekivalen Trafo Tanpa Rangkaian Magnetik

Gambar 2.7 Ekivalen Trafo Sederhana

2.1.6 Trafo Daya [6]

Trafo daya memilliki peranan penting dalam sistem tenaga listrik. Dalam suatu sistem tenaga listrik, proses transmisi di lakukan pada tegangan tinggi, maka dibutuhkan peralatan untuk mengubah level tegangan yang terbangkitkan menjadi tegangan tinggi untuk di transmisikan. Setelah itu dibutuhkan peralatan yang dapat mengubah level tegangan tinggi ke menengah yaitu pada proses dari sistem transmisi ke sistem distribusi dan akhirnya diperlukan peralatan yang mampu mengubah level tegangan menengah ke tegangan rendah yaitu pendistribusian listrik kepada konsumen. Semua proses diatas membutuhkan trafo daya.

Jika kumparan primer dari trafo daya dihubungkan dengan sumber tegangan bolak-balik, sedangkan kumparan sekunder tidak berbeban, maka pada kumparan primer akan mengalir arus yang disebut dengan arus beban nol (I₀). Arus ini membangkitkan fluks yang nantinya akan memunculkan GGL pada kumparan primer dan sekunder. Jika pada kumparan sekunder terhubung dengan beban, maka pada kumparan sekunder akan mengalir arus sekunder (I₂). Arus sekunder akan menimbulkan fluks pada inti trafo yang berlawanan dengan fluks yang ditimbulakn arus I₀, yang artinya arus sekunder menimbulkan demagnetisasi pada inti trafo.

2.2 Gelombang Impuls dan Gelombang Berjalan [5,7]

Transformator yang terpasang pada sistem berpotensi mengalami kejadian transien *overvoltage* dari petir ataupun proses *switching*. Karena itu dibutuhkan isolasi yang baik, yang bisa menghindarkan trafo dari kerusakan apabila terkena kejadien transien *overvoltage* tersebut. Untuk itu diadakan pengujian dengan cara memberikan tegangan impuls pada belitan trafo. Acuan untuk ketahanan isolasi dari tegangan impuls adalah BIL (*Basic Insulation Level*).

2.2.1 Sumber-Sumber Gelombang Impuls

Sumber-sumber dari gelombang impuls adalah sebagai berikut:

- 1. Sambaran kilat secara langsung pada kawat.
- 2. Sambaran kilat tidak langsung pada kawat (induksi)
- 3. Operasi pemutusan saklar (switching operation)
- 4. Busur tanah (*Arcing ground*)

Semua kejadian diatas akan menybabkan surja pada kawat. Surja dalam energi berarti pemberian energi secara tiba-tiba pada sistem. Energi ini merambat dan terdiri atas tegangan dan arus. Ilustrasi dari gelombang impuls ditampilkan pada gambar 2.8.

Kecepatan merambat gelombang berjalan tergantung dari konstanta-konstantakawat. Pada kawat di udara, kecepatan merambat ini kira-kira 300 meter per mikrodetik, jadi sama dengan kecepatan cahaya. Pada kabel tanah kira-kira 150 meter per mikrodetik[7].

2.2.2 Karakteristik Gelombang Impuls

Dari bentuk umum gelombang impuls, dapat diketahui beberapa karakteristik dari gelombang impuls, yaitu:

- 1. Puncak gelombang (crest), yaitu amplitude maksimum dari gelombang.
- Muka gelombang, T₁ (mikrodetik), yaitu waktu dari permulaan sampai puncak. Dalam praktiknya diambil saat tegangan 10% -90%.
- 3. Ekor gelombang, yaitu bagian belakang puncak.
- 4. Panjang gelombang, T₂ (mikrodetik), yaitu waktu dari permulaan sampai dengan tegangan 50% pada ekor gelombang.
- 5. Polaritas, polaritas dari gelombang, positif atau negatif.

Secara matematis, gelombang impuls dinyatakan dengan persamaan berikut:

$$e(t) = E(e^{-at} - e^{-bt}).....(2.8)$$

Dimana E,a, dan b adalah konstanta.

Berikut adalah pendefinisian gelombang impuls menurut IEC, yaitu:

- 1. Gelombang impuls petir (*lightning impulse*)
 - Gelombang penuh (full wave)

Gelombang impuls yang tidak terpotong karena terjadinya lompatan api (*flashover*) atau tembusan (*puncture*).

• **Gelombang terpotong** (*chopped wave*) Gelombang impuls yang tiba-tiba jatuh ke harga nol yang dikarenakan terjadinya lompatan bunga api atau tembusan tegangan (terjadi pelepasan muatan).

Gambar 2.8 Karakteristik Tegangan Impuls

• Tegangan puncak (crest voltage)

Tegangan tertinggi yang dicapai oleh gelomang impuls.

- **Titik nol nominal** Garis potong sumbu waktu saat tegangan 30 % dan 90%.
- Muka gelombang (*wave front*) Bagian dari gelombang impuls mulai dari titik nol sampai dengan titik puncak gelombang.

• Ekor gelombang (*wave tail*)

Bagian dari gelombang impuls mulai dari titik puncak sampai berakhirnya gelombang.

Lamanya muka gelombang, T_f Menurut standard IEC, lamanya muka gelombang adalah 1,4 sampai 1,8 kali lamanya tegangan naik dari 30% sampai 90%

dari puncaknya.
Waktu setengah puncak,T_t
Waktu antara titik nol nominal hingga titik pada ekor ketika tegangan turun sampai setengah harga puncak

o Kecuraman muka, S

Harga rata-rata yang dinyatakan sebagai perbandingan antara tegangan puncak dan lamanya waktu muka.

• Waktu potong, T_C

Waktu antara titik nol gelombang sampai terpotongnya gelombang.
- 2. Gelombang impuls hubung (*switching*) Pada impuls *switching* umumnya sama dengan impuls petir, namun terdapat tambahan dibawah ini:
 - Waktu puncak (*time to crest*), Tµr (dalam μ sekon)
 Waktu antara titik nol asli dengan titik maksimum harga puncak.
 - $\circ \quad \mbox{Waktu sampai setengah puncak, } T_t(\mbox{dalam}\ \mu\ sekon) \\ \mbox{Waktu antara titik nol asli dan titik pada ekor ketiga tegangan turun hingga setengah harga puncak.}$
 - Waktu diatas 90%, T_d (dalam μ sekon) Lamanya waktu pada tegangan 90% harga puncak (dimulai dari bagian muka sampai dengan ekor gelombang).

2.2.3 Gelombang Berjalan

2.2.3.1 Bentuk Gelombang Berjalan

Dari variasi a dan b pada persamaan 2.8, dapat dibentuk berbagai macam gelombang yang dapat digunakan sebagai pendekatan dari gelombang berjalan. Ilustrasi gambar dari masing-masing bentuk gelombang berjalan di tampilkan pada gambar 2.9 a,b,c,d,dan e.

- a. Gelombang persegi yang sangat panjang
 - a = 0 $b = \infty$
 - e = E
- b. Gelombang Eksponensial
 - $\infty = d$
 - $e = Ee^{-at}$

c. Gelombang dengan muka linier

- a = 0 $b \rightarrow 0$ $E \rightarrow \infty$ bE terbatas (finite)
- $e = E(1-e^{-bt})$ = (bE)t = E(bt - b²t²/2+...)
- d. Gelombang sinus teredam

$$a = \alpha - jw$$

$$b = \alpha + jw$$

$$F = F_{\alpha}/2i$$

$$L = L_0/2J$$

 $\rho = E \rho^{-\alpha t} \sin \theta$

- $e = E e^{-\alpha t} \sin w t$
- e. Gelombang kilat tipikal

Selain bentuk gelombang berjalan pada gambar 2.9, dapat juga didapatkan bentuk gelombang hasil kombinasi dari bentuk-bentuk pada gambar 2.9.

2.2.3.2 Gelombang Berjalan Pada Titik Peralihan

Bila gelombang berjalan menemui titik peralihan, misalnya hubungan terbuka, hubung singkat, atau perubahan impedansi; maka sebagian gelombang itu akan di pantulkan dan sebagian lagi akan diteruskan ke bagian lain dari titik tersebut. Pada titik peralihan itu, nilai tegangan bisa menjadi 2x lipat dari tegangan datang.

Apabila dilihat pada gambar 2.10, gelombang yang datang dinamakan gelombang datang (e₁) atau *incident wave*, gelombang yang timbul akibat adanya titik peralihan adalah gelombang pantul (e'₁) atau *reflected wave* dan gelombang terusan (e''₁) atau *transmitted wave*. Titik T merupakan titik peralihan antara tahanan Z_1 dan tahanan Z_2 .

