

TUGAS AKHIR - MO141326

ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR CHAIN STOPPER PADA HEXAGONAL SINGLE BUOY MOORING TERHADAP FSO SAAT SISTEM OFFLOADING

JAMHARI HIDAYAT BIN MUSTOFA NRP. 4313 100 149

Dosen Pembimbing: Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D. Suntoyo, S.T., M. Eng., Ph.D.

DEPARTEMEN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - MO141326

THE ANALYSIS OF MAXIMUM STRESS IN CHAIN STOPPER STRUCTURE OF HEXAGONAL SINGLE BUOY MOORING DURING FSO OFFLOADING SYSTEM

JAMHARI HIDAYAT BIN MUSTOFA REG. 4313 100 149

Supervisor: Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D. Suntoyo, S.T., M. Eng., Ph.D.

OCEAN ENGINEERING DEPARTMENT Faculty of Marine Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

TUGAS AKHIR – MO141326

ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR *CHAIN STOPPER* PADA *HEXAGONAL SINGLE BUOY MOORING* TERHADAP FSO SAAT SISTEM *OFFLOADING*

JAMHARI HIDAYAT BIN MUSTOFA NRP. 4313 100 149

Dosen Pembimbing: Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D. Suntoyo, S.T., M. Eng., Ph.D.

DEPARTEMEN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT – MO141326

THE ANALYSIS OF MAXIMUM STRESS IN CHAIN STOPPER STRUCTURE OF HEXAGONAL SINGLE BUOY MOORING DURING FSO OFFLOADING SYSTEM

JAMHARI HIDAYAT BIN MUSTOFA REG. 4313 100 149

Supervisor: Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D. Suntoyo, S.T., M. Eng., Ph.D.

OCEAN ENGINEERING DEPARTMENT Faculty of Marine Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR CHAIN STOPPER PADA HEXAGONAL SINGLE BUOY MOORING TERHADAP FSO SAAT SISTEM OFFLOADING

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat memperoleh gelar sarjana teknik pada program studi S-1 Departemen Teknik Kelautan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya

Oleh:

JAMHARI HIDAYAT BIN MUSTOFA NRP. 4313100149

Disetujui oleh:	
1. Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D.	(Pembimbing 1)
2. Suntoyo, S.T., M.Eng., Ph.D.	(Pembimbing 2)
3. Ir. Imam Rochani, M.Sc.	(Penguji 1)
4. Ir. Handayanu, M.Sc., Ph.D.	(Penguji 2)
5. Dr.Eng. Yeyes Mulyadi, S.T., M.Sc. M.MM	(Penguji 3)
6. Nur Syahroni, S.T., M.T., Ph.D.	(Penguji 4)

SURABAYA, JULI 2017

iii

ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR CHAIN STOPPER PADA HEXAGONAL SINGLE BUOY MOORING TERHADAP FSO SAAT SISTEM OFFLOADING

Nama Mahasiswa	: Jamhari Hidayat Bin Mustofa
NRP	: 4313100149
Jurusan	: Teknik Kelautan – FTK ITS
Dosen Pembimbing	: Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D
	Suntoyo, S.T., M.Eng., Ph.D.

ABSTRAK

Analisis kekuatan pada struktur *chain stopper* pada *hexagonal* SBM CALM sangat diperlukan karena memiliki peranan penting untuk penghubung antara buoy dengan seabed yang berjumlah enam berupa stud less chain dalam masa operasinya. Analisis kekuatan strukturnya mengacu pada besaran maksimum tegangan ekuivalen Von Mises dengan software ANSYS Mechanical 16.2 untuk memenuhi kriteria jenis material ASTM A148 Grade 105-85 (yield stress 585 MPa) yang beroperasi di titik perairan Kepulauan Seribu. Hasil analisis statis pada struktur tersebut menunjukkan telah memenuhi kriterianya dengan tegangan Von Mises maksimumnya sebesar 328.69 MPa/0.94 (operasi) dan 463.53 MPa/0.99 (badai). Analisis berawal dengan perhitungan manual untuk mengetahui perbedaan titik berat kapal FSO saat *full load* dan *ballast* dengan metode regresi statistik berdasarkan data kapal pada umumnya. Selanjutnya, kapal FSO dan hexagonal SBM dimodelkan dengan software MOSES 7.0 untuk analisis respons strukturnya dan mendapatkan outputnya untuk diinputkan ke software Orcaflex 9.2 untuk analisis tegangan maksimum tiap *mooring line*. Tegangan maksimum yang didapatkan dari tiap skenario analisis selalu terjadi pada mooring line ke-1 dengan konfigurasi sistem tambat baik saat in line maupun between line sebesar 1178.73 kN (operasi) dan 1662.27 kN (badai).

Kata kunci: chain stopper, FSO, hexagonal SBM CALM, Von Mises tension.

THE ANALYSIS OF MAXIMUM STRESS IN CHAIN STOPPER STRUCTURE OF HEXAGONAL SINGLE BUOY MOORING DURING FSO OFFLOADING SYSTEM

Name of Student	: Jamhari Hidayat Bin Mustofa
Reg. Number	: 4313100149
Department	: Ocean Engineering – FTK ITS
Supervisors	: Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D.
	Suntoyo, S.T., M.Eng., Ph.D.

ABSTRACT

Strength analysis of chain stopper structure on Hexagonal SBM CALM is necessary because it has an important role to connect between buoy with seabed which amounts to six from stud less chain during its operation. Structural strength analysis refers to the maximum magnitude of Von Mises equivalent stress with ANSYS Mechanical 16.2 software to meet the criteria of material type ASTM A148 Grade 105-85 (yield stress 585 MPa) operating at the point of waters of the Kepulauan Seribu. the ABS 2014 (ASTM A36) criteria operating at the point of waters of Kepulauan Seribu. The result of static analysis on the structure shows that it has met the criteria with maximum Von Mises voltage of 328.69 MPa/0.94 (operation) and 463.53 MPa/0.99 (storm). The analysis begins with manual calculations to determine the difference of FSO vessel weight during full load and ballast with statistical regression method based on ship data in general. Furthermore, the FSO and hexagonal SBM vessels are modeled with MOSES 7.0 software for structural response analysis and obtaining their outputs for input into Orcaflex 9.2 software for maximum stress analysis of each mooring line. Maximum stress obtained from each scenario analysis always occurs on the 1st mooring line (with mooring system configuration in line and in line between) of 1178.73 kN (operation) and 1662.27 kN (storm).

Keywords: chain stopper, FSO, hexagonal SBM CALM, Von Mises tension.

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Allah *subhanallahu wa ta'ala* yang telah melimpahkan berkat dan rahmat-Nya kepada semesta alam dan berkat ridho-Nya pula penulis dapat menyelesaikan tugas akhir ini dengan baik yang berjudul **"ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR CHAIN** *STOPPER* PADA *HEXAGONAL SINGLE BUOY MOORING* TERHADAP FSO SAAT SISTEM OFFLOADING".

Tugas akhir ini merupakan salah satu kewajiban bagi mahasiswa Jurusan Teknik Kelautan untuk dapat memenuhi persyaratan dalam menyelesaikan Studi Kesarjanaan (S-1) di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan (FTK), Institut Teknologi Sepuluh Nopember Surabaya (ITS). Tugas akhir ini membahas seputar bagaimana kekuatan struktur yang sebenarnya terjadi pada area *chain stopper* yang ada pada sistem tambat terapung (*Single Buoy Mooring*) ketika ditambat dengan kapal FSO saat beroperasi (*offloading*) di perairan Kepulauan Seribu.

Penulis menyadari bahwa di dunia ini tidak ada yang sempurna sehingga saran dan kritik yang membangun pada laporan ini sangat diharapkan agar dapat memberikan kemanfaatan yang seluas-luasnya bagi pembaca. Penulis juga berharap semoga tugas akhir ini dapat dijadikan pertimbangan dan menginspirasi untuk perancangan atau penelitian selanjutnya mengenai struktur *Single Buoy Mooring*.

Surabaya, 27 Juli 2017

Jamhari Hidayat Bin Mustofa 4313100149

UCAPAN TERIMA KASIH

Penyelesaian laporan ini tidak terlepas dari bantuan dan dukungan oleh banyak pihak sehingga penulis mengucapkan rasa terima kasih atas segala bimbingan maupun bantuan berupa dukungan dan materi serta doa secara langsung maupun tidak langsung kepada:

- 1. Keluarga penulis yang tidak pernah berhenti sejak awal memberikan doa, dukungan, dan bantuan materi sejak awal perkuliahan.
- 2. Bapak Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D., sebagai dosen pembimbing pertama yang telah bersedia membimbing penulis dalam pengerjaan tugas akhir ini.
- 3. Bapak Suntoyo, S.T., M.Eng., Ph.D., sebagai dosen pembimbing kedua yang juga turut meluangkan waktunya bagi penulis untuk asistensi tugas akhir ini.
- 4. Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D., sebagai dosen wali yang telah memberikan dukungan dan arahan bagi penulis selama berkuliah.
- Karyawan Tata Usaha Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan – ITS, yang telah membantu mempersiapkan segala keperluan administrasi untuk perkuliahan dan tugas akhir.
- 6. Keluarga besar angkatan Valtameri L-31 yang selalu memberikan inspirasi dan semangat untuk pengerjaan tugas akhir.
- 7. Semua pihak yang tidak dapat penulis sebutkan satu per satu yang telah memberikan dukungan dan inspirasi.

Semoga segala kebaikan atas bantuan dan dukungannya kepada penulis untuk dapat menyelesaikan tugas akhir ini mendapatkan balasan yang setimpal oleh Allah *subhanallahu wa ta'ala. Aamiin allahumma aamiin*.

DAFTAR ISI

HALAMAN	JUDULi
LEMBAR P	ENGESAHANiii
ABSTRAK.	iv
KATA PEN	GANTAR vi
UCAPAN T	ERIMA KASIH vii
DAFTAR IS	Iviii
DAFTAR G	AMBAR x
DAFTAR TA	ABELxiii
DAFTAR LA	AMPIRAN xvi
BAB I PENI	DAHULUAN 1
1.1 LATA	R BELAKANG 1
1.2 RUMU	JSAN MASALAH2
1.3 TUJU	AN
1.4 BATA	SAN MASALAH
1.5 MANI	FAAT 4
1.6 SISTE	MATIKA PENULISAN 4
BAB II TINJ	IAUAN PUSTAKA DAN DASAR TEORI7
2.1 TINJA	UAN PUSTAKA7
2.2 DASA	R TEORI
2.2.1	Floating Storage and Offloading (FSO)
2.2.2	Teori Bangunan Apung
2.2.3	Teori Gerak Kapal 15
2.2.4	Perilaku Bangunan Apung pada Gelombang Reguler 19
2.2.5	Perilaku Bangunan Apung pada Gelombang Acak
2.2.6	Sistem Tambat (Mooring System)
2.2.7	Analisis Dinamis

2.2.8	Tegangan Pada Struktur	32
BAB III ME	TODOLOGI PENELITIAN	37
3.1 METC	DDE PENELITIAN	37
3.2 PENC	JUMPULAN DATA	40
BAB IV AN	ALISIS HASIL DAN PEMBAHASAN	45
4.1 PERM	IODELAN KAPAL FSO & HEXAGONAL SBM	45
4.2 SKEN	IARIO ANALISIS KARAKTERISTIK GERAK STRUKTUR	48
4.2.1	Perhitungan Titik Berat Struktur	48
4.2.2	Perhitungan Radius Girasi Struktur	48
4.2.3	Skenario Pembebanan	49
4.2.4	Skenario Analisis	49
4.3 PERH	IITUNGAN DATA SEBARAN BEBAN LINGKUNGAN PADA	
PERAIRA	AN KEPULAUAN SERIBU	50
4.4 ANAI	LISIS KARAKTERISTIK GERAK STRUKTUR	54
4.4.1	Analisis Karakteristik Gerak Struktur pada Gelombang Reguler.	54
4.4.2	Analisis Karakteristik Gerak Struktur pada Gelombang Acak	65
4.5 PERM	IODELAN SISTEM TAMBAT KAPAL DAN SBM	75
4.6 ANAI	LISIS TEGANGAN PADA <i>MOORING LINE</i>	76
4.7 ANAI	LISIS TEGANGAN PADA STRUKTUR CHAIN STOPPER	82
4.7.1	Pengonversian Data Model Struktur Chain Stopper	82
4.7.2	Analisis Sensitivitas Meshing	83
4.7.3	Pembebanan pada Struktur Chain Stopper	85
BAB V PEN	IUTUP	88
5.1 KESI	MPULAN	88
5.2 SARA	AN	90
DAFTAR P	USTAKA	92

DAFTAR GAMBAR

Gambar II.1 Contoh FSO milik perusahaan Maersk
Gambar II.2 Definisi-definisi ukuran utama kapal 11
Gambar II.3 Titik-titik yang berpengaruh pada stabilitas kapal tampak samping 12
Gambar II.4 Titik-titik yang berpengaruh pada stabilitas kapal tampak depan 12
Gambar II.5 Jari-jari girasi <i>rolling</i>
Gambar II.6 Jari-jari girasi pitching
Gambar II.7 Jari-jari girasi yawing 14
Gambar II.8 Sistem sumbu dan definisi gerakan bangunan terapung 15
Gambar II.9 Definisi gelombang reguler
Gambar II.10 Bentuk umum grafik respons gerakan bangunan apung 22
Gambar II.11 Definisi spektrum energi gelombang
Gambar II.12 Transformasi spektrum gelombang menjadi spektrum respons 26
Gambar II.13 (a) Single Buoy Mooring; (b) External Turret Mooring
Gambar II.14 Parameter mooring line
Gambar II.15 Distribusi tegangan pada sepanjang tegangan lentur
Gambar II.16 Tegangan lentur
Gambar II.17 Gaya yang bekerja berlawanan arah terhadap penampang
Gambar II.18 Komponen tegangan dalam 3D
Gambar III.1 Flow chart penyelesaian tugas akhir
Gambar III.2 Lokasi titik operasi sistem tambat pada perairan Kepulauan Seribu43
Gambar IV.1 Permodelan kapal FSO dengan software MAXSURF Modeler 45
Gambar IV.2 Permodelan kapal FSO dengan software MOSES 7.0
Gambar IV.3 Permodelan hexagonal SBM dengan software MOSES 7.0 47
Gambar IV.4 Grafik korelasi antara tinggi gelombang dan distribusi kumulatif . 52
Gambar IV.5 Grafik korelasi antara puncak periode gelombang dan distribusi
kumulatif
Gambar IV.6 Grafik RAO surge FSO dengan variasi kondisi dan arah pembebanan
Gambar IV.7 Grafik RAO sway FSO dengan variasi kondisi dan arah pembebanan

Gambar IV.8 Grafik RAO <i>heave</i> FSO dengan variasi kondisi dan arah pembebanan
Gambar IV.9 Grafik RAO <i>roll</i> FSO dengan variasi kondisi dan arah pembebanan
Gambar IV.10 Grafik RAO <i>pitch</i> FSO dengan variasi kondisi dan arah pembebanan
Gambar IV.11 Grafik RAO <i>yaw</i> FSO dengan variasi kondisi dan arah pembebanan
Gambar IV.12 Grafik RAO <i>surge</i> SBM dengan variasi arah pembebanan
Gambar IV.13 Grafik RAO sway SBM dengan variasi arah pembebanan
Gambar IV.14 Grafik RAO heave SBM dengan variasi arah pembebanan
Gambar IV.15 Grafik RAO roll SBM dengan variasi arah pembebanan
Gambar IV.16 Grafik RAO pitch SBM dengan variasi arah pembebanan
Gambar IV.17 Grafik RAO yaw SBM dengan variasi arah pembebanan
Gambar IV.18 Perubahan tinggi gelombang signifikan spektrum gelombang
JONSWAP
Gambar IV.19 Grafik spektrum surge FSO dengan variasi tinggi gelombang
signifikan
Gambar IV.20 Grafik spektrum sway FSO dengan variasi tinggi gelombang
signifikan
Gambar IV.21 Grafik spektrum heave FSO dengan variasi tinggi gelombang
signifikan
Gambar IV.22 Grafik spektrum roll FSO dengan variasi tinggi gelombang
signifikan
Gambar IV.23 Grafik spektrum pitch FSO dengan variasi tinggi gelombang
signifikan
Gambar IV.24 Grafik spektrum yaw FSO dengan variasi tinggi gelombang
signifikan
Gambar IV.25 Grafik spektrum surge SBM dengan variasi tinggi gelombang
signifikan
Gambar IV.26 Grafik spektrum sway SBM dengan variasi tinggi gelombang
signifikan

Gambar IV.27 Grafik spektrum <i>heave</i> SBM dengan variasi tinggi gelombang
signifikan
Gambar IV.28 Grafik spektrum roll SBM dengan variasi tinggi gelombang
signifikan
Gambar IV.29 Grafik spektrum pitch SBM dengan variasi tinggi gelombang
signifikan74
Gambar IV.30 Grafik spektrum yaw SBM dengan variasi tinggi gelombang
signifikan
Gambar IV.31 Konfigurasi mooring line pada kapal FSO dalam bentuk in line 76
Gambar IV.32 Konfigurasi mooring line pada kapal FSO dalam bentuk between
line
Gambar IV.33 Tampak atas simulasi Orcaflex 9.2 kondisi 4 – OPERASI (7899.90
s)
Gambar IV.34 Tampak atas simulasi Orcaflex 9.2 kondisi 3 – BADAI (10498.10 s)
Gambar IV.35 Model struktur chain stopper dari AutoCAD 2017 (.dwg)
Gambar IV.36 Model struktur chain stopper dari ANSYS Mechanical 16.2 (.iges)
Gambar IV.37 Grafik uji sensitivitas meshing
Gambar IV.38 Hasil running meshing tipe quadrilateral terhadap chain stopper 84
Gambar IV.39 Pemberian area <i>fixed support</i> dan gaya pada <i>chain stopper</i> (N) 85
Gambar IV.40 Hasil <i>running</i> tegangan Von Mises (MPa) tampak iso - OPERASI
86
Gambar IV 41 Hasil <i>running</i> tegangan Von Mises (MPa) tampak detail - OPERASI
86
Gambar IV 42 Hasil running tegangan Von Mises (MPa) tampak iso – BADAI 87
Cambar IV 12 Hasil running tegangan Von Mises (MDa) tampak iso - DADAI 07
Gambar 1 v .+5 Hash running tegangan v on Mises (Mira) tampak tetan – DADAI

DAFTAR TABEL

Tabel II.1 Amplitudo dan tinggi gelombang pada spektrum27
Tabel III.1 Properti hidrostatis kapal FSO 330 meter
Tabel III.2 Properti material hexagonal SBM
Tabel III.3 Dimensi hexagonal SBM 41
Tabel III.4 Dimensi mooring line 41
Tabel III.5 Data distribusi tinggi gelombang perairan Kepulauan Seribu (2004-
2014)
Tabel III.6 Data presentasi kecepatan angin perairan Kepulauan Seribu (2004-2014)
Tabel III.7 Data presentasi kecepatan arus perairan Kepulauan Seribu (2004-2014)
Tabel IV.1 Hasil validasi model kapal FSO dengan software MAXSURF Modeler
Tabel IV.2 Hasil validasi model kapal FSO dengan software MOSES 7.0 47
Tabel IV.3 Hasil validasi model hexagonal SBM dengan software MOSES 7.0. 48
Tabel IV.4 Perhitungan titik berat dan radius girasi kapal untuk kondisi full load
Tabel IV.5 Perhitungan titik berat dan radius girasi kapal untuk kondisi ballast. 49
Tabel IV.6 Data sebaran gelombang pada perairan Kepulauan Seribu 2004-2014
Tabel IV.7 Perhitungan jumlah presentasi gelombang dan kumulatifnya tiap
interval
Tabel IV.8 Tabulasi perhitungan komponen peluang kumulatif $H_s(m)$ Error!
Bookmark not defined.
Tabel IV.9 Tabulasi perhitungan komponen peluang kumulatif $T_{p}(s)$ 51
Tabel IV.10 Tabulasi perhitungan kurun waktu panjang tinggi gelombang
signifikan (m)
Tabel IV.11 Tabulasi perhitungan kurun waktu panjang puncak periode gelombang
(s)

Tabel IV.12 Data lingkungan perairan Kepulauan Seribu kurun waktu tahunan
tertentu
Tabel IV.13 Perbandingan RAO maksimum tiap gerakan FSO saat kondisi <i>full load</i>
Tabel IV.14 Perbandingan RAO maksimum tiap gerakan FSO saat kondisi ballast 60
Tabel IV 15 Perbandingan RAO maksimum tian gerakan <i>heragonal</i> SBM 64
Tabel IV 16 Tabulasi harga amplitudo ekstrem gerakan surge kapal FSO 66
Tabel IV 17 Tabulasi harga amplitudo ekstrem gerakan sway kapal FSO 67
Tabel IV 18 Tabulasi harga amplitudo ekstrem gerakan <i>bagua</i> kapal FSO 68
Tabel IV 10 Tabulasi harga amplitudo ekstrem gerakan <i>rell</i> kapal ESO 68
Tabel IV 20 Tabulasi harga amplitudo ekstrem gerakan <i>nitak</i> kapal ESO
Tabel IV 21 Tabulasi harga amplitudo ekstrem gerakan <i>puch</i> kapal FSO
Tabel IV.21 Tabulasi narga ampiliudo eksirem gerakan <i>yaw</i> kapal FSO
Tabel IV.22 Amplitudo ekstrem hap gerakan kapal FSO
Tabel IV.23 Tabulasi harga amplitudo ekstrem gerakan <i>surge hexagonal</i> SBM. /1
Tabel IV.24 Tabulasi harga amplitudo ekstrem gerakan <i>sway hexagonal</i> SBM72
Tabel IV.25 Tabulasi harga amplitudo ekstrem gerakan <i>heave hexagonal</i> SBM. 73
Tabel IV.26 Tabulasi harga amplitudo ekstrem gerakan <i>roll hexagonal</i> SBM 74
Tabel IV.27 Tabulasi harga amplitudo ekstrem gerakan <i>pitch hexagonal</i> SBM 74
Tabel IV.28 Tabulasi harga amplitudo ekstrem gerakan yaw hexagonal SBM 75
Tabel IV.29 Amplitudo ekstrem tiap gerakan hexagonal SBM
Tabel IV.30 Kriteria faktor keamanan tegangan <i>mooring line</i> dari ABS 2014 77
Tabel IV.31 Kriteria tegangan yang diizinkan untuk ASTM A148 (585 MPa yield
<i>stress</i>)
Tabel IV.32 Tension maksimum hawser dan mooring line kondisi 1 - OPERASI
Tabel IV.33 Tension maksimum hawser dan mooring line kondisi 1 – BADAI 78
Tabel IV.34 Tension maksimum hawser dan mooring line kondisi 2 - OPERASI
Tabel IV.35 Tension maksimum hawser dan mooring line kondisi 2 – BADAI 79
Tabel IV.36 Tension maksimum hawser dan mooring line kondisi 3 – OPERASI

Tabel IV.37 Tension maksimum hawser dan mooring line kondisi 3 – BADAI 80
Tabel IV.38 Tension maksimum hawser dan mooring line kondisi 4 - OPERASI
Tabel IV.39 Tension maksimum hawser dan mooring line kondisi 4 – BADAI 80
Tabel IV.40 Tension maksimum mooring line dari empat kondisi - OPERASI 81
Tabel IV.41 Tension maksimum mooring line dari empat kondisi - BADAI 81
Tabel IV.42 Properti geometri struktur chain stopper dari ANSYS Mechanical 16.2
Tabel IV.43 Hasil dari uji sensitivitas meshing terhadap perubahan ukuran meshing
Tabel IV.44 Hasil analisis statis pada struktur chain stopper

DAFTAR LAMPIRAN

LAMPIRAN A	Perhitungan Data Sebaran Kecepatan Angin dan Arus pada
	Perairan Kepulauan Seribu 2004-2014
LAMPIRAN B-1	Perhitungan Titik Berat Kapal FSO kondisi Full Load dan
	Ballast
LAMPIRAN B-2	Tabel RAO Kapal FSO Kondisi Full Load dan Ballast
LAMPIRAN B-3	Tabel Perhitungan Spektrum JONSWAP Kapal FSO
LAMPIRAN C-1	Tabel RAO Hexagonal SBM
LAMPIRAN C-2	Tabel Perhitungan Spektrum JONSWAP Hexagonal SBM
LAMPIRAN D	MOSES 7.0 Syntax (.CIF & .DAT) – FSO dan SBM
LAMPIRAN E	Data Input Properti Model Geometri pada Orcaflex 9.2

(Halaman ini sengaja dikosongkan)

BAB I PENDAHULUAN

1.1 LATAR BELAKANG

Teknologi perancangan bangunan lepas pantai telah berkembang pesat seiring meningkatnya kebutuhan masyarakat global akan minyak dan gas bumi. Indonesia hingga hari ini masih memiliki potensi untuk menjadi salah satu negara penghasil minyak dan gas terbesar di dunia sehingga teknologi perancangan struktur bangunan lepas pantai sangat dibutuhkan saat ini. Struktur bangunan lepas pantai dirancang khusus berdasarkan kedalaman laut dan kondisi lingkungan serta inovasi baru yang dibutuhkan untuk dapat mengeksplorasi minyak dan gas agar dapat ditempatkan pada kedalaman perairan antara yang sangat dangkal (*very shallow water*) dengan perairan yang sangat dalam (*the deep ocean*) (Nallayarasu, 2015).

Struktur terapung (*floating structures*) adalah salah satu teknologi pada bangunan lepas pantai di samping terdapat struktur terpancang (*fixed structure*) yang memiliki fungsi utama yang sama yakni eksplorasi hidrokarbon di lepas pantai. Struktur terapung memiliki kelebihan dibandingkan dengan struktur terpancang karena dinilai lebih ekonomis sebab tidak memerlukan struktur baru dan lebih mudah dapat dimanfaatkannya kembali ketika masa operasinya telah selesai serta efisien karena berbasis teknologi *Mobile Offshore Production Unit* (MOPU).

Floating Storage and Offloading (FSO) adalah salah satu struktur terapung atau kapal yang paling umum digunakan untuk kegiatan eksplorasi hidrokarbon di lepas pantai. Kapal FSO memiliki fungsi penyimpanan dan penyaluran hidrokarbon yang mentah ke *shuttle tanker* atau kapal lainnya agar dapat diproses untuk menjadi suatu nilai kebutuhan yang digunakan manusia. Selama masa operasi, kapal FSO mengalami pergerakan pada perairan kondisi tertentu sangat dipengaruhi beban lingkungan seperti gelombang laut, angin, dan arus sehingga diperlukan adanya analisis dan perhitungan mengenai besaran atau kecenderungan pergerakan kapal FSO tersendiri agar mampu dipastikan aman dalam beroperasi.

Sistem tambat (*mooring system*) adalah salah satu teknologi struktur terapung yang berkembang untuk dapat meredam pergerakan struktur terapung

yang ditambat karena bersifat mampu bergerak bebas mengikuti beban lingkungan sekitarnya. Artinya, struktur terapung seperti kapal FSO walaupun bergerak sesuai arah beban lingkungan namun tetap tertambat pada tali tambat (*mooring line*) untuk membantu proses *weathervaning* sehingga kegiatan eksplorasi hidrokarbon atau proses tandem *offloading* dengan infrastruktur yang lain beroperasi secara aman. Salah satu jenis sistem tambat yang sering digunakan pada kapal (FPSO/FSO, *Oil/Shuttle Tanker*, dsb) adalah *Single Buoy Mooring* (SBM) atau *Single Point Mooring* (SPM). *Catenary Anchored Leg Mooring* (CALM) adalah konfigurasi yang paling umum dari tipe SBM untuk digunakan karena mampu menangani kapal pengangkut minyak yang sangat besar dan memiliki konfigurasi yang menggunakan enam atau delapan rantai jangkar berat yang ditempatkan secara radial di sekitar pelampung (*buoy*) berdasarkan beban lingkungan yang dirancang (Wikipedia, Single Buoy Mooring, 2017).

Pada penelitian tugas akhir ini berdasarkan data dari proyek miliki PT. Adidaya Energi Mandiri, tipe sistem tambat yang dianalisis untuk kapal FSO 300 DWT adalah SBM tipe CALM yang berbentuk *hexagonal* (selanjutnya *hexagonal* SBM) dan berada pada kondisi *offloading* yang beroperasi pada perairan Kepulauan Seribu. Agar operasional *offloading* pada FSO dapat beroperasi secara aman berdasarkan regulasi yang berlaku, perlu dilakukan analisis kestabilan kapal FSO yang disebabkan beban lingkungan sekitar dan kekuatan *mooring lines* pada *hexagonal* SBM yang disebabkan adanya gaya tarik. Setelah diketahui respons dari kapal FSO dan *hexagonal* SBM akibat beban lingkungan, selanjutnya dilakukan analisis besaran tegangan *hawser* yang menghubungkan antara FSO dan *hexagonal* SBM serta tegangan pada *mooring lines* sehingga dapat dilakukan analisis selanjutnya mengenai tegangan maksimum yang sebenarnya terjadi di area *chain stopper* pada *hexagonal* SBM.

1.2 RUMUSAN MASALAH

Dalam pengerjaan tugas akhir ini diangkat beberapa permasalahan yakni:

1. Bagaimana perilaku gerak terhadap kapal FSO dan *hexagonal* SBM akibat beban gelombang saat terapung bebas (*free floating*) pada kondisi riil?

- 2. Berapa besar gaya tarik (*tension*) maksimum rantai jangkar (*mooring lines*) yang menghubungkan *hexagonal* SBM dengan *seabed*?
- 3. Berapa besar tegangan lokal maksimum yang terjadi pada struktur *chain stopper* karena pergerakan kapal FSO yang tertambat pada saat *offloading*?

1.3 TUJUAN

Adapun tujuan pada tugas akhir ini adalah:

- 1. Mengetahui perilaku gerak yang terjadi pada kapal FSO dan *hexagonal* SBM akibat beban lingkungan saat terapung bebas pada kondisi riil.
- 2. Mengetahui besaran gaya tarik (*tension*) maksimum pada rantai jangkar (*mooring lines*) yang menghubungkan antara *hexagonal* SBM dengan *seabed*.
- 3. Mengetahui besaran tegangan lokal maksimum yang terjadi pada struktur *chain stopper* karena pergerakan kapal FSO yang tertambat pada saat *offloading*.

1.4 BATASAN MASALAH

Untuk memudahkan analisis yang ingin dicapai sesuai tujuan dan menghindari pembahasan yang melebar maka berikut adalah batasan ruang lingkup yang diterapkan pada tugas akhir ini:

- Penelitian ini adalah studi kasus pada kekuatan struktur *hexagonal* SBM yang tertambat di lokasi perairan Kepulauan Seribu milik PT. Adidaya Energi Mandiri.
- 2. Sistem tambat yang digunakan adalah SBM tipe CALM yang berbentuk *hexagonal* (bersegi enam).
- 3. Kapal FSO yang digunakan untuk analisis berkapasitas 308625 DWT dengan acuan ukuran tipe VLCC (*Very Large Crude Carrier*).
- 4. *Boarding* platform, *rope guard*, *chain*, *house*, *product swivel*, *pipe* platform, *turntable assembly*, dan *piping assembly* serta *riser* tidak dimodelkan sehingga pergerakan *house*nya pun diabaikan.
- 5. Hawser diasumsikan dua segmen.
- 6. Data lingkungan yang digunakan berdasarkan wilayah perairan Kepulauan Seribu tahun 2004-2014.

7. Perhitungan tegangan lokal maksimum pada struktur *chain stopper* difokuskan pada beban gaya tarik maksimum *hexagonal* SBM dengan jangkar (*mooring line*).

1.5 MANFAAT

Manfaat dari pengerjaan penelitian dari tugas akhir ini adalah agar penulis dapat menerapkan pengetahuan dari mata kuliah Mekanika Teknik, Perancangan dan Konstruksi Bangunan Laut dan Hidrodinamika serta Olah Gerak Bangunan Apung dengan melakukan perhitungan secara bertahap agar dapat mengetahui besaran pergerakan kapal FSO dan *hexagonal* SBM akibat beban lingkungan pada kondisi tertentu dan gaya tarik (*tension*) pada *hawser* yang menghubungkan antara keduanya serta *mooring line* pada *hexagonal* SBM ke dasar laut.

Selain itu, mahasiswa teknik kelautan dapat mengetahui prosedur cara menghitung dan menganalisis besaran tegangan lokal maksimum pada struktur *chain stopper* yang ada pada *hexagonal* SBM.

1.6 SISTEMATIKA PENULISAN

Sistematika penulisan tugas akhir ini adalah sebagai berikut:

BAB I PENDAHULUAN

Bab ini menerangkan mengenai latar belakang penelitian pada tugas akhir yang dilakukan, perumusan masalah, tujuan yang hendak ingin dicapai, batasan ruang lingkup masalah untuk penelitian dan pembahasan yang difokuskan, dan manfaat yang didapatkan dari tugas akhir ini.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

Bab ini menjelaskan mengenai tinjauan pustaka dan dasar teori yang menjadi acuan dalam pelaksanaan penelitian di tugas akhir ini. Sumber yang didapatkan untuk bab ini berasal dari situs jurnal baik lokal maupun internasional, literatur, buku baik tugas akhir maupun yang relevan dengan topik teknologi kelautan, dan *rules/codes* yang terkait.

BAB III METODOLOGI PENELITIAN

Bab ini mendeskripsikan metodologi yang digunakan dan langkah-langkah pengerjaan yang berdasarkan prosedur yang ditetapkan untuk penelitian pada tugas akhir ini.

BAB IV ANALISIS HASIL DAN PEMBAHASAN

Bab ini membahas mengenai langkah-langkah pengolahan data dan analisis berdasarkan metodologi yang telah direncanakan pada BAB III serta menginterpretasikan atas setiap hasil analisis yang didapatkan. Pembahasan dan analisis yang dilakukan berdasarkan bantuan *software* yang akan digunakan: 1) Melakukan permodelan struktur kapal FSO dan hexagonal SBM dengan MAXSURF Modeler dan validasi data berdasarkan data dari PT. Adidaya Energi Mandiri; 2) Melakukan perhitungan data sebaran beban lingkungan pada perairan Kepulauan Seribu dengan metode distribusi probabilitas Weibull untuk mengetahui tinggi gelombang signifikan, periode puncak gelombang, kecepatan angin, dan kecepatan arus dalam kurun waktu 10, 50, dan 100-tahunan; 3) Menganalisis respons gerakan 6 SDoF (Single Degree of Freedom) berdasarkan grafik RAO dengan permodelan struktur kondisi terapung bebas pada MOSES 7.0 dan selanjutnya dilakukan analisis spektrum respons dengan formulasi JONSWAP; 4) Menganalisis tegangan tali/rantai pada hexagonal SBM dengan Orcaflex 9.2; 5) Melakukan analisis tegangan lokal maksimum pada chain stopper hexagonal SBM dengan ANSYS Mechanic 16.2 yang sebelumnya telah dikonversikan dari AutoCAD 2017 untuk geometri strukturnya.

BAB V PENUTUP

Bab ini berisi mengenai kesimpulan dari hasil keseluruhan penelitian yang difokuskan pada tugas akhir ini dan saran yang diberikan untuk dapat dilakukan penelitian selanjutnya sehingga menghasilkan suatu pengembangan baru untuk analisis yang lebih mendalam dengan topik yang relevan.

(Halaman ini sengaja dikosongkan)

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 TINJAUAN PUSTAKA

Saat ini telah berkembang dari inovasi pengembangan teknologi kelautan guna menunjang untuk memenuhi tingginya tuntutan akan kebutuhan hidrokarbon berupa teknologi struktur terapung (*floating structures*). Struktur terapung merupakan struktur yang memiliki karakteristik pergerakan mengikuti dampak dari beban lingkungan (gelombang, arus, dan angin). Sudah menjadi hal yang umum ketika struktur terapung diidentikkan dengan dasar laut menggunakan peralatan mekanik seperti kabel atau rantai bahkan *jacket*. Hal yang utama untuk diperhatikan pada struktur terapung ini adalah mobilitas dan kemampuannya mengantisipasi gerakan akibat gelombang dan arus laut.

Floating Storage and Offloading (FSO) adalah salah satu struktur terapung yang digunakan untuk hanya menampung hasil produksi hidrokarbon dari lepas pantai sedangkan teknologi sistem tambat seperti *Single Buoy Mooring* (SBM) tipe *Catenary Anchor Leg Mooring* (CALM) adalah salah satu struktur apung yang umum digunakan yang berfungsi menambat struktur apung seperti kapal FSO agar dapat meredam atau menahan gaya-gaya terhadap FSO akibat beban lingkungan saat proses *offloading*. Sebab, pada proses *offloading*, konfigurasi pada SBM harus mampu menghasilkan gaya pengembalian (*restoring force*) untuk meminimalkan besaran perpindahan kapal FSO dari titik awal.

Selain itu, hal mendasar yang perlu dilakukan dalam penelitian terkait teknologi kapal FSO dan SBM adalah mengetahui secara hitungan matematis mengenai perilaku struktur terapung pada FSO dan SBM terhadap lingkungan lepas pantai. Sebab, setiap tipe struktur terapung memiliki karakteristik perilaku yang berbeda-beda dan dapat membantu untuk memastikan konfigurasi struktur awal telah aman untuk beroperasi di lepas pantai dari segi stabilitasnya. Selanjutnya, analisis struktur secara global terutama pada SBM sendiri seperti kekuatan pada bagian *buoy*, tegangan *hawser* yang menghubungkan antara SBM dan FSO, dan tegangan rantai (*mooring line*) yang menghubungkan antara SBM dengan dasar laut perlu dilakukan agar SBM itu sendiri dapat menahan gaya-gaya akibat beban

lingkungan dan terhubungnya dengan kapal FSO. Namun, analisis struktur secara global pada SBM belum cukup karena belum dipastikan aman sebelum melakukan analisis tegangan lokal pada bagian yang kritis pada SBM seperti *chain stopper* dan pelatnya sehingga ketika diketahui adanya bagian struktur yang belum aman dalam memenuhi berdasarkan acuan regulasi yang digunakan maka perlu dilakukan konfigurasi ulang terhadap struktur SBM hingga dapat dipastikan tegangan lokal maksimumnya telah aman.

2.2 DASAR TEORI

2.2.1 Floating Storage and Offloading (FSO)

Gambar II.1 Contoh FSO milik perusahaan Maersk (sumber: gcaptain.com/signs-long-term-contract-maersk)

Floating Production, Storage, and Offloading (FPSO) adalah salah satu unit kapal yang digunakan oleh industri minyak dan gas lepas pantai untuk produksi, pengolahan, dan penyimpanan hidrokarbon seperti minyak atau gas cair. FPSO dirancang untuk menerima hidrokarbon yang diproduksi sendiri atau dari platform terdekat, memproses hasil produksi, menyalurkan minyak sampai ditransferkan ke sebuah kapal tanker atau melalui pipa ke darat. FPSO bisa dikonversikan ke bentuk kapal jenis *oil* tanker, *shuttle* tanker, dsb.

Sebuah kapal yang digunakan hanya untuk menyalurkan hasil produksi minyak (tanpa memprosesnya) disebut sebagai *Floating Storage and Offloading* (FSO) (Wikipedia, Floating Production Storage and Offloading, 2017). Sebab itu, kapal FSO serupa dengan FPSO dan perbedaan keduanya hanya pada hidrokarbon yang tidak di proses pada tangki kapal FSO (OCIMF, 2009). Selain itu, perbedaan FSO dengan kapal tanker adalah sistem operasinya tidak berlayar sebagaimana kapal tanker melainkan menggunakan sistem tambat (*mooring system*). Kekuatan konstruksi gadingnya lebih besar dibandingkan dengan kapal yang berukuran sama karena adanya beban di atas geladak yang sangat besar.

2.2.2 Teori Bangunan Apung

Hal yang mendasar dan penting untuk diketahui dalam penelitian tugas akhir ini adalah mengenai teori bangunan kapal dan mengenal beberapa istilahnya. Berikut ini beberapa istilah yang umum digunakan (Murtedjo, 2004):

<u>Ukuran utama kapal</u>

a. Length Between Perpendicular (L_{pp})

Panjang kapal yang menghubungkan antara dua garis tegak yaitu jarak horizontal antara garis tegak depan/haluan/FP dengan garis tegak belakang/buritan/AP. *After Perpendicular* (AP) adalah garis tegak buritan yaitu garis tegak yang terletak berimpit pada sumbu poros kemudi sedangkan *Front Perpendicular* (FP) adalah garis tegak haluan di mana garis tegak yang terletak pada titik potong antara linggi haluan dengan garis air pada sarat air muatan penuh yang telah direncanakan.

b. *Length of Water Line* (L_{wl})

Length of water line adalah panjang garis air yang diukur mulai dari perpotongan linggi buritan dengan garis air pada sarat sampai dengan pada perpotongan linggi haluan dengan garis air/FP (jarak mendatar antara kedua ujung garis muat). Sebagai pendekatan, panjang garis air dapat dirumuskan sebagai fungsi dari L_{pp} yaitu:

$$\mathbf{L}_{wl} = \mathbf{L}_{pp} + (\mathbf{2} \div \mathbf{4})\%\mathbf{L}_{pp} \tag{2.1}$$

c. Length of Displacement (Ldisp.)

Length of displacement adalah panjang kapal imajiner yang terjadi karena adanya perpindahan fluida sebagai akibat dari tercelupnya badan kapal. Dalam kaitan perancangan *Lines Plan* dengan metode diagram NSP (*Nederlandsch Scheepbouwkundig Proefstation*), panjang ini digunakan untuk menentukan seberapa besar luasan-luasan bagian yang tercelup air, pada saat L_{disp} dibagi menjadi 20 *station*. Panjang *displacement* dirumuskan sebagai rata-rata antara L_{pp} dan L_{wl}, yaitu:

$$\mathbf{L}_{disp.} = \frac{1}{2} \left(\mathbf{L}_{pp} + \mathbf{L}_{wl} \right) \tag{2.2}$$

d. Length Over All (Loa)

Length over all adalah panjang keseluruhan kapal yang diukur dari ujung bagian belakang kapal sampai dengan ujung bagian depan badan kapal.

e. *Breadth* (B)

Lebar kapal yang diukur pada sisi dalam pelat di tengah kapal (amidship).

f. Depth (H)

Tinggi geladak utama (*main deck*) kapal adalah jarak vertikal yang diukur pada bidang tengah kapal (*midship*) dari atas *keel* (lunas) sampai sisi atas geladak di sisi kapal.

g. *Draught* atau *Draft* (T)

Sarat air kapal yaitu jarak vertikal yang diukur dari sisi atas *keel* sampai dengan garis air (*waterline*) pada bidang tengah kapal (*midship*).

h. Service Speed (V_s)

Kecepatan dinas adalah kecepatan operasional kapal saat berlayar di laut. Kecepatan dinas umumnya (60÷80)% kecepatan maksimum.

i. *Displacement* (Δ)

Displacement merupakan berat keseluruhan badan kapal termasuk di dalamnya adalah konstruksi badan kapal, permesinan dan sistemnya, elektrik dan sistemnya, furnitur dan interior, *crew* dan bawaannya, logistik, bahan bakar, pelumas, air tawar, dan muatan kapal.

$\Delta = \mathbf{LWT} + \mathbf{DWT}$	(2.3.1)
$= L_{wl} \times B \times T \times C_b \times \gamma_{airlaut}$	(2.3.2)
$= \nabla \times \gamma_{air \ laut}$	(2.3.3)

j. Volume *Displacement* (∇)

Volume *displacement* adalah volume perpindahan fluida (air) sebagai akibat adanya bagian badan kapal yang tercelup di bagian bawah permukaan air.

$$\nabla = \mathbf{L}_{wl} \times \mathbf{B} \times \mathbf{T} \times \mathbf{C}_{b} \tag{2.4}$$

k. *Light Weight* (LWT)

Light weight adalah berat komponen-komponen dalam kapal yang 'tidak berubah' dalam fungsi waktu operasional kapal. Secara umum yang termasuk dalam LWT adalah berat-berat konstruksi badan kapal, mesin induk dan sistemnya, mesin bantu dan sistemnya, pompa-pompa dan sistemnya, perpipaan, instalasi listrik, interior diruang akomodasi, peralatan dapur, peralatan navigasi dan komunikasi, *crane*, perlengkapan keselamatan, *winch*, rantai jangkar, jangkar, *propeller*, kemudi dan peralatan atau perlengkapan lainnya.

1. Dead Weight (DWT)

Dead weight adalah berat komponen-komponen dalam kapal yang bisa 'berubah' dalam fungsi waktu operasional kapal. Secara umum yang termasuk dalam DWT adalah berat-berat (muatan cair/padat, bahan bakar, minyak pelumas, air tawar, logistik, *crew* dan bawaannya, *foam*/cairan kimia untuk pemadam kebakaran).

Gambar II.2 Definisi-definisi ukuran utama kapal (sumber: 'Perancangan Lines Plan Bangunan Laut Terapung' hal. 9 oleh Mas Murtedjo, 2014)

<u>Titik-titik yang berpengaruh pada stabilitas</u>

Berikut ini penjelasan dari titik yang berpengaruh pada stabilitas:

a. Titik Berat/Gravitasi (G)

Titik gravitasi adalah titik pusat berat kapal keseluruhan atau titik tangkap gaya berat kapal keseluruhan dan dipengaruhi oleh bentuk konstruksi kapal dan posisi/berat komponen yang ada (permesinan, peralatan, perlengkapan, muatan, bahan bakar, dan air tawar).

b. Titik Apung (B)

Titik apung adalah titik pusat/titik berat volume badan kapal di bawah garis air/titik apung/titik tangkap gaya tekan ke atas dan dipengaruhi oleh bentuk kapal di bawah permukaan air. c. Titik Metasentrik (M)

Dapat didefinisikan sebagai titik perpotongan antara gaya tekan ke atas pada saat *even keel* dengan gaya tekan ke atas pada saat kapal mengalami kemiringan. Titik M dapat digambarkan dalam suatu grafik yang tergantung dari sudut kemiringan.

d. Tinggi Titik Metasentrik terhadap Keel (KM)

Tinggi titik metasentrik terhadap atau di atas lunas (*keel*) adalah jumlah jarak dari *keel* ke titik apung (KB) dan jarak titik apung ke metasentrik (BM) sehingga KM juga dapat dihitung dengan rumus:

$$\mathbf{K}\mathbf{M} = \mathbf{K}\mathbf{B} + \mathbf{B}\mathbf{M} \tag{2.5}$$

e. Tinggi Titik Apung terhadap Keel (KB)

Tinggi titik apung terhadap *keel* adalah titik *buoyancy* vertikal kapal yang diukur dari *keel* sampai titik B (apung). KB juga biasa diidentikkan dengan istilah VCB (*Vertical Centre of Buoyancy*).

f. Tinggi Titik Berat terhadap Keel (KG)

Tinggi titik berat terhadap *keel* adalah titik berat vertikal kapal yang diukur dari *keel* sampai titik G (berat/gravitasi). KG juga biasa diidentikkan dengan istilah VCG (*Vertical Centre of Gravity*).

Gambar II.3 Titik-titik yang berpengaruh pada stabilitas kapal tampak samping (sumber: 'Teori Bangunan Apung' oleh Mas Murtedjo, 2014)

Gambar II.4 Titik-titik yang berpengaruh pada stabilitas kapal tampak depan (sumber: 'Teori Bangunan Apung' oleh Mas Murtedjo, 2014)

Komponen hidrostatik kapal dalam analisis Responses Amplitude Operator (RAO)

Penting untuk diketahui dan dipahami terkait elemen-elemen yang berpengaruh pada analisis respons gerak suatu struktur terapung melalui perhitungan RAO terutama penggunaan pada *software* yang dibutuhkan beberapa data komponen hidrostatik untuk di*input*kan. Di antaranya dan penjelasannya adalah sebagai berikut:

a. Jari-Jari Girasi

Dalam dunia *engineering*, jari-jari girasi sering diaplikasikan dalam berbagai keadaan. Misalnya untuk *structure engineering* dan *naval architect*. Pengertian jari-jari girasi adalah jarak yang menunjukkan distribusi massa (atau area) dari benda tersebut. Pada daerah lingkaran dengan jari-jari tersebut dianggap massa (atau area) terdistribusi secara sama. Jari-jari girasi juga sering digunakan dalam dunia teknik perkapalan karena kapal memiliki 6 DoF (*Degree of Freedom*)/6 derajat kebebasan sehingga jari-jari girasi nu ada tiga yaitu: terhadap sumbu x (r_x), y (r_y), dan z (r_z). Jari-jari girasi ini adalah akar jarak antara *centre of gravitiy* dengan bagian dari objek yang ditinjau. Jarijari girasi berguna untuk mengetahui kekakuan atau *stiffness* dari sebuah struktur (Ardhiansyah, 2011). Sebab pada daerah jari-jari girasi mempunyai *bending moment* maksimum (Azkia, 2016).

Jari-jari girasi kapal untuk *rolling* (k_{xx}), *pitching* (k_{yy}), dan *yawing* (k_{zz}) ditunjukkan pada Gambar II.5-II.7.

Gambar II.5 Jari-jari girasi *rolling* (sumber: 'Dynamics of Marine Vehicles' hal. 56 oleh R. Bhattacharyya)

Gambar II.6 Jari-jari girasi *pitching* (sumber: 'Dynamics of Marine Vehicles' hal. 57 oleh R. Bhattacharyya)

Gambar II.7 Jari-jari girasi *yawing* (sumber: 'Dynamics of Marine Vehicles' hal. 57 oleh R. Bhattacharyya)

Jika distribusi massa solid pada kapal tidak diketahui, maka jari-jari girasinya bisa didapatkan dengan pendekatan sebagai berikut (Journée & Massie., 2001):

Di mana L adalah panjang kapal dan B adalah lebar pada kapal. Jari-jari girasi pada gerakan *roll* (k_{xx}), *pitch* (k_{yy}), dan *yaw* (k_{zz}) diusulkan oleh Bureau Veritas (BV) dengan pendekatan sebagai berikut:

$$\mathbf{k}_{\mathbf{x}\mathbf{x}} = \mathbf{0}.\mathbf{289} \cdot \mathbf{B} \cdot \left(\mathbf{1}.\mathbf{0} + \left(\frac{\mathbf{2}.\overline{\mathbf{KG}}}{\mathbf{B}}\right)^2\right)$$
(2.6.4)

$$\mathbf{k}_{yy} = \mathbf{k}_{zz} = \sqrt{\frac{1}{12} \cdot \mathbf{L}}$$
(2.6.5)

Di mana \overline{KG} adalah tinggi titik berat atau gravitasi di atas *keel*.

b. Longitudinal Centre of Gravity (LCG)

Longitudinal centre of gravity adalah titik berat longitudinal kapal yang diukur dari *midship* (ke belakang AP/ke depan FP).

c. Transverse Centre of Gravity (TCG)

Transversal centre of gravity adalah titik berat transversal/datar melintang yang diukur dari posisi *centre line* ke kanan atau ke kiri.

2.2.3 **Teori Gerak Kapal**

Bilamana sebuah bangunan apung atau kapal mendapatkan eksitasi gelombang akan mengalami gerakan osilasi dalam 6-derajat kebebasan. Gerakangerakan yang terjadi adalah gerakan translasi dan rotasi.

Moda gerak translasi di antaranya adalah:

- 1) Surge, gerakan transversal arah sumbu x
- 2) Sway, gerakan transversal arah sumbu y
- 3) Heave, gerakan transversal arah sumbu z

sedangkan untuk mode gerak rotasinya adalah:

- 4) Roll, gerakan rotasi arah sumbu x
- 5) *Pitch*, gerakan rotasi arah sumbu y
- 6) Yaw, gerakan rotasi arah sumbu z

ωe

Berikut ini persamaan umum gerak respons suatu sistem pada gelombang reguler (Bhattacharyya, 1978):

$$a\ddot{\eta} + b\dot{\eta} + c\eta = F\cos\omega_e t \qquad (2.7)$$
 Keterangan,

а	: koefisien komponen gaya inersia (kg)
b	: koefisien komponen gaya redaman (N.s/m atau N.s/derajat)
c	: koefisien komponen gaya kekakuan (N/m atau N/derajat)
η	: respons pada derajat kebebasan tertentu (m atau derajat)
ή	: kecepatan respons pada derajat kebebasan tertentu (m/s
	atau derajat/s)
Ϋ	: percepatan respons pada derajat kebebasan tertentu (m/s 2
	atau derajat/s ²)

: amplitudo gaya eksitasi (m) Fo

Gambar II.8 Sistem sumbu dan definisi gerakan bangunan terapung (sumber: www.calqlata.com)
2.2.3.1 Gerakan Murni Kapal

<u>Gerakan Surge (x) Murni</u>

 $(\mathbf{M} + \mathbf{M}_1')\ddot{\mathbf{x}} + \mathbf{b}_1\dot{\mathbf{x}} = \mathbf{F}_1\cos\omega_{\mathbf{e}}\mathbf{t}$ (2.8.1)

 $(M + M'_1)$ adalah koefisien dari komponen gaya inersia dan penjumlahan dari massa bangunan apung dan massa tambahnya untuk gerakan *surge*. Sebagai ilustrasi ketika kapal bergerak dan *displacement*nya berubah maka seolah-olah adanya penambahan massa benda akibat terdorongnya partikel fluida di sekitarnya dalam jumlah massa tertentu karena bergeraknya kapal itu sendiri. Hal ini yang disebut sebagai massa tambah (*added mass*) akibat gerakan bangunan apung tertentu. b_1 adalah koefisien dari gaya redaman (*damping*) akibat gerakan *surge* yang didapatkan hasil eksperimen atau pendekatan berdasarkan geometri bangunan apung. ($F_1 \cos \omega_e t$) adalah komponen gaya penggetar atau eksitasi sedangkan F_1 adalah amplitudo dari gaya penggetar yang menyebabkan terbentuknya gerakan *surge* akibat gaya eksitasi berupa tekanan hidrostatis dan dinamis gelombang. Adanya ($\cos \omega_e t$) menunjukkan gaya penggetarnya bersifat periodik dan reguler. Komponen gaya eksitasi didapatkan berdasarkan penggunaan metode *strip/panel*. Sistem gerakan *surge* tidak memiliki unsur kekakuan (*stiffness*) sehingga komponen gaya pengembalinya tidak ada.

Gerakan Sway (y) Murni

$(\mathbf{M} + \mathbf{M}_2')\ddot{\mathbf{y}} + \mathbf{b}_2\dot{\mathbf{y}} = \mathbf{F}_2\cos\omega_{\mathbf{e}}\mathbf{t}$ (2.8.2)

 $(M + M'_2)$ adalah koefisien dari komponen gaya inersia dan penjumlahan dari massa bangunan apung dan massa tambahnya untuk gerakan *sway* sementara b_2 adalah koefisien dari gaya redaman (*damping*) akibat gerakan *sway* yang dihasilkan dari eksperimen atau pendekatan berdasarkan geometri bangunan apung. F_2 adalah amplitudo dari gaya penggetar yang menyebabkan terbentuknya gerakan *sway* akibat gaya eksitasi berupa tekanan hidrostatis dan dinamis gelombang. Komponen gaya eksitasi didapatkan berdasarkan penggunaan metode *strip/panel*. Sistem gerakan *sway* tidak memiliki unsur kekakuan (*stiffness*) sehingga komponen gaya pengembalinya tidak ada.

Gerakan Heave (z) Murni

 $(\mathbf{M} + \mathbf{M}'_3)\ddot{\mathbf{z}} + \mathbf{b}_3\dot{\mathbf{z}} + \rho \mathbf{g}(\mathbf{A}_{wp})\mathbf{z} = \mathbf{F}_3 \cos \omega_e \mathbf{t}$ (2.8.3)

 $(M + M'_3)$ adalah koefisien dari komponen gaya inersia dan penjumlahan dari massa bangunan apung dan massa tambahnya untuk gerakan *heave* lalu b_3 adalah koefisien dari gaya redaman (*damping*) akibat gerakan *heave* yang didapatkan dari eksperimen atau pendekatan berdasarkan geometri bangunan apung. ($\rho g A_{wp}$) adalah koefisien dari komponen gaya pengembali (*stiffness*) yang menyebabkan gerakan osilasi naik turun (*heaving*) karena fungsinya untuk mengembalikan ke posisi setimbang (*equilibrium*). Hal ini juga disebabkan karena adanya gaya penggetar eksternal sehingga ada kecenderungan yang berasal dari penambahan gaya apung saat bangunan apung bergerak secara vertikal dan membentuk perubahan pada saratnya. F_3 adalah amplitudo dari gaya penggetar yang menyebabkan terbentuknya gerakan *heave* akibat gaya eksitasi berupa tekanan hidrostatis dan dinamis gelombang. Komponen gaya eksitasi didapatkan berdasarkan penggunaan metode *strip/panel* dan dapat dihitung berdasarkan kemampuan komputasi atau *software* berbasis *finite element method* yang tersedia.

<u>Gerakan Roll (φ) Murni</u>

 $(\mathbf{Mk_{xx}}^2 + \mathbf{M}'_4 \mathbf{k'_{xx}}^2)\ddot{\boldsymbol{\varphi}} + \mathbf{b_4}\dot{\boldsymbol{\varphi}} + \mathbf{Mg}\overline{\mathbf{GM}}_{\mathbf{T}}\boldsymbol{\varphi} = \mathbf{F_4}\cos\omega_{\mathbf{e}}\mathbf{t}$ (2.8.4)

 $(l_{xx}^2 + l'_{xx}^2)$ atau $(Mk_{xx}^2 + M'_4k'_{xx}^2)$ adalah koefisien dari komponen gaya inersia dan penjumlahan dari momen inersia bangunan apung dan momen inersia massa tambah untuk gerakan *roll* sementara k_{xx} adalah jari-jari girasi gerakan *roll* terhadap sumbu x. b_4 adalah koefisien dari gaya redaman (*damping*) akibat gerakan *roll* yang dihasilkan dari eksperimen atau pendekatan berdasarkan geometri bangunan apung. $(Mg\overline{GM}_T)$ adalah koefisien dari komponen gaya pengembali atau penunjukkan sifat kekakuannya karena adanya tambahan gaya apung akibat gerakan *roll*. Sifat kekakuannya dapat diilustrasikan sebagaimana pada pegas spiral yang jika diberi gaya ke kanan atau kiri maka terdapat perlawanan untuk kesetimbangan pegas tersebut. *M* adalah massa bangunan apung, *g* adalah percepatan gravitasi, dan \overline{GM}_T adalah radius metasentrik transversal bangunan apung. Ruas kanan adalah komponen momen penggetar eksternal berupa gaya tekanan hidrostatis dan tekanan dinamis gelombang dengan F_4 adalah amplitudo momen penggetarnya untuk gerakan *roll*.

<u>Gerakan Pitch</u> (θ) Murni

$$(\mathbf{Mk_{yy}}^{2} + \mathbf{M}_{5}'\mathbf{k_{yy}'}^{2})\ddot{\mathbf{\theta}} + \mathbf{b}_{5}\dot{\mathbf{\theta}} + \mathbf{M}\mathbf{g}\overline{\mathbf{G}\mathbf{M}}_{L}\mathbf{\theta} = \mathbf{F}_{5}\cos\omega_{e}\mathbf{t}$$
(2.8.5)

 $(I_{yy}^2 + I'_{yy}^2)$ atau $(Mk_{yy}^2 + M'_5k'_{yy}^2)$ adalah koefisien dari komponen gaya inersia dan penjumlahan dari momen inersia bangunan apung dan momen

inersia massa tambah untuk gerakan *pitch* sementara k_{yy} adalah jari-jari girasi gerakan *pitch* terhadap sumbu y. b_5 adalah koefisien dari gaya redaman (*damping*) akibat gerakan *pitch* yang dihasilkan dari eksperimen atau pendekatan berdasarkan geometri bangunan apung. ($Mg\overline{GM}_L$) adalah koefisien dari komponen gaya pengembali atau penunjukkan sifat kekakuannya karena adanya tambahan gaya apung akibat gerakan *pitch* dengan \overline{GM}_L adalah radius metasentris longitudinal bangunan apung. Sifat kekakuannya dapat diilustrasikan sebagaimana pada pegas yang jika diberi gaya ke depan atau belakang maka terdapat perlawanan untuk kesetimbangan pegas tersebut. Ruas kanan adalah komponen momen penggetar eksternal berupa gaya tekanan hidrostatis dan tekanan dinamis gelombang dengan F_5 adalah amplitudo momen penggetarnya untuk gerakan *pitch*.

Gerakan Yaw (ψ) Murni

$$\left(\mathbf{Mk_{zz}}^{2} + \mathbf{M_{6}'k_{zz}'}^{2}\right)\ddot{\psi} + \mathbf{b_{6}}\dot{\psi} = \mathbf{F_{6}}\cos\omega_{e}\mathbf{t}$$
(2.8.6)

 $(I_{zz}^2 + I'_{zz}^2)$ atau $(Mk_{zz}^2 + M'_6k'_{zz}^2)$ adalah koefisien dari komponen gaya inersia dan penjumlahan dari momen inersia bangunan apung dan momen inersia massa tambah untuk gerakan *yaw* sementara k_{zz} adalah jari-jari girasi gerakan *yaw* terhadap sumbu z. b_6 adalah koefisien dari gaya redaman (*damping*) akibat gerakan *yaw* yang dihasilkan dari eksperimen atau pendekatan berdasarkan geometri bangunan apung. Ruas kanan adalah komponen momen penggetar eksternal berupa gaya tekanan hidrostatis dan tekanan dinamis gelombang dengan F_6 adalah amplitudo momen penggetarnya untuk gerakan *yaw*. Sistem gerakan *yaw* tidak memiliki unsur kekakuan (*stiffness*) sehingga komponen gaya pengembalinya tidak ada.

2.2.3.2 Gerakan Couple Six Degree of Freedom

Pada sub-bab sebelumnya telah dipaparkan persamaan murni tiap gerakan 6 derajat kebebasan untuk bangunan apung namun pada kenyataannya di perairan gelombang kapal bergerak secara bersamaan atau saling berinteraksi antar gerakannya. Oleh karena itu diperlukan suatu persamaan matematis yang menggabungkan persamaan keseluruhan gerakannya atau gerakan kopel (*coupled motion*) bangunan apung sebagaimana berikut:

$$\sum_{k=1}^{6} \left[\left(M_{jk} + A_{jk} \right) \ddot{\eta}_{k} + B_{jk} \dot{\eta}_{k} + C_{jk} \eta_{k} \right] = F_{j} e^{iwt}, \ j = 1, 2, ..., 6$$
(2.9.1)

Keterangan,

M_{jk}	: komponen matriks massa umum bangunan apung
A_{jk}	: komponen matriks massa tambah gerakan tertentu
\mathbf{B}_{jk}	: komponen matriks koefisien redaman umum
C_{jk}	: koefisien-koefisien gaya hidrostatik pengembalian
F_j	: amplitudo gaya eksitasi dalam besaran kompleks

 F_1 , F_2 , dan F_3 adalah amplitudo gaya-gaya eksitasi yang mengakibatkan *surge*, *sway*, dan *heave* sedangkan F_4 , F_5 , dan F_6 adalah amplitudo momen eksitasi untuk *roll*, *pitch*, dan *yaw* sehingga *subscript* j dan k adalah penunjukan derajat kebebasan tertentu dan penggambaran interaksi antara gerakannya.

Terbentuknya respons gerakan kopel berdasarkan asumsi bahwa responsnya memiliki bentuk dinamisme yang sama dengan gaya eksitasinya sebagaimana berikut (Lewis, 1989):

$$\begin{split} \eta_{j} &= \overline{\eta}_{j} e^{iwt} \\ \dot{\eta}_{j} &= (i\omega) \overline{\eta}_{j} e^{iwt} \\ \ddot{\eta}_{i} &= (-\omega^{2}) \overline{\eta}_{i} e^{iwt} \end{split} \qquad \begin{array}{l} j &= 1, 2, \dots, 6 \\ i &= \sqrt{-1} \end{split} (2.9.2) \end{split}$$

Dengan $\bar{\eta}_j$ adalah amplitudo respons kompleks. Jika persamaan 2.9.2 disubstitusikan ke dalam persamaan 2.9.1 maka persamaannya menjadi:

$$\sum_{k=1}^{6} \left[-\omega^2 \left(\mathbf{M}_{jk} + \mathbf{A}_{jk} \right) + i\omega \mathbf{B}_{jk} + \mathbf{C}_{jk} \right] \overline{\eta}_j \mathbf{e}^{iwt} = \mathbf{F}_j \mathbf{e}^{iwt}$$
(2.9.3)

Jika persamaan 2.9.3 dapat disederhanakan maka persamaannya menjadi:

$$\overline{\eta}_{j} \sum_{k=1}^{6} [K_{jk}] = F_{j}; \ j = 1, 2, ..., 6$$
(2.9.4)

Karena matriks total gaya atau momen penggetar eksternal F_j ekuivalen dalam bentuk dinamisme yang sama pada respons gerakan pada awalnya $\bar{\eta}_j$ maka amplitudo respons gerakannya adalah *inverse* matriks sebagaimana berikut:

$$\overline{\eta}_{j} = \sum_{k=1}^{6} [K_{jk}]^{-1} F_{j}; \ j = 1, 2, ..., 6$$
(2.9.5)

2.2.4 Perilaku Bangunan Apung pada Gelombang Reguler

2.2.4.1 Teori Gelombang Reguler

Teori gelombang reguler diidentikkan dengan memiliki amplitudo yang kecil di mana asumsi tinggi gelombangnya sangat kecil dibandingkan panjang

gelombang atau kedalaman laut (Djatmiko E. B., 2012). Karena rumitnya menyederhanakan perumusan matematis gelombang yang kompleks maka asumsi tersebut diharapkan dapat memberikan keleluasaan syarat batas-batas tertentu untuk mendapatkan rumusan sederhana teori gelombang reguler. Meskipun secara pengamatan bahwa teori gelombang reguler mustahil diterapkan secara langsung pada kondisi gelombang yang riil namun jika hasil teori gelombang reguler di superposisi dengan ketentuan yang ada maka dapat disesuaikan untuk diterapkan pada kondisi gelombang laut riil yang sifatnya acak.

Gambar II.9 adalah penggambaran mengenai parameter-parameter umum yang perlu diketahui untuk teori gelombang reguler.

Gambar II.9 Definisi gelombang reguler

(sumber: 'Hidrodinamika I – Teori Gelombang Airy (PowerPoint)' oleh E. B. Djatmiko)

Keterangan,

λ	w : panjang gelombang (m) berhubun	gan dengan $k_w = 2\pi/\lambda_w$		
k	» : angka gelombang – jumlah siklu	: angka gelombang – jumlah siklus gelombang yang terjadi		
	dalam satu meter (rad/m)			
c	: kecepatan gelombang atau wave o	celerity (m/s)		
Т	: periode gelombang (s) berhubung	: periode gelombang (s) berhubungan dengan $\omega = 2\pi/T$		
ω	: frekuensi gelombang – jumlah	: frekuensi gelombang – jumlah siklus gelombang yang		
	terjadi dalam satu sekon (rad/s)			
Η	: tinggi gelombang (m)			
ζ(: amplitudo gelombang atau $\zeta_0 = I$: amplitudo gelombang atau $\zeta_0 = H/2$ (m)		
ζ	: elevasi permukaan gelombang (m	: elevasi permukaan gelombang (m)		
d	: kedalaman laut (m)			
ф :	$=\frac{\zeta_0 g}{\omega} \frac{\cosh(k_w(z+d))}{\cosh(k_w d)} \cos(\omega t - k_w x)$	(2.10.1)		

Persamaan 2.10.1 adalah inti dari teori gelombang reguler di mana fungsi potensial (ϕ) tak berdimensi yang bila diturunkan secara parsial terhadap salah satu sumbu koordinat pada analisis dua dimensi Gambar II.9 akan menghasilkan komponen kecepatan dan percepatan pada arah tersebut sebagaimana pada persamaan 2.10.2 dan 2.10.3.

$$\mathbf{u} = \frac{\mathbf{d}\mathbf{\phi}}{\mathbf{d}\mathbf{x}}; \ \mathbf{w} = \frac{\mathbf{d}\mathbf{\phi}}{\mathbf{d}\mathbf{z}}$$
(2.10.2)
$$\mathbf{\dot{u}} = \frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\mathbf{t}}; \ \mathbf{\dot{w}} = \frac{\mathbf{d}\mathbf{z}}{\mathbf{d}\mathbf{t}}$$
(2.10.3)

Keterangan,

u	: kecepatan partikel sumbu x (m/s)
W	: kecepatan partikel sumbu z (m/s)
ů	: percepatan partikel sumbu x (m/s ²)
Ŵ	: percepatan partikel sumbu z (m/s ²)
Х	: posisi horizontal (m)
Z	: elevasi permukaan air (m)
t	: waktu (s)

Komponen kecepatan partikel atau aliran menjadi penting untuk teori gelombang reguler karena jika diidentifikasikan komponen tersebut beserta pola alirannya maka sudah pasti merupakan hasil diketahui awalnya untuk besaran beban atau gaya aliran dari variasi tekanan gelombang (Djatmiko E. B., 2012). Selain itu yang menarik adalah konsep variasi tekanan gelombang berkaitan erat dengan karakteristik bangunan apung pada gelombang reguler atau acak sebab respons bangunan apung merupakan akibat dari gaya-gaya aliran atau gelombang.

Berikut ini adalah simplifikasi dari persamaan umum variasi tekanan gelombang dan merupakan hasil dari hubungan asumsi syarat batas pada teori gelombang reguler dengan persamaan Bernoulli.

$$\mathbf{p} = -\rho \frac{\partial \Phi}{\partial t} = \rho g \zeta_0 \sin(\omega t - \mathbf{k}_w \mathbf{x})$$
(2.10.4)

$$\mathbf{p} = -\rho \frac{\partial \Phi}{\partial t} = \rho g \zeta_0 e^{\mathbf{k}_w \mathbf{z}} \sin(\omega t - \mathbf{k}_w \mathbf{x})$$
(2.10.5)

Keterangan,

p : tekanan dinamis atau gelombang (kN/m²)
 ρ : massa jenis air laut (kg/m³)

Persamaan 2.10.4 berlaku pada perairan dangkal sedangkan persamaan 2.10.5 berlaku pada perairan dalam di mana perbandingan antara kedalaman dan panjang gelombangnya sangat besar atau $d/L \rightarrow \infty$.

2.2.4.2 Response Amplitude Operator (RAO)

Response Amplitude Operator (RAO) adalah fungsi atau operator matematis untuk mengetahui respons oleh bangunan apung yang berdasarkan amplitudonya sebagai akibat beban eksitasi gelombang dalam rentang frekuensi atau periode tertentu. Dengan kata lain, RAO adalah informasi karakteristik gerakan bangunan laut terhadap gelombang dengan fungsi sebuah operator. RAO juga dikatakan sebagai transfer *function* karena RAO adalah operator atau alat untuk mentransfer beban luar yakni gelombang dalam bentuk respons pada suatu struktur. Respons gerakan RAO untuk gerakan translasi adalah perbandingan langsung antara amplitudo gerakannya dibanding dengan amplitudo gelombang insiden (dalam satuan panjang atau meter) (Djatmiko E. B., 2012):

$$\mathbf{RA0} = \frac{\zeta_{\mathbf{k0}}}{\zeta_0} (\mathbf{m/m}) \tag{2.11.1}$$

Sedangkan respons non-dimensi atau RAO untuk gerakan rotasi adalah perbandingan antara amplitudo gerakan rotasi (dalam radian) dengan kemiringan gelombang, yakni perkalian antara angka gelombang dengan amplitudo gelombang insiden:

Gambar II.10 Bentuk umum grafik respons gerakan bangunan apung (sumber: 'Perilaku dan Operabilitas Bangunan Apung di Atas Gelombang Acak' hal. 65 oleh E. B. Djatmiko)

2.2.4.3 Beban Gelombang Seconder Order

Pengaruh beban gelombang *second order* akan tampak pada perilaku struktur apung yang ditambat pada SBM. Pada gelombang reguler, cara yang paling umum untuk mendefinisikan pengaruh non linear adalah dengan melengkapi persamaan Bernoulli (Faltinsen, 1990).

Setelah dilengkapi persamaan Bernoulli, didapatkan hasilnya yang akan diklasifikasikan menjadi tiga komponen penyusun: beban *mean wave drift*, beban osilasi variasi frekuensi, dan beban osilasi dari penjumlahan frekuensi tersebut yang akan mendeskripsikan spektrum gelombang.

2.2.5 Perilaku Bangunan Apung pada Gelombang Acak

2.2.5.1 Spektrum Gelombang

Spektrum gelombang adalah salah satu konsep awal dalam pengembangan analisis untuk mengetahui fenomena fisik gelombang acak yang selanjutnya dapat diketahui bagaimana karakteristik bangunan apung pada kondisi riil. Pada prinsipnya gelombang acak merupakan superposisi dari gelombang-gelombang reguler yang jumlahnya tak hingga dan tidak ada satu pun gelombang reguler yang mengalami pengulangan yang sama.

Untuk dapat mendefinisikan gelombang acak secara matematis maka perlu diketahui yang berhubungan dengan energi gelombang sebab pada prinsipnya sebuah gelombang reguler memuat energi yang berarti setiap unit atau satuan luas permukaannya adalah sama dengan nilai kuadrat amplitudonya sebagaimana persamaan 2.12.1 (Djatmiko E. B., 2012).

$$\mathbf{E}_{\mathbf{n}} = \frac{1}{2} \rho \mathbf{g} \boldsymbol{\zeta}_0^2 \tag{2.12.1}$$

Keterangan,

En	: komponen energi gelombang reguler ke-n (N/m)
ρ	: massa jenis air laut (kg/m ³)
g	: percepatan gravitasi (m/s ²)
ζ ₀	: amplitudo gelombang (m)

Sebagaimana prinsip hubungan superposisi jumlah gelombang reguler dengan kombinasi amplitudo dan frekuensi berbeda terhadap gelombang acak maka energi total dari keseluruhan komponen energi gelombang reguler untuk mendapatkan hasil energi gelombang acak didapatkan persamaan 2.12.2.

$$\mathbf{E}_{\mathrm{T}} = \frac{1}{2} \rho g \sum \zeta_0^2 \tag{2.12.2}$$

Penjumlahan energi dari seluruh komponen gelombang reguler per satuan luas permukaan (1.0 m²) dapat dikatakan sebagai kepadatan spektrum energi gelombang atau spektrum gelombang. Spektrum energi dapat divisualkan secara grafik sebagaimana pada Gambar II.11.

Gambar II.11 Definisi spektrum energi gelombang (sumber: 'Dynamics of Marine Vehicles' hal. 112 oleh R. Bhattacharyya)

Kurva pada Gambar II.11 merupakan hasil distribusi energi tiap gelombang reguler sedang ordinatnya (sumbu y) adalah besaran per energi ($E_i - lb/ft$) yang dibagi terhadap rentang frekuensi ($d\omega_w - 1/s$) sehingga satuannya menjadi (lb.s/ft) dan absisnya (sumbu x) adalah frekuensi gelombang ω_w dalam satuan (s⁻¹).

Untuk mendapatkan spektrum gelombang yang diinginkan maka dibuatlah penentuan rentang frekuensi (d ω_w) yang sangat kecil agar superposisi dari gelombang reguler benar-benar mendekati kondisi riil. Selain itu, sebagai cara untuk membuktikan bahwa di laut terdapat kontribusi dari seluruh frekuensi gelombang berdasarkan tiap rentang frekuensi pada absisnya. Dengan demikian energi dalam rentang frekuensi (d ω_w) adalah sama dengan luasan bawah kurvanya atau dapat digunakan persamaan 2.12.3 sebagai bentuk mewakili total energi gelombang yang ada.

$$\mathbf{E}_{\mathrm{T}} = \int_{0}^{\infty} (\mathbf{E}) \, \mathbf{d}\boldsymbol{\omega}_{\mathrm{w}} = \int_{0}^{\infty} \left(\frac{\mathbf{E}_{\mathrm{i}}}{\mathbf{d}\boldsymbol{\omega}_{\mathrm{w}}}\right) \mathbf{d}\boldsymbol{\omega}_{\mathrm{w}} \tag{2.12.3}$$

Jika ordinat (sumbu y) pada Gambar II.11 dibagi dengan perkalian antara massa jenis air laut (ρ) dan percepatan gravitasinya (g) sehingga ordinatnya menjadi $E_i/(\rho g \cdot d\omega_w)$ kemudian direkonstruksi kembali kurvanya sehingga terbentuk distribusi energi yang baru maka didapatkan komponen spektrum gelombang

dengan ordinatnya disebut sebagai *spectral density of wave energy* atau $S(\omega_w)$ dalam satuan (m²/s⁻¹) dan absisnya disebut sebagai frekuensi gelombang atau ω_w dalam satuan (s⁻¹).

$$\mathbf{S}(\boldsymbol{\omega}_{\mathbf{w}}) = \frac{\boldsymbol{\zeta}_{\mathbf{0}}^2}{2\mathbf{d}\boldsymbol{\omega}_{\mathbf{w}}} \tag{2.12.4}$$

Sehingga luasan di bawa kurva spektrum energi total gelombang dapat kembali dituliskan dari persamaan 2.12.3 menjadi persamaan 2.12.5

$$\mathbf{E}_{\mathrm{T}} = \rho g \int_{0}^{\infty} \mathbf{S}(\boldsymbol{\omega}_{\mathrm{W}}) \, \mathrm{d}\boldsymbol{\omega}_{\mathrm{W}}$$
(2.12.5)

Penentuan spektrum energi gelombang untuk mendapatkan respons spektrum suatu struktur mengacu pada kondisi laut yang sebenarnya terjadi. Bila tidak ada, maka dapat diasumsikan berbagai model spektrum yang diresmikan oleh berbagai institusi terpercaya dengan mempertimbangkan kemiripan fisik lingkungan.

Spektrum gelombang JONSWAP adalah salah satu model spektrum yang memiliki kemiripan fisik lingkungan dengan perairan laut Indonesia umumnya namun tidak seganas *North Sea* yang merupakan lokasi hasil eksperimennya. Namun, diharapkan dengan penggunaan model spektrum tersebut dapat meningkatkan keamanan dalam perancangan struktur bangunan apung.

$$\mathbf{S}_{\mathbf{J}}(\boldsymbol{\omega}_{\mathbf{w}}) = \boldsymbol{\alpha} \cdot \mathbf{g}^{2} \cdot \boldsymbol{\omega}^{-5} \cdot \exp\left[-1.25\left(\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\mathbf{p}}}\right)^{-4}\right] \cdot \gamma^{\exp\left[-0.5\left(\frac{\boldsymbol{\omega}-\boldsymbol{\omega}_{\mathbf{p}}}{\boldsymbol{\sigma}\cdot\boldsymbol{\omega}_{\mathbf{p}}}\right)^{2}\right]}$$
(2.12.6)

Keterangan,

 $\gamma \qquad : \text{ parameter ketinggian } (peakedness parameter) \\ : \begin{cases} \varphi \leq 3.6 \rightarrow 5.0 \\ 3.6 < \varphi < 5.0 \rightarrow \exp(5.75 - 1.15\varphi) \\ \varphi > 5.0 \rightarrow 1.0 \end{cases}$

2.2.5.2 Respons Bangunan Apung pada Gelombang Acak

Gelombang acak merupakan superposisi dari komponen-komponen pembentuknya yang berupa gelombang sinusoidal (reguler) dalam jumlah tidak terhingga. Tiap-tiap komponen gelombang mempunyai tingkat energi tertentu yang dikontribusikan yang kemudian secara keseluruhan diakumulasikan dalam bentuk spektrum energi gelombang (Djatmiko E. B., 2012).

Hasil analisis berupa pengaruh interaksi hidrodinamika pada massa tambah, *potential damping*, dan gaya eksternal didapatkan pada analisis respons bangunan apung pada gelombang reguler. Selanjutnya, spektrum respons pada gelombang acak didapatkan dari hasil transformasi spektrum gelombang untuk mengetahui respons strukturnya. Secara matematis, nilai pada RAO dikuadratkan lalu dikali dengan spektrum gelombangnya sebagaimana pada persamaan 2.13.1.

$$\mathbf{S}_{\eta}(\boldsymbol{\omega}_{e}) = \mathbf{R}\mathbf{A}\mathbf{O}^{2} \times \mathbf{S}_{\zeta}(\boldsymbol{\omega}_{e}) \tag{2.13.1}$$

Keterangan,

 $S_{\eta}(\omega_e)$: spektrum respons struktur untuk setiap derajat kebebasan η (m²-s)

 $S_\zeta(\omega_e)$: spektrum energi gelombang (m²-s) atau $S_J(\omega_w)$ untuk JONSWAP

RAO² : transfer *function*

Gambar II.12 Transformasi spektrum gelombang menjadi spektrum respons (sumber: 'Perilaku dan Operabilitas Bangunan Apung di Atas Gelombang Acak' hal. 161 oleh E. B. Djatmiko)

Dari spektrum respons dapat diketahui parameter-parameter gelombang yang terdapat pada tabel berikut:

Profil Gelombang	<u>Amplitudo</u>	Tinggi
Gelombang rata-rata	$1.25\sqrt{m_0}$	$2.5\sqrt{m_0}$
Gelombang signifikan	$2.00\sqrt{m_0}$	$4.00\sqrt{m_0}$
Rata-rata 1:10 gelombang tertinggi	$2.55\sqrt{m_0}$	$1.25\sqrt{m_0}$
Rata-rata 1:1000 gelombang tertinggi	$3.44\sqrt{m_0}$	$1.25\sqrt{m_0}$

Tabel II.1 Amplitudo dan tinggi gelombang pada spektrum

Keterangan,

m₀ : luasan di bawah kurva spektrum (*zero moment*)

Luasan di bawa kurva spektrum untuk momen ke-0 didapatkan berdasarkan persamaan 2.13.2.

$$\mathbf{m}_{\mathbf{n}} = \int_{0}^{\infty} \boldsymbol{\omega}_{\mathbf{w}}^{\mathbf{n}} \cdot \mathbf{S}_{\eta}(\boldsymbol{\omega}_{\mathbf{e}}) \, \mathbf{d}\boldsymbol{\omega}_{\mathbf{w}}$$
(2.13.2)

Keterangan,

 $\begin{array}{ll} m_n & : \mbox{ momen ke-n} \\ \omega_w^n & : \mbox{ frekuensi gelombang (rad/s)} \\ S_\eta(\omega_e) & : \mbox{ spektrum respons struktur untuk setiap derajat kebebasan } \eta \\ & (m^2-s) \end{array}$

2.2.6 Sistem Tambat (Mooring System)

Pada prinsipnya sistem tambat berfungsi untuk meredam pergerakan kapal akibat beban lingkungan sehingga posisi kapal tetap berada pada tempatnya dalam masa operasi. Sistem tambat terbagi menjadi dua kategori yakni: 1) Sifatnya *weathervaning* bagi yang ditambat (SBM, *turret mooring system*, dan *tower yoke mooring system*); 2) Sifatnya *non-weathervaning* bagi yang ditambat (*spread mooring system*).

Gambar II.13 (a) *Single Buoy Mooring*; (b) *External Turret Mooring* (sumber: helmidadang.wordpress.com & fishsafe.eu/en)

2.2.6.1 Single Buoy Mooring (SBM)

Single buoy mooring merupakan salah satu struktur yang memiliki fungsi sebagai penambat dan interkoneksi untuk muatan tanker atau pembongkaran produk hidrokarbon. SBM terdiri atas sebuah buoy yang ditambat ke dasar dengan menggunakan empat, enam, atau delapan rantai jangkar berat. SBM membantu bangunan apung untuk proses *weathervaning* yang berarti memungkinkan bangunan apung dapat bergerak sesuai arah akibat beban lingkungan. Hal ini penting untuk dapat meminimalkan gerakan struktur terapung akibat beban lingkungan (API Recommended Practice 2SK, 1997).

SBM terdiri dari tiga jenis yakni *Turret Mooring*, CALM (*Catenary Anchor Leg Mooring*), dan SALM (*Single Anchor Leg Mooring*). Masing-masing jenis tersebut memiliki kelebihan dan kelemahan tersendiri namun CALM adalah jenis yang paling umum digunakan karena mampu menangani ukuran kapal yang besar bahkan kapal seperti VLCC (*Very Large Crude Carriers*) di mana tidak ada lagi fasilitas alternatif yang tersedia.

2.2.6.2 Mooring Line

Tali tambat (mooring line) terbagi menjadi dua komponen yaitu:

- *Wire rope* adalah sistem kabel lebih ringan dibanding sistem rantai oleh karena itu pada umumnya tali tambat terdapat gaya pengembali (*restoring force*) yang lebih baik pada laut dalam dibanding rantai dan membutuhkan tegangan awal yang kecil.
- *Chain* (rantai) adalah sistem rantai telah terbukti untuk daya tahan pada operasi di lepas pantai. Rantai lebih baik untuk pencegahan akan abrasi pada dasar laut dan memberikan kontribusi yang signifikan pada daya cengkeram jangkar.
- Kombinasi antara *chain* dan *wire rope* harus dilakukan dengan pemilihan panjang yang tepat sehingga dapat memperoleh sistem tambat yang menguntungkan secara ekonomis dan aman. Selain itu, secara teknis besaran tegangannya (*pretension*) akan sedikit lebih rendah, gaya pengembali (*restoring force*) yang lebih tinggi, dan *holding anchor* yang lebih besar serta daya tahannya terhadap abrasi dasar laut yang bagus. Hal ini juga menjadi pertimbangan untuk cocok dioperasikan pada laut dalam (*deep water*).

2.2.6.3 Penentuan Mooring Line

Fungsi utama tali pada sistem tambat adalah agar bangunan apung dapat berada pada posisi sesuai tujuan penambatannya dan memiliki ukuran panjang serta *pretension* yang sesuai.

Gambar II.14 Parameter mooring line (sumber: 'Analisa Analisa Resiko Pada Mooring Lines SPM Akibat Beban Kelelahan' oleh Henny Triastuti Kusumawardhani)

Berikut adalah penentuan panjang minimum dari *mooring line* (*basic equation*):

$$\frac{\mathbf{l}}{\mathbf{h}} = \sqrt{\frac{\mathbf{2F}_{\mathrm{H}}}{\mathbf{w} \cdot \mathbf{h}} + \mathbf{1}}$$
(2.15.1)

atau

$$\frac{\mathbf{l}}{\mathbf{h}} = \sqrt{\frac{2\mathrm{T}}{\mathbf{w} \cdot \mathbf{h}} - 1}$$
(2.15.2)

Keterangan,

1 : panjang minimum tali tambat (*chain line*) : jarak vertikal dari *fairlead* ke *seabed* $= h_m + h_c$ h h_{m} : kedalaman air : tinggi *fairlead* di atas permukaan air h_c : berat tali tambat di dalam air per satuan panjang W : gaya horizontal *pre-tension* atau tali tambat pada *fairlead* = $F_{\rm H}$ 10% MBL Т : tension maksimum dari tali tambat (pre-tension) pada fairlead D : length resting on the seabed (panjang tali tambat yang menempel pada *seabed*)

Harga D dapat diasumsikan berdasarkan tipe dari tali tambat, yaitu:

- 200 s/d 300 m untuk tali tambat yang memiliki konfigurasi *wire rope anchor lines*.
- 50 s/d 100 m untuk tali tambat yang memiliki konfigurasi *chain anchor lines*.

Jarak minimum *mooring line* diperhitungkan agar rantai jangkar beratnya tidak terlalu mengalami tegangan yang besar sehingga tegangan yang dihasilkan masih aman dalam beroperasi. Perhitungan jarak minimum *mooring line* dapat dicari dengan persamaan (Faltinsen, 1990):

$$\mathbf{x} = \mathbf{l} - \mathbf{h} \left(\mathbf{1} + \mathbf{2} \frac{\mathbf{a}}{\mathbf{h}} \right)^{0.5} + \mathbf{a} \cosh^{-1} \left(\mathbf{1} + \frac{\mathbf{h}}{\mathbf{a}} \right)$$
(2.15.3)
Keterangan,

Х	: jarak minimum <i>mooring line</i> (m)
1	: panjang keseluruhan mooring line (m)
h	: jarak titik tumpu ke <i>seabed</i> (m)
a	$: T_{H}/w$

2.2.6.4 Gaya Tarik pada Mooring Line

Gerakan pada bangunan apung atau kapal yang disebabkan beban lingkungan akan menyebabkan tali tambat mendapatkan tarikan atau tegangan. Tegangan (*tension*) akibat tarikan pada *mooring line* dapat dibedakan menjadi dua, yaitu:

➤ Mean Tension

 \triangleright

Tension pada mooring line yang berkaitan dengan mean offset pada kapal.

➤ Maximum Tension

Mean tension yang mendapat pengaruh dari kombinasi frekuensi gelombang dan *low-frequency tension*.

Berdasarkan aturan standar dari API RP 2SK edisi ketiga, tegangan maksimum dapat ditentukan dengan prosedur sebagai berikut:

 \blacktriangleright Jika $T_{lfmax} > T_{wfmax}$, maka:

$$\mathbf{T}_{\max} = \mathbf{T}_{\text{mean}} + \mathbf{T}_{\text{lfmax}} + \mathbf{T}_{\text{wfsig}}$$
(2.16.1)
Jika $T_{wfmax} > T_{lfmax}$, maka:

$$\mathbf{T}_{\max} = \mathbf{T}_{\max} + \mathbf{T}_{wfmax} + \mathbf{T}_{lfsig}$$
(2.16.2)
Keterangan,

T_{lfmax} : maximum low-frequency tension

T_{wfmax}	: maximum wave frequency tension
T _{max}	: maximum tension
T _{mean}	: mean tension
T _{lfsig}	: significant low-frequency tension
Twfsig	: significant wave frequency tension

Sebagai catatan penting bahwa batasan atau *limit* besaran tegangan pada tali tambat dan faktor keamanan yang direkomendasikan untuk kondisi *intact condition* (ULS) adalah 1,67 sedangkan untuk kondisi *damage* (ALS) adalah 1,25. Dengan persamaan *safety factor*nya sebagai berikut:

$$Safety Factor (SF) = \frac{Min. Breaking Load (MBL)}{Max. Tension}$$
(2.16.3)

2.2.7 Analisis Dinamis

Analisis dinamis memperhitungkan respons dinamis dari tali tambat. Dampak variasi waktu yang disebabkan massa tali tambat, redaman, dan percepatan relatif fluida disertakan. Melalui cara pendekatan dengan gerakan *fairlead* yang berdasarkan variasi waktu dari mode gerakan osilasi dalam 6-derajat kebebasan. Metode analisis simulasi domain pada bangunan apung terbagi menjadi dua, yaitu (DNV, 2004):

Frequency Domain Analysis

Frequency domain analysis adalah simulasi kejadian pada rentang frekuensi yang telah ditentukan. Metode ini juga dapat untuk memprediksi respons gelombang acak termasuk gerakan bangunan apung itu sendiri dan percepatan, gaya tendon serta sudut. Kelebihan dari metode ini adalah dapat lebih menghemat waktu perhitungan dan juga proses *input* dan *output* sedangkan kelemahannya adalah persamaan non linier diasumsikan menjadi persamaan linier dengan kata lain keakuratan hasil perhitungannya menjadi berkurang dibandingkan dengan penggunaan persamaan non linier. Umumnya metode ini digunakan untuk mencari respons struktur.

Time Domain Analysis

Time domain *analysis* adalah penuntasan gerakan dinamis yang disebabkan beban lingkungan yang *cylic* berdasarkan fungsi rentang waktu yang telah ditentukan sebelumnya. Pendekatan ini dengan cara memakai prosedur integrasi waktu dan menghasilkan respons dengan riwayat waktunya berdasarkan fungsi waktu [x(t)]. *Time* domain menjadi metode untuk analisis dinamis dalam menentukan nilai *tension* sedangkan *frequency* domain menjadi metode untuk mengetahui respons struktur. Metode ini juga umumnya dilakukan pada saat kondisi ekstrem atau badai dan bukan metode yang tepat jika dilakukan analisis kelelahan (*fatigue*). Jika dibandingkan metode *frequency* domain, maka keuntungannya adalah semua tipe model non-linear (matriks sistem dan beban-beban eksternal) dapat dimodelkan dengan lebih tepat. Sedangkan kelemahannya adalah membutuhkan waktu perhitungan yang lebih. Berdasarkan aturan standar DNV OS E301 sendiri bahwa minimal simulasi *time* domain adalah selama 3 jam (10800 s). Umumnya metode ini dijadikan acuan untuk analisis dinamis dalam mencari gaya tarik atau tegangan dan juga biasa digunakan pada kondisi ekstrem namun tidak untuk analisis kelelahan (*fatigue*).

2.2.8 Tegangan Pada Struktur

2.2.8.1 Tegangan Aksial

Tegangan aksial atau normal merupakan intensitas gaya pada suatu titik tertentu yang tegak lurus terhadap suatu penampang dan menghasilkan tegangan akibat adanya gaya tarik atau tekan. Berikut persamaan umumnya:

$$\tau = \frac{F}{A} \tag{2.17}$$

Keterangan,

- τ : tegangan aksial (Pa)
- F : gaya yang bekerja (N)
- A : luas penampang *chock* (m^2)

Gambar II.15 Distribusi tegangan pada sepanjang tegangan lentur (sumber: 'Mechanics of Materials' hal. 10 oleh Ferdinand Beer dkk.)

2.2.8.2 Tegangan Lentur

Momen luar diimbangi oleh momen dalam yang merupakan resultan tegangan lentur (*bending*). Berikut adalah turunan rumus agar mendapatkan persamaan umum tegangan lenturnya:

$$\mathbf{M} = \int_{\mathbf{A}} \mathbf{f} \cdot \mathbf{dA} \cdot \mathbf{y} = \int_{\mathbf{A}} \left(-\frac{\mathbf{y}}{\mathbf{c}} \mathbf{f}_{\max} \right) \cdot \mathbf{dA} \cdot \mathbf{y} = -\frac{\mathbf{f}_{\max}}{\mathbf{c}} \int_{\mathbf{A}} \mathbf{y}^2 \mathbf{dA}$$
(2.18.1)

Karena $\int_A y^2 dA$ adalah momen inersia (I) maka tegangan lentur pada sembarang titik yang berjarak y dari garis netal adalah:

$$\mathbf{f} = -\frac{\mathbf{M} \cdot \mathbf{y}}{\mathbf{I}} \tag{2.18.2}$$

Keterangan,

f : tegangan lentur atau biasa disimbolkan juga dengan σ

- M : momen *bending* (ton.m)
- y : jarak normal bidang (m)
- I : momen inersia bidang (m²)

Gambar II.16 Tegangan lentur (sumber: 'Mechanics of Materials' hal. 229 oleh Ferdinand Beer dkk.)

2.2.8.3 Tegangan Geser

Tegangan geser (*shear stress*) adalah intensitas gaya pada suatu titik yang sejajar terhadap penampang dan berikut persamaan umumnya:

$$\mathbf{v} = \frac{\mathbf{V}}{\mathbf{A}} \tag{2.19}$$

Keterangan,

V : gaya geser (N) A : luas penampang (m²)

Gambar II.17 Gaya yang bekerja berlawanan arah terhadap penampang (sumber: 'Mechanics of Materials' hal. 11 oleh Ferdinand Beer dkk.)

2.2.8.4 Tegangan Von Misses

Metode elemen hingga adalah salah satu metode untuk mendapatkan tegangan-tegangan yang terjadi pada setiap sisi untuk suatu elemen tiga dimensi. Cara untuk mengetahui acuan nilai tegangan maksimum yang terjadi pada *node* tertentu terhadap tegangan izin (*allowable* stress) atau tegangan lelehnya (*yield stress*) untuk menyelesaikan metode elemen hingga dalam menghitung seluruh komponen tegangan yang terjadi adalah menggunakan prinsip tegangan Von Mises. Tegangan Von Mises atau tegangan uniaksial (*uniaxial stress*) adalah tegangan yang mengombinasikan tegangan-tegangan utama (normal dan geser) pada suatu elemen dan tidak memiliki arah.

Gambar II.18 Komponen tegangan dalam 3D (sumber: 'Mengulas Ulang (*Resume*) Mengenai Konsep Tegangan sebagai Pengantar Kuliah Teori Pelat dan Cangkang' hal. 2 oleh Jamhari, dkk)

Tegangan Von Mises adalah pengembangan dari teori energi distorsi di mana energi distorsi merupakan energi yang dibutuhkan oleh suatu material untuk mengalami deformasi bentuk. Jika suatu material terjadi distorsi akibat beban luar maka bentuk materialnya akan berubah tanpa mengubah volumenya. Tegangan Von Mises mengalkulasikan energi distorsi per satuan volume yang diperlukan kemudian digunakan hasilnya untuk mengalkulasikan tegangan ekuivalen yang mengakibatkan deformasi bentuk yang terjadi. Jika suatu struktur memiliki tegangan atau energi distorsi Von Mises lebih besar dari tegangan atau energi distorsi yang diizinkan atau dibutuhkan untuk mencapai kondisi leleh (*yield point*) maka struktur tersebut mengalami kegagalan. Tegangan Von Mises dapat dihitung dengan persamaan 2.20 dengan hasil satuannya berupa Pa atau N/m².

$$\sigma_{eq} = \frac{1}{2} \sqrt{\left(\sigma_{x} - \sigma_{y}\right)^{2} + \left(\sigma_{y} - \sigma_{z}\right)^{2} + \left(\sigma_{z} - \sigma_{x}\right)^{2} + 6\left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2}\right)}$$
(2.20)
Keterangan,

- σ_{eq} : tegangan ekuivalen Von Mises (Pa)
- σ_x : tegangan normal sumbu x (Pa)
- σ_y : tegangan normal sumbu y (Pa)
- σ_z : tegangan normal sumbu z (Pa)
- τ_{xy} : tegangan geser bidang xy (Pa)
- τ_{xz} : tegangan geser bidang xz (Pa)
- τ_{yz} : tegangan geser bidang yz (Pa)

(Halaman ini sengaja dikosongkan)

BAB III

METODOLOGI PENELITIAN

3.1 METODE PENELITIAN

Bentuk diagram alir (flow chart) untuk tugas akhir sebagaimana berikut:

Gambar III.1 Flow chart penyelesaian tugas akhir

<u>Penjelasan Bagan Alir</u>

1. Studi Literatur

Studi literatur ini menerangkan apa saja referensi yang dipelajari untuk pengerjaan penelitian pada tugas akhir ini. Referensi pertama kali yang diambil berdasarkan data dan laporan dari proyek 'Banner Hex Buoy 01 – Global Structure Analysis' oleh PT. Adidaya Energi Mandiri. Selain itu, referensi juga diambil dari beberapa tugas akhir yang sebelumnya telah ada, materi perkuliahan, jurnal, dan buku serta *rules/codes* terbaru yang relevan untuk F(P)SO dan *mooring system*.

2. Permodelan dengan MAXSURF Modeler

Permodelan sederhana untuk struktur kapal FSO dalam penelitian pada tugas akhir ini menggunakan *software* MAXSURF *Modeler* yang tujuannya untuk mendapatkan koordinat-koordinat bentuk *body* kapal FSO yang akan digunakan pada *software* MOSES 7.0 untuk analisis RAO dan spektrum respons.

3. Validasi Model

Setelah dilakukan permodelan struktur kapal FSO dengan *software* MAXSURF *Modeler*, dilakukan pengecekan kesesuaian atau validasi dari data hidrostatik dari PT. Adidaya Energi Mandiri yang kemudian dibandingkan dengan data hidrostatik dari *software* tersebut. Validasi tersebut mengikuti ketentuan aturan ABS MODU 2016.

4. Permodelan dengan MOSES 7.0

Setelah mendapatkan data koordinat dari *software* MAXSURF *Modeler*, selanjutnya di*input*kan data tersebut pada MOSES Editor (kondisi *free floating*) pada kondisi *full load* dan *ballast* untuk kemudian dijalankan (*run analysis*) agar mendapatkan *output* model kapal FSO dan *hexagonal* SBM. *Hexagonal* SBM dapat mulai dimodelkan tanpa melalui MAXSURF *Modeler* dengan koordinat-koordinat yang sederhana karena bentuknya yang segi enam.

5. Analisis RAO dengan MOSES 7.0

Setelah dijalankan pada MOSES Editor berdasarkan data koordinat dari MAXSURF *Modeler*, selanjutnya didapatkan *ouput* data karakteristik respons gerak berupa hasil analisis dari perhitungan *Response Amplitude Operator* (RAO) pada kondisi *full load* dan *ballast* yang kemudian diolah datanya untuk membuat grafik dan interpretasinya. Hal ini juga sama diterapkan untuk model *hexagonal* SBM dengan satu kondisi.

6. Permodelan Kondisi Tertambat dengan Orcaflex 9.2 untuk Analisis Tension

Hasil *output* dari MOSES Editor kemudian di*input*kan ke Orcaflex 9.2 untuk permodelan kapal FSO dan SBM yang selanjutnya menganalisis besaran tegangan pada *hawser* dan rantai jangkar yang ditambat dari *buoy* ke dasar laut untuk memastikan konfigurasi penghubung SBM sesuai regulasi yang berlaku untuk aman beroperasi dan mengetahui besaran tegangan maksimum yang terjadi pada kondisi-kondisi tertentu untuk dijadikan acuan analisis lebih lanjut.

7. Analisis Tegangan Lokal Maksimum Chain Stopper dengan ANSYS 16.2

Hasil tegangan maksimum (global) *mooring line* SBM dari Orcaflex 19.2 kemudian di*input*kan ke ANSYS *Mechanical* untuk dianalisis lebih lanjut mengenai tegangan lokal maksimum yang sebenarnya terjadi pada area *chain stopper hexagonal* SBM berdasarkan regulasi yang digunakan dan apabila terdapat besaran tegangannya melebihi batas aman maka perlu dilakukan konfigurasi ulang pada desain *chain stopper* atau SBMnya secara keseluruhan.

3.2 PENGUMPULAN DATA

Data yang digunakan pada penelitian tugas akhir ini adalah data struktur dan lingkungan. Data struktur meliputi properti hidrostatis pada kapal FSO dengan panjang longitudinal 330 meter, dimensi utama *hexagonal* SBM, dan properti *mooring line* serta material pada *hexagonal* SBM. Berikut ini adalah daftar tabel data berdasarkan laporan analisis struktur global pada *hexagonal* SBM oleh PT. Adidaya Energi Mandiri sebelumnya:

Displacement	Δ	=	308625	t
Volume (displaced)	V	=	301097.591	m ³
Draft amidships	Т	=	20.422	m
Immersed depth		=	20.422	m
Waterline length	L _{wl}	=	330.366	m
Beam max extents on WL		=	54.252	m
Wetted Area	Sw	=	27025.599	m ²
Max sect. area		=	1103.764	m ²
Waterpl. Area	A _{wl}	=	16055.723	m ²
Prismatic coefficien	Cp	_	0.826	frm zero pt. (+ve fwd)
		-		m
Block coeffisien	C _b	=	0.823	frm zero pt. (+ve fwd)
		_		m
Max sect area coeff	Cm	=	0 996	frm zero pt. (+ve
		_	0.550	fwd)%L _{wl}
Waterpl Area coeff	C	_	= 0.896	frm zero pt. (+ve
waterpi. Area coejj.	Cwp	-		fwd)%L _{wl}
Langituding Contro of Busyanov	LCB	=	-152.876	m
	LCB %	=	-160.427	
Longitudinal Contro of Elotation	LCF	=	-46.275	m
Longituainai Centre of Fiolation	LCF %	=	-48.56	

Tabel III.1 Properti hidrostatis kapal FSO 330 meter

Height above the keel	KB	=	10.594	m
Keel to Centre of Buoyancy (fluid)	KG	=	0	m
Transverse Metacentric Radius of	DN/+	1	11 000	3
Buoyancy	BIVIT		11.909	111
Longitudinal Metacentric Radius of	BV 11	-	101 568	m
Buoyancy	DIVIL	-	401.508	
Transverse Metacentric Radius of Gravity	GMt	=	22.503	m
Longitudinal Metacentric Radius of Gravity	GML	=	412.162	m
Transverse Metacentric Radius of Keel	KMt	=	22.503	m
Longitudinal Metacentric Radius of Keel	KML	=	412.162	m
Tonnes per Centimetre Immersion	TPc	=	164.571	tonne/cm
Moment to Trim per cm	MTc	=	164.571	tonne.m

Jenis material yang digunakan pada struktur hexagonal SBM adalah ASTM

A36. Berikut properti material yang digunakan untuk analisis berikutnya:

Parameter	<u>Unit</u>	<u>Nilai</u>	
Yield stress (o _{yield})	MPa	250	
Tensile stress (otensile)	MPa	550	
Density (ρ)	kg/m	7800	
Young modulus (E)	MPa	210000	
Shear modulus (G)	MPa	78000	
Poisson's ratio (u)	-	0.3	

Гаbel III.2	Properti	material	hexagonal	SBM
-------------	----------	----------	-----------	-----

Dimensi yang digunakan pada *hexagonal* SBM dan *mooring line* untuk analisis berikutnya ditunjukkan pada Tabel III.3 dan Tabel III.4.

<u>Parameter</u>	<u>Unit</u>	<u>Nilai</u>			
Circumscribed diameter	m	14			
Height	m	5.5			
Displacement	mT	408			
XCG/YCG	m	0/0			
ZCG from MWL	m	1.75			
Rxx	m	3.61			
Ryy	m	3.61			
Rzz	m	3.61			

 Tabel III.3 Dimensi hexagonal SBM

Tabel III	.4 Dimensi	mooring	line

	mor	118 1110
Parameter	<u>Unit</u>	<u>Nilai</u>
Mooring line	point	6
Туре	-	Chain, stud less
Length	m	300
Diameter	m	0.108
Axial stiffeners	kN	995183.493
Minimum breaking load	kN	3380.732

Berikut adalah beberapa data lingkungan dengan rentang waktu antara Mei 2004 hingga Januari 2014 pada lokasi perairan Kepulauan Seribu dengan kedalaman ± 40 meter pada garis lintangnya 5°26'40.0"S dan garis busurnya 106°14'42.0"E.

		H _s (m)								
		0.0-0.25	0.25-0.50	0.50-0.75	0.75-1.00	1.00-1.25	1.25-1.50	1.50-1.75	>1.75	
	4-5	387	1226	1298	611	37	0	0	0	
Total	5-6	1268	9488	13068	12103	5717	2099	398	71	
	6-7	305	3990	13895	3975	936	499	176	60	
(s)	7-8	17	600	2118	8744	490	62	0	0	
(3)	8-9	0	90	429	460	266	1	0	0	
	9-10	0	2	96	64	11	0	0	0	

Tabel III.5 Data distribusi tinggi gelombang perairan Kepulauan Seribu (2004-2014)

Tabel III.6 Data	presentasi kecepatan	angin	perairan Ke	pulauan	Seribu	(2004-2014)
	1 1	0	1	1		· /

		Wind Speed (knots)								
		1-3	3-5	5-7	7-9	9-11	11-13	>=13		
Ν	348.75-11.25	233	232	181	57	29	1	0		
NNE	11.25-33.75	203	174	71	12	2	0	0		
NE	33.75-56.25	275	336	144	26	1	0	0		
ENE	56.25-78.75	415	577	512	343	96	22	3		
ENE	78.75-101.25	604	1449	2812	2738	2047	1270	531		
ESE	101.25-123.75	659	1636	3406	3792	3288	2126	1412		
SE	123.75-146.25	619	1354	1567	769	403	118	48		
SSE	146.25-168.75	471	1010	506	64	17	7	0		
S	168.75-191.25	434	707	357	130	33	1	0		
SSW	191.25-213.75	426	687	552	391	191	74	70		
SW	213.75-236.25	369	763	1204	960	890	573	799		
WSW	236.25-258.75	364	809	1267	1308	916	569	313		
WSW	258.75-281.25	350	802	1216	16654	688	234	90		
WNW	281.25-303.75	330	745	984	962	736	428	365		
NW	303.75-326.25	348	599	702	667	609	546	816		
NNW	326.25-348.75	229	339	340	257	152	138	96		

			•	•	Current Sp	eed (m/s)			
	JKKENT	0-0.06	0.06-0.12	0.12-0.18	0.18-0.24	0.24-0.3	0.3-0.36	0.36-0.42	>=0.42
N	348.75-11.25	1849	5631	0	2218	0	134	21	30
NNE	11.25-33.75	1724	3062	0	557	0	32	16	18
NE	33.75-56.25	1150	1752	0	209	0	10	9	6
ENE	56.25-78.75	984	1070	0	206	0	6	6	11
ENE	78.75-101.25	1065	980	0	136	0	19	11	0
ESE	101.25-123.75	1330	1101	0	97	0	18	3	6
SE	123.75-146.25	1535	1554	0	229	0	52	27	6
SSE	146.25-168.75	1647	1654	0	204	0	47	23	3
S	168.75-191.25	1655	1323	0	287	0	34	37	14
SSW	191.25-213.75	1442	1522	0	320	0	111	7	0
SW	213.75-236.25	1366	1629	0	489	0	127	27	24
wsw	236.25-258.75	1195	1001	0	186	0	57	19	16
wsw	258.75-281.25	1288	703	0	114	0	27	33	21
WNW	281.25-303.75	1478	1194	0	137	0	35	17	24
NW	303.75-326.25	11366	7829	0	565	0	82	9	4
NNW	326.25-348.75	3885	6295	0	3681	0	791	84	47

Tabel III.7 Data presentasi kecepatan arus perairan Kepulauan Seribu (2004-2014)

Gambar III.2 Lokasi titik operasi sistem tambat pada perairan Kepulauan Seribu

(Halaman ini sengaja dikosongkan)

BAB IV

ANALISIS HASIL DAN PEMBAHASAN

4.1 PERMODELAN KAPAL FSO & HEXAGONAL SBM

Permodelan pada kapal FSO dan *hexagonal* SBM dilakukan dengan bantuan *software* MAXSURF *Modeler* atau MOSES *Modeler* dan MOSES 7.0 untuk analisis lebih lanjut mengenai topik penelitian tugas akhir ini. Langkah awal permodelan dengan *software* MAXSURF *Modeler* adalah memasukkan data *principle dimension* dari Tabel III.1 ke salah satu *template vessel library* yang telah tersedia di *software* agar memudahkan dan tinggal penyesuaian beberapa model desain agar parameter strukturnya dapat mendekati atau sama dengan parameter pada Tabel III.1. Selanjutnya, MAXSUF *Modeler* secara otomatis memberikan informasi properti hidrostatisnya dan apabila modelnya telah sesuai dengan melakukan beberapa validasi berdasarkan acuan ABS *Rules for Building and Classing Mobile Offshore Drilling Units* (MODU) 2016 pada data awal Tabel III.1 maka berikutnya dapat melakukan analisis mengenai karakteristik gerakannya saat mengapung dengan *software* MOSES 7.0. Berikut ini *screenshot print-out* hasil permodelan dengan MAXSURF *Modeler* beserta hasil validasinya.

Gambar IV.1 Permodelan kapal FSO dengan software MAXSURF Modeler

<u>Karakteristik</u>	<u>Unit</u>	Data Awal	MAXSURF	<u>Validitas</u>	<u>Status</u>
Displacement (Δ)	t	308625	304896	99%	OK!
Volume (displaced) (∇)	m³	301098	297459	99%	OK!
Wetted Surface Area (WSA)	m ²	27026	26984.96	100%	OK!
Prismatic coefficient (C _p)		0.826	0.824	100%	OK!
Block coefficient (C _b)		0.823	0.821	100%	OK!
Max. sect. area coeff. (C _m)		0.996	0.997	100%	OK!
Max sect. area	m ²	1104	1118	99%	OK!
Height above the keel (KB)	m	11	10.529	99%	OK!
Moment to Trim per cm (MTc)	T.m	3850.454	3901.665	99%	OK!

Tabel IV.1 Hasil validasi model kapal FSO dengan software MAXSURF Modeler

Kriteria validasi berdasarkan ABS MODU 2016 adalah bahwa validasi *displacement*nya bernilai minimum 98% (*error* 2%) sedangkan ketentuan lainnya bernilai minimum 99% (*error* 1%).

Langkah berikutnya adalah permodelan kapal FSO kembali dilakukan dengan *software* MOSES 7.0 untuk analisis RAO, *added mass – damping*, dan *mean wave drift force*. Permodelannya berdasarkan metode teori strip dari kalkulasi *offset* pada MAXSURF *Modeler* sebelumnya dimana titik-titik koordinatnya menggambarkan model kapal FSO sebagaimana gambar *screenshot* di bawah hasil permodelan dengan MOSES 7.0 beserta hasil validasinya dengan ABS MODU 2016.

Gambar IV.2 Permodelan kapal FSO dengan software MOSES 7.0

Karakteristik	Unit	Data Awal	MOSES	<u>Validitas</u>	<u>Status</u>
Draft amidships (T)	m	20	20.5	100%	ОК!
Displacement (∆)	t	308625	309659.8	100%	ОК!
Longitudinal Centre of Buoