

THESIS – KI142502

THE IMPACT OF DESIGN PATTERNS IN
REFACTORING TECHNIQUE TO MEASURE
PERFORMANCE EFFICIENCY

Kholed Langsari
NRP : 5115201701

SUPERVISORS
Dr. Ir. Siti Rochimah, M.T.
Rizky Januar Akbar, S.Kom., M.Eng.

MAGISTER PROGRAM
SOFTWARE ENGINEERING
DEPARTMENT OF INFORMATICS
FACULTY OF INFORMATION TECHOLOGY
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA
2017

ii

iii

APPROVAL PAGE

iv

(This page intentionally left blank)

v

THE IMPACT OF DESIGN PATTERNS IN REFACTORING
TECHNIQUE TO MEASURE PERFORMANCE EFFICIENCY

Name : Kholed Langsari
Student Identity Number : 5115201701
Supervisor I : Dr. Ir. Siti Rochimah, MT.
Supervisor II : Rizky Januar Akbar, S.Kom., M.Eng.

ABSTRACT
Designing and developing software application has never been an easy task.

The process is often time consuming and requires interaction between several
different aspects. It will be harder in re-engineering the legacy system through
refactoring technique, especially when consider to achieve software standard
quality. Performance is one of the essential a quality attribute of software quality.

Many studies in the literature have premise that design patterns improve the
quality of object-oriented software systems but some studies suggest that the use of
design patterns do not always result in appropriate designs. There are remaining
question issues on negative or positive impacts of pattern refactoring in
performance. In practice, refactoring in any part or structure of the system may take
effect to another related part or structure. Effect of the process using refactoring
technique and design patterns may improve software quality by making it more
performable efficiency. Considerable research has been devoted in re-designing the
system to improve software quality as maintainability and reliability. Less attention
has been paid in measuring impact of performance efficiency quality factor.

The main idea of this thesis is to investigate the impact, demonstrate how
design patterns can be used to refactor the legacy software application in term of
performance efficiency. It is therefore beneficial to investigate whether design
patterns may influence performance of applications. In the thesis, an enterprise
project named SIA (Sistem Informasi Akademik) is designed by applying Java EE
platform. Some issues related to design patterns are addressed. The selection of
design pattern is based on the application context issue.

There are three kind of parameters measure, time behavior, resource
utilization and capacity measures that based on standard guideline. We use tools
support in experimentation as Apache JMeter and Java Mission Control. These
tools provide convenient and generate appropriate result of performance
measurement. The experiment results shown that the comparison between the
legacy and refactored system that implemented design pattern indicates influence
on application quality, especially on performance efficiency.

Key Words: Impact, Design Patterns, Refactoring, Software Quality, Performance

Efficiency

vi

(This page intentionally left blank)

vii

DAMPAK POLA DESAIN DALAM TEKNIK REFAKTOR
UNTUK MENGUKUR EFISIENSI KINERJA

Nama Mahasiswa : Kholed Langsari
NRP : 5115201701
Pembimbing I : Dr. Ir. Siti Rochimah, MT.
Pembimbing II : Rizky Januar Akbar, S.Kom., M.Eng.

ABSTRAK
Merancang dan mengembangkan aplikasi perangkat lunak bukan

merupakan pekerjaan yang mudah karena membutuhkan waktu dan interaksi antara
beberapa aspek. Proses desain pada rekayasa ulang akan lebih sulit meskipun
melalui teknik refactoring, terutama untuk mencapai standar kualitas perangkat
lunak. Kinerja merupakan salah satu atribut terpenting kualitas perangkat lunak.

Banyak penelitian menjelaskan pola desain memperbaiki kualitas sistem
perangkat lunak berorientasi objek, namun beberapa penelitian juga menunjukkan
bahwa penggunaan pola desain tidak selalu menghasilkan desain yang sesuai.
Masih ada pertanyaan tentang dampak negatif atau positif dari kinerja pola
refactoring. Pada praktiknya, melakukan refactoring pada suatu bagian atau
struktur sistem akan berpengaruh pada bagian atau struktur lain yang terkait.
Penggunaan teknik refactoring dan pola desain dapat meningkatkan kualitas
perangkat lunak dengan kinerja lebih efisien. Sudah banyak penelitian yang
berfokus untuk merancang ulang sistem untuk meningkatkan kualitas perangkat
lunak sebagai kemampuan rawatan dan keandalan. Tetapi masih kurang penelitian
perhatian dalam mengukur dampak faktor kualitas efisiensi kinerja.

Tujuan utama dalam tesis ini adalah untuk mengetahui dampaknya,
menunjukkan bagaimana pola desain dapat digunakan untuk refactor aplikasi
perangkat lunak terdahulu dalam hal efisiensi kinerja. Oleh karena itu, akan
bermanfaat untuk menyelidiki apakah pola desain dapat mempengaruhi kinerja
aplikasi. Dalam tesis ini, sebuah proyek perusahaan bernama SIA (Sistem Informasi
Akademik) dirancang dengan menerapkan platform Java EE. Beberapa masalah
yang terkait dengan pola desain diketahui. Pemilihan pola desain berdasarkan pada
isu konteks aplikasi.

Tiga jenis ukuran parameter dipakai untuk penilitian ini, perilaku waktu,
pemanfaatan sumber daya dan ukuran kapasitas yang berdasarkan pada pedoman
standar. Kami menggunakan Apache JMeter dan Java Mission Control sebagai alat
bantu dalam eksperimen. Hasil percobaan menunjukkan bahwa perbandingan
antara sistem terdahulu dengan penelitian ini yang menerapkan pola desain
menunjukkan bahwa hasilnya berpengaruh terhadap kualitas aplikasi terutama pada
efisiensi kinerja.

Key Words: Impact, Design Patterns, Refactoring, Software Quality, Performance

Efficiency

viii

(This page intentionally left blank)

ix

ACKNOWLEDGEMENTS

The preparation of this thesis on the topic of “The Impact of Design Patterns

in Refactoring Technique to Measure Performance Efficiency” would not be
completed without the contribution and support of both individual and institutions,
and absolutely this thesis title would not be chosen without the desired of Allah
SWT.

I am grateful to Allah SWT, all praise [due] to him, the Entirely Merciful
and the Especially Merciful and only one who helps me to complete this thesis.

I would like to thank to my big warm families especially for my parents who
stood by me regardless of many obstacles.

I would like to thank to DIKTI (Pendidikan Tinggi Republik Indonesia) and
Fatoni University who support in this education, especially in financials.

I would like to thank to my supervisors, Dr. Ir. Siti Rochimah, MT., and
Rizky Januar Akbar, S.Kom., M.Eng., who suggest to do and advise me to complete
this thesis since started till finished.

I would like to thank to the members of my committees: Daniel Oranova
Siahaan, S.Kom, M.Sc, PD.Eng., Laurent Balmelli, Fajar Baskoro, S.Kom, M.T,
and Adhatus Sholichah, S.Kom, M.Sc for spending their time to evaluate my work.

I would like to thank to the members of the software engineering group
(LBE) for the working environment I have had.

I would like to thank all of lecturers, and stuffs of Institut Teknologi Sepuluh
Nopember, especially for Department of Informatics Engineering, who give a good
help and advice for me.

I would like to thank to all brothers and sisters that stayed in Indonesia. They
have helped me not to feel homesick. I would like to thank to all friends I have in
the Indonesia who have always together against obstacles.

x

(This page intentionally left blank)

xi

TABLE OF CONTENTS

APPROVAL PAGE .. iii	

ABSTRACT ... v	

ABSTRAK .. vii	

TABLE OF CONTENTS .. xi	

TABLE OF FIGURES ... xv	

TABLE OF TABLES ... xvii	

CHAPTER 1 INTRODUCTION .. 1	

1.1	 Background .. 1	

1.2	 Problem Statement ... 3	

1.3	 Problem Limitations ... 4	

1.4	 Research Questions and Objectives ... 5	

1.5	 Significance of Study ... 5	

1.6	 Contribution ... 5	

1.7	 Outline of the Thesis .. 6	

CHAPTER 2 THEORY AND LITERATURE REVIEW 7	

2.1	 Software Design ... 7	

2.1.1	 Design Principles ... 7	

2.1.2	 Object-Oriented .. 8	

2.2	 Patterns ... 11	

2.2.1	 Design Patterns .. 12	

2.2.2	 Classification of Design Patterns ... 13	

2.2.3	 Hierarchical model–view–controller (HMVC) 14	

2.2.4	 Façade Pattern .. 15	

2.3	 Software Quality .. 16	

xii

2.3.2	 Quality Attributes ... 17	

2.3.3	 Performance Efficiency ... 19	

2.4	 Refactoring ... 25	

2.4.1	 Core Concepts of Refactoring .. 25	

2.4.2	 Design Smell and Code Smell ... 26	

2.4.3	 Refactoring Process ... 29	

2.5	 Academic Information System .. 30	

CHAPTER 3 RESEARCH METHODOLOGY .. 33	

3.1	 Research Methodology .. 33	

3.2	 Problem Analysis ... 33	

3.3	 Solution Design .. 34	

3.3.1	 Overview of the Approach ... 34	

3.3.2	 The Process of Proposed Approach ... 38	

3.3.3	 Analyzing ... 38	

3.3.4	 Refactoring ... 39	

3.3.5	 Performance Measuring ... 41	

3.4	 Solution Implementation .. 45	

3.5	 Solution Analysis ... 46	

3.6	 Report Results .. 47	

3.7	 Preliminary Experiment ... 47	

CHAPTER 4 IMPLEMENTATION RESULT ... 51	

4.1	 Analyzing ... 51	

4.1.1	 Reverse Engineering .. 51	

4.1.2	 Measuring Complexity of the Application 64	

4.1.3	 Identifying Problem ... 65	

4.1.4	 Design Patterns Selection .. 67	

xiii

4.2	 Refactoring ... 68	

4.2.1	 Refactoring and Applying Design Patterns 68	

4.3	 Performance Measuring ... 69	

4.3.1	 Measuring Complexity of the Applications 69	

4.3.2	 Dynamic Performance Efficiency Measurement 71	

4.3.3	 Time Behavior Measures ... 74	

4.3.4	 Resource Utilization Measures .. 77	

4.3.5	 Capacity Measures ... 79	

4.3.6	 Output Analysis and Validation ... 80	

CHAPTER 5 CONCLUSION ... 83	

5.1	 Conclusions .. 83	

5.2	 Remarks and Future Work ... 85	

REFERENCES .. 87	

AUTHOR BIOGRAPHY .. 91	

xiv

(This page intentionally left blank)

xv

TABLE OF FIGURES

Figure 2.1 Class diagram of the Façade pattern ... 16	

Figure 2.2 Software Product Quality Model .. 19	

Figure 2.3 Classification of design smells ... 27	

Figure 2.4 IMPACT refactoring process model. ... 29	

Figure 2.5 Packet Diagram of Sistem Informasi Akademic (SIA) 31	

Figure 3.1 Research Methodology ... 33

Figure 3.2 Overview of the Approach ... 35	

Figure 3.3 Phases of the proposed approach .. 37	

Figure 3.4 Activities of IMPACT refactoring process model 39	

Figure 3.5 Sequence diagram of JMeter and Java Mission Control interaction 42	

Figure 3.6 Legacy of Line and Rectangle objects .. 47	

Figure 3.7 Adapter with extra level of indirection ... 48	

Figure 3.8 Graph representation of number of total .. 49	

Figure 3.9 Graph representation of complexity of the application 49

Figure 4.1 Academic Information System architecture design 51	

Figure 4.2 Component diagram of Academic Information System Architecture

Design .. 52	

Figure 4.3 Packet Diagram of Sistem Informasi Akademik (SIA) 53	

Figure 4.4 Design of Module Penilaian Architecture .. 54	

Figure 4.5 Use Case Diagram of SIA Grading Module ... 55	

Figure 4.6 Package Diagram of Grading Module .. 56	

Figure 4.7 ControllerNilai class diagram interconnection with other classes 60	

Figure 4.8 Graph representation number of total of metrics 64	

Figure 4.9 Graph representation of mean metric value of complexity 65	

Figure 4.10 Communication and dependencies between classes 66	

Figure 4.11 Class diagram of the Façade pattern implement in grading module .. 68	

Figure 4.12 Graph representation number of total of metrics of legacy and

refactored system ... 70	

xvi

Figure 4.13 Graph representation of mean value complexity of legacy and

refactored system ... 70	

Figure 4.14 JMeter Concurrency Thread Group setting .. 72	

Figure 4.15 Java Flight Recorder (JFR) in Java Mission Control (JMC) 73	

Figure 4.16 Graph Response time .. 74	

Figure 4.17 CPU usage on legacy system .. 78	

Figure 4.18 CPU usage on refactored system .. 78	

Figure 4.19 Memory usage on legacy system .. 79	

Figure 4.20 Memory usage on refactored system .. 79	

xvii

TABLE OF TABLES

Table 2.1 Design pattern catalog ... 14	

Table 2.2 Summarize terms and terminology of performance 20	

Table 2.3 Time behavior measures .. 21	

Table 2.4 Resource utilization measures ... 22	

Table 2.5 Capacity measures ... 24	

Table 2.6 Lists of smells and refactoring associated ... 28	

Table 3.1 Test Environment Specification ... 46

Table 3.2 Complexity of the Application .. 48

Table 4.1 Lists of Grading module features ... 54	

Table 4.2 Lists of classes and its properties in package controller 57	

Table 4.3 Lists of classes, interface, and its properties in package repository 57	

Table 4.4 Lists of classes, interfaces, and its properties in package service 58	

Table 4.5 Source code of class ControllerNilai in package Controller 61	

Table 4.6 Source code of class PembServiceImpl in package service 62	

Table 4.7 Source code of class PembRepositoryImpl in package repository 63	

Table 4.8 JMeter log output file ... 75	

Table 4.9 Mean response time ... 76	

Table 4.10 Response time conformance .. 77	

Table 4.11 Throughput conformance ... 77	

Table 4.12 Transaction processing error rate ... 80	

Table 4.13 Transaction processing error rate conformance 80	

xviii

(This page intentionally left blank)

1

CHAPTER 1

INTRODUCTION

1.1 Background

 Designing and developing software application has never been an easy task.

The process is often time consuming and requires interaction between several

different aspects. The enterprise software developers are making efforts to develop

the enterprise software application that is not only satisfy the business needs but

also achieve the high quality within a short development process. Several tools,

notations, principles, and methods have been proposed. The Object-Oriented

approach have been introduced to guide the development process and offering how

to design OO systems (Larman, 2004). The Unified Modelling Language (UML)

(Priestley, 2003) is commonly used to model the design, vocab like class and object

denote commonly accepted concepts.

Even the most complex systems are built by using smaller parts. Such parts

may in built using even smaller parts and need to communicate to function as a

whole. The OO approach attempts to manage the system complexity by abstracting

out knowledge and encapsulating it within interacting objects. A part can be viewed

as a single object or a collection of interacting objects delivering a specific

functionality. If we view a part as a design problem to be solved, regardless of the

approach chosen, it is likely that others have already solved a similar problem in a

satisfactory manner. If we can utilize this knowledge, the quality of the system may

be improved.

There is an approach use to identify reoccurring design problems and their

well-proven solutions, that is software design patterns. The concept of design

patterns (Gamma, Helm, Johnson, & Vlissides, 1995) have been has been present

in software engineering for a relatively long time. A design pattern is an abstraction

of practical experience and empirical knowledge description of the problem it

addresses and a solution to it. Design patterns function in software engineering

along with other pattern categories, for instance, reengineering patterns (Demeyer,

Ducasse, & Nierstrasz, 2002) or analysis patterns (Fowler, 1997). Design patterns

2

can facilitate the entire design and development process because they express ideas

and solutions in high level language. The use of patterns may improve software

quality by making it more reusable, maintainable, performable efficiency.

Developers are increasingly more aware of how and when to use different kinds of

patterns.

Performance is one of the important and essential a quality attribute of

software quality (Ali & Elish, 2013). Performance of an application is particularly

important for a customer ordering a piece of software. Client of software usually

regard performance as an important standard to decide whether the software is good

to use. Usually, it is not essential for the client to know what kinds of design

decisions were made. However, it is far more important to know how the software

performs, whether its services are reliable and available for end-users as expected.

The performance of software reflects the efficiency of software, because the

software which makes proper use of resources is usually responding fast.

Performance is an important internal and external quality attribute, which can be

measured as throughput and resource utilization (Suryn, 2014). However,

performance is only one of many parameters of an application that determine the

quality of the final product. Performance-related aspects can be categorized and

characterized by time behavior, resources utilization and capacity compliance

(Suryn, 2014).

The main idea of this thesis is to investigate the impact and demonstrate

how design patterns can be used to refactor the legacy software application in order

to achieve the quality requirement, performance efficiency. In this thesis, an

enterprise project named SIA (Sistem Informasi Akademik) in the field of education

service is designed by applying Java EE platform, architecture and patterns. Some

issues related to design patterns and Java EE are addressed. This thesis is conducted

within the context of the Systems and Software Engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - Measurement of system and

software product quality (ISO/IEC, 2011a, 2011b). The SQuaRE international

standard aims to defines quality measures for quantitatively measuring system and

software product quality in terms of characteristics and sub-characteristics . In this

work, we focus on implementing design patterns especially the “Gang of Four”

3

design patterns through refactoring process to see the impact result in term of

performance efficiency.

1.2 Problem Statement

 Performance is non-functional requirement that important factor to consider

in enterprise system in order to achieving high quality of application. In critical

software system, performance become functional requirement and high priority

consideration quality attribute as in banking system.

 A design pattern is generally thought of as a reusable solution to a

commonly occurring design problem in object-oriented software. The Gang of Four

(GOF), define patterns are cataloged as: “descriptions of communicating objects

and classes that are customized to solve a general design problem in a particular

context.” (Gamma et al., 1995). Design patterns must be applied with caution. They

provide solutions at a certain level of granularity, often the class level in a standard

OO language. The problems are often centered around how to encapsulate

variability in a design. Most of the catalogued patterns target as a whole the

properties that flexible software. Patterns when implemented, often comes with the

cost of an extra layer of indirection, creating the way for increased abstraction in

the program. In the other way, there are also design patterns that can reduce object

calls and layers as Singleton. It is created single handle object and call through it, it

directly improves performance of application because of it reduce traditional OO

design in creating extra layer and provide flexible of design.

Applying several design patterns might create several layers of indirection.

This may have a positive or a negative impact on performance. Design pattern

provide discipline in create or refactor to a better software structure but they cannot

offer any guarantees in performance of the software quality. The true benefit is only

realized if a given collection of design patterns is used on a regular basis in a

specific domain and context.

As performance is an important factor in software quality. A survey of

design patterns impact on software quality (Ali & Elish, 2013) (Khomh &

Gueheneuce, 2008), have shown that performance is one of the quality attribute that

affect quality of software system. But the number of studies and the coverage of the

4

addressed patterns are not sufficient to draw a conclusion regarding their impact on

performance. Many studies in the literature have for premise that design patterns

improve the quality of object-oriented software systems, some studies suggest that

the use of design patterns do not always result in appropriate designs (Khomh &

Gueheneuce, 2008). There is accumulate and create remain question issues as “do

refactoring and design patterns really impact performance improvement?” and

“does it impacts negative or positive on performance?”

Below we present an overview of the problems addressed by this thesis:

1. Explosion of Impacts in Refactoring Process using Design Patterns.

In practice, refactoring in any part or structure of the system may take

effect to another related part or structure. Effect of the process through

the use of refactoring technique and design patterns may improve

software quality by making it more performable efficiency.

2. Measurement Impact of Performance Efficiency when Implement

Refactoring Technique using Design Patterns. Considerable research

has been devoted in re-designing the system to improve software quality

as maintainability and reliability. Less attention has been paid in

measuring impact of performance efficiency quality factor in refactoring

and design pattern applied.

1.3 Problem Limitations

Thesis problem limitations list as below:

1. The refactoring process of this thesis is focused on design smell and

code smell level of the software application. This thesis does not include

database and architecture level of the software.

2. Implementation of design patterns is based on ones described by “Gang

of Four” design patterns.

3. Design and model notation for design patterns are specified and

modelled using UML standard.

4. The main case study is SIA, it is developed using Java (Enterprise

Edition - EE) programming language with Spring MVC framework,

5

Hibernate and other support technology as JavaScript, JSON and

jQuery. The database management system used is PostgreSQL.

1.4 Research Questions and Objectives

The objectives of this thesis are to investigate how refactoring process and

design patterns can be used to re-design and refactor the legacy software application

with considering performance efficiency. Answering these following questions will

give a better understanding of the problems domain and the deficiencies of the

current solution.

1. RQ 1: What are the current design patterns approaches, refactoring

technique in software design and performance efficiency measurement?

2. RQ 2: How to analyze and refactor the existing system with design

pattern perspective which respect to performance efficiency quality

attribute?

3. RQ 3: How to measure performance efficiency of the system using

standard performance efficiency measures?

4. RQ 4: How to evaluate performance efficiency of the system?

1.5 Significance of Study

This thesis study aims to identify some significant.

1. First, this study will discuss why performance efficiency are important

in software design and software implementation phases. Especially

when applying together with refactoring and design patterns.

2. Second, the thesis will summarize current approaches and mechanisms

of the design patterns, refactoring technique, and performance

measurement.

3. Finally, some challenge, benefit and impact of implementing design

patterns through refactoring will also be discussed.

1.6 Contribution

The contribution of this thesis is to present a scientific evidence of the

impact of design patterns through refactoring process to measure performance

6

efficiency in particular environments. The case study is Academic Information

System and the design patterns are implemented and defined based on “Gang of

Four” design patterns.

1.7 Outline of the Thesis

Outline of the thesis present thesis with chapters and relations among them.

The thesis consists of the following chapters:

CHAPTER 1 : INTRODUCTION

This chapter, start with introduction of the study, describe the problem

addressed in this thesis, research questions, and objectives, problems

limitations, significances of study, together with contribution and an outline

of the thesis.

CHAPTER 2 : THEORY AND LITERATURE REVIEW

This chapter presents the review of the literature on concepts and techniques

from the areas of software design and Object-Oriented approach, Patterns

and Design Patterns, Refactoring, Software Quality and its characteristics

and case study. And provide background information on these areas and

introduce a set of definitions used throughout the study.

CHAPTER 3 : RESEARCH METHODOLOGY

This chapter describe research methodology and approach that going to

implement.

CHAPTER 4 : RESULT AND DISCUSSION

This chapter presents the approach and implementation result from

experiment phase and do the analyze to validate the output.

CHAPTER 5 : CONCLUSIONS

This chapter gives conclusions and evaluation of the contributions in this

thesis, and describes directions for future work.

7

CHAPTER 2

THEORY AND LITERATURE REVIEW

 In this work, we utilize concept and techniques from the areas of software

design, object-oriented, pattern and design patterns, software quality, refactoring,

and our case study. In this chapter, we provide background information on these

areas and introduce a set of definitions used throughout the thesis.

2.1 Software Design

Software engineering is an engineering discipline for professional and

systematic software development rather than individual programming that is

concerned with all aspects of software production (Pressman, 2010). It includes

aspects such as specification, development, validation, and evolution. The

development is concerned of the designing and implementing the software. This

section gives a more though definition of design and software design. We discuss

the concept, principle, method and tool related.

2.1.1 Design Principles

Design principles provide guidance to designers in creating effective and

high-quality software solutions.

Design is defined as both process of defining the architecture, component,

interface, and other characteristics of a system or component and the result of that

process (Pressman, 2010). In standard list of software life cycle process as

ISO/IEC/IEEE Std. 12207-2008 (“ISO/IEC/IEEE Standard for Systems and

Software Engineering - Software Life Cycle Processes,” 2008), define software

design consist of two activities, that are software architecture design and software

detailed design

In general view, software design can be viewed as a form of problem

solving. Software design is a process that is usually made by using the results of

requirement analysis. Software design encompasses the set of principles, concepts,

and practices that lead to the development of a high-quality system or product. The

8

goal of design is to produce a model or representation that exhibits firmness,

commodity and delight. The purpose of the software design is a description of the

structure of the software to be implemented, the data models and structures used by

the system, the interfaces between system components and, sometimes, the

algorithms used (Sommerville, 2010). The design process can include multiple

iterations before the final design is achieved. In this thesis, we focus on software

detail design.

2.1.2 Object-Oriented

 The Object-Oriented (OO) approach to software design attempts to manage

the complexity inherent in real world problems by abstracting out knowledge and

encapsulating it within objects. A complete discussion of this topic is found in the

books of (Booch, 2004) (Priestley, 2003).

The basic element in an object-oriented system is an object. The focus of

object–oriented is on decomposing the problem into objects. Object-Oriented

development is a method of implementation in which, programs are organized as

cooperative collections of objects, each of which represents an instance of some

class, and whose classes are all members of a hierarchy of classes united via

inheritance relationships. In such programs, classes are viewed as static whereas

objects typically have a much more dynamic nature.

Object orientation is a technique for software system. These techniques lead

to design architectures based on objects that are manipulated in every system. OO

design systems are better modeled domain systems than similar systems created by

structure systems. It offers a number of concepts, which are well suited for this

purpose. By understanding these object-oriented concepts; designers will learn how

to apply those concepts to all stages of the software development life cycle. In the

following subsections, we will introduce the basic concepts within object-oriented

environment.

Object (Weisfeld, 2013) (Booch, 2004). An object is a concept, abstraction

or thing with crisp boundaries and meaning for the problem at hand. An object

entity with some state, some behavior, and an identity. The structure and behavior

of similar objects are grouped in their common class. The terms instance and object

9

are interchangeable. All information in object-oriented system is stored within its

objects. The aim of object-oriented approach is to decompose the problem into

cooperating objects. The property new in object–oriented is to use objects as the

important abstractions and to decompose the problem into object rather than using

the traditional algorithmic decomposition.

Class. A class represents a template for several objects and describes how

these objects are structured internally. Objects of the same class have the same

definition both for their information structure (Weisfeld, 2013). An actual

understanding of a class that consists of data and the operations related with that

data are important. It is an item that a user can manipulate as a single unit to perform

a task. A class represents a set of objects that share a common structure and a

common behavior. In an OO environment, a class is a specification of instance

variables, methods, and inheritance for objects. Once a class is defined, any number

of objects can be created which belong to that class i.e. class is everything about

objects where objects are individual instance of a class.

Inheritance. Inheritance is the sharing of attributes and operations among

classes based on a hierarchical relationship” (Weisfeld, 2013). It is the process by

which objects of one class acquire the properties of the objects of another class. In

OO design, the concept of inheritance supports the idea of reusability. By

inheritance, it is possible to add new features to an existing class without modifying

the previous class, so this is the way to derive a new class from an existing one. The

new class is called a subclass or a derived class. Class inheritance combines

interface inheritance and implementation inheritance. Interface inheritance defines

a new interface in terms of one or more existing interfaces. Implementation

inheritance defines a new implementation in terms of one or more existing

implementations (Gamma et al., 1995).

Polymorphism. Program entities should be permitted to refer to objects of

more than one class, and operations should be permitted to have different

realizations in different classes (McConnell, 2004). Polymorphism means that the

sender of a stimulus does not need to know the receiving instance’s class. The

receiving instance can belong to an arbitrary class (Weisfeld, 2013). Polymorphism

means the ability to take more than one form. Through polymorphism, it is possible

10

to hide many implementations behind the same interface. Polymorphism is a

concept in type theory, according to which a name may denote objects of many

different classes that are related by some common superclass; thus, any object

denoted by this name is able to respond to some common set of operations in

different ways (Booch, 2004). Polymorphism plays an important role in allowing

objects to have different internal structures but share the same external interface.

This means that a general class of operations can be accessed in the same manner,

even though specific actions associated with each operation may differ.

Encapsulation. Encapsulation is a mechanism to realize data abstraction

and information hiding. Encapsulation is the process of hiding all of the details of

an object that do not contribute to its essential characteristics (Booch, 2004). It hides

detailed internal specification of an object, and publishes only its external

interfaces. Thus, users of an object only need to hold on to these interfaces. By

encapsulation, the internal data and methods of an object can be changed without

changing the way of using the object. By hiding a representation and

implementation in an object, more reusable specialized classes can be created. The

representation cannot be accessed and is not visible directly from the object.

Operations are the only way to access and in modify an object’s representation

(Gamma et al., 1995). Encapsulation is the most remarkable feature of a class. The

data is not accessible to the outside world, only those functions, which are wrapped

in the class, can access it. Encapsulation is a principle, used when developing an

overall program structure, that each component of a program should encapsulate or

hide a single design decision (Weisfeld, 2013). In object-oriented approach, by

using encapsulation a designer makes design easier, less annoying, more

sustainable, and more efficiently workable.

Aggregation. An aggregate is a union of several objects, and the union as

such is often represented by an object its own (Weisfeld, 2013). Aggregation is a

type of relationship between objects. Objects are organized into an aggregation

structure that shows how one object is composed of many other objects. In

aggregation, host object acts as a relationship between the outside world and an

inner object. (Priestley, 2003).

11

The most common used of model notation for OO approach is Unified

Modeling Language (UML). UML is the standard modelling language for object-

oriented systems. The UML is a language for specifying, constructing, visualizing,

and documenting the artifacts of a software-intensive system (Fowler, 2003).

Structural and behavioral aspects of systems may be captured by a series of different

kinds of models such as Class, Object, Use case, Sequence diagrams and so on.

Design patterns are often described with UML in various pattern books (Larman,

2004) (Fowler, 1997) (Gamma et al., 1995) (Hunt, 2003).

Our case study SIA implemented object-oriented with Java Enterprise

Edition (Java EE) as it main approach and tool in development. SIA have been

designing, modeling, and documenting in the standard of UML. In this work, we

use UML as our notation and description standard in several phases of methodology

and implementation.

2.2 Patterns

 Abstracting from specific problem-solution pairs and distilling out common

factors leads to patterns: These problem-solution pairs tend to fall into families of

similar problems and solutions with each family exhibiting a pattern in both the

problems and the solutions (Buschmann, Meunier, Rohnert, Sommerlad, & Stal,

1996). The architect Christopher Alexander defines the term pattern as follows:

1. Each pattern is a three-part rule, which expresses a relation between a certain

context, a problem, and a solution.

2. As an element in the world, each pattern is a relationship between a certain

context, a certain system of forces which occurs repeatedly in that context, and

a certain spatial configuration which allows these forces to resolve themselves.

3. As an element of language, a pattern is an instruction, which shows how this

spatial configuration can be used, over and over again, to resolve the given

system of forces, wherever the context makes it relevant.

4. The pattern is, in short, at the same time a thing, which happens in the world,

and the rule which tells us how to create that thing. and when we must create

it. It is both a process and a thing: both a description of a thing which is alive,

and a description of the process which will generate that thing.

12

Software patterns first became popular with the wide acceptance of the book

Design Patterns: Elements of Reusable Object-Oriented Software (Gamma et al.,

1995), Pattern-Oriented Software Architecture: A System of Patterns (also called

the POSA book, consist of 5 series) (Buschmann et al., 1996) and books Pattern

Languages of Program Design and Pattern Languages of Program Design (Aguiar

& David, 2009) (consist of three series).

Experts in software engineering know the patterns gain from practical

experience and follow them in developing applications with specific properties.

They use them to solve design problems both effectively and elegantly. The authors

of Patterns of Software Architecture (Buschmann et al., 1996) define these three

types of patterns as follows: Architectural Patterns, Design Patterns and Idioms.

Here we specific discuss on Design Patterns.

2.2.1 Design Patterns

Design patterns are defined by Gamma et. al. (Gamma et al., 1995) as simple

and elegant solutions to a recurring specific problems arising when designing

object-oriented software design.

A pattern describes a problem that frequently occurs and proposes a possible

solution in terms of the organization of classes and objects that are generally

recognized like a good solution to solve the problem. Design patterns are also

reusable, meaning they are used for a variety of situations in many different

architectures. They realize a generic solution for a set of functional requirements.

More importantly, they are simple and elegant, which allows developers to easily

understand them and extend them without modifying existing classes and

increasing code complexity.

A design pattern provides a scheme for refining the subsystems or

components of a software system, or the relationships between them. It describes

commonly recurring structures of communicating components that solve a general

design problem within a particular context (Buschmann et al., 1996).

13

2.2.2 Classification of Design Patterns

There are four essential parts of a design pattern: The pattern name, the

problem description, the solution, and the consequences of the application of a

certain pattern. These parts are described below.

The pattern name. conveys the essence of the pattern. The name is used as

part of the design vocabulary to describe solutions to certain problems. The name

of the pattern makes it easier to talk about a design, to document a design, and even

to think about a design. Thus, it can be used as an abstraction at a higher level.

The problem description motivates the general problem solved by the

design pattern. This defines when to apply the pattern. This part of the pattern

describes a general situation which has to be solved. Sometimes a concrete example

is used to do so. The problem description might include a list of conditions which

must hold before the application of the pattern makes sense.

The solution describes the elements of the pattern together with their

interaction, their responsibility, and their relationships. The description of the

solution is not dependent on a concrete problem and there is no implementation

given which is used to always solve the problem: The exact layout of the objects

involved in a pattern depends on the actual problem to be solved. The design pattern

only gives a general arrangement of objects and classes involved in the solution of

a general problem. This solution has to be tailored and adapted to the problem

actually solved.

The consequences section lists the trade–offs made when applying a design

pattern. This is used basically to decide whether the approach of the design pattern

is feasible to solve a certain problem: There may be other design patterns solving a

problem which is quite similar to the problem solved by the design pattern at hand

but with different trade–offs. In addition, the costs involved in the application of a

design pattern may be too high to solve a certain problem such that a different

solution has to be sought. The consequences of design patterns help to evaluate the

impact on a system’s extensibility, flexibility, and portability but also list the costs

and limitations.

 The design patterns are classified by two criteria (see Table 2.1). The first

criterion, called purpose, reflects what a pattern does. Patterns can have either

14

creational, structural, or behavioral purpose. Creational patterns concern the

process of object creation. Structural patterns deal with the composition of classes

or objects. Behavioral patterns characterize the ways in which classes or objects

interact and distribute responsibility.

The second criterion, called scope, specifies whether the pattern applies

primarily to classes or to objects. Class patterns deal with relationships between

classes and their subclasses. These relationships are established through

inheritance, so they are static-fixed at compile-time. Object patterns deal with

object relationships, which can be changed at run-time and are more dynamic.

Almost all patterns use inheritance to some extent. So, the only patterns labeled

class patterns are those that focus on class relationships.

Table 2.1 Design pattern catalog

 Purpose
Creational Structural Behavioral

Scope Class Factory Method Adapter Interpreter
Template Method

Object Abstract Factory
Builder
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer State
Strategy
Visitor

2.2.3 Hierarchical model–view–controller (HMVC)

Model-View-Controller (MVC) is an architectural pattern that describes a

way to structure of an application and the responsibilities and interactions for each

part in that structure by split user interface interaction into three distinct roles

(Buschmann et al., 1996). MVC divides an interactive application into three

components. The model contains the core functionality and data. Views display

information to the user. Controllers handle user input. Views and controllers

15

together comprise the user interface. A change propagation mechanism ensures

consistency between the user interface and the model.

The Hierarchical-Model-View-Controller (HMVC) is a software

architectural pattern. HMVC is a direct extension to the MVC pattern that manages

to solve many of the scalability issues. HMVC is a collection of traditional MVC

triads operating as one application. Each triad is completely independent and can

execute without the presence of any other. All requests made to triads must use the

controller interface, never loading models or libraries outside of their own domain.

The triads physical location within the hosting environment is not important, as

long as it is accessible from all other parts of the system. The distinct features of

HMVC encourages the reuse of existing code, simplifies testing of disparate parts

of the system and ensures that the application is easily to enhanced or extended.

To successfully design applications that implement the HMVC pattern, it is

critical that all the application features are split down into systems. Each system is

one MVC triad within the larger HMVC application, independently managing

presentation and persistent storage methods. Presently few frameworks are

available that support HMVC without additional extensions, or use inefficient Front

Controllers and dispatching.

2.2.4 Façade Pattern

Façade is a structural purpose type and object scope design patterns of Gang

of Four (GoF). Façade provides a unified interface to a set of interfaces in a

subsystem. Facade defines a higher-level interface that makes the subsystem easier

to use (Gamma et al., 1995). Basically, this is saying that we need to interact with

a system that is easier than the current method, or we need to use the system in a

particular way. We can build such a method of interaction because we only need to

use a subset of the system in question.

Facade simplifies complex code, making it easier to use poorly designed,

over-complex subsystems. It meant to be wrappers around complex functionality,

their primary goal is hiding complexity of an underlying system.

16

Facade provides a simple interface to a complex subsystem, a single

interface through which all the classes in a complex subsystem (sub-system classes:

classes that comprise one or more complex subsystems) are manipulated.

Facade allows to treat a complex subsystem as if it were a single course-

grained object with a simple easy-to-use interface. Figure 4.11 described class

diagram overview of Façade design pattern.

Figure 2.1 Class diagram of the Façade pattern

The advantages of using Façade are reduced coupling relationships between

subsystems, improving maintenance and flexibility but programmers still possible

to ignore the Facade and use subsystem classes directly.

2.3 Software Quality

Quality is a fundamental property of software systems and generally refers

to the degree to which a software system lives up to the expectation of satisfying its

requirements (Suryn, 2014). Quality is often characterized in terms of attributes

such as modifiability, durability, interoperability, portability, security,

predictability, scalability, efficiency and so on. Some of these properties are

software properties while others are system properties.

17

Despite a focus on software, Software quality refer to desirable

characteristics of software products, to the extent to which a particular software

product possesses those characteristics, and to processes, tools, and techniques used

to achieve those characteristics (Society, Bourque, & Fairley, 2014). IEEE Std 1061

(the IEEE Standard for a Software Quality Metrics Methodology) provides a

definition of software quality as “software quality is the degree to which software

possesses a desired combination of attributes” (IEEE Computer Society, 2009).

2.3.2 Quality Attributes

Given that quality is the manifestation of the exhibited QAs, it makes sense

for us to have a thorough understanding of which specific attributes are being

considered. Fortunately, there are several existing frameworks that can assist in this

regard. Such frameworks provide standard description and a useful checklist that

can be used when gathering stakeholder requests or when reviewing requirements.

The international standard ISO/IEC 9126, Software engineering - Product

quality (ISO/IEC, 2001), classifies software quality within a taxonomy of

characteristics and sub-characteristics. The characteristics considered are

functionality, reliability, usability, efficiency, maintainability, and portability. Each

of these characteristics is further subdivided into sub-characteristics that themselves

are subdivided into QAs that can be measured and verified.

1. Functionality considers a set of sub-characteristics that have a bearing on the

function of the system in addressing the needs of stakeholders. The sub-

characteristics considered are suitability, accuracy, interoperability, security,

and functionality compliance.

2. Reliability considers a set of sub-characteristics that have a bearing on the

ability of the software to maintain its level of performance under stated

conditions for a stated period of time. The sub-characteristics considered are

maturity, fault tolerance, recoverability, and reliability compliance.

3. Usability considers a set of sub-characteristics that have a bearing on the ease

with which the software can be used by a known set of users. The sub-

characteristics considered are understandability, learnability, operability,

attractiveness, and usability compliance.

18

4. Efficiency considers a set of sub-characteristics that have a bearing on the

relationship between the level of performance of the software and the amount

of resources used under given conditions. The sub-characteristics considered

are time behavior, resource utilization, and efficiency compliance.

5. Maintainability considers a set of sub-characteristics that have a bearing on

the effort needed to make specified modifications. The sub-characteristics

considered are analyzability, changeability, stability, testability, and

maintainability compliance.

6. Portability considers a set of sub-characteristics that have a bearing on the

potential for the software to be moved from one environment to another. The

sub-characteristics considered are adaptability, installability, coexistence,

replaceability, and portability compliance.

Another framework is the “FURPS+” classification (Grady, 1992), where

the FURPS acronym stands for “functionality, usability, reliability, performance,

and supportability” and the “+” represents any additional considerations that the

system must accommodate. The sub-characteristics are taken from (Eeles & Cripps,

2010). In Performance software quality sub-characteristics can be composite as

speed, Efficiency, Resource consumption, Throughput, and Response time (Grady,

1992)

ISO/IEC 2502n - Quality Measurement Division. The standards that form

this division include a system/software product quality measurement reference

model, definitions of quality measures, and practical guidance for their application.

This division presents internal measures of software quality, external measures of

software quality, quality in use measures and data quality measures. Quality

measure elements forming foundations for the quality measures are defined and

presented.

The International Standard, ISO/IEC 25023 – Measurement of system and

software product quality is a part of 2502n Quality Measurement Division of

SQuaRE series. The International Standard, ISO/IEC 25023 is defining quality

measures for quantitatively measuring system and software product quality in terms

of characteristics and sub-characteristics is defined, and intended to be used

together with ISO/IEC 25010 - System and software quality models. The ISO/IEC

19

25010 categorizes software quality attributes into eight characteristics (functional

suitability, reliability, performance efficiency, operability, security, compatibility,

maintainability and transferability) as illustrated in Figure 2.1.

Figure 2.2 Software Product Quality Model

We are focusing on performance efficiency characteristic and its sub-

characteristics.

2.3.3 Performance Efficiency

 There is an old saying that “what you do not measure you cannot control.”

As a general definition, performance measures how effective is a software system

with respect to time constraints and allocation of resources. Performance is a very

important attribute of software. It used to be the main driving forces behind the

development of software.

Performance is concerned with how well the software response when an

event occurs (Rudzki, 2005). The software system events arrive in various patterns

which can be characterized as periodic or stochastic. To evaluate whether a system

is well performing, the time between the event and the response can firstly be

measured, then compared with a previously determined time constrain.

Different resources used different terms and terminology of performance /

efficiency / performance efficiency. Here we summarize important and often appear

term and terminology related to performance from several resources:

20

Table 2.2 Summarize terms and terminology of performance

Terms Terminology

Performance and

efficiency (“IEEE

Standard Glossary

of Software

Engineering

Terminology,”

1990)

The degree to which a system or component accomplishes

its designated functions within given constraints, such as

speed, accuracy, or memory usage.

And efficiency refer to the degree to which a system or

component performs its designated functions with minimum

consumption of resources. See also: execution efficiency;

storage efficiency.

Performance

(Grady, 1992)

Considers the degree to which the system provides a defined

level of execution performance. This includes a

consideration of speed, efficiency, resource consumption,

throughput, and response time.

Efficiency

(ISO/IEC, 2001)

Considers a set of sub-characteristics that have a bearing on

the relationship between the level of performance of the

software and the amount of resources used under given

conditions. The sub-characteristics considered are time

behavior, resource utilization, and efficiency compliance.

Efficiency

(Suryn, 2014)

Optimum use of system resources during correct execution.

Performance

Efficiency

(ISO/IEC, 2011a,

2011b)

The degree to which the software product provides

appropriate performance, relative to the amount of resources

used, under stated conditions.

Performance Efficiency (ISO/IEC, 2011a) is the degree to which the

software product provides appropriate performance, relative to the amount of

resources used, under stated conditions. There are three main categories:

1. Time behavior. The degree to which the software product provides appropriate

response and processing times and throughput rates when performing its

function, under stated conditions.

21

2. Resource utilization. The degree to which the software product uses

appropriate amounts and types of resources when the software performs its

function under stated conditions.

3. Performance efficiency compliance. The degree to which the software

product adheres to standards or conventions relating

In measuring the satisfaction of performance efficiency, we use

performance efficiency measures and metrics defined in ISO/IEC 25023 –

Measurement of system and software product quality (ISO/IEC, 2011b).

Performance efficiency measures are used to assess the performance relative to the

amount of resources used under stated conditions. Resources can include other

software products, the software and hardware configuration of the system, and

materials. The detail description and measurement function of each attribute

characteristics and sub-characteristics as below:

1. Time behavior measures. Time behavior measures are used to assess the

degree to which the response and processing times and throughput rates of a

product or system when performing its functions meet requirements. There are

five sub-characteristics of time behavior measures. The description of each

sub-characteristics and measurement function detail in Table 2.3.

Table 2.3 Time behavior measures

ID / Name Description Measurement function

PTb-1-G, Mean

response time

What is the mean time

taken by the system to

respond to a user

action or system

event?

𝑋 = 	 𝐴% 	/	𝑛
%()	*+	,

𝐴% = Time taken by the system to

respond to action or event i

n = Number of response events

measured

PTb-2-G,

Response time

conformance

How well does the

system response time

meet the specified

target?

𝑋 = 𝐴	/	𝐵

A = Mean response time measured

by mean response time

B = Specified target response time

22

ID / Name Description Measurement function

PTb-3-G, Mean

turnaround

time

What is the mean time

taken for completion

of a job or

asynchronous

process?

𝑋 = 	 𝐵% − 𝐴% 	/	𝑛
%()	*+	,

A = Time of starting a job i

B = Time of completing the job i

n = Number of jobs measured

PTb-4-G,

Turnaround

time

conformance

How well does the

turnaround time meet

the specified targets?

𝑋 = 𝐴	/	𝐵

A = Mean turnaround time

measured by Mean turnaround time

B = Target turnaround time

specified

PTb-5-G,

Throughput

conformance

How well does the

throughput meet

specified targets?

𝑋 = 𝐵%	/	𝐴% 	/	𝑛
%()	*+	,

/	𝐶

A = Number of jobs completed

during the observation time.

B = Observation time period

C = Target throughput specified

n = Number of observations

2. Resource utilization measures. Resource utilization measures are used to

assess the degree to which the amounts and types of resources used by a product

or system when performing its functions meet requirement. There are five sub-

characteristics of resource utilization measures. The description of each sub-

characteristics and measurement function detail in Table 2.4.

Table 2.4 Resource utilization measures

ID / Name Description Measurement function

PRu-1-G,

Mean

Processor

utilization

How much processor time

is used to execute a given

set of tasks compared to

the l operation time?

𝑋 = 	 𝐴%		/	𝐵% 	/	𝑛
%()	*+	,

A i = Processor time actually used

to execute a given set of tasks

23

ID / Name Description Measurement function

Bi = Operation time to perform the

tasks in observation period i

n = Number of observations

PRu-2-G,

Mean

memory

utilization

How much of memory is

used to execute a given set

of tasks compared to the

available memory?

𝑋 = 	 𝐴%		/	𝐵% 	/	𝑛
%()	*+	,

A i = Size of memory actually used

to perform a given set of tasks

Bi = Size of memory available to

perform the tasks

n = Number of task sets measured

PRu-3-G,

Mean I/O

devices

utilization

How much of I/O device

busy time is used to

perform a given set of

tasks compared to the I/O

operation time?

𝑋 = 	 𝐴%		/	𝐵% 	/	𝑛
%()	*+	,

A i = Duration of I/O device(s)

busy time to perform a given set of

tasks

Bi = Duration of I/O operations to

perform the tasks

n = Number of events measured

PRu-4-S,

Storage

utilization

How much of the available

secondary storage is used

to perform a given set of

tasks?

𝑋 = 𝐴	/	𝐵

A = Amount of secondary storage

actually required to

perform a given set of tasks?

B = Amount of secondary storage

available to the tasks

PRa-5-S,

Bandwidth

utilization

What proportion of the

available bandwidth is

utilized?

𝑋 = 𝐴	/	𝐵

A = Bandwidth of transmission

actually measured average over

time

B = Bandwidth capacity available

24

3. Capacity measures. Capacity measures are used to assess the degree to which

the maximum limits of a product or system parameter meet requirements.

There are three sub-characteristics of capacity measures. The description of

each sub-characteristics and measurement function detail in Table 2.5.

Table 2.5 Capacity measures

ID / Name Description Measurement function

PCa-1-G,

Transaction

processing

capacity

conformance

How many concurrent

transactions can be

processed at

any given time against the

specified target?

𝑋 = 𝐴%	/	𝐵 	/	𝐶

𝐴% = Number of active

transactions at instant i

B = Total operation duration

C = Required transaction

processing capacity per unit of

time specified

PCa-2-G,

User access

capacity

conformance

How many users can

access the system

simultaneously at a certain

time against the specified

target?

𝑋 = 𝐴	/	𝐵	

A = Number of users

simultaneously access the

system at a certain time

B = Required user access capacity

specified

PCa-3-S,

User access

increase

conformance

How many users can be

added successfully per

unit time as compared to

the required rate of

increase in users?

𝑋 = 𝐴	/	𝐵

A = Actual number of users

successfully added per unit time

B = Number of users expected to

increase per unit time

In this study, we use definition and terminology based on ISO/IEC 25023 -

Measurement of system and software product quality (ISO/IEC, 2011b) and

ISO/IEC 25010 - System and software quality models (ISO/IEC, 2011a) as

international standard quality model and measurements guideline for performance

efficiency.

25

2.4 Refactoring

In this section, we analyze the concept of refactoring from various

perspectives. We focus on definition of refactoring with design pattern. We

summarize core concept of refactoring given in (Fowler, Beck, Brant, Opdyke, &

Roberts, 1999) (Suryanarayana, Samarthyam, & Sharma, 2014) (Opdyke, 1992) in

order to give the fundamentals of refactoring techniques

2.4.1 Core Concepts of Refactoring

The term refactoring was originally introduced by Opdyke in his PhD

dissertation to formally explain the behavior-preserving transformation can be

made on exiting code (Opdyke, 1992). In software evolution context, refactoring is

a reengineering technique or the process of changing a software system that aims at

reorganizing a program to improve its quality without changing its external

behavior (Society et al., 2014). Martin Felwer defined on his book (Fowler et al.,

1999) (code) refactoring as the process of changing a software system in such a way

that it does not alter the external behavior of the code yet improves its internal

quality structure.

Refactoring (noun): a change made to the internal structure of software to

make it easier to understand and cheaper to modify without changing its observable

behavior. And Refactor (verb): to restructure software by applying a series of

refactorings without changing its observable behavior (Fowler et al., 1999). A

refactoring aim to improve a certain quality of system while respect others.

Refactoring means improving the design of software without altering its noticeable

behavior, developer do not add any new requirement features during the process of

refactoring, i.e. they do not do any fixes bug of changes anything about software

that would be detect by the software user. Instead, only the internal structure of the

technology design of the software is changed (Martin Lippert, 2006).

It is a disciplined way provides a technique for cleaning up code in a more

efficient and controlled manner that minimizes the chances of introducing bugs. In

essence when you refactor you are improving the design of the code after it has

been written. In our current understanding of software development, we believe that

26

we design and then we code. A good design comes first, and the coding comes

second. Over time the code will be modified, and the integrity of the system, its

structure according to that design, gradually fades. The code slowly and create

maintainable problem and effect the performance efficiency of the system.

Refactoring is the opposite of this practice. With refactoring, you can take a bad

design, chaos structure, and rework it into well-designed code.

Refactoring is a tool that can or should be used for several purposes. Such

as improves the design of exiting software, gain a better understanding of code,

helps you find bugs, helps you program faster, make it easier to add new code, make

coding less annoying and so on (Fowler et al., 1999) (Kerievsky, 2004). With

refactoring, you find the balance of work changes. You find that design, rather than

occurring all up front, occurs continuously during development. You learn from

building the system how to improve the design. The resulting interaction leads to a

program with a design that stays good as development continues.

Mostly we recognize refactoring and classical refactoring technique for low-

level code refactoring that focusing on code level transformation in order to

reconstruct of anomalies structures. Knowing how to do refactoring does not mean

knowing when to do refactoring. Deciding when to start refactoring, and when to

stop refactoring is important as knowing how to operate the mechanics of a

refactoring. To identify when to apply refactoring, usually use Design Smells

(Suryanarayana et al., 2014) and Code Smells, a code smells represent indicators

for source code issues such as duplicated code, long method, large class and so on

(Fowler et al., 1999) to indicate which part of the system can or should refactor.

2.4.2 Design Smell and Code Smell

Design smells are certain structures in the design that indicate violation of

fundamental design principles and negatively impact design quality (Suryanarayana

et al., 2014). In other words, a design smell indicates a potential problem in the

design structure.

There are various causes of design smells can create bad design and design

structure of the system; violation of design principle, inappropriate use of patterns,

27

language limitations, procedural thinking in OO, viscosity, non-adherence to best

practices and process (Suryanarayana et al., 2014).

 Clearly, smells significantly impact the design quality of a piece of

software. It is therefore important to find, analyze, and address these design smells.

Performing refactoring is the primary means of repaying process of repaying

technical debt. (Ganesh, Sharma, & Suryanarayana, 2013) provide classification of

smell that serve design principle. They classified and grouped design smell into four

major elements of the object model are abstraction, encapsulation, modularization,

and hierarchy. Figure 2.3 illustrates classification scheme and the naming scheme

for smells covered.

Figure 2.3 Classification of design smells

The most common design problems result from code that are duplicated,

unclear and complicated. The coding smells described by Martin Felwer and Kent

Beck (Fowler et al., 1999) and Joshua Kerievsky (Kerievsky, 2004) provide a useful

way to identify a design problem and find associated refactoring to help fix the

problem. They grouped the coding smell into catalog well define, there are various

situation that can possible create code smell and they provide catalog of code smell

that target problem occurs everywhere, in methods, classes, hierarchies, packages

28

(namespaces, modules), and entire systems. As show in Table 2.6, lists the smells

and some refactoring to consider when you want to remove the smells.

Table 2.6 Lists of smells and refactoring associated

Smell Refactoring

Duplicated Code Form Template Method
Introduce Polymorphic Creation with Factory Method
Chain Constructors
Replace One/Many Distinctions with Composite
Extract Composite
Unify Interfaces with Adapter
Introduce Null Object

Long Method Compose Method
Move Accumulation to Collecting Parameter
Replace Conditional Dispatcher with Command
Move Accumulation to Visitor
Replace Conditional Logic with Strategy

Conditional
Complexity

Replace Conditional Logic with Strategy
Move Embellishment to Decorator
Replace State-Altering Conditionals with State
Introduce Null Object

Primitive Obsession Replace Type Code with Class
Replace State-Altering Conditionals with State
Replace Conditional Logic with Strategy
Replace Implicit Tree with Composite
Replace Implicit Language with Interpreter
Move Embellishment to Decorator
Encapsulate Composite with Builder

Indecent Exposure Encapsulate Classes with Factory

Solution Sprawl Move Creation Knowledge to Factory

Alternative Classes
with Different
Interfaces

Unify Interfaces with Adapter

Lazy Class Inline Singleton

Large Class Replace Conditional Dispatcher with Command
Replace State-Altering Conditionals with State
Replace Implicit Language with Interpreter

Switch Statements Replace Conditional Dispatcher with Command
Move Accumulation to Visitor

29

Smell Refactoring

Combinatorial
Explosion

Replace Implicit Language with Interpreter

Oddball Solution Unify Interfaces with Adapter

2.4.3 Refactoring Process

Refactoring should be systematically approached in a real-world setting.

Normally refactoring is performed in an ad-hoc fashion, resulting in numerous

problems. It is, therefore, important to follow a structured approach while

refactoring. In this section, we describe a process model called “IMPACT” that

provides guidance for systematic refactoring in practice. IMPACT is comprised of

the following four fundamental steps that are executed in order These steps are

described in the following sub-sections and illustrated in Figure 2.4.

Figure 2.4 IMPACT refactoring process model.

1. Identify / Mark refactoring candidates. The first step in the refactoring

process is to analyze the code base and identify refactoring candidates.

2. Plan your refactoring activities. analyze their impact, prioritize them, and

prepare a plan to address them. Based on the prioritized list of identified smells

and their refactoring, an execution plan for the refactoring can be appropriately

formulated

3. Act on the planned refactoring tasks. Team members can take up planned

refactoring tasks and execute them by carrying out the refactoring in the code.

Identify / Mark refactoring candidates

Plan your refactoring activities

ACt on the planned refactoring tasks

Test to ensure behaviour preservation

30

4. Test to ensure behavior preservation. Refactoring activity should be

followed by automated regression tests to ensure that the behavior post-

refactoring is unchanged.

 In this thesis, we use refactoring definition and terminology from (Fowler

et al., 1999). To be systematic way in refactoring, we do follow IMPACT model in

implementation.

2.5 Academic Information System

 Academic Information System is an information system with business

process for education propose. It consists of various processes and functions handle

the education and high education requirement in systematic way.

The Sistem Informasi Akademik (SIA) is an Academic Information System

project that have been creating and maintaining by faculty of Informatics

Engineering, Institut Teknologi Sepuluh Nopember. It is design based on Module

type architecture with support high cohesion and loosely-coupled. It created based

on current Java Enterprise Edition (JEE) technology with Model-View-Controller

(MVC) architecture, using Spring MVC and Hibernate ORM framework as helper

libraries. SIA use Eclipse Virgo and OSGi Framework. The backend web server

that use to run SIA is Apache Tomcat. SIA is use PostgreSQL as main database.

Currently SIA consist of six modules, they are Framework Module (Yuhana,

Akbar, Agung, & Wijaya, 2016), Domain Module (Yuhana, Akbar, & Nurwantoro,

2015), Pembelajaran Module (Yuhana, SUMINTO, & Anggraini, 2015),

Kurikulam Module (Rochimah, Akbar, & AVEROUSI, 2015), Ekivelensi Module

(Yuhana, Anggraini, & Alfirdaus, 2015), and Penilain Module (Rochimah,

Anggraini, & RAHMAN, 2015). The Framework module is the main based module.

The domain module as interoperable of other modules connecting to the Database

system. and the rest of modules are responsible for academic service functions.

Each module has been built in separately with different objective of requirements.

To make all modules collaborate and integrate, (Yuhana et al., 2016) refactored SIA

apply HMVC architecture pattern and utilized modularity principle to build

integration space together and connected with Domain Module to exchange

31

message, share libraries and functions. The packet diagram is shown overall

structure of SIA as illustrated in Figure 2.4.

In this thesis, we use Sistem Informasi Akademik (SIA) as our case study to

conduct experiment of our approach. We select to focus on the critical hot spot

problem module through analyzing phase.

Figure 2.5 Packet Diagram of Sistem Informasi Akademic (SIA)

Framework

Modul-Domain

Pembelajaran

Kurikulum

Penilaian

Ekuivalensi

sia-data

sia-domain

sia-dependency
sia-plugin sia-service sia-web

Modul-Domain

main.data.dao

main.data.dao.impl

main.domain

main.plugin.modul.impl

main.plugin.common

main.plugin.modul

main.plugin main.service.modul

main.service.services

main.service.services.impl

main.service.util

controller

model

repository

service

ControllerRepository Service
ServiceController Repository

controller

model

service

repository

validator

man.web

main.web.controller

main.web.json_model

main.web.osgi

main.web.security

main.web.tag

32

(This page intentionally left blank)

33

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Research Methodology

Our research methodology has five phases; problem analysis, solution

design, solution implementation, solution validation, and report results (see Figure

3.1).

Figure 3.1 Research Methodology

3.2 Problem Analysis

In the first phase, we solve knowledge problem. We want to understand

what the current performance efficiency measurement are, what the current

refactoring approaches with design pattern principles are, and what the deficiencies

of the current approaches are. For these purposes, we analyze the literature about

refactoring, design patterns, especially “Gang of Four” design patterns, Object-

Oriented approach, and Software Quality from different research areas to discover

possible problems in current refactoring approach through design pattern concept

in software development design phase. Especially in performance efficiency quality

attribute and measurement.

We analysis the case study to see feasibility of improvement in software

design for targeting measure performance efficiency. As SIA have been created by

group of students of Informatics Engineering Department of Institut Teknologi

Sepuluh Nopember (ITS). The application has been considered on function

requirements. Developer used tools support in developing the system. The tools

were given a rapid development and well-suited in continue development. The code

structure that have been generated and coded in Java and OO approach. Developers

1. Problem
Analysis

2. Solution
Design

4. Solution
Analysis

5. Report
Results

3. Solution
Implementation

34

used OO approach in developing the system by force of Java development

environment and framework used but they were lack of realize OO design and

design patterns principle. Without considered OO design principle and best practice

of existing design patterns, the system did not appropriate maximum apply OO

technology and best exiting solution in designing and developing, especially in low

level design and coding. The result of this unaware, the system structure and code

detail become ambiguous for continue development.

Application developer should consider the impact of applied these kinds of

principles and tools as in performance efficiency quality attribute, a factor that

always affect continue development. Performance of an application have to or must

measure, especially when applied refactoring process and design patterns in order

to achieve better result on performance quality criteria such respond time,

throughput and resource use by new refactored system. It should consider the

impact of applied these kinds of principles and tools for better software design.

3.3 Solution Design

In the second phase, the results of the first phase are used to design a new

solution. We solve a particular design problem by provide an approach with case

study implementation, we refactor the system using design patterns with respect to

performance efficiency software quality attributes. Our goal is to measure the

impact of design patterns through refactoring process of the system with rely on

quality attribute of software.

3.3.1 Overview of the Approach

Our approach given idea of the how refactoring and performance efficiency

measurement can be performed through several constraints. Figure 3.2 gives the

overview of the approach.

35

Figure 3.2 Overview of the Approach

1. Input Legacy SIA. We use Academic Information System or (Sistem

Informasi Akademik - SIA, in Indonesia language) as our case study. We select

a module from all available to study and do implementation.

2. Refactoring Technique. Refactoring process, method is applied (Section

3.3.4).

3. Performance Efficiency Criteria. We use performance efficiency

international standard criteria, time behavior, resource utilization and

performance efficiency compliance to identify and verify the performance of

proposed approach (Section 3.3.5).

4. Refactoring and Performance Measurement. We use refactoring technique

through the selected of design patterns in refactor and modify internal structure

of the system, and performance measurement is used to assess the performance

relative to amount of resources used under stated conditions of the target

system.

Input
Legacy SIA

System Output
Refactored SIA

System

Refactoring &
Performance Measurement

Constraints based on
Refactoring Technique,

Design Patterns and Quality
Measurement

Output
Performance
Measurement

Result

Refactoring
Technique

Performance
Efficiency
Criteria

36

5. Output Refactored SIA. The result of the processes will give a candidate

refactored SIA with improve the internal structure and result better in

performance validation. From this output, we compare the legacy system with

candidate refactored system to investigate the impact of the refactoring process

using design pattern in performance efficiency attribute.

6. Output Performance Measurement Result. The result of performance

efficiency produced in this step. The performance factors are measured and

produced the output to use in analysis. This step give an evidence result of the

design pattern and refactoring process affect application performance. The

affect may positive or negative improve of the application performance.

7. Constraints. Several constraints contain in the processes of the approach, such

as refactoring technique, design pattern technique, legacy system and

performance quality measurement, tools support.

We use tool in supporting and illustrating the feasibility of our approach in an

example.

1. Tool support. We describe the use of tool support. Several tools use to support

the approach. We use Eclipse as our main Integration Development

Environment (IDE). Visual Paradigm version 13.2 and ObjectAid UML

Explorer version 1.1.4 for tools in reverse engineering from source code to

diagram and from diagram to code, Eclipse Metrics plugin version 1.3.6 (Sauer,

n.d.) as specific detail complexity measurement of the system. Apache JMeter

version 3.1 (Foundation, n.d.) is load test functional behavior and measure

performance application tool and Java Mission Control 5.5 (Corporation, n.d.)

for Java Profiling tool, these tools are giving a chance in performing

performance efficiency measure according to our quality requirement

measurement. And we follow the International Standard, ISO/IEC 25023 –

Measurement of system and software product quality, in measuring specific

focus on performance efficiency factor.

2. Running Example. We illustrate the approach with case study. Our selected

case study is a SIA module.

37

Figure 3.3 Phases of the proposed approach

Prefermance Measuring

Refactoring

Analyzing Reverse
Engineering

Measuring Complexity of
The Application

SIA System

Identifying Problem

Design Patterns
Selection

Refactored SIA with
Design Patterns

Measuring Complexity of the
Refactored SIA System

Legacy SIA System Refactoring and Applying
Design Patterns

Dynamic Performance
Efficiency Measuring of
Refactored SIA System

Complexity of the
Application

[No]
[Yes]

Do you need to update any of your measuring?

Complexity of the
Application

Measuring Complexity of the
Legacy SIA System

Dynamic Performance
Efficiency Measuring of

Legacy SIA System

Complexity of the
Application

Output Performance
Efficiency of Refactored SIA

Output Performance Efficiency
of Legacy SIA System

Legend
control flow

object flow

Selected Design
Patterns

Output Analysis and
Validation

38

3.3.2 The Process of Proposed Approach

The proposed approach is structured in three fundamental phases. Figure 3.3

gives a UML activity diagram of the process. The process in Figure 3.3 consists of

the following activities:

3.3.3 Analyzing

Analyzing the system to gain an idea about the complexity of the study

application. The analysis step consists as below:

1. Reverse Engineering. We use object-oriented reverse engineering technique

(Demeyer et al., 2002) focusing on as the process of analyzing a subject system

to identify the system's components and their interrelationships and create

representations of the system in another form or at a higher level of

abstraction. We use several sources of information while reverse engineering,

such as read the existing documentation, read the sources code, run the

software, use tools to generate high-level view of the sources code. These

sources of information help a lot in analyzing, re-documenting and identifying

potential problems of the software application. The result of this activity details

of the system such as Architecture View and Class Diagram.

2. Measuring Complexity of the Application. This activity takes the SIA and

the Object-Oriented metric (Henderson-Sellers, 1996; Sauer, n.d.). This

activity does measuring complexity of the application. This activity produces

summarize feasibility and detail of the application with Total Lines of Code

(TLOC), Number of Classes (NOC), Number of Methods (NOM), Number of

Packages (NOP) and calculate the McCabe Cyclomatic Complexity (MCC), as

well-known complexity metric measure for the complexity of the application.

3. Identifying Problem. The result from steps above, Reverse Engineering and

Measuring Complexity of the Application use to determine and identify

feasible problems occur in the application.

4. Design Patterns Selection. The analyzing result from previous activities given

signs of Code Smell and Design Smell (Fowler et al., 1999; Suryanarayana et

al., 2014) issue related to the legacy software application. The design patterns

is selected based on “Gang of Four” design patterns categories. The “Gang of

Four” classified design patterns purpose into three categories: creational,

39

structural and behavioral. The choice of design patterns is not arbitrary; an

architect of a software system can face this kind of choice during the design

process. The selection of design pattern is selected based on the problem facing

in specific context and judge by group of expertise and researchers. The result

of this activity is the suitable selected design pattern that going to adapt and

implement into the SIA in refactoring process.

3.3.4 Refactoring

The process of refactoring is an activity change made to the internal

structure of software to make it easier to understand and cheaper to modify without

changing its observable behavior. The process involves the removal of duplication,

the simplification of complex logic, and the clarification of legacy code. When we

refactor, we relentlessly restructure and modify the code to improve its design. Such

improvements involve with apply suitable selected design patterns aims at changing

as small part of code design structure or as large as unifying two hierarchies. These

activities consist of following:

1. Refactoring and applying design patterns. This activity to apply design

pattern to legacy system through refactoring technique. The selected design

pattern chooses to study and refactor to the system. In this activity, we follow

the IMPACT refactoring process model. There are four fundamental steps:

Identify and Mark refactoring candidates, Plan your refactoring activities, Act

on the planned refactoring tasks, and Test to ensure behavior preservation.

Figure 3.4 gives a UML activity diagram of the refactoring process. The detail

description of each step as follow:

Figure 3.4 Activities of IMPACT refactoring process model

Identify / Mark
refactoring
candidates

Plan your
refactoring
activities

ACt on the
planned

refactoring tasks

Test to
ensure

behaviour
preservation

[No]

[Yes]
Do you need to update and possibly re-prioritize the list of refactoring candidates?

40

a. Identify and Mark refactoring candidates. This activity of the refactoring

process is to analyze the code base and identify refactoring candidates. The case

study can carry out manual code and design review to find smells and determine

candidate for refactoring. Manual reviews are more effective and less error-

prone since they can consider and exploit domain knowledge, the context of the

design, and design expertise more effectively.

b. Plan your refactoring activities. In this activity, once we identify smells using

complexity measurement and manual code and design review (Section 3.3.3,

Reverse Engineering and Measuring Complexity of the Application), it is

important to analyze their impact, prioritize them, and prepare a plan to address

them. To analyze the impact of a smell, consider factors such as severity, scope

and interdependence. After analyzing the impact of the identified smells,

prioritize them based on the following factors; the potential gain after removing

the smell, available time, availability of tests for the target modules. Based on

the prioritized list of identified smells and their refactoring, the design pattern

selection process starts to select suitable design based on identified smell. And

an execution plan for the refactoring can be appropriately formulated

c. Act on the planned refactoring tasks. This activity can take up planned

refactoring tasks and execute them by carrying out the refactoring in the code.

In this process, we also use automated refactoring support provided by IDEs to

carry out the refactoring tasks.

d. Test to ensure behavior preservation. This activity is very important step in

refactoring process. We refactoring activity should be followed by automated

regression tests to ensure that the behavior post-refactoring is unchanged. We

first tests for the entity that needs to be refactored, then refactor the entity, and

finally test it to verify the behavior.

The result of refactoring process gives a refactored SIA with applied design

pattern properly. On the opposite side of refactoring and applying design patterns

in refactoring process phase, legacy SIA, we do nothing change on the system. The

legacy system remains everything same for the purpose of comparison. The results

of this process are refactored and legacy SIA. These outputs will use in the next

step of the approach.

41

3.3.5 Performance Measuring

Evaluation is the analytical step of the process. In this step, the current

measurement is compared against previous measurements or against expected

values. The individual statistics of the two measurements are carefully compared

and the differences analyzed. If it determines that its purpose goals have been met,

then the goals is completed. If not, it may continue on to modification, the next step

of the process. The measurement here adheres to dynamic measure. It means

behavior and test environments of the system is variable and flexible.

1. Measuring Complexity of the Application. This activity, once again

complexity measurement take control. This activity produces summarize and

detail of the application of both refactored and legacy SIA with Number of

Packages (NOP), Number of Classes (NOC), Number of Interfaces (NOI),

Number of Attributes (NOF), Number of Methods (NOM), Total Lines of Code

(TLOC). And calculate the McCabe Cyclomatic Complexity (MCC), Weighted

Methods per Class (WMC), Lack of Cohesion of Methods (LCOM), Efferent

Coupling (CE), and Afferent Coupling (CA). We also do modification

comparison between refactored and legacy SIA to determine the changed point

and internal structure that have been refactored.

2. Dynamic Performance Efficiency Measuring. This activity uses to measure

both refactored and legacy SIA. We utilize core performance testing activities

defined in (Meier, Farre, Bansode, Barber, & Rea, 2007). There are seven core

activities, Identify Test Environment, Identify Performance Acceptance

Criteria, Plan and Design Tests, Configure Test Environment, Implement Test

Design, Execute Tests, and Analyze, Report, and Retest. This measurement

measure three type of performance efficiency factors: time behavior, resource

utilization and performance efficiency compliance. To achieve this target, we

use performance measurement and profiling tools support. We use Apache

JMeter for measuring time behavior and performance efficiency compliance in

load test functional behavior and measure performance application. JMeter tool

can send a number of requests that simulate an activities user of the application.

We use Java Mission Control (JMC), Java Profiling tools for measuring

42

resource that have been used in specific given time. By collecting information

on the response time and content, and resource use, it is possible to calculate all

defined parameters measure. The test data is generated in CSV and XML file

format. These tools are giving a chance in measure performance efficiency

according to criteria quality requirement measurement specified. Figure 3.5

gives a High-Level sequence diagrams of the processes of JMeter activities and

Java Mission Control in capture resource use.

Figure 3.5 Sequence diagram of JMeter and Java Mission Control interaction

The test scenario uses for performance efficiency measurement need to

reflect the main functionality user activity of the case study system. In principle,

the test activities represent the following data operation: querying, creation,

removal, and update, with data querying being the most prevalent activity. The test

scenario includes activities typical for this kind of application:

1. listing student details,

2. generating and viewing report,

3. adding users, and

:Client WebApplication :
Server

JMeter Send Request
and Simulate a Number of Users

Response Result

JMeter Save All Responses

JMeter Collects Data to
Manipulate Statistical Information

Java Mission Control Save All Responses

Java Mission Control Collects Data to
Manipulate Statistical Information

JavaVisualMachine :
Server

Java Mission Control Request Connection

Response Result

43

4. removing users from the application.

There are a number of performance efficiency parameters measure during

each test. Primarily, we are gathered parameters that directly related to application

performance and support by available tools. The parameters measure includes:

1. Time Behavior Measures

Mean response time, this measurement function use to measure mean time

taken by the system to respond to a user action, where Ai is time between a user’s

request and a system’s response, n is total number of response events measured.

The equation is given in Equation (3.1). Response time conformance, this

measurement function use to measure how well does the system response time meet

the specified target, where A is mean response time result of Equation (3.1), and B

is specified target response time. The equation use to measure is given in Equation

(3.2).

𝑀𝑒𝑎𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 = 	 𝐴% 	/	𝑛
%()	*+	,

																																																			(3.1)

𝑅𝑒𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝐴	/	𝐵																																																							(3.2)

Throughput conformance, this measurement function use to measure how

well does the throughput meet specified targets, where A is number of tasks

completed during the observation time, B is observation time period, C is target

throughput specified, and n is number of observations. The equation use to measure

is given in Equation (3.3)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝐵%	/	𝐴% 	/	𝑛
%()	*+	,

/	𝐶																				(3.3)

The data source use for calculate time behavior characteristic able to obtain from

execute the web performance test through client-server message request and

response using HTTP Request and HTTP Response protocol.

2. Resource Utilization Measures

Mean Processor utilization, this measurement function use to measure how

much processor time is used to execute a given set of tasks compared to the

44

operation time, where Ai is processor time actually used, Bi is operation time to

perform the tasks in observation period i, n is the number of observations. The

equation use to measure is given in Equation (3.4). Mean memory utilization, this

measurement function use to measure how much of memory is used to execute a

given set of tasks compared to the available memory, Ai size of memory actually

used to perform a given set of tasks, Bi is size of memory available to perform the

tasks, n is number of task sets measured. The equation use to measure is given in

Equation (3.5)

𝑀𝑒𝑎𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 	 𝐴%	/	𝐵% 	/	𝑛
%()	*+	,

																													(3.4)

𝑀𝑒𝑎𝑛𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝐴%		/	𝐵% 	/	𝑛
%()	*+	,

																																	(3.5)

The data source use for calculate	resource utilization is take from capturing

resource use during perform web performance testing. Java Mission Control allow

us to detailed low-level runtime information of processor and memory use of Java

Virtual Machine (JVM) and the Java application. The resource utilization enables

us to collect and analyze data from Java applications running locally and remotely.

3. Capacity Measures

Transaction processing capacity conformance, this measurement function

use to measure how many concurrent transactions can be processed at any given

time against the specified target, where Ai is number of active transactions at instant

given i, B is total operation duration, and C is required transaction processing

capacity per unit of time specified. The equation use to measure is given in Equation

(3.6).

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐴%	/	𝐵 	/	𝐶																																														(3.6)

The data source that used to calculate capacity conformance is getter from

execute the web performance test through client-server message request and

response using HTTP Request and HTTP Response protocol. We simulate

transaction process and user access and continues increase the number of

45

transaction and process to investigate how far the JVM and Java application can

handle the specified load test.

3. Output Analysis and Validation. This activity analyzes and validate the

measurement result for performance efficiency of refactored and legacy SIA

system (Section 3.5). The result of this step provides the source of data to

analyze and investigate the impact of design pattern through refactoring

process. The process will show the impact of design pattern either positive of

negative in performance measurement criteria.

3.4 Solution Implementation

In this phase, the solution design is implement in this step. The

implementation follows the step processes that given in solution design start to

initializing and experimental. The process including of analyzing, refactoring and

evaluation measurement.

In order to simulate the activities of a number of web application users, a

load generator tool is used. The tool chosen is Apache’s JMeter. JMeter is able to

send HTTP requests to an application according to a predefined scenario. The tool

supports the simulation of multiple concurrent users, as well as the ability to specify

intensity of the test. The tests are conducted in series, in one series included several

simulations. In the first test stage, 5 concurrent users are simulated. In the second

test stage, 10 users are simulated, and in subsequent test stages, the number of

simulated users are always increased by 10 users. Finally, the test simulated reach

maximum concurrent users that application and server can handle to accessing the

test application. Each round is repeated 3 times to ensure that the results are

meaningful and reliable. We use Java Mission Control tool for capture resource data

use in a particular given time in order to collect and detail information about Java

Application that use CPU and Memory during execute time running on the Java

Virtual Machine (JVM).

The performance efficiency parameters are giving in (Section 3.3.5). These

set of parameters allow us to thoroughly observe how the application’s behavior

change depending on the number of users for each of the investigate design variants

46

used for each iteration. The approach implementation conducts in a controlled

environment. The controlled environment gives accurate result and minimize noise

during run the test. The test environment consists of two machines located in a local

network, the server and the client side machine. The test environment as show in

Table 3.1.

Table 3.1 Test Environment Specification

Environment Specification Server Client
Hardware Processor Intel(R) Xeon(R) CPU

E5-2620 v3 @
2.40GHz 64bits

Intel Core i7 2GHz

 RAM 7855MB 16GB
 HDD 500GB 500GB
 Network

Card
1Gbit/s 1Gbit/s

Software Operating
System

Ubuntu 14.04.3 LTS
(GNU/Linux 3.19.0-
42-generic x86_64)

Macintosh; Intel
Mac OS X 10.11

 Development
Tools

(Java HotSpot(TM)
64-Bit Server VM
(build 24.80-b11,
mixed mode)) with
Java(TM) SE Runtime
Environment (build
1.7.0_80-b15), Virgo
Server 3.6.4 and
PostgreSQL 9.4

Eclipse 4.4 with
Spring Tool Suite
(STS) 3.7.3 installed,
Visual Paradigm
13.2, ObjectAid
UML Explorer 1.1.4,
Hibernate
Framework 4.2

 Performance
Testing Tools

 JMeter 3.1 and Java
Mission Control 5.5

3.5 Solution Analysis

 In this phase, we analyze our solution by investigating its availability for the

problems discovered in the problem analysis phase. This is a knowledge problem

since we want to gain knowledge about the properties of our solution, and the

relation between the solution and the problems. The outcome of the solution

analysis phase is fed back to the solution design phase in order to improve the

47

solution. In this phase analysis process of the hypothesis will analyze the solution

design based on given criteria. The analysis result will achieve when hypothesis

have been answered. There are two main criteria of this thesis, either positive or

negative impact of design patterns in refactoring process in improvement of design

structure of code. To achieve this goal, we use particular performance efficiency

measures (Section 3.3.5) to measure both systems, legacy and refactored systems.

These measurement result provides the mean and median values of the measured

timings across all runs instead of reporting only best or worst runs.

We do validation our experiment result by comparing gained result detail

between legacy and refactored system to see the differentiate of the systems. We

present our results in statistical and graphical presentation based upon the raw

experimental data.

3.6 Report Results

In this phase, we do documentation report of obtain result from each step

from literature and theory, problem analysis, solution design, solution

implementation and solution validation result. The report will be follow the

standard guide provided by institute. The report will be useful and future worth for

reader who are interesting in the topic focusing area of the thesis cover.

3.7 Preliminary Experiment

In this phase, we do some part of the proposed approach preliminary

experiment to ensure in general for propose approach is realize and possible in

implementation. Our select case study is Adapter patterns. In Figure 3.5 is the

legacy code of the application. And Figure 3.6 illustrated the application when

refactored using Adapter design patterns.

Figure 3.6 Legacy of Line and Rectangle objects

48

Figure 3.7 Adapter with extra level of indirection

In Table 3.2, the complexity measurement of Total Line of Code is 35 and

52 LOC for legacy and refactored system. The LOC of refactored is increased

because of extend to create another extra classes and interfaces. The Number of

Classes (NOC) are 3 and 5 classes for legacy and refactored system. The Number

of Methods (NOM) are 2 and 4 methods for legacy and refactored. The Number of

Interfaces (NOI) is added 1 interface for refactored. The Number of Attributes

(NOF) is added 2 attributes for refactored system. The metric of Cyclomatic

Complexity measure gains 2 and 1.2 for Mean on both side.

Table 3.2 Complexity of the Application

Complexity of the applications Legacy Refactored
Total Mean Total Mean

Lines of Code (LOC) 35 52
Number of Classes (NOC) 3 5
Number of Methods (NOM) 2 0.667 4 0.8
McCabe Cyclomatic Complexity (VG) 2 1.2
Number of Interfaces (NOI) 1
Number of Attributes (NOF) 2 0.4

The complexity measurement has shown that the compared result between

refactored application is less complex than original legacy application as present in

graph depicted in Figure 3.8 and Figure 3.9.

49

Figure 3.8 Graph representation of number of total

Figure 3.9 Graph representation of complexity of the application

35

3 2 0 0 0

52

5 4
0 1 2

0

10

20

30

40

50

60

Lines	of	Code	
(LOC)

Number	of	
Classes	(NOC)

Number	of	
Methods	(NOM)

Number	of	
Packages	(NOP)

Number	of	
Interfaces	(NOI)

Number	of	
Attributes	(NOF)

Nu
m
be

r	o
f	T
ot
al

Metrics

Legacy

Refactored

2

1.2

0

0.5

1

1.5

2

2.5

McCabe	Cyclomatic	Complexity

Va
lu
e	
of
	M

ea
n

Metrics

Legacy

Refactored

50

(This page intentionally left blank)

51

CHAPTER 4

IMPLEMENTATION RESULT

In this chapter, the solution design is implement in this step. The

implementation follows the step processes given in solution design start to

initializing and experimental. The process including of analyzing, refactoring and

performance measuring. The implementation and discussion of the obtain result

given in this chapter.

4.1 Analyzing

4.1.1 Reverse Engineering

Academic Information System or (Sistem Informasi Akademik) or SIA for

short, is created based on Modularity architecture and implemented Hierarchical

Model-View-Controller (HMVC), the pattern decomposes the client tier into a

hierarchy of parent-child MVC layers. The repetitive application of this pattern

allows for a structured client-tier architecture for reduces dependencies and

increases extensibility.

This version of Academic Information System is constructed by team of

students and researchers at Department of Informatic Engineering, Institut

Teknologi Sepuluh Nopember, Surabaya. The first snapshot version of SIA system

consists of four modules, there are Kurikulam Module, Pembelajaran Module,

Penilain Module and Ekivelensi Module as illustrated in Figure 4.1

Figure 4.1 Academic Information System architecture design

Modules

Academic Information
System Framework

Module Kurikulum

Module Pembelajaran

Module Penilaian

Module Ekivelensi

Academic
Information

System
Database

Academic Information
System Framework

External
Database

52

Then, the SIA system was refactoring to advance modularity architecture.

The SIA system framework created based on five layers’ modularity architecture

serving Separation of Concerns principle, there are Web Layer, Service Layer, Data

Layer, Plugin Layer, and Domain Layer. All these layer is built and deploy

independently on OSGi framework. Figure 4.2 illustrated UML component diagram

architecture of SIA system.

Figure 4.2 Component diagram of Academic Information System Architecture

Design

Currently, SIA system that was refactored consist of six modules, there are

Framework Module, Domain Module, Pembelajaran Module, Kurikulam Module,

Ekivelensi Module, and Penilain Module. The architecture model component

designs each module of SIA illustrated in Figure 4.3.

OSGi Environment

Academic Information System

Modul

sia-plugin

use

sia-domain

use

sia-web

sia-service

sia-data

Spring Framework Hibernate other dep.

use

use
use

use

use

use

use
use

use use use

53

Figure 4.3 Packet Diagram of Sistem Informasi Akademik (SIA)

In our case study research implementation, we utilize experiment the

refactoring process on Module Penilaian (Grading Module). The design of Grading

Module is illustrated in Figure 4.4. The module architecture is to split the project

into several logical layers.

1. Client side (what users see in browsers): UI layer, in our case study

system use HTML/JSP page with JSTL and Spring forms

2. Server side: Controller layer (Spring MVC), Service layer (Spring),

Repositories (Spring and Hibernate)

3. Data layer: PostgreSQL

4. Model – Java bean classes, which represent application data objects.

54

Figure 4.4 Design of Module Penilaian Architecture

Grading Module allows administrator and instructors to submit or change

assignment and examination mark, final grades, generate the report, generate

student transcript, produce IPS and IPK scores, managing questionnaire for the

students in their courses. The SIA grading module present 14 features as list in

Table 4.1.

Table 4.1 Lists of Grading module features

No. Features
1 Managing student learning outcome results
2 Managing the assessment component
3 Viewing teacher questionnaires performance report
4 Viewing the questionnaire report per class
5 Viewing the questionnaire report per period
6 Filling teacher performance questionnaire
7 Viewing student learning results assessment
8 Viewing the assessment results per class
9 Viewing student recapitulation result (transcript)
10 Viewing student achievement index
11 Viewing student cumulative grade index
12 Viewing student periodic achievement index
13 Managing teacher performance questionnaires
14 Managing the conversion of numeric to letter values

DatabaseBack end
Model

Front end

JSP/JSTL/JS/
CSS/etc. Controllers

Services

Repositories

Hibernate
Framework Entity

PostgreSQL

55

There are five users collaborate in this module; Pendidik, Kepala Pendidik,

Perserta Didik, Tenaga Kepedidikan, and Tenaga Kepedidikan Pusat. The

interaction and interplay of users to each feature can be describe in use case diagram

as illustrated in Figure 4.5

Figure 4.5 Use Case Diagram of SIA Grading Module

The grading module organizing Java classes and interfaces by categorized

it in packages unique namespace, to represent parts and components of the system.

The module consists of three main packages, there are Package Controller,

Package Service, and Package Repository.

System

Managing student learning
outcome results

Managing the
assessment component

Viewing teacher questionnaires
performance report

Viewing the questionnaire
report per class

Viewing the questionnaire
report per period

Filling teacher performance
questionnaire

Viewing student learning
results assessment

Viewing student recaptulation
result (transcript)

Viewing the assessment
results per class

Viewing student
achievement index

Viewing student
cumulative grade index Viewing student periodic

achievement index

Managing teacher
performance questionnaires

Managing the conversion of
numeric to letter values

«includes»

Teacher

Head of Teacher
Education Staff

Central Education Staff

Student

56

Figure 4.6 Package Diagram of Grading Module

The Package Controller (package com.siakad.modul_penilaian.

controller), responsible for act as an interface between Model and View

components to process all the business logic and incoming requests, manipulate

data using the Model component and interact with the Views to render the final

output.

The Package Service (package com.siakad.modul_penilaian.service),

responsible for the middle layer between presentation and data store. It abstracts

business logic and data access. It defines and implement the service interface and

the data contracts

The Package Repository (package com.siakad.modul_penilaian.

repository), responsible to separate the logic that retrieves the data and maps it to

the entity model from the business logic that acts on the model. Mediates between

the domain and data mapping layers using a collection-like interface for accessing

domain objects. Package repository implemented Repository pattern in interacting

with the database through Hibernate Framework as helper of Data Access Object

(DAO).

57

The interconnection between packages of the module illustrated in package

diagram in Figure 4.6.

Package Controller consist of 5 main classes. The class name, and its

properties as show in Table 4.2 Package Repository consist of 18 classes and 18

interfaces. The class name, interfaces, and its properties as show in Table 4.3

Package Service consist of 24 classes and 18 interfaces. The classes name,

interfaces, and its properties as show in Table 4.4

 Table 4.2 Lists of classes and its properties in package controller

No. Class Name Visibility Parent Name
1 ControllerFile public controller
2 ControllerIP public controller
3 ControllerKuisioner public controller
4 ControllerLaporan public controller
5 ControllerNilai public controller

Table 4.3 Lists of classes, interface, and its properties in package repository

No. Class Name Stereotypes Visibility Parent
Name

1 IpkRepository <<Interface>> public repository
2 IpkRepositoryImpl public repository
3 IpsRepository <<Interface>> public repository
4 IpsRepositoryImpl public repository
5 KomponenNilaiRepository <<Interface>> public repository
6 KomponenNilaiRepositoryImpl public repository
7 KonversiNilaiRepository <<Interface>> public repository
8 KonversiNilaiRepositoryImpl public repository
9 KrsRepository <<Interface>> public repository
10 KrsRepositoryImpl public repository
11 KuisionerRepository <<Interface>> public repository
12 KuisionerRepositoryImpl public repository
13 MenuPeranRepository <<Interface>> public repository
14 MenuPeranRepositoryImpl public repository
15 NilaiKuisionerRepository <<Interface>> public repository

58

No. Class Name Stereotypes Visibility Parent
Name

16 NilaiKuisionerRepositoryImpl public repository
17 NilaiRepository <<Interface>> public repository
18 NilaiRepositoryImpl public repository
19 PdRepository <<Interface>> public repository
20 PdRepositoryImpl public repository
21 PembRepository <<Interface>> public repository
22 PembRepositoryImpl public repository
23 PendidikPengajarRepository <<Interface>> public repository
24 PendidikPengajarRepositoryImpl public repository
25 PenggunaRepository <<Interface>> public repository
26 PenggunaRepositoryImpl public repository
27 PeranPenggunaRepository <<Interface>> public repository
28 PeranPenggunaRepositoryImpl public repository
29 PeranRepository <<Interface>> public repository
30 PeranRepositoryImpl public repository
31 PertanyaanKuisionerRepository <<Interface>> public repository
32 PertanyaanKuisionerRepositoryImpl public repository
33 StatusKuisionerRepository <<Interface>> public repository
34 StatusKuisionerRepositoryImpl public repository
35 TglSmtRepository <<Interface>> public repository
36 TglSmtRepositoryImpl public repository

Table 4.4 Lists of classes, interfaces, and its properties in package service

No. Class Name Stereotypes Visibility Parent
Name

1 AjaxResponse public service
2 dataTranskrip public service
3 IpkService <<Interface>> public service
4 IpkServiceImpl public service
5 IpsService <<Interface>> public service
6 IpsServiceImpl public service
7 JSONNilai public service
8 JSONNilaiKuisioner public service
9 JSONPertanyaan public service

59

No. Class Name Stereotypes Visibility Parent
Name

10 KomponenNilaiService <<Interface>> public service
11 KomponenNilaiServiceImpl public service
12 KonversiNilaiService <<Interface>> public service
13 KonversiNilaiServiceImpl public service
14 KrsService <<Interface>> public service
15 KrsServiceImpl public service
16 KuisionerService <<Interface>> public service
17 KuisionerServiceImpl public service
18 MenuPeranService <<Interface>> public service
19 MenuPeranServiceImpl public service
20 NilaiKuisionerPerPemb public service
21 NilaiKuisionerService <<Interface>> public service
22 NilaiKuisionerServiceImpl public service
23 NilaiService <<Interface>> public service
24 NilaiServiceImpl public service
25 PdService <<Interface>> public service
26 PdServiceImpl public service
27 PembService <<Interface>> public service
28 PembServiceImpl public service
29 PendidikPengajarService <<Interface>> public service
30 PendidikPengajarServiceImpl public service
31 PenggunaService <<Interface>> public service
32 PenggunaServiceImpl public service
33 PeranPenggunaService <<Interface>> public service
34 PeranPenggunaServiceImpl public service
35 PeranService <<Interface>> public service
36 PeranServiceImpl public service
37 PertanyaanKuisionerService <<Interface>> public service
38 PertanyaanKuisionerServiceImpl public service
39 StatusKuisionerService <<Interface>> public service
40 StatusKuisionerServiceImpl public service
41 TglSmtService <<Interface>> public service
42 TglSmtServiceImpl public service

60

The class design of the module follows the SOLID principles of object-

oriented programming. As here, they implemented Dependency Inversion

Principle. With Dependency Inversion Principle, an interface is introduced as an

abstraction in a package. An object refers to interface and an object from another

package inherits from interface too.

The Spring Framework use annotation in representing type of class. The

@Service annotation is a stereotype and is used at class level that makes the class a

service. A service class implements business logic using DAO, utility classes etc.

The @Repository annotation is a stereotype and is used at class level. The class,

whose behavior is to store, fetch or search data, comes to the repository category.

The @Controller annotation is a stereotype and is used at class level in Spring Web

MVC. It indicates that the class is a web controller.

Figure 4.7 ControllerNilai class diagram interconnection with other classes

For example, Class ControlNilai is one of controller class in package

controller, it communicates to class PembService in package service and use class

Service

Repository

Controller

1

*

-servicePemb

1 -repositoryPemb

61

PembRepository in package repository to connect and query require data from the

database. Figure 4.7 demonstrate how ControllerNilai class diagram communicates

and depends on other classes of another package.

The @Controller and @RequestMapping annotations allow flexible method

names and signatures. In this example, the method accepts a Model and returns a

view name as a String. @Controller and @RequestMapping and many other

annotations form the basis for the Spring MVC implementation. The @Controller

annotation indicates that a class serves the role of a controller. The @Controller

annotation acts as a stereotype for the annotated class, indicating its role as shown

in ControllerNilai.java class in package Controller. The dispatcher scans such

annotated classes for mapped methods and detects @RequestMapping annotations.

@RequestMapping annotation to map URLs such as /lihat_nilai onto an entire class

or a handler method. Typically, the class-level annotation maps a specific request

path (or path pattern) onto a form controller, with additional method-level

annotations narrowing the primary mapping for a specific HTTP method request

method ("GET", "POST", etc.) or an HTTP request parameter condition.

In the Table 4.5 shown a part of ControllerNilai.java example,

@RequestMapping is used in a number of places. The first usage is on the type

(class) level, which indicates that all handler methods in this controller are relative

to the /lihat_nilai path. The post() method has a further @RequestMapping

refinement: it only accepts POST requests, meaning that an HTTP POST for

/lihat_nilai invokes this method.

A @Autowired annotation use to auto wire bean on the setter method,

constructor or a field, and autowired property in a particular bean. The @Autowired

here is autowired on properties to get rid of the setter methods.

Table 4.5 Source code of class ControllerNilai in package Controller

@Controller

public class ControllerNilai {

 @Autowired

 private PembService servicePemb;

@RequestMapping(value = "/lihat_nilai/", method = RequestMethod.POST)

62

 public ModelAndView tampilkanLihatNilai(@RequestParam("idPemb") UUID
idPemb, Locale locale, Model model) {
 List<TglSmt> daftarTglSmt = serviceTglSmt.ambilSemuaTglSmt();
 List<Pemb> kelas = servicePemb.ambilSemuaPemb();
 List<Krs> krsInfo = serviceKrs.ambilKrsBerdasarkanPemb(idPemb);
 Pemb pemb = servicePemb.ambilPemb(idPemb);
 String namaKelas = pemb.getMk().getNamaMK() + " " +
pemb.getNmPemb();

 ModelAndView lihatNilai = new ModelAndView();
 lihatNilai.setViewName("laporan_nilai_per_kelas");
 lihatNilai.addObject("krsInfo", krsInfo);
 lihatNilai.addObject("namaKelas", namaKelas);
 lihatNilai.addObject("listKelas", kelas);
 lihatNilai.addObject("listTglSmt", daftarTglSmt);

 return lihatNilai;
 }
}

 @Component is a generic stereotype for any Spring-managed component.

@Repository, and @Service are specializations of @Component or more specific

use cases, for example in the persistence and service layers. In Table 4.6, and Table

4.7 are a part of PembServiceImpl.java and PembRepositoryImpl.java classes

source code. In PembServiceImp class, @Service, act as business logic. This

annotation of business layer in which our user will not directly call persistence

method so it will call this method using @Service. @Service will request

@Repository as per user request. The PembRepositoryImpl is a class is for

persistence layer (Data Access Layer) of application which used to get data from

database.

Table 4.6 Source code of class PembServiceImpl in package service

@Service
public class PembServiceImpl implements PembService {
 @Autowired
 private PembRepository repositoryPemb;

 @Override
 public List<Pemb> ambilSemuaPemb() {
 // TODO Auto-generated method stub
 return repositoryPemb.getAll();
 }

 @Override
 public List<Pemb> ambilBerdasarkanTglSmt(UUID idTglSmt) {
 // TODO Auto-generated method stub
 return repositoryPemb.getByTglSmt(idTglSmt);
 }

63

 @Override
 public List<Pemb> ambilBerdasarkanTglSmtPtk(UUID idTglSmt, UUID idPtk)
{
 // TODO Auto-generated method stub
 return repositoryPemb.getByTglSmtPtk(idTglSmt, idPtk);
 }

 @Override
 public Pemb ambilPemb(UUID idPemb) {
 // TODO Auto-generated method stub
 return repositoryPemb.getById(idPemb);
 }
}

Table 4.7 Source code of class PembRepositoryImpl in package repository

@Transactional
@Repository
public class PembRepositoryImpl implements PembRepository {
 @Autowired
 private SessionFactory sessionFactory;

 @Override
 public Pemb getById(UUID idPemb) {
 // TODO Auto-generated method stub
 return (Pemb)
sessionFactory.getCurrentSession().get(Pemb.class, idPemb);
 }

 @Override
 public List<Pemb> getByTglSmt(UUID idTglSmt) {
 // TODO Auto-generated method stub
 Query query =
sessionFactory.getCurrentSession().createQuery("SELECT pemb FROM Pemb pemb
WHERE pemb.tglSmt.idTglSmt = '" + idTglSmt + "' AND pemb.aPembTerhapus =
FALSE");
 return query.list();
 }

 @Override
 public List<Pemb> getByTglSmtPtk(UUID idTglSmt, UUID idPtk) {
 // TODO Auto-generated method stub
 String queryString = "SELECT pp.pemb FROM PendidikPengajar pp
WHERE pp.pemb.tglSmt.idTglSmt = '" + idTglSmt + "' AND pp.ptk.idPtk = '" +
idPtk + "' AND pp.pemb.aPembTerhapus = FALSE";
 Query query =
sessionFactory.getCurrentSession().createQuery(queryString);
 return query.list();
 }

 @Override
 public List<Pemb> getAll() {
 Query query =
sessionFactory.getCurrentSession().createQuery("SELECT pemb FROM Pemb pemb
WHERE pemb.aPembTerhapus = FALSE");
 return query.list();
 }
}

64

4.1.2 Measuring Complexity of the Application

The following detail provide description gaining results complexity

measurement of the case study.

Total number of packages (NOP) is 3 packages. Total number of classes

(NOC) is 47 classes. Total number of interfaces (NOI) is 37 interfaces. Total

number of attributes (NOF) is 79 attributes. Total number of methods (NOM) is

250 methods and total line of code (TLOC) represented in thousand-line of code

(KLOC) is 3.117 KLOC.

The mean value of; McCabe Cyclomatic Complexity (MCC) is 1.268, the

Weighted Methods per Class (WMC), sum of the McCabe Cyclomatic Complexity

for all methods in a class is 6.745. The Lack of Cohesion of Methods (LCOM), a

measure for the Cohesiveness of a class is 4.968. The Efferent Coupling (CE), the

number of classes inside a package that depend on classes outside the package is

25.667. The Afferent Coupling (CA), the number of classes outside a package that

depend on classes inside the package is 7.667.

The graph of the complexity result of the grading module presented in

Figure 4.8 and Figure 4.9.

Figure 4.8 Graph representation number of total of metrics

3

47
36

79

250

3.117
0

50

100

150

200

250

300

Number	of	
Packages	(NOP)

Number	of	Classes	
(NOC)

Number	of	
Interfaces	(NOI)

Number	of	
Attributes	 (NOF)

Number	of	
Methods	 (NOM)

Kilo	Lines	of	Code	
(KLOC)

Nu
m
be

r	o
f	T
ot
al

Metrics

65

Figure 4.9 Graph representation of mean metric value of complexity

4.1.3 Identifying Problem

There is architecture and design patterns applied on the Grading module.

The SIA system is created based on Hierarchical model–view–controller (HMVC),

software architectural pattern as main pattern of its structure and implementing

single responsibility principle. The system is divided into layers follow the layering

principle. Layering principle consist of Presentation Layer, Service Layer (the

actual business logic) and Data Access Layer. The system source code structure and

design is powered and implemented by several technology and framework as Java

EE platform, Spring Framework and Hibernate. And the system is deployed on

Virgo server which Apache Tomcat version.

In Grading module, a Controller is typically responsible for preparing a

model Map with data and selecting a view name but it can also write directly to the

response stream and complete the request. View name resolution is highly

configurable through file extension or accept header content type negotiation,

through bean names, a properties ViewResolver file. The model (the M in MVC) is

a map interface, which allows for the complete abstraction of the view technology.

It can integrate directly with template based rendering technologies as JSP. The

model map is simply transformed into an appropriate format inform of JSP request

attributes and rendering to user web browser as result of complete request and

response.

1.268

6.745
4.968

25.667

7.667

0

5

10

15

20

25

30

McCabe	Ciclomatic	
Complexity	(VG)

Weighted	Methods	
per	Class	(WMC)

Lack	of	Cohesion	 of	
Methods	 (LCOM)

Efferent	Coupling	 (CE) Afferent	Coupling	 (CA)

Va
lu
e	
of
	M

ea
n

Metrics

66

In Figure 4.10 classes and subclasses, especially older ones are masses of

complex legacy code. When class in package controller must interact, they often

make calls directly into classes package services. It is creating one-to-many

dependencies, and these myriad tendrils of connectivity are difficult to

maintenance. The subclasses become very delicate since making seemingly

insignificant changes in a single subclass can affect the entire program. It creates

complexity communication and dependencies between two or more classes or

interfaces.

Figure 4.10 Communication and dependencies between classes

For example, class ControllerA in package controller, make communication

with four interfaces of package service, ServiceA and ServiceB, ServiceC and

ServiceN. Class ControllerB and ControllerC and ControllerN also create

communication to ServiceA and ServiceB, ServiceC and ServiceN too. It means all

Services class have to handle three or more communications at the same time, it is

created dependency nightmare for developer in future maintenance. By this

ControllerService

Repository

<<interface>>
ServiceA

<<interface>>
ServiceB

<<interface>>
RepositoryA

<<interface>>
RepositoryB

<<interface>>
ServiceN

<<interface>>
RepositoryN

ControllerA

ControllerB

ControllerN

ServiceAImpl

ServiceBImpl

ServiceNImpl

ServiceCImpl <<interface>>
ServiceC

<<interface>>
RepositoryC

RepositoryAImpl

RepositoryBImpl

RepositoryCImpl

RepositoryNImpl

ControllerC

67

potential emerging problem, we consider to redesign and refactor the module

system structure for further feature extend and performance of the system.

4.1.4 Design Patterns Selection

According to problem identification section, we chose to introduce the

advantages of apply Façade pattern in decreasing dependency for the purpose of

separation of concerns (SoC).

MVC pattern, especially in enterprise system and complex code, are masses

of dependency code and poorly designed, over-complex classes. When two classes

of packages must interact, they often make calls directly into each other, and these

create large connectivity maintenance nightmare. The classes become very delicate

since making seemingly insignificant changes in a single classes can affect the

entire program. Facade addresses the problem by forcing programmers to use a

classes indirectly through a well-defined single point of access, thereby shielding

the programmers from the complexity of the code on the other side of the facade.

Facade improves the independence of the classes, making it easy to change or even

replace them without impacting outside code.

Façade improves the independence of the subsystems (classes), making it

easy to change or even replace them without impacting outside code. It provides a

manageable way to migrate legacy code to a more object-oriented structure, hides

badly done, overly complex legacy code and lets you treat an entire legacy system

as if it were a single, coarse-grained object. It deals internally with all the actions

you would otherwise have to code each time you access those functionalities; the

result is simplification of calls to an action on the class.

The Facade pattern ensures the scalability of the Models. When a number

of Model objects grows, and it becomes inconvenient to pass a lot of them to

Controllers, or when you notice a lot of business logic settling down in Controllers,

consider wrapping those Model objects in a Facade which will hide the complexity

and implementation details. In our case study, the Façade is a class that provide

interface access to an object from the container, from Controllers to Models or

services. The Façade wraps all service classes and create interface ease of use for

68

controller to reduce complexity dependency and make certain the scalability

between those classes.

4.2 Refactoring

4.2.1 Refactoring and Applying Design Patterns

In Refactoring processes, we identify refactoring candidates, plan

refactoring activities, implement on planned refactoring tasks, and test to ensure

behavior preservation.

We identify the refactoring candidates by introduce to advance Façade

design pattern. The create façade service package that contain façade class function

that use for functioning easy to use interface communication between classes in

package service and package controller.

Figure 4.11 Class diagram of the Façade pattern implement in grading module

In Figure 4.11 present our candidate façade design pattern design in grading

module. FacadeService is placed in between the controller and the service. It created

opportunities to establish intermediate layers of abstraction with wrap a poorly-

designed collection of classes with a single well-designed classes that further foster

ControllerService

Repository

<<interface>>
ServiceA

<<interface>>
ServiceB

<<interface>>
RepositoryA

<<interface>>
RepositoryB

<<interface>>
ServiceN

<<interface>>
RepositoryN

ControllerA

ControllerB

ControllerN

ServiceAImpl

ServiceBImpl

ServiceNImpl

ServiceCImpl <<interface>>
ServiceC

<<interface>>
RepositoryC

RepositoryAImpl
RepositoryBImpl

RepositoryCImpl
RepositoryNImpl

ControllerC

FacadeService

FacadeService

69

reduced levels of coupling and reduce dependencies of outside code on the inner

workings of a library, since most code uses the facade, thus allowing more

flexibility in developing the system. This allows the service to remain decoupled

from the controller. A façade component is used to abstract a part of the service and

controller architecture with less-coupling potential

This solution is to attain a reduced degree of coupling between services and

controller, thereby increasing the freedom and flexibility with which services can

be individually evolved. This can result in an elegant architecture design with clean

layers of abstraction, but it can also impose extra processing overhead that naturally

comes with increasing the physical distribution of controller call.

4.3 Performance Measuring

4.3.1 Measuring Complexity of the Applications

The finding complexity result of the application variants can be identified.

The complexity result can be grouping into two categories, number of total and

complexity metric.

Figure 4.12 illustrates the number of total both legacy and refactored SIA.

Total number of packages (NOP) is 3 packages for legacy and 3 packages for

refactored. Total number of classes (NOC) is 47 classes for legacy and 48 classes

for refactored. Total number of interfaces (NOI) is 36 interfaces for legacy and

refactored. Total number of attributes (NOF) is 79 attributes for legacy and 82

attributes for refactored. Total number of methods (NOM) is 250 methods for

legacy and 261 methods for refactored. And total line of code (TLOC) represented

in thousand-line of code (KLOC) is 3.117 KLOC for legacy and 3.427 KLOC for

refactored.

In complexity metric, the result gained from the experiment and presented

in Mean value standard. Figure 4.13 show the mean value results of complexity

metric both legacy and refactored of the grading module.

70

Figure 4.12 Graph representation number of total of metrics of legacy and

refactored system

The mean value of McCabe Cyclomatic Complexity (MCC) is 1.268 for

legacy and 1.598 for refactored. The mean of Weighted Methods per Class (WMC),

is 6.745 for legacy and 7.253 for refactored. The mean of Lack of Cohesion of

Methods (LCOM) is 4.968 for legacy and 3.891 for refactored. The mean value of

Efferent Coupling (CE) is 25.667 for legacy and 19.891 for refactored. The mean

value of Afferent Coupling (CA) is 7.667 for legacy and 5.376 for refactored.

Figure 4.13 Graph representation of mean value complexity of legacy and

refactored system

3

47 36

79

250

3.1174

48
36

82

261

3.435
0

50

100

150

200

250

300

Number	of	
Packages	(NOP)

Number	of	Classes	
(NOC)

Number	of	
Interfaces	(NOI)

Number	of	
Attributes	 (NOF)

Number	of	
Methods	 (NOM)

Kilo	Lines	of	Code	
(KLOC)

Nu
m
be

r	o
f	T
ot
al

Metrics

Legacy

Refactored

1.268

6.745
4.968

25.667

7.667

1.598

7.253

3.891

19.891

5.376

0

5

10

15

20

25

30

McCabe	Cyclomatic	
Complexity	(VG)

Weighted	Methods	per	
Class	(WMC)

Lack	of	Cohesion	 of	
Methods	 (LCOM)

Efferent	Coupling	 (CE) Afferent	Coupling	 (CA)

Va
lu
e	
of
	M

ea
n

Metrics

Legacy

Refactored

71

The comparison of the complexity result shown clear differences

perspective of metric between legacy and refactored.

There is the same result in Total number of packages (NOP). Total number

of classes (NOC) is increased 1 class. Total number of interfaces (NOI) is still the

same. Total number of attributes (NOF) is increased 3 attributes. Total number of

methods (NOM) is increased 11 methods. Total line of code (TLOC) represented

in line of code (LOC) is increased 310 LOC. The result is increased because of we

added package and class in investigate new design of the refactored system.

The mean value of McCabe Cyclomatic Complexity (VG) is increased

0.330 point. The mean of Weighted Methods per Class (WMC), sum of the McCabe

Cyclomatic Complexity for all methods in a class is increased 0.508 point. The

mean of Lack of Cohesion of Methods (LCOM), a measure for the Cohesiveness of

a class is decreased 1.077 point. The mean value of Efferent Coupling (CE), the

number of classes inside a package that depend on classes outside the package is

decreased 5.776 point. The mean value of Afferent Coupling (CA), the number of

classes outside a package that depend on classes inside the package is decreased

2.291 point. Complexity metric as MCC and WMC is calculated based on function

point of method so the result of Mean value is almost increased in this class because

we added methods of class. Adding new extra layer of façade design pattern, the

mean value of metrics LCOM, CE, and CA is decreased because of these metrics

related to dependency between two object inside or outside object.

4.3.2 Dynamic Performance Efficiency Measurement

There are four test scenarios in the test includes activities typical for the

application. There are Test Scenario 1 (TS1): listing student details, Test Scenario

2 (TS2): generating and viewing report, and Test Scenario (TS3): adding users the

application and Test Scenario 1 (TS4): removing users from the application.

All the test scenarios were simulated with a number of concurrent threads

(users) increasing from 10 to 350. This final number of threads was determined

empirically and it was the maximum number of threads that the application and

server could handle (breaking point). After running a full sequence of requests for

given number of threads, it was repeated until the total number of requests reached

72

around 3,150 requests. This number was also determined empirically and it was

when the response time from the server was stable, meaning that the server had

already allocated enough resources to serve a given number of threads. Table 4.8

show the JMeter log file determined the application server stable response the

request.

A test round for one tested case started from simulating 10 concurrent

threads. Then the number was set to 10 threads and after that it was always increased

by 10 until the maximum number of 350 threads was reached. Each round was

repeated 3 times to ensure that the results are meaningful and reliable.

Figure 4.14 JMeter Concurrency Thread Group setting

We defined the Thread Group for pool of users that will execute a particular

test case against the server. JMeter makes the number of users, and the ramp-rate

configurable. We use HTTP Request Defaults configuration element to the Thread

Group. This configuration element sets up the domain IP address of the server, the

port and the protocol (HTTP/ HTTPS). We use HTTP Cookie Manager, it stores

and sends cookies. HTTP Request and the response contains a cookie, the Cookie

Manager automatically stores that cookie and will use it for all future requests. For

the purposes of this research, the default configurations are enough. We define

HTTP Header Manager, it lets you add or override HTTP request headers. The

HTTP Cache Manager is used to add caching functionality to HTTP requests within

73

its scope to simulate browser cache feature. Each Virtual User thread has its own

Cache. By default, Cache Manager will store up to 5000 items in cache per Virtual

User thread. We use HTTP Request element, for send an HTTP/HTTPS request to

the SIA web server. This configuration element lets us sets up test scenarios as

defined, the domain or IP address patch of web application.

In Figure 4.14, it is show concurrency thread group setup in JMeter. We set

1,000 threads as target load, 30 minutes Ramp Up Time, 100 Ramp-Up Steps, 10

minutes holding the target rate. This means that, the test begins immediately when

JMeter starts. In every 0.3 minutes 10 users will be added until we reach 1000 users.

It is can be calculate as 30 minutes divided by 10 steps equals 0.3 minutes per step.

1000 users divided by 100 steps equals 10 users per step. Totaling 10 users every 3

minutes. The first step is 0-10, the second 11-20, and 21-30 etc., because it started

10 threads to run at the beginning. After reaching 1,000 threads all of them will

continue running and hitting the server together for 10 minutes and all thread will

stop.

Figure 4.15 Java Flight Recorder (JFR) in Java Mission Control (JMC)

Java Mission Control (JMC) provide us to gather the data necessary with

the lowest possible impact on the running system. JMC use the JMX Console as

tool for monitoring and managing multiple Oracle JDK instances. It captures and

74

presens live data about memory and CPU usage. Java Flight Recorder and Java

Mission Control together create a complete tool chain to continuously collect low

level and detailed runtime information enabling after-the-fact incident analysis.

In Figure 4.15 shown how we setup and captured data using Java Flight

Recorder in Java Mission Control (JMC). We connect JMC profiling tool to SIA

server through JMX connection. We use Java Flight Recorder (JFR) in produces

detailed recordings about the JVM and the application it is running. The recorded

memory and CPU usage data can be analyzed off line, using the Flight Recorder

tool in JMC. We use two provides specialized tabs in JFR that focus on a specific

area of Memory and Threads (CPU).

The result of dynamic performance efficiency measuring is provided

variants depending on type of performance efficiency parameter measures and test

scenarios. Each detail result provided as below.

4.3.3 Time Behavior Measures

1. Mean response time

The mean response times for the SIA application for legacy and refactored

are shown in Figure 4.17. The mean response time chart shows how the differences

between the implementations increased while the number of simulated users

increased.

Figure 4.16 Graph Response time

75

Table 4.8 JMeter log output file

Sample Start
Time

Thread
Name

Sample
Time (ms) Status Bytes Sent

Byte Latency Connection
Time (ms)

1 37:03.7 sia - penilaian 1-2 630 Success 118701 186 338 4
2 37:03.7 sia - penilaian 1-1 731 Success 118701 186 357 4
3 37:03.7 sia - penilaian 1-4 1062 Success 118701 186 360 3
9 37:03.7 sia - penilaian 1-6 1326 Success 118701 186 405 2
10 37:03.8 sia - penilaian 1-9 1316 Success 118701 186 388 2
22 37:03.8 sia - penilaian 1-19 1862 Success 118701 186 1587 4
29 37:03.9 sia - penilaian 1-29 2081 Success 118701 186 1861 2
30 37:03.9 sia - penilaian 1-30 2098 Success 118701 186 1894 3
37 37:03.9 sia - penilaian 1-37 2443 Success 118701 186 2223 4
40 37:04.0 sia - penilaian 1-41 2516 Success 118701 186 2264 6
49 37:04.0 sia - penilaian 1-49 2684 Success 118701 186 2627 4
50 37:04.0 sia - penilaian 1-51 2810 Success 118701 186 2749 7
59 37:04.1 sia - penilaian 1-60 3079 Success 118701 186 2909 8
60 37:04.0 sia - penilaian 1-55 3120 Success 118701 186 2946 4
70 37:04.1 sia - penilaian 1-70 3331 Success 118701 186 3141 73
80 37:04.2 sia - penilaian 1-79 3789 Success 118701 186 3718 101
90 37:04.2 sia - penilaian 1-89 4090 Success 118701 186 3884 140
99 37:04.3 sia - penilaian 1-96 4320 Success 118701 186 3972 122
100 37:04.3 sia - penilaian 1-102 4290 Success 118701 186 3944 154
150 37:04.7 sia - penilaian 1-163 6089 Success 118701 186 6035 177
190 37:05.0 sia - penilaian 1-218 7641 Success 118701 186 7497 1195
200 37:05.4 sia - penilaian 1-293 7944 Success 118701 186 7845 1196
250 37:04.8 sia - penilaian 1-190 11742 Success 118701 186 11530 4827
270 37:04.9 sia - penilaian 1-194 13056 Success 118701 186 12743 4818
290 37:05.4 sia - penilaian 1-283 14764 Success 118701 186 14475 5977
300 37:05.2 sia - penilaian 1-245 17105 Success 118701 186 16697 4837
323 37:05.3 sia - penilaian 1-275 125320 Warning 6866 3171 17474 12988
324 37:05.6 sia - penilaian 1-313 125138 Warning 4866 1579 23301 22282
327 37:05.5 sia - penilaian 1-311 125601 Success 18365 3171 24271 22278
328 37:05.8 sia - penilaian 1-350 125425 Warning 6616 2972 16485 8311
329 37:05.5 sia - penilaian 1-305 125693 Warning 5866 2375 23951 22278
340 37:05.5 sia - penilaian 1-302 126129 Warning 6366 2773 18553 12985
349 37:05.3 sia - penilaian 1-276 129251 Success 19115 3768 17777 12987
350 37:05.5 sia - penilaian 1-300 137474 Success 19115 3768 18678 12988

76

However, the character of the change was linear and proportional for each

measurement point. It is also clearly visible that the mean response time rapidly

decreased (require much time) when the number of simulated users exceeded about

350 users, which was the breaking point of the SIA application where the server

could not handle the increased load. After that point the average response time

values decreased to remain at an almost constant level until the end of the measured

range. The reason for this is made clear after analyzing the success rate results.

It is clearly visible that Facade had the longest response time throughout the

whole measurement. The legacy SIA had an average response time which was about

1.1096 conformance less than for the refactored SIA variant. The differences were

visible even after reaching the breaking point of the server.

In Table 4.9 show the different each round and mean result in numeric of

the two systems. There are three rounds of the test. The result present in each round

of the test by calculate its mean value. For each test case can be summary in a mean

value by calculate all round. The response time measure in millisecond (ms) unit.

Table 4.9 Mean response time

Round
No. /
metric

Legacy Refactored

TS1 TS2 TS3 TS4 TS1 TS2 TS3 TS4

Round1 31685 61700 42681 17932 31885 80710 51252 18642
Round2 29264 64114 41065 14970 28926 67141 45863 19232

Round3 17894 56049 44685 16026 16945 58079 50281 17106
Mean 26281 60621 42810 16309 25919 68643 49132 18327

2. Response time conformance

The result of response time conformance measure is provided variants. In

Table 4.10 show the result of comparing between legacy and refactored system. The

result show that the refactored system takes much time in response the requests.

Response time conformance usually smaller is better and less that 1 is good. The

compared test results and test scenarios show that, refactored system has negative

impact in response time conformance defectively, except in test scenario 1 (TS1).

77

Table 4.10 Response time conformance

System / metric
Test Scenario

TS1 TS2 TS3 TS4
Legacy 26281 60621 42810 16309

Refactored 25919 68643 49132 18327
Conformance 0.9862 1.1323 1.1477 1.1237
	
3. Throughput conformance

Throughput here is calculated as requests/sec unit of time. The time is

calculated from the start of the first sample to the end of the last sample. This

includes any intervals between samples, as it is supposed to represent the load on

the server. The basic formula is: Throughput = (number of requests) / (total time).

The throughput results also showed clear differences between the

investigated design patterns. This is shown in Table 4.11, result values smaller is

better and the default best value is 0. The throughput values remained at an almost

constant level until the servers breaking point, and the differences between the

implementations also remained proportional. Similar to the results for average

response times, the throughput values increased after the simulation passed the

breaking point.

Table 4.11 Throughput conformance

System / metric
Test Scenarios

TS1 TS2 TS3 TS4 Total

Legacy 2.5/sec 2.4/sec 2.5/sec 2.6/sec 10.0/sec

Refactored 2.5/sec 2.3/sec 2.3/sec 2.5/sec 9.6/sec
Conformance 1.000 1.043 1.087 1.040 1.042

4.3.4 Resource Utilization Measures

1. Mean Processor utilization

Here we use CPU utilization to investigate performance, amount of time and

percentage of used and CPU use for process a given task. It can be used to track

78

CPU performance regressions or improvements, and is a useful data point for

performance problem investigations.

There is a little different in CPU usage between legacy and refactored SIA

system. In Figure 4.17 and Figure 4.18 are graphs comparison CPU usage of both

systems. Its result shown average CPU usage is 15% for the legacy and 17% for the

refactored SIA system. The hot thread are the Main function 37.88% and 39.61%

CPU usage and the Local Descriptor Scanner function 16.16% and 16.62% CPU

usage for both systems.

Figure 4.17 CPU usage on legacy system

 Figure 4.18 CPU usage on refactored system

2. Mean memory utilization

Memory utilization function on Java Mission Control allow us to check the

memory allocation rate in our running application.

As in Figure 4.20 and Figure 4.21 show the memory usage for stored

temporary data in executing the given tasks. The finding result show that refactored

system used Memory Allocated for TLABs (Thread Local Allocation Buffer) is

574.79 Mega Bytes greater than legacy system that is 572.98 Mega Byte.

79

Figure 4.19 Memory usage on legacy system

Figure 4.20 Memory usage on refactored system

4.3.5 Capacity Measures

1. Transaction processing capacity conformance

The percentage of error reflex the successful requests is depicted in Table 4.8

and Table 4.9 for conformance. Based on the results obtained for the percentage of

successful and error responses, the measurement point for 350 users was identified

as the point where the server could not handle the increased load and the requests

resulted in errors. Since the failed requests were not processed entirely, their

handling times were shorter compared to the handling times of fully-processed

requests. The average response times lowered when the number of simulated users

passed the breaking point that the application fully serve.

80

Table 4.12 Transaction processing error rate

Round
No.

Test Scenarios / Legacy Refactored

TS1 TS2 TS3 TS4 TS1 TS2 TS3 TS4

Round1 9.86% 41.05% 26.91% 8.45% 7.37% 24.40% 34.27% 6.55%

Round2 10.18% 43.00% 27.02% 7.93% 8.29% 37.53% 16.54% 8.57%

Round3 6.86% 38.86% 26.86% 6.57% 7.23% 28.48% 22.53% 5.69%

Mean 8.97% 40.97% 26.93% 7.65% 7.63% 30.14% 24.45% 6.94%

Table 4.13 Transaction processing error rate conformance

Test Scenarios

TS1 TS2 TS3 TS4 Total
Legacy 8.97% 40.97% 26.93% 7.65% 21.13%
Refactored 7.63% 30.14% 24.45% 6.94% 17.29%
Conformance 0.85 0.736 0.91 0.91 0.82

4.3.6 Output Analysis and Validation

Based on the results for the legacy SIA and refactored solutions, especially

by looking at the legacy results compared to the refactored results, it is possible to

indicate the main reasons for the overall performance differences in the investigated

configuration variants. In the case of the legacy SIA, there is provide default result.

However, in the refactored SIA, differences were clearly noticeable. The Façade

pattern, provide positive and negative impact in refactoring. It is by default create

more heap of response time but it provides nice structure of code implement and

maintenance.

The average response time is increasing almost linearly in all the

deployment cases along with increasing number of clients. This is illustrated in

Figure 4.16. The throughput of the application with Facade pattern deployed is

increasing similar in cases of mean response time. The façade provided difference

between the legacy, it is a more steeply decreasing throughput conformance.

Additionally, refactored applications have much flatter characteristic of throughput

with respect to the increasing number of requests. The rate of transaction processing

81

successful requests has similar characteristics for all the cases. In the beginning it

is 21% error in average for all test scenarios, while witch refactored system it is

decrease to 17% error.

82

(This page intentionally left blank)

83

CHAPTER 5

CONCLUSION

In this chapter, we summarize and concludes the findings and contribution

of the thesis and of our experimental evaluation. In addition, we provide remark

and an outlook on possible future work.

5.1 Conclusions

This thesis describes an enterprise software system in which the design

patterns is applied. The thesis begins with the important of performance efficiency

of a system application, utilized design patterns in refactoring the legacy system,

the academic information system in Indonesia, goes through the design, analyze

and refactoring process, ends at the performance efficiency measuring, and analyze

and evaluate the result.

Within	 the thesis, the SIA was analyzed and studied through several tool

and reverse engineering technique. The Penilaian (grading) module was select to

study as the main case implementation.

As theoretical parts, software designs and patterns are introduced in brief;

the Java EE, as an industrial standardization, was introduced from its architecture

and technology perspectives. Based on the theoretical parts, the SIA application

was studied at a high and low level. The system architecture and its alternative were

first reverse engineering. The current architecture obeyed the HMVC architecture

and applied Java EE via Spring Web MVC framework. The database stored system

is PostgreSQL, the hibernate framework as libraries helped in build the connection.

The application was divided into six main modules. The grading module was

architected in three main layers, presentation, business and service layer. After the

studied of the SIA architecture, Façade design patterns were used to elaborate the

architectural design and to provide the proven solutions to the recurring problems

in the context of SIA realization. More design patterns are even being created and

documented by software developers. The Java EE software developers, in real life,

84

have their own options to use the different design patterns to solve their special

problems in the particular context.

With the development of enterprise software, the design patterns will be

much widely applied and adapted to solve recurring problem even in enterprise

software. This work covers with three type of performance efficiency measures.

There are time behavior, resource utilization, and capacity measures. Each

measurement function provides a unique parameters and different varieties kind of

result respect to performance of software quality.

The tests carried out 4 test scenarios with respect to the system and

implemented design pattern, SIA and Façade design pattern. All the data gathered

shows differences between the compared legacy and refactored of it implement

design pattern, in terms of performance efficiency related quality factors of the

application. In all the presented tests, the refactored implementation that used

Facade design pattern had the highest response time and throughput. In addition,

for mean result of the test scenario the characteristics of success rate 4 percentage

were different. The number of users when the application stopped handling requests

properly tends to be the highest also for refactored SIA application implementation.

Additionally, the presented differences between the legacy and refactored system

indicate consequences of particular implementation choices. The refactored system

increased the number of network calls, which resulted in poor performance than the

legacy system. Facade was clearly better in managing design of the system but

worse in reduced response time and throughput especially when implemented in

system that already applied another architecture design. The Façade in this case

study able to reduces transaction processing error rate appreciably.

As presented findings result demonstrate significance of design decisions

and their impact for enterprise applications. The results can be utilized by

application architects and designers to anticipate the behavior of an application

depending on chosen design solutions. An initial suggestion for designers indicates

that for the local deployment scenario, which is unlikely in a production

environment, there are significant differences between legacy and refactored used

Façade pattern. At the same time, in the case of managed controller and service

85

layers, the differences between these system point Façade as a better solution, from

the dependency and scalability management perspective.

5.2 Remarks and Future Work

The presented results are a good starting point for further pattern refactoring

implementation. The results show differences between the legacy and the refactored

system using Façade design pattern. However, the conducted tests were limited to

only one design patterns and a specific technology, Java EE. Therefore, extended

tests should be conducted and cover differences multiple patterns and technologies

different from the Java EE technology, for example .NET technology and different

several cases study. In addition, the tests should include a wider range of compared

design patterns as architecture and other types patterns. The test scenarios also

should cover all typical behavior of case study including all use cases of the

application. The final objective would be a creation of a set of recommendations

containing specific design patterns used on different layers of application and

implemented in various technologies and variants.

86

(This page intentionally left blank)

87

REFERENCES

Aguiar, A., & David, G. (2009). Transactions on Pattern Languages of
Programming I. Lecture Notes in Computer Science (Vol. 5770).
http://doi.org/10.1007/978-3-642-10832-7

Ali, M., & Elish, M. O. (2013). A Comparative Literature Survey of Design Patterns
Impact on Software Quality. Information Science and Applications (ICISA),
2013 International Conference on, 1–7.
http://doi.org/10.1109/ICISA.2013.6579460

Booch, G. (2004). Object-Oriented Analysis and Design with Applications (3rd
Edition). Redwood City, CA, USA: Addison Wesley Longman Publishing
Co., Inc.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).
Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley Publishing.

Corporation, O. (n.d.). Java VisualVM Tool. Retrieved February 23, 2017, from
https://visualvm.github.io

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2002). Object Oriented Reengineering
Patterns. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Eeles, P., & Cripps, P. (2010). The Process of Software Architecting. Addison-
Wesley Professional.

Foundation, A. S. (n.d.). Apache JMeter. Retrieved February 23, 2017, from
http://jmeter.apache.org

Fowler, M. (1997). Analysis Patterns: Reusable Objects Models. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

Fowler, M. (2003). UML Distilled: A Brief Guide to the Standard Object Modeling
Language (3rd ed.). Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.

Ganesh, S. G., Sharma, T., & Suryanarayana, G. (2013). Towards a principle-based
classification of structural design smells. Journal of Object Technology, 12(2),
1–29. http://doi.org/10.5381/jot.2013.12.2.a1

Grady, R. B. (1992). Practical Software Metrics for Project Management and
Process Improvement. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Henderson-Sellers, B. (1996). Object-oriented Metrics: Measures of Complexity.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Hunt, J. (2003). Guide to the unified process featuring UML, Java, and design
patterns. London; New York: Springer.

IEEE Computer Society. (2009). IEEE Standard for a Software Quality Metrics

88

Methodology - IEEE Std 1061TM-1998 (R2009), 1998.
IEEE Standard Glossary of Software Engineering Terminology. (1990). IEEE Std

610.12-1990. http://doi.org/10.1109/IEEESTD.1990.101064
ISO/IEC. (2001). ISO/IEC 9126. Software engineering -- Product quality. ISO/IEC.
ISO/IEC. (2011a). ISO-IEC 25010: 2011 Systems and software engineering -

Systems and software Quality Requirements and Evaluation (SQuaRE) -
System and software quality models. Geneva: ISO.

ISO/IEC. (2011b). ISO/IEC 25023 - Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - Measurement
of system and software product quality. ISO/IEC. Retrieved from citeulike-
article-id:10951573

ISO/IEC/IEEE Standard for Systems and Software Engineering - Software Life
Cycle Processes. (2008). IEEE Std 12207-2008.
http://doi.org/10.1109/IEEESTD.2008.4475826

Kerievsky, J. (2004). Refactoring to Patterns. Pearson Higher Education.
Khomh, F., & Gueheneuce, Y.-G. (2008). An Empirical Study of Design Patterns

and Software Quality. 2008 12th European Conference on Software
Maintenance and Reengineering, 274–278.
http://doi.org/10.1109/CSMR.2008.4493325

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition). Upper
Saddle River, NJ, USA: Prentice Hall PTR.

Martin Lippert, S. R. (2006). Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully. Wiley. Retrieved from
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470858923.html

McConnell, S. (2004). Code Complete, Second Edition. Redmond, WA, USA:
Microsoft Press.

Meier, J., Farre, C., Bansode, P., Barber, S., & Rea, D. (2007). Performance Testing
Guidance for Web Applications: Patterns & Practices. Redmond, WA, USA:
Microsoft Press.

Opdyke, W. F. (1992). Refactoring Object-oriented Frameworks. University of
Illinois at Urbana-Champaign, Champaign, IL, USA.

Pressman, R. (2010). Software Engineering: A Practitioner’s Approach (7th ed.).
New York, NY, USA: McGraw-Hill, Inc.

Priestley, M. (2003). Practical Object-oriented Design with UML. McGraw Hill
Higher Education.

Rochimah, S., Akbar, R. J., & AVEROUSI, A. T. (2015). Rancang Bangun
Perangkat Lunak Sistem Informasi Akademik Generik Pada Modul
Kurikulum. JURNAL TEKNIK ITS, Institut Teknologi Sepuluh Nopember,
Surabay.

Rochimah, S., Anggraini, R. N. E., & RAHMAN, H. (2015). Rancang Bangun
Sistem Informasi Akademik Generik Pada Modul Penilaian Menggunakan
Pola Perancangan Hierarchical Model-View-Controller. JURNAL TEKNIK
ITS, Institut Teknologi Sepuluh Nopember, Surabay.

Rudzki, J. (2005). How Design Patterns Affect Application Performance -- a Case

89

of a Multi-tier J2EE Application. In Proceedings of the 4th International
Conference on Scientific Engineering of Distributed Java Applications (pp.
12–23). Berlin, Heidelberg: Springer-Verlag. http://doi.org/10.1007/978-3-
540-31869-9_2

Sauer, F. (n.d.). Metrics Eclipse Plug-in. Retrieved February 23, 2017, from
http://metrics.sourceforge.net/.

Society, I. C., Bourque, P., & Fairley, R. E. (2014). Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0 (3rd ed.). Los
Alamitos, CA, USA: IEEE Computer Society Press.

Sommerville, I. (2010). Software Engineering (9th ed.). USA: Addison-Wesley
Publishing Company.

Suryanarayana, G., Samarthyam, G., & Sharma, T. (2014). Refactoring for
Software Design Smells: Managing Technical Debt (1st ed.). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Suryn, W. (2014). Software quality engineering : a practitioner’s approach.
Retrieved from http://site.ebrary.com/id/10826717

Weisfeld, M. (2013). The Object-Oriented Thought Process (4th ed.). Addison-
Wesley Professional.

Yuhana, U. L., Akbar, R. J., Agung, S., & Wijaya. (2016). Rancang Bangun
Kerangka Kerja Sistem Informasi Akademik Modular Berbasis Web Dengan
Pola Arsitektur Hierarchical Model-View-Controller. JURNAL TEKNIK
ITS, Institut Teknologi Sepuluh Nopember, Surabay.

Yuhana, U. L., Akbar, R. J., & Nurwantoro, T. (2015). Kerangka Kerja Sinkronisasi
Basis Data Relasional Berbasis Web Pada Studi Kasus Sistem Informasi
Akademik. JURNAL TEKNIK ITS, Institut Teknologi Sepuluh Nopember,
Surabay.

Yuhana, U. L., Anggraini, R. N. E., & Alfirdaus, B. A. (2015). Rancang Bangun
Perangkat Lunak Sistem Informasi Akademik Berbasis Web dengan
Rancangan Modularitas dan Evolusi pada Modul Ekivalensi. JURNAL
TEKNIK ITS, Institut Teknologi Sepuluh Nopember, Surabay.

Yuhana, U. L., SUMINTO, G. P. N., & Anggraini, R. N. E. (2015). Rancang
Bangun Commercial Off The Shelf (Cots) Sistem Informasi Akademik Berbasis
Web Pada Modul Kelola Pembelajaran. JURNAL TEKNIK ITS, Institut
Teknologi Sepuluh Nopember, Surabay.

90

(This page intentionally left blank)

91

AUTHOR BIOGRAPHY

Kholed Langsari was born in 1988, near sub-
district Budi, district Yala. He grew up in Yala
district, Thailand, eventually studying at The
Phatna Witya School, a locally acclaimed, private
high school in 2006.

He attended Yala Islamic University from 2007
to 2011, and graduated in Bachelor of
Technology Program in Computer Science
(International Program). His was design and
implement the online register information system
for Yala Community College, at Yala province.
He was also one of the first hackers on campus
who success wrote the code to broke down
university internet access time countdown.

He was support in scholarship by DIKTI, Indonesia and Fatoni University, Thailand
for master degree education from 2014 to 2016. He has given numerous invited
talks and tutorials.

Kholed has five years of experience in education and is currently teaching
Computer Science at the Fatoni University in Pattani province, Thailand where he
has been a faculty member since 2011. He is the instructor on undergraduate topics
in computer networking and computer science.

His research interests span both software engineering and computer networking. He
has collaborated actively with researchers in several other disciplines of computer
science, particularly computer networking on problems at the computer server, and
enterprise networking system.

Feel free to contact to him via email address: langsaree@gmail.com, phone number:
(+62)838-1151-3404 or (+66)83-192-0711 and personal blog:
http://ikholed.wordpress.com.