Gambar 2.9 (a), (b), (c), (d), dan (e) Berbagai Bentuk dari Gelombang Berjalan

Gambar 2.10 Gelombang Pantul Akibat Perubahan Impedansi

2.3 Belitan Transformator

Konstruksi dari belitan trafo harus dapat menjamin keamanan pada kondisi normal ataupun terdapat gangguan. Belitan harus dapat menahan tekanan mekanik maupun elektrik dari kejadian transien *overvoltage* dan hubung singkat. Belitan trafo juga nantinya akan menentukan jenis isolasi yang digunakan pada trafo tersebut.

2.3.1 Jenis Belitan Transformator [8]

a) Jenis crossover

Kumparan jenis ini membagi belitan menjadi beberapa piringan sehingga tegangan antara lapisan tidak menjadi besar. Jenis belitan ini mampu menahan arus yang tidak lebih dari 20 A. Kumparan jenis ini biasanya digunakan pada sisi HV pada trafo kecil di area pendistribusian. Pada jenis ini, belitan di seri dan dibatasi dengan pembatas yang merupakan isolasi dan saluran untuk pendingin. Untuk daya yang lebih besar seperti 1000kVA, bentuk kumparan dari belitan jenis ini menjadi besar, sehingga sulit untuk membuatnya. Ilustrasi dari jenis crossover dapat dilihat pada gambar 2.11.

b) Jenis Spiral

Jenis belitan ini dapat digunakan sampai 33kV namun rating arusnya kecil. Konduktor di gulung pada bidang axis tanpa jalur radial pada tiap piringan. Belitan spiral biasanya digulung pada bakelite atau papan silindris. Berikut adalah beberapa gambar dari jenis belitan spiral ditunjukan pada gambar 2.12 (a), (b), dan (c).

c) Jenis Helical

Belitan jenis ini digunakan pada trafo dengan rating tegangan rendah namun rating arus yang tinggi. Beberapa konduktor di parallel untuk membentuk satu piringan dan nantinya di gulung dengan bentuk helix pada sisi axis dan tiap piringan dipisahkan satu dengan yang lainnya dengan jalur. Belitan jenis helical bisa dibuat dalam satu lapis, dua lapis, maupun berlapis-lapis jika dibutuhkan (jika jumlah piringan sangat banyak). Ilustrasi dari kedua jenis belitan helical dapat dilihat pada gambar 2.13 a dan 2.13b.

d) Jenis Continuous Disk

Jenis belitan ini digunakan pada tegangan antara 33 dan 132 kV dan rating arus medium. Belitan ini terdiri atas bagian yang disusun pada

Gambar 2.11 Belitan crossover

Gambar 2.12 (a) Belitan spiral digulung pada sisi datar, (b) Belitan spiral digulung pada ujungnya, (c) Belitan spiral dengan 2 *layer*

sisi axis dengan jalur udara diantaranya. Setiap bagian merupakan belitan datar yang memiliki piringan lebih dari satu. Setiap bagiannya dihubungkan secara seri, namun tidak menggunakan persambungan diantaranya. Setiap piringan kuat secara mekanik dan mempunyai ketahanan tekanan axis yang baik. Ilustrasi dari jenis *continuous disc* dapat dilihat pada gambar 2.14.

e) Jenis Intershield

Pada belitan jenis ini, antara piringan satu dengan yang lainnya diberikan *shield* yang di harapkan bisa memperbesar nilai kapasitansi seri yang nantinya dapat membuat distribusi tegangna impulsnya lebih merata.

f) Jenis Interleaved

Ketahanan terhadap gelombang impuls merupakan salah satu hal yang perlu di perhitungkan dalam memilih jenis belitan trafo. Tingkat kekuatan belitan dapat ditambah dengan menyilangkan konduktor dengan beberapa cara. Gambar 2.15 Akan menunjukan contoh belitan dengan interleaved yang di lakukan pada setiap piringan. Selain dilakukan antara 2 piringan, sangat mungkin dilakukan penyilangan dengan jumlah piringan yang lebih banyak. Contohnya dapat dilihat pada gambar 2.16.

Gambar 2.13 (a) Belitan helical dengan satu lapisan, (b) Belitan helical dengan dua lapisan

Gambar 2.14 Belitan jenis continuous disc

Gambar 2.15 Belitan interleaved dengan 2 piringan per grup

Gambar 2.16 Belitan interleaved dengan 4 piringan per grup

2.3.2 Penyusunan Belitan Transformator [4,6]

Terdapat beberapa cara untuk menyambungkan kumparan trafo satu dengan yang lainnya. Kumparan trafo dapat di buat menjadi piringan ataupun menjadi silindris dan dibelitkan pada inti trafo. Kumparankumparan tersebut disusun simetris agar saat mengalirkan arus, gaya elektromagnetik yang terjadi merata di setiap belitannya.

Belitan tegangan tinggi dapat dibuat dari beberapa elemen kumparan yang semuanya terhubung secara seri. Elemen kumparan tersebut dapat disusun bertindih ataupun berlapis. Kumparan tegangan tinggi membutuhkan jarak bebas yang lebih besar, baik untuk pengisolasian ke tanah ataupun pengisolasian antar kumparan. Ilustrasi dari kedua jenis penyusunan dapat dilihat pada gambar 2.17.

2.3.2.1 Penyambungan Kumparan Bertindih

Pada kumparan susunan bertindih, setiap elemen kumparan ukurannya sama. Terdapat dua cara untuk menghubungkan satu kumparan dengan kumparan lainnya, yaitu dengan hubungan bersilang dan hubungan berurut. Masing-masing cara mempunyai kelebihan dan

Kumparan Bertindih

Kumparan Berlapis

kekurangannya sendiri. Apabila dilihat dari beda tegangan yang ditimbulkan antara tiap piringan, jenis hubungan berurut dapat menyebabkan masalah pada isolasi trafo tersebut. Apabila ditinjau dari tingkat kesulitan pemasangan, maka teknik hubung silang sulit dan membutuhkan waktu lama dalam pembuatannya. Ilustrasi dari kedua jenis penyambungan kumparan bertindih dapat dilihat pada gambar 2.18.

2.3.2.2 Penyambungan Elemen Kumparan Berlapis

Dilihat dari arah belitan, susunan elemen kumparan suatu trafo dapat dibedakan menjadi:

Gambar 2.17 Susunan Kumparan Tegangan Tinggi

Gambar 2.18 Cara penyambungan elemen kumparan bertindih

a) Arah Belitan Berlawanan

Dalam jenis ini, arah belitan antara kumparan yang berdampingan dibuat berlawanan sehingga arah gaya gerak listrik pada kedua kumparan menjadi berlawanan.

b) Arah Belitan Sama

Dalam jenis ini, arah belitan antara kumparan sama, sehingga arah gaya gerak listrik pada kumparan juga sama. Untuk jenis ini, terdapat dua cara penyambungan, yaitu hubungan internal dan hubungan eksternal.

Perbedaan dari ketiga cara diatas adalah panjang konduktor penyambung. Konduktor untuk jenis arah belitan berlawanan dan arah belitan sama dengan hubungan internal sama pendeknya. Namun kasus yang ditemui pada arah belitan sama hubungan internal, konduktor penyambung dilewatkan pada ruang diantara kumparan. Hal tersebut kurang baik bagi, oleh karena itu konduktor penyambung dibuat menjadi hubung eksternal, yaitu dilewatkan di luar kumparan. Ilustrasi dari ketiga jenis penyambungan kumparan berlapis dapat dilihat pada gambar 2.19.

Hal yang perlu diperhatikan dari berbagai cara penyambungan diatas adalah beda tegangan antara kumparan yang berdampingan. Sebagai contoh untuk jenis arah belitan berlawanan, beda tegangan antara elemen kumparan berdampingan menjadi berlipat ganda, yaitu beda tegangan pada titik sambunganyang arah geraknya berlawanan. Apabila dilihat pada gambar maka V_{ab} dan V_{cd} .

Gambar 2.19 Cara Penyambungan Elemen Belitan Berlapis

[Halaman ini sengaja dikosongkan]

BAB 3 PEMODELAN BELITAN TRAFO DAN KAPASITANSI PADA BELITAN

3.1 Distribusi Tegangan Impuls Pada Belitan Transformator

Konduktor penyusun kumparan tegangan tinggi dari suatu trafo sangatlah panjang. Kumparan trafo dibelitkan pada inti besi yang di bumikan. Apabila suatu trafo diberikan tegangan secara tiba-tiba, ataupun mendapat impuls, dalam kumparan tersebut terdapat kapasitansi belitan dengan tanah (C_g). Lalu dalam trafo terdapat pula induktansi akibat gulungan konduktor (L) dan terdapat pula tahanan pada konduktor (R). Dalam kasus ini, terdapat pula kapasitansi antar belitan (C_s)[6]. Karena berbagai komponen tersebut, dalam belitan trafo dapat terjadi gelombang berjalan yang nanti nya akan berosilasi dan menyebabkan tekanan elektrik pada suatu titik pada kumparan.

Tekanan elektrik yang tinggi tidak diizinkan terjadi pada isolasi dari belitan transformator. Oleh karena itu, perlu diadakan penelitian intensif untuk menentukan distrbusi tegangan pada belitan transformator. Karena menghitung gelombang berjalan sangatlah sulit pada rangkaian belitan transformator yang mempunyai nilai resistansi dan induktansi, maka dalam menghitung distribusi tegangan tersebut nilai resistansi dan induktansi diabaikan. Asumsi tersebut juga digunakan apabila suatu belitan transformator mendapatkan gelombang impuls. Sesaat setelah mendapatkan gelombang impuls, belitan trafo diasumsikan hanya terdiri dari kapasitansi seri dan kapasitansi ground.

Dari asumsi diatas, didapatkan rumus untuk mencari tegangan di tiap belitan apabila belitan trafo terkena impuls [9]. Berikut adalah rumusnya:

$$Vx = U(\frac{e^{ax} - e^{-ax}}{e^{al} - e^{-al}})$$
(3.1)

Dimana:

U = Besar impuls

- 1 = Panjang axial belitan
- x = Koordinat tegangan yang ingin dihitung

Dengan:

$$\alpha = \sqrt{\frac{c_g}{c_s}} \tag{3.2}$$

Cs	= Kapasitansi seri antara piringan
Cg	= Kapasitansi gulungan dengan ground

Pada gambar 3.1, ditampilkan grafik dari distribusi tegangan impuls pada belitan trafo. Nilai yang ditunjukan saat $\alpha=0$ merupakan distribusi tegangan yang merata tiap piringannya. Sumbu Y axis merupakan tegangan yang didapatkan dengan rumus:

$$V = Vmax \times \frac{x}{l} \tag{3.3}$$

Dan sumbu X axis merupakan perbandingan antara jarak total belitan ke tanah dengan jarak tiap piringan ke tanah.

3.2 Pemodelan Belitan Transformator Pada ATP

Untuk mencari distribusi tegangan impuls pada belitan transformator, pertama-tama di modelkan dahulu belitan dari

belitan trafo [3]

transformator. Pada gambar 2.16, dapat dilihat ilustrasi dari belitan *continuous disc* dan pada gambar 2.17 dan 2.18, di ilustrasikan belitan *interleaved*. Dari ilustrasi tersebut, di modelkan belitan transformator pada rangkaian listrik seperti di tunjukkan pada gambar 3.1. Terdapat banyak pemodelan yang dapat digunakan, namun dalam studi ini, di pilih pemodelan transformator seperti gambar 3.1.

Pemodelan dari belitan trafo diatas dapat digunakan untuk jenis belitan *continuous disc* maupun *interleaved*, yang membedakan adalah nilai dari kapasitansi seri (Cs), kapasitansi ground (Cg), resistansi (R), dan induktansi (L).

Pemodelan pada gambar 3.2 merupakan pengembangan dan gabungan pemodelan seperti yang tertera pada gambar 3.3 dan 3.4. Pada gambar 3.3, terlihat pemodelan belitan trafo dengan hanya mencamtumkan Cs, Cg dan L yang di parallel. Pada gambar 3.4, L di seri dengan R. Lalu dari kedua pemodelan, digabungkan menjadi gambar 3.2 dengan asumsi nilai R dan L akan diseri dan bertambah besar dengan semakin banyaknya piringan.

Lalu pada gambar 3.5, dimodelkan belitan trafo tersebut dalam bentuk rangkaian listrik pada ATP. Gambar 3.5 hanya mewakilkan beberapa piringan saja. Dalam simulasinya nanti, dibuat pemodelan sesuai dengan jumlan piringan dalam trafo tersebut. Untuk jenis belitan *continuous disc*, banyak piringannya sampai 70 dan untuk jenis belitan *interleaved*, banyaknya piringan adalah 70. Pada gambar 3.5 , C_n merupakan kapasitansi seri dan Cg_n merupakan kapasitansi ground. Dari gambar 3.5 dapat dilihat probe diletakan diantara piringan n dan piringan n+1. Probe diletakkan pada tempat tersebut untuk membaca tegangan pada piringan n tersebut.

Gambar 3.2 Pemodelan Belitan Trafo Pada Rangkaian Listrik

Gambar 3.3 Pemodelan belitan trafo dengan L [10]

Gambar 3.4 Pemodelan belitan trafo dengan R dan L [3]

Gambar 3.5 Pemodelan Belitan Trafo Pada ATP

3.3 Nilai Kapasitansi pada Belitan Transformator

Pada setiap jenis belitan transformator, terdapat nilai Cs (kapasitansi seri) dan Cg (kapasitansi ke tanah). Nilai dari Cg dari suatu belitan trafo adalah sebagai berikut [10]:

$$Cg = \frac{2\pi\varepsilon_0}{\ln\frac{bd}{ac}}\varepsilon_c l \tag{3.4}$$

Dimana.	Dimana:
---------	---------

a	= Jari-jari Inti Trafo
b	= Jari-jari bagian dalam dari belitan L.V
с	= Jari-jari bagian luar dari belitan H.V
d	= Jari-jari bagian dalam dari belitan H.V
1	= Panjang axiang dari belitan H.V
\mathcal{E}_0	= Permitivitas udara
$\tilde{\varepsilon_c}$	= Permitivitas isolasi kertas

Dalam menentukan nilai Cs, terdapat C_T (kapasitansi antar turn) dan C_D (kapasitansi antar piringan/disc). C_T dapat diartikan sebagai nilai kapasitansi yang muncul antara belitan yang berdekatan yang berada di dalam satu piringan, sedangkan C_D merupakan nilai kapasitansi yang muncul antara piringan (gabungan dari beberapa belitan) yang berdekatan. C_T dan C_D akan di ilustrasikan pada gambar 3.6a dan 3.6b [11].

Nilai dari Cs pada setiap jenis belitan berbeda beda. Berikut penjelasan untuk mencari nilai Cs pada masing-masing belitannya.

3.3.1 Belitan Continuous Disc

Jenis belitan ini merupakan konfigurasi yang paling sederhana. Biasa dikenal juga denga *plain disc*. Pada jenis belitan ini, terdapat celah radial antar piringan. Pada celah tersebut nantinya akan terisi oleh isolasi minyak. Berikut adalah rumus untuk mencari Cs [11]:

$$C_S = \left(\frac{n - n_A - 1}{n^2}\right) C_T + \left(\frac{4}{3}\right) C_D \tag{3.5}$$

Dengan:

$$C_D = \frac{\varepsilon_0(\pi D)r}{\left[\frac{t_D}{f\varepsilon_M + (1-f)\varepsilon_D} + \left(\frac{t_C}{\varepsilon_C}\right)\right]}$$
(3.6)

$$C_T = \frac{\varepsilon_0 \varepsilon_C (\pi D) (h + t_C)}{t_C} \tag{3.7}$$

Dimana:

n	= Banyak belitan per piringan
n _A	= Jumlah saluran antara konduktor per piringan
ε_0	= Permitivitas hampa udara
ε _M	= Permitivitas minyak
ε _c	= Permitivitas isolasi konduktor
D	= Rata-rata diameter belitan (m)
r	= Dimensi radial dari belitan
f	= Rasio perbandingan area jalur permukaan bagian yang
	tertutupi isolasi dengan total area permukaan dari jalur
t _D	= Tebal jalur antara piringan
t _C	= Ketebalan isolasi konduktor (kedua sisi)
h	=Tinggi konduktor
3.3.2	Belitan Interleaved
	Seperti sudah dijelaskan sebelumnya, jenis <i>interleaved</i>

Seperti sudah dijelaskan sebelumnya, jenis *interleaved* merupakan jenis belitan yang mempunyai persilangan dalam konfigurasi belitannya. Pada jenis belitan ini juga terdapat celah radial yang nantinya akan diisi dengan minyak sebagai media isolasinya.

Berikut adalah rumus mencari Cs [11]:

$$C_S = C_T (nn_l - n_A - 1)$$
(3.8)

Dengan:

$$C_T = \frac{\varepsilon_0 \varepsilon_C(\pi D)(h + t_C)}{t_C} \tag{3.9}$$

Dimana:

nl	= Konstanta belitan interleaved (dapat didefinisikan sebaga
	jumlah belitan yang di silang)

- n = Banyak belitan per piringan
- n_A = Jumlah saluran antara konduktor per piringan

ε_0	= Permitivitas hampa udara
ε _c	= Permitivitas isolasi konduktor
D	= Rata-rata diameter belitan (m)
t _C	= Ketebalan isolasi konduktor (kedua sisi)
h	=Tinggi konduktor

Menyilangkan belitan memberikan peningkatan hasil yang signifikan terhadap respon distribusi terhadap tegangan impuls. Namun dalam menyilangkan belitan, proses pembuatannya menjadi kompleks. Dibutuhkan skill dan pekerja yang lebih dalam proses pembuatannya. Terkadang untuk menyiasati kesulitan dan biaya pembuatan, sebagian belitan dilakukan penyilangan dan sebagian lagi di biarkan seperti piringan belitan biasa. Hal tersebut dilakukan agar ketahanan pada tegangan impulsnya baik namun biaya nya tidak terlalu mahal dan waktu pembuatannya tidak lama.

3.4 Gelombang Berjalan dan *Basic Insulation Level* (BIL)

Gambar 3.7 dibawah merupakan ilustrasi apabila suatu gelombang berjalan mengenai titik peralihan dimana terdapat beberapa line dengan beban yang berbeda. Gelombang berjalan akan muncul di suatu line apabila line tersebut terkena gelombang impuls. Bila gelombang e_1 datang mencapai titik T, sebagian akan di pantulkan (e'_1) dan sebagian lagi akan di teruskan (e''_2 , e''_{n-1} , e''_n). Berikut penjelasan dari gambar 3.7:

e	= Tegangan pada titik sambungan J
e_0	= Tegangan pada titik sambungan T
Z(p)	= Impedansi di belakang titik sambungan J

Z(p) = Impedansi di belakang titik sambungan J

 $Z_0(p)$ = Impedansi di belakang titik peralihan T

Dari gambar 3.7 akan didapatkan persamaan untuk mendapatkan nilai tegangan pada titik peralihan. Berikut adalah persamaan untuk mendapatkan tegangan pada titik sambungan:

$$e_0 = 2 \frac{z}{z_0 - z_1} e_1 \tag{3.10}$$

Tegangan pada titik sambungan juga bisa di dapatkan dengan menggunakan persamaan:

$$e_0 = e_1 - e'_1 \tag{3.11}$$

Gambar 3.7 Gelombang Berjalan Pada Titik Peralihan

Basic Insulation Level (BIL) merupakan acuan isolasi yang digunakan dalam mendesain suatu isolasi peralatan. Masing-masing peralatan listrik dengan rating yang berbeda mempunyai BIL yang berbeda pula. Hal tersebut disebabkan oleh pertimbangan dari kemampuan peralatan tersebut menahan kejadian overvoltage dan gelombang berjalan akibat impuls. BIL dibutuhkan agar peralatan tidak mengalami kerusakaan saat menghadapi kejadian transien overvoltage. Terdapat beberapa standard yang digunakan untuk menentukan BIL. Berikut adalah tabel 3.1 BIL sesuai yang tertera pada IEC 60076-3 [14]

3.5 ATP [12]

Alternative Transient Program (ATP) merupakan software yang digunakan untuk untuk mensimulasikan fenomena transien pada peralatan listrik secara individu maupun dalam suatu sistem. Dalam sub-bab ini hanya akan dijelaskan mengenai hal umum dari ATP.

3.5.1 Modul Terintegrasi Program ATP

MODELS di ATP adalah kemampuan untuk memodelkan dan mensimulasikan suatu sistem. Modul ini juga memudahkan ATP untuk terintegrasi dengan berbagai macam software lainnya. Pada modul ini, simulasi dapat diubah-ubah sesuai kebutuhan, misalnya mengubah dari domain waktu ke domain frekuensi.

Transient Analysis of Control System (TACS) dalam ATP adalah modul simulasi untuk menganalisa domain waktu dalam sistem kendali.

Highest Voltage for Equipment (kV)	Full Wave Lightning Impulse (kV)	Switching Impulse (kV)
<1.1	-	-
2.6	20	-
5.0	40	-
7.2	60	-
1.2	75	-
	75	-
12	95	-
	110	-
17.5	95	-
17.5	125	-
	125	-
24	145	-
	150	-
36	170	-
50	200	-
52	250	-
72.5	325	-
12.5	350	-
100	450	375
123	550	460
145	550	460
140	650	540
170	650	540
170	750	620

Tabel 3.1 Standard BIL Menurut IEC 60076-3 [14]

Highest Voltage for Equipment (kV)	Full Wave Lightning Impulse (kV)	Switching Impulse (kV)
	850	700
245	950	750
	1050	850
300	950	750
500	1050	850
367	1050	850
302	1175	950
	1175	950
420	1300	1050
	1425	1175
	1300	1050
550	1425	1175
550	1550	1300
	1675	1390
	1800	1425
800	1950	1550
800	2050	1700
	2100	1675
1100	1950	1425
1100	2250	1800
1200	2250	1800

Tabel 3.1 Standard BIL Menurut IEC 60076-3 [14] (Lanjutan)

Penggunaan TACS biasanya dengan blok diagram. Berikut beberapa hal yang bisa diaplikasikan dari TACS:

- a. Kontrol Konverter HVDC
- b. Sistem eksitasi pada mesin sinkron
- c. Elektronika daya dan *driver*
- d. Arching

Supporting routines adalah sebuah fungsi yang terdapat di dalam program yang memudahkan kita untuk melakukan konversi dari data yang didapatkan dari pabrik (kondisi sebenarnya) dengan data yang diperlukan oleh program contohnya menghitung parameter dari saluran dan kabel dari data geometrical dan material.

[Halaman ini sengaja dikosongkan]

BAB 4 SIMULASI DAN ANALISA

4.1 Data Transformator dan Penghitungan Nilai Kapasitansi

Berikut akan disajikan data transformator dan hasil penghitungan untuk mencari nilai kapasitansi seri dan kapasitansi ground untuk di gunakan pada pemodelan di simulasi ATP.

4.1.1 Jenis Belitan Continuous Disc

Berikut adalah data dari trafo yang mempunyai jenis belitan Continuous Disc:

• 30 MVA 66 kV 22 kV YNyn0 50 Hz

m
m
m
nm
nm

- Blank HV wire dimension :
 - Axial/radial = 15.3 x 16.9 mm (insulation thickness : 0.6 mm)
 - Axial : height of conductor; radial : thickness of conductor
- HV winding

- : Disc type
- No. Of disc : 70 disc
- Turns/disc : 7 turns
- No.of radial kanal : 69 pcs (@ 1 pcs 3 mm thickness/tD)
- Radial dimension : 126 mm
- No load losses : 18 kW
 Full load losses : 65 kW
 Impedance : 12.5 %
 R : 0.217%
 L : 12.498%

Dari data *continuous disc*, menggunakan rumus dari 3.6 dan 3.7 didapatkan:

$$C_{\rm T} = 2.3399 \, {\rm nF}$$
 (4.1)

$$C_D = 2.79099 \text{ nF}$$
 (4.2)

Dan dengan menggunakan hasil perhitungan 4.1 dan 4.2, dengan menggunakan rumus 3.5, didapatkan:

$$C_{\rm S} = 0.712875 \, \rm nF$$
 (4.3)

Dengan menggunakan data dari *continuous disc*, bisa juga di dapatkan nilai Cg dengan menggunakan persamaan 3.4. Dengan mengasumsikan tinggi tiap belitan akan berbeda 18.729 mm, maka nilai Cg berbeda-beda tiap piringannya tergantung dari jarak belitan ke tanah. Berikut adalah nilai Cg tiap piringannya:

Piringan ke-	Jarak piringan ke tanah (Dalam meter)	Nilai Cg
1	1.31103	0.171 nF
2	1.292301	0.169 nF
3	1.273572	0.166 nF
4	1.254843	01.64 nF
5	1.236114	01.61 nF
6	1.217385	0.159 nF
7	1.198656	0.156 nF
8	1.179927	0.154 nF
9	1.161198	0.151 nF
10	1.142469	0.149 nF
11	1.12374	0.147 nF
12	1.105011	0.144 nF
13	1.086282	0.142 nF
14	1.067553	0.139 nF
15	1.048824	0.137 nF
16	1.030095	0.134 nF

Tabel 4.1 Nilai Cg Pada Belitan Jenis Continuous Disc

Piringan ke-	Jarak piringan ke tanah (Dalam meter)	Nilai Cg
17	1.011366	0.132 nF
18	0.992637	0.129 nF
19	0.973908	0.127 nF
20	0.955179	0.125 nF
21	0.93645	0.122 nF
22	0.917721	0.12 nF
23	0.898992	0.117 nF
24	0.880263	0.115 nF
25	0.861534	0.112 nF
26	0.842805	0.11 nF
27	0.824076	0.108 nF
28	0.805347	0.105 nF
29	0.786618	0.103 nF
30	0.767889	0.1 nF
31	0.74916	97.7 pF
32	0.730431	95.3 pF
33	0.711702	92.8 pF
34	0.692973	90.4 pF
35	0.674244	88 pF
36	0.655515	85.5 pF
37	0.636786	83.1 pF
38	0.618057	80.6 pF
39	0.599328	78.2 pF
40	0.580599	75.7 pF
41	0.56187	73.3 pF

Tabel 4.1 Nilai Cg Pada Belitan Jenis Continuous Disc (Lanjutan)

Piringan ke-	Jarak piringan ke tanah (Dalam meter)	Nilai Cg
42	0.543141	70.9 pF
43	0.524412	68.4 pF
44	0.505683	66 pF
45	0.486954	63.5 pF
46	0.468225	61.1 pF
47	0.449496	58.6 pF
48	0.430767	56.2 pF
49	0.412038	53.8 pF
50	0.393309	51.3 pF
51	0.37458	48.9 pF
52	0.355851	46.4 pF
53	0.337122	44 pF
54	0.318393	41.5 pF
55	0.299664	39.1 pF
56	0.280935	36.7 pF
57	0.262206	34.2 pF
58	0.243477	31.8 pF
59	0.224748	29.3 pF
60	0.206019	26.9 pF
61	0.18729	24.4 pF
62	0.168561	22 pF
63	0.149832	19.5 pF
64	0.131103	17.1 pF
65	0.112374	14.7 pF
66	0.093645	12.2 pF

Tabel 4.1 Nilai Cg Pada Belitan Jenis Continuous Disc (Lanjutan)

Jarak piringan ke tanah Piringan ke-Nilai Cg (Dalam meter) 0.074916 9.77 pF 67 68 0.056187 7.33 pF 69 0.037458 4.89 pF 70 0.018729 2.44 pF

Tabel 4.1 Nilai Cg Pada Belitan Jenis Continuous Disc (Lanjutan)

Lalu menggunakan data belitan *continuous disc*, dapat dicari juga nilai R dan L pada belitan dengan persamaan:

$$R = \frac{\%R}{\% Impedansi} x \frac{s}{v^2}$$
(4.4)

$$L = \frac{\%L}{\% Impedansi} X \frac{s}{v^2}$$
(4.5)

Maka, menggunakan persamaan 4.4 dan 4.5, didapatkan:

$$\mathbf{R} = 0.03\Omega \tag{4.6}$$

$$L = 6.6 \text{ mH}$$
 (4.7)

4.1.2 Jenis Belitan Interleaved

Berikut adalah data dari trafo yang mempunyai jenis belitan *interleaved*:

- 60 MVA 150 kV 11 kV YNd1 50 Hz
- Core diameter : 625 mm
- Inner LV diameter : 655 mm
- Inner HV diameter : 881 mm
- Outer HV diameter : 1081 mm
- Axial length of HV winding : 1291 mm
- Blank HV wire dimension :
 - axial / radial = 13.6 x 1.9 mm (insulation thickness : 0.8 mm)
 - Axial : height of conductor, radial : thickness of conductor
- HV winding : Interleaved Disc type

	0	No. Of disc	: 70 disc
	0	Turns/disc	: 12 turns
	0	No.of radial kana	l : 69 pcs (3mm)
	0	Radial dimension	1 : 100 mm
•	Koefisi	en <i>interleaved</i>	: 2
•	No load	l losses	: 40 kW
•	Full loa	d losses	:220kW
•	Impeda	nce	:12.5%
•	R		:0.367%
•	L		:12.495%

Dari data belitan *interleaved* ini, menggunakan persamaan 3.9 didapatkan:

$$C_T = 1.57174 \text{ nF}$$
 (4.8)

Menggunakan hasil perhitungan 4.8, di dapatkan nilai C_S dari *interleaved* dengan persamaan 3.8:

$$C_{\rm S} = 72.3001 \, \rm nF$$
 (4.9)

Dari data *interleaved* diatas, dapat dicari nilai Cg menggunakan persamaan 3.4. Sama seperti kasus pada *continuous disc*, nilai Cg akan berbeda sesuai jarak antara piringan dengan tanah. Sedangkan untuk beda antar piringannya adalah 18.729 mm. Berikut adalah nilai Cg pada belitan *interleaved* di tiap piringannya:

Jarak piringan ke tanah Piringan ke Cg (Dalam meter) 1.291286 0.16559 nF 1 2 1.272843 0.163225 nF 3 1.2544 0.160859 nF 4 1.235958 0.158494 nF 5 1.217515 0.156129 nF 6 1.199072 0.153764 nF

Tabel 4.2 Nilai Cg Tiap Piringan Dari Belitan Interleaved

Piringan ke	Jarak piringan ke tanah (Dalam meter)	Cg
7	1.180629	0.151399 nF
8	1.162186	0.149034 nF
9	1.143743	0.146669 nF
10	1.1253	0.144304 nF
11	1.106858	0.141939 nF
12	1.088415	0.139574 nF
13	1.069972	0.137209 nF
14	1.051529	0.134844 nF
15	1.033086	0.132479 nF
16	1.014643	0.130114 nF
17	0.9962	0.127749 nF
18	0.977758	0.125384 nF
19	0.959315	0.123019 nF
20	0.940872	0.120654 nF
21	0.922429	0.118289 nF
22	0.903986	0.115924 nF
23	0.885543	0.113559 nF
24	0.8671	0.111194 nF
25	0.848658	0.108829 nF
26	0.830215	0.106464 nF
27	0.811772	0.104098 nF
28	0.793329	0.101733 nF
29	0.774886	99.3684 pF
30	0.756443	97.0034 pF
31	0.738	94.6383 pF
32	0.719558	92.2733 pF
33	0.701115	89.9083 pF
34	0.682672	87.5432 pF

Tabel 4.2 Nilai Cg Tiap Piringan Dari Belitan Interleaved (lanjutan)

Piringan ke	Jarak piringan ke tanah (Dalam meter)	Cg
35	0.664229	85.1782 pF
36	0.645786	82.8131 pF
37	0.627343	80.4 pF
38	0.6089	78.083 pF
39	0.590458	75.718 pF
40	0.572015	73.353 pF
41	0.553572	70.9879 pF
42	0.535129	68.6229 pF
43	0.516686	66.2578 pF
44	0.498243	63.8928 pF
45	0.4798	61.5278 pF
46	0.461358	59.1627 pF
47	0.442915	56.7977 pF
48	0.424472	54.4326 pF
49	0.406029	52.0676 pF
50	0.387586	49.7026 pF
51	0.369143	47.3375 pF
52	0.3507	44.9725 pF
53	0.332258	42.6074 pF
54	0.313815	40.2424 pF
55	0.295372	37.8774 pF
56	0.276929	35.5123 pF
57	0.258486	33.1473 pF
58	0.240043	30.7822 pF
59	0.2216	28.4172 pF
60	0.203158	26.0521 pF
61	0.184715	23.6871 pF

Tabel 4.2 Nilai Cg Tiap Piringan Dari Belitan Interleaved (lanjutan)

Piringan ke	Jarak piringan ke tanah (Dalam meter)	Cg
62	0.166272	21.3221 pF
63	0.147829	18.957 pF
64	0.129386	16.592 pF
65	0.110943	14.2269 pF
66	0.0925	11.8619 pF
67	0.074058	9.49686 pF
68	0.055615	7.13182 pF
69	0.037172	4.76678 pF
70	0.018729	2.40173 pF

Tabel 4.2 Nilai Cg Tiap Piringan Dari Belitan Interleaved (lanjutan)

Dapat dicari pula nilai R dan L menggunakan persamaan 4.4 dan 4.5. Didapatkan:

$$\mathbf{R} = 0.15 \ \Omega \tag{4.10}$$

$$L = 17.05 \text{ mH}$$
 (4.11)

4.2 Analisa dan Simulasi Pada ATP

Untuk nilai parameter yang di perlukan dari R, L, C_s, dan Cg sudah di tentukan masing-masing dengan perhitungan sebelumnya. Untuk nilai impuls mengikuti tabel 3.1, pada tabel tersebut dibahas mengenai nilai ketahanan terhadap impuls dibandingkan dengan nilai tegangan tertinggi dari suatu peralatan listrik.

4.2.1 Jenis Belitan continuous disc

Setelah di dapatkan nilai komponen penyusun pemodelan untuk jenis belitan *continuous disc* pada persamaan 4.3 untuk nilai Cs, tabel 4.1 untuk nilai Cg, persamaan 4.10 untuk nilai R, dan persamaan 4.11 untuk nilai L. Dengan tegangan impuls yang diberikan, apabila sesuai dengan tabel 3.1, trafo dengan tegangan maksi mum kerja sebesar 66kV mendapat impuls sebesar 350 kV. Pada pemodelan dari jenis belitan *continuous* disc, jumlah piringan dibuat sampai 70 piringan. Didapatkan nilai V max tiap belitan sebagai berikut:

Piringan ke-	Tegangan Maksimum (V)	Selisih Antar Piringan (V)
1	330060	
2	344230	14170
3	347750	3520
4	348500	750
5	349870	1370
6	351680	1810
7	353350	1670
8	354510	1160
9	355900	1390
10	357410	1510
11	360080	2670
12	371730	11650
13	369800	1930
14	362950	6850
15	364460	1510
16	370980	6520
17	395590	24610
18	407830	12240
19	408850	1020
20	409270	420
21	412460	3190
22	413990	1530
23	413360	630
24	413260	100
25	416700	3440
26	414780	1920

Tabel 4.3Nikai Tegangan Maksimum Tiap Piringan Dan Selisih TeganganAntarPiringannya Jenis Continuous Disc

Piringan ke-	Tegangan Maksimum	Selisih Antar
	(V)	Piringan (V)
27	423040	8260
28	439650	16610
29	450470	10820
30	455500	5030
31	454450	1050
32	447580	6870
33	435870	11710
34	446980	11110
35	466510	19530
36	487500	20990
37	509840	22340
38	528830	18990
39	543950	15120
40	554830	10880
41	561220	6390
42	563070	1850
43	560440	2630
44	553650	6790
45	543170	10480
46	540240	2930
47	563550	23310
48	588590	25040
49	614732	26142
50	641290	26558
51	667680	26390
52	693380	25700
53	718010	24630

Tabel 4.3 Nilai Tegangan Maksimum Tiap Piringan Dan Selisih TeganganAntarPiringannya Jenis Continuous Disc (lanjutan)

Piringan ke-	Tegangan Maksimum (V)	Selisih Antar Piringan (V)
54	741249	23239
55	762900	21651
56	782780	19880
57	800740	17960
58	816780	16040
59	830860	14080
60	843030	12170
61	853330	10300
62	861900	8570
63	868830	6930
64	874300	5470
65	878440	4140
66	881390	2950
67	883370	1980
68	884560	1190
69	885150	590
70	885350	200

Tabel 4.3 Nilai Tegangan Maksimum Tiap Piringan Dan Selisih TeganganAntarPiringannya Jenis Continuous Disc (lanjutan)

Berdasarkan tabel 4.3, didapatkan nilai tegangan maksimum pada tiap piringan yang berbeda-beda. Perbedaan nilai tegangan maksimum tersebut dipengaruhi oleh nilai dari Cs dan Cg pada setiap belitannya. Nilai yang berbeda ini juga dipengaruhi oleh nilai dari R dan L. Pada pemodelan belitan trafo yang digunakan, setiap piringannya mempunyai C_s, C_g, R, dan L. Namun yang berbeda dari tiap piringannya hanyalah nilai Cg karena nilai Cg dipengaruhi oleh jarak antara piringan dengan *ground* (tanah). Pada pemodelan belitan trafo yang digunakan, nilai tegangan pada tiap piringan di ambil menggunakan probe tegangan yang diletakkan setelah pemodelan tiap piringan dan sumber yang digunakan adalah sumber heidler. Sumber heidler merupakan sumber impuls pada ATP yang lebih mudah untuk diatur parameternya. Sesuai dengan IEC 60076-3 yang di tampilkan pada tabel 3.1, digunakan tegangan impuls dengan tegangan puncak sebesar 350kV yang disesuaikan dengan tegangan maksimum dari trafo yang digunakan. Sumber impuls yang di gunakan mempunyai lama muka gelombang sebesar $1,2\eta s$.

Dari gambar 4.1, dapat dilihat, nilai tegangan maksimum pada tiap belitannya relatif meningkat. Namun selisih antara belitannya mengalami fluktuasi dilihat pada gambar 4.2. Apabila dilihat dari tabel 4.3, nilai tegangan maksimum tertinggi berada pada piringan ke-70, yaitu 885 kV dan nilai tegangan maksimum terendah berada pada piringan ke-1, yaitu 330kV. Sedangkan selisih tegangan paling tinggi berada antara piringan ke-49 dan piringan ke-50, yaitu 26,5kV dan selisih tegangan paling rendah berada diantara piringan ke-23 dan piringan ke-24, yaitu 100V. Fluktuasi dari nilai selisih tegangan antar piringan dapat disebabkan oleh nilai Cs dan Cg dari trafo jenis belitan *continuous disc*.

Pada gambar 4.3 menampilkan grafik distribusi tegangan impuls pada belitan jenis *continuous disc*. Nilai pada grafik didapatkan dari persamaan 3.3 untuk mendapatkan nilai tegangannya.

Gambar 4.1 Grafik Tegangan Maksimum Pada Tiap Piringan Trafo Jenis Belitan Continuous Disc

Gambar 4.2 Grafik Selisih Tegangan Pada Tiap Piringan Trafo Jenis Belitan Continuous Disc

Gambar 4.3 Grafik Distribusi Tegangan Impuls Pada Jenis Belitan Continuous Disc

Dari grafik pada gambar 4.3, dapat dilihat bahwa distribusi tegangan pada belitan tidak merata dan melebihi grafik $\alpha=0$ yang di wakili dengan garis
hitam putus-putus. Persebaran distribusi yang tidak rata tersebut dapat disebabkan oleh nilai Cs dan Cg yang ada pada belitan.

Apabila di kaitkan dengan safety factor yang memperhitungkan ketebalan isolasi kertas yang digunakan yaitu 1.2 mm dan jarak antara piringan 3 mm, nilai dari selisih tegangan pada piringan ke-49 dan ke-50 ,sebesar 26.5 kV, apabila dilihat pada gambar 4.4 masih dalam batas aman. Maksimal selisih yang di izinkan adalah sekitar 110kV. Grafik penentuan *safety factor* dapat dilihat pada gambar 4.4.

ulse Voltage Withstand 1 2/50 u

Diametral Thickness of Paper Insulation In mm

Gambar 4.4 Safety Factor[13]

Gambar 4.5 (a) & (b) Respon Impuls Pada Piringan 1 Continuous Disc

Gambar 4.5a merupakan respon impuls pada piringan 1 dengan waktu maksimum 1ms sedangkan pada gambar 4.5b merupakan respon impuls pada piringan 1 dengan waktu maksimum 2s. Dapat dilihat bentuk dari respon impuls menyerupai gelombang impuls dengan terdapat ripple. Apabila dilihat dari gambar 4.5b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.6a merupakan respon impuls pada piringan 11 dengan waktu maksimum 1ms sedangkan pada gambar 4.6b merupakan respon impuls pada piringan 11 dengan waktu maksimum 2s. Dapat dilihat bentuk dari respon impuls menyerupai gelombang sinus dengan ripple.

Gambar 4.6 (a)&(b) Respon Impuls Pada Piringan 11 Continuous Disc

Apabila dilihat dari gambar 4.6b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.7a merupakan respon impuls pada piringan 31 dengan waktu maksimum 1ms sedangkan pada gambar 4.7b merupakan respon impuls pada piringan 31 dengan waktu maksimum 2s. Dapat dilihat bentuk dari respon impuls menyerupai gelombang sinus dengan terdapat ripple. Dibandingan dengan gambar 4.6a, nilai tegangannya menjadi lebih besar.

Gambar 4.7 (a)&(b) Respon Impuls Pada Piringan 31 Continuous Disc

Apabila dilihat dari gambar 4.7b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.8a merupakan respon impuls pada piringan 51 dengan waktu maksimum 1ms sedangkan pada gambar 4.8b merupakan respon impuls pada piringan 51 dengan waktu maksimum 2s. Dapat dilihat bentuk dari respon impuls menyerupai gelombang sinus dengan terdapat ripple. Dibandingan dengan gambar 4.7a, nilai tegangannya menjadi lebih besar. Apabila dilihat dari gambar 4.8b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.8 (a)&(b) Respon Impuls Pada Piringan 51 Continuous Disc

Gambar 4.9a merupakan respon impuls pada piringan 70 dengan waktu maksimum 1ms sedangkan pada gambar 4.9b merupakan respon impuls pada piringan 70 dengan waktu maksimum 2s. Dapat dilihat bentuk dari respon impuls menyerupai gelombang sinus dengan terdapat ripple. Pada piringan ke 70 ini, tegangan maksimum yang paling tinggi diantara piringan lainnya. Apabila dilihat dari gambar 4.9b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Pada gambar 4.10, dapat dilihat tegangan maksimum dari tiap piringan terus meningkat dan waktu terjadinya berbeda-beda.

Gambar 4.9 (a) & (b) Respon Impuls Pada Piringan 70 Continuous Disc

Namun pada belitan 51 dan 70, waktu terjadinya tegangan maksimum relatif sama, namun dapat dilihat perubahan tegangannya lebih besar apabila dibandingkan dengan perubahan tegangan dari piringan 11 ke 31.

4.2.1 Jenis Belitan Interleaved

Parameter yang di butuhkan untuk mengisi nilai parameter dari jenis belitan *interleaved* sudah di dapatkan pada perhitungan sebelumnya.

Gambar 4.10 Respon Impuls Pada Piringan 1, 11, 31, 51, dan 70 Continuous disc

Untuk nilai Cs digunakan hasil persamaan 4.9, untuk nilai R digunakan hasil persamaan 4.10, dan untuk nilai L digunakan persamaan 4.11. Nilai Cg dari interleaved menggunakan nilai pada tabel 4.2. Pemodelan yang digunakan pada belitan *interleaved* sama seperti pemodelan pada *continuous disc*, yaitu menggunakan pemodelan seperti pada gambar 3.1. Tegangan impuls yang di gunakan pada jenis belitan ini, apabila mengikuti tabel 3.1 adalah 650kV. Pada pemodelan dari jenis belitan *interleaved*, jumlah piringan dibuat sampai 70 piringan. Berikut adalah nilai tegangan maksimum pada tiap piringan ditampilkan pada tabel 4.4.

Tabel 4.4 menyajikan nilai tegangan maksimum tiap piringannya dan juga selisih antar piringannya. Sama seperti pada jenis belitan *continuous disc*, besar tegangan maksimum setiap piringannya berbeda-beda. Faktor-faktor yang mempengaruhi perbedaan tegangan maksimum tiap belitan ini sama dengan seperti jenis belitan *continuous*

	Tegangan Maksimum	Selisih	Antar
Piringan Ke-	(V)	Piringan(V)	
1	623042		
2	597460	25582	
3	573204	24256	
4	550210	22994	
5	528440	21770	

Tabel 4.4 Nilai Tegangan Maksimum Tiap Piringan Dan Selisih Tegangan Antar Piringannya Pada Jenis Interleaved

Piringan Ke-	Tegangan Maksimum (V)	Selisih Antar Piringan(V)
6	507840	20600
7	488290	19550
8	469750	18540
9	452180	17570
10	435560	16620
11	419770	15790
12	404800	14970
13	390610	14190
14	377180	13430
15	364430	12750
16	352330	12100
17	340860	11470
18	330010	10850
19	319750	10260
20	310020	9730
21	300810	9210
22	292090	8720
23	295640	3550
24	300000	4360
25	304200	4200
26	308210	4010
28	315740	3690
29	319270	3530
30	322640	3370
31	325860	3220
32	328940	3080
33	331870	2930

Tabel 4.4 Nilai Tegangan Maksimum Tiap Piringan Dan Selisih Tegangan Antar Piringannya Pada Jenis *Interleaved* (lanjutan)

Piringan Ke-	Tegangan Maksimum	Selisih Antar Piringan(V)
3/	334650	2780
35	337300	2650
36	339820	2520
30	342200	2320
38	344450	2250
39	346580	2130
40	349220	2640
40	355080	5860
42	360630	5550
42	365850	5220
43	370760	4910
45	375350	4590
46	379630	4280
47	383620	3990
48	387300	3680
49	390700	3400
50	393820	3120
51	396670	2850
52	399270	2600
53	401610	2340
54	403710	2100
55	405590	1880
56	407250	1660
57	408700	1450
58	409960	1260
59	411050	1090
60	411970	920

Tabel 4.4 Nilai Tegangan Maksimum Tiap Piringan Dan Selisih Tegangan Antar Piringannya Pada Jenis *Interleaved* (lanjutan)

Piringan Ke-	Piringan Ke-	Piringan Ke-
61	412740	770
62	413360	620
63	413870	510
64	414260	390
65	414560	300
66	414770	210
67	414630	140
68	414720	90
69	414760	40
70	414770	10

Tabel 4.4 Nilai Tegangan Maksimum Tiap Piringan Dan Selisih Tegangan Antar Piringannya Pada Jenis *Interleaved* (lanjutan)

disc, yaitu nilai Cs, Cg, R, dan L. Nilai Cg pada tiap piringannya juga berbeda, tergantung dengan jarak antara piringan dengan tanah. Perbedaan antara tiap piringannya sebesar 0.018729m. Sama seperti pada jenis belitan *continuous disc*, nilai tegangan dari tiap piringan diambil menggunakan probe tegangan yang di letakan setelah tiap pemodelan dari tiap piringan. Pada pemodelan untuk jenis belitan *interleaved* ini juga digunakan sumber impuls heidler. Besar tegangan maksimum dari jenis trafo ini adalah 150 kV, maka dengan mengikuti peraturan IEC yang dicantumkan tabel 3.1, besar tegangan impuls yang diberikan adalah 650kV pada titik puncak gelombangnya dengan 1,2 η s untuk lama waktu muka gelombangnya. Berikut pada gambar 4.5 dan 4.6 akan ditampilkan grafik dari tegangan maksimum tiap piringan dan selisih antar piringannya.

Nilai tegangan tiap piringan yang paling tinggi adalah 623kV, yaitu pada piringan pertama dan nilai tegangan yang paling rendah adalah 292kV, yaitu pada pringan ke-22. Nilai selisih tegangan antar piringan paling tinggi adalah 25,5kV, yaitu antara piringan pertama dan kedua sedangkan nilai selisih tegangan antar piringan yang paling rendah adalah pada piringan 69 dan 70, yaitu 10V. Pada gambar 4.11, terlihat bahwa nilai maksimum pada tiap tegangan mengalami penurunan sampai piringan ke 23, lalu setelah itu nilai maksimum tersebut naik kembali mulai piringan ke 24. Untuk selisih tegangan antar piringan, nilainya

relatif menurun apabila kita lihat pada gambar 4.12. Apabila melihat dari *safety factor* untuk trafo jenis belitan *interleaved*, memperhitungkan ketebalan isolasi kertas yang digunakan yaitu 1.6mm dan jarak antara piringan 3mm, maka selisih tegangan maksimal yang di izinkan adalah 125kV. Maka, apabila dilihat dari maksimal selisih tegangan pada jenis belitan ini adalah 25,5kV, masih dalam batas yang dizinkan.

Gambar 4.11 Grafik Nilai Tegangan Maksimum Tiap Piringan Pada Jenis Belitan Interleaved

Gambar 4.12 Grafik Selisih Tegangan Antar Piringan Pada Jenis Belitan Interleaved

Dari gambar 4.13 dapat dilihat distribusi tegangan impuls pada belitan jenis *interleaved*. Grafik distribusi tegangan berada dibawah grafik α =0. Pendistribusian tegangan pada jenis belitan ini tidak merata. Hal tersebut dapat disebabkan oleh besarnya nilai Cs dan Cg pada belitan.

Gambar 4.13 Distribusi Tegangan Pada Jenis Belitan Interleaved

Gambar 4.14 Respon Impuls Pada Piringan 1 Interleaved

Gambar 4.14a merupakan respon impuls pada piringan 1 *interleaved* dengan waktu maksimum 1 ms sedangkan pada gambar 4.14b merupakan respon impuls pada piringan 1 dengan waktu maksimum 2s. Dapat dilihat bentuk dari respon impuls menyerupai gelombang impuls. Bentuk respon gelombang lebih landai dan mulus apabila dibandingkan dengan jenis *continuous disc*. Tegangan maksimum tertinggi berada pada piringan ini. Apabila dilihat dari gambar 4.14b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.15 Respon Impuls Pada Piringan 11 Interleaved

Gambar 4.15a merupakan respon impuls pada piringan 11 *interleaved* dengan waktu maksimum 1ms sedangkan pada gambar 4.15b merupakan respon impuls pada piringan 11 dengan waktu maksimum 2s. Dapat dilihat bentuk dari respon impuls menyerupai gelombang impuls namun sudah mulai terlihat osilasi. Bentuk respon gelombang lebih landai dan mulus apabila dibandingkan dengan jenis *continuous disc*. Apabila dilihat dari gambar 4.15b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.16 Respon Impuls Pada Piringan 31 Interleaved

Gambar 4.16a merupakan respon impuls pada piringan 31 *interleaved* dengan waktu maksimum 1ms sedangkan pada gambar 4.16b merupakan respon impuls pada piringan 31 dengan waktu maksimum 2s. Bentuk dari respon gelombang menyerupai gelombang sinus. Respon gelombang lebih landai dan mulus apabila dibandingkan dengan jenis *continuous disc.* Apabila dilihat dari gambar 4.16b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.17 Respon Impuls Pada Piringan 51 Interleaved

Gambar 4.17a merupakan respon impuls pada piringan 51 *interleaved* dengan waktu maksimum 1ms sedangkan pada gambar 4.17b merupakan respon impuls pada piringan 51 dengan waktu maksimum 2s. Bentuk dari respon gelombang menyerupai gelombang sinus. Respon ini memiliki amplitudo yang lebih besar dibandingkan respon pada gambar 4.16a. Apabila dilihat dari gambar 4.17b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.18 Respon Impuls Pada Piringan 70 Interleaved

Gambar 4.18a merupakan respon impuls pada piringan 70 *interleaved* dengan waktu maksimum 1 ms sedangkan pada gambar 4.18b merupakan respon impuls pada piringan 70 dengan waktu maksimum 2s. Bentuk dari respon gelombang menyerupai gelombang sinus. Respon ini memiliki amplitudo yang lebih besar dibandingkan respon pada gambar 4.17a. Apabila dilihat dari gambar 4.18b, nilai respon impuls akan terus teredam setelah beberapa saat sampai nantinya menjadi 0.

Gambar 4.19 Respon Impuls Pada Piringan 1, 11, 31, 51, dan 70 Jenis Belitan Interleaved

Pada gambar 4.19, dapat dilihat nilai tegangan maksimum pada piringan 1 dan 11 berada sesaat setelah terkena impuls. Namun untuk piringan 31, 51, dan 70 nilai tegangan maksimum muncul setelah beberapa saat. Bentuk respon gelombang pada piringan 11, 31, 51, dan 70 menyerupai gelombang sinus dengan amplitude yang berbeda-beda. Namun pada gelombang 51 dan 70, bentuk gelombangnya sudah mulai identik, hal tersebut bisa dilihat dari respon gelombang yang berhimpitan satu sama lain.

BAB 5 PENUTUP

5.1 Kesimpulan

Dari hasil simulasi dan analisa pada percobaan ini, dapat ditarik beberapa kesimpulan sebagai berikut:

- 1. Nilai kapasitansi seri pada belitan jenis *continuous disc* adalah 0.712875 nF dan nilai kapasitansi seri pada belitan jenis interleaved adalah 72.3001 nF. Artinya, nilai kapasitansi pada jenis belitan *interleaved* lebih besar dibandingkan dengan jenis belitan *continuous disc*.
- 2. Nilai tegangan maksimum tiap piringan pada jenis belitan *continuous disc* relatif meningkat, sedangkan nilai tegangan maksimum pada jenis belitan *interleaved* mengalami penurunan sampai satu titik lalu bertambah.
- 3. Akibat nilai Cs yang lebih besar, selisih tegangan antar piringan dari jenis belitan interleaved mengalami penurunan setiap piringannya, sedangkan selisih tegangan pada jenis belitan *continuous disc* fluktuatif.
- 4. Nilai tegangan maksimum pada jenis belitan *continuous disc* berada pada piringan terakhir, yaitu piringan ke-70 sebesar 885kV. Sedangkan nilai maksimum dari jenis belitan *interleaved* berada pada piringan pertama yaitu sebesar 623kV. Hal tersebut menunjukan bahwa pada belitan *continuous disc*, nilai tegangan akan terus meningkat sampai pada piringan terakhir, sedangkan pada *interleaved*, nilai tegangan akan teredam.
- 5. Kedua jenis belitan akan teredam setelah beberapa saat.
- 6. Kedua jenis belitan lulus *safety factor* yang ditentukan. Batas maksimum beda tegangan tiap piringan pada *Continuous Disc* adalah 110kV sedangkan selisih tegangan maksimum yang didapatkan adalah 26.5 kV. Sedangkan pada *Interleaved*, batas maksimum adalah 125 kV yang didapatkan adalah 25.5 kV.

5.2 Saran

Pada tugas akhir ini, terdapat beberapa analisa yang tidak dicantumkan dikarenakan parameter yang kurang lengkap, seperti analisis gelombang berjalan pada belitan trafo dll. Pada penelitian selanjutnya mungkin bisa berfokus pada gelombang berjalan yang terjadi pada belitan trafo, agar hasil yang didapatkan lebih akurat. Dan juga pada penelitian ini, nilai Cs tiap piringan di buat sama. Pada penelitian selanjutnya, rumus untuk mencari Cs dapat di breakdown agar menemukan faktor yang bisa membedakan nilai Cs antar piringannya.

DAFTAR PUSTAKA

- [1] Kulkarni,S.V.; Khaparde, S.A. "Transformer Engineering: Design and Practice," MARCELL DECKER, INC, New York, Ch.1;7, 2004.
- [2] Priska Bayu Anugrah, "Simulasi dan Analisis Pengaruh Tegangan Lebih Impuls Pada Belitan Transformator Distribusi 20KV", Proceeding Seminar Tugas Akhir Jurusan Teknik Elektro, FTI-ITS.
- [3] Mehdi Bagheri, Arsalan Hekmati, R.Heidarzadeh, M.Salay Naderi, "Impulse Voltage Distribution in Intershield Disk Winding VS Interleaved and Continuous Disk Winding in Power Transformer", 2nd IEEE PECon, December, 2008.
- [4] Priska Bayu Anugrah, "Simulasi dan Analisis Pengaruh Tegangan Lebih Impuls Pada Belitan Transformator Distribusi 20KV", Buku Tugas Akhir, Jurusan Teknik Elektro,FTI-ITS, Surabaya, 2010
- [5] Chapman, Stephen. J., "Electric Machinary Fundamentals: Fourth Edition", McGraw-Hill Education, New York, Ch. 2, 2005.
- [6] Bonggas L.Tobing, "Peralatan Tegangan Tinggi Edisi Kedua", Penerbit Erlangga, Jakarta, Bab. 10, 2012
- [7] T.S. Hutauruk, "Gelombang Berjalan dan Proteksi Surja", Penerbit Erlangga, Jakarta, Bab. 1;3, 1989
- [8] Bharat Heavy Electrical Limited, "Transformers", McGraw-Hill Companies. Inc, New York, Ch. 5, 2005.
- [9] M.Heidarzadeh, M.R. Besmi, "Influence Of Transformer Layer Winding Parameters On The Capacitive Characteristic Coefficient", IJTPE Journal, June, 2013.

- [10] Kanchan Rani, R.S Goryan, "Transient Voltage Distribution In Transformer Winding", International Journal of Reasearch in Engineering and Technology, April, 2013.
- [11] PT. Bambang Djaja, "Manual Book Transformers", Surabaya, 2017
- [12] Hans Kr. Høidalen, "ATPDraw Manual", Norway, 2009
- [13] AREVA, "Power Transformers Design Handbook", 2004
- [14] International Electrotechnical Comission, "Insulation Level, Dielectric Tests And External Clearance In Air", IEC Central Office, Switzerland, 2013

RIWAYAT HIDUP PENULIS

Muhammad Irfan, penulis biasa dipanggil dengan sapaan Irfan atau panaw, lahir di Jakarta pada 20 Juni 1995. Penulis merupakan anak pertama dari dua bersaudara dari orang tua Adi Pramudyo dan Laura Jassin. Penulis memulai pendidikannya di TK At-Taqwa pada 1999-2001. Lalu penulis menempuh pendidikan dasar di SDI Darussalam pada 2001-2007, dan dilanjutkan dengan menempuh pendidikan selanjutnya di SMPN 109 Jakarta pada 2007-2010. Penulis menempuh pendidikan selanjutnya di SMAN 81

Jakarta pada 2010-2013 dan melanjutkannya ke jenjang selanjutnya di Departemen Teknik Elektro, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember. Penulis mengambil bidang studi Teknik Sistem Tenaga sebagai fokus studinya, Penulis aktif dalam organisasi mahasiswa sebagai staff dan kepala biro di departemen Lingpus Himpunan Mahasiswa Teknik Elektro pada 2015 dan 2016. Penulis juga aktif sebagai pengurus event sebagai staff dan staff ahli sie perlengkapan di ITS EXPO 2014 dan 2015. Penulis juga menjadi staff sie acara pada ELECTRA 2014 dan LO LCEN EE EVENT 2015. Penulis juga pernah menjadi Instructor Comitte pada GERIGI ITS 2015. Sekarang penulis aktif sebagai asisten di Laboratorium Tegangan Tinggi Departemen Teknik Elektro-FTE ITS. Penulis dapat dihubungi melalui email: irfanm2006@gmail.com [Halaman Ini Sengaja Dikosongkan]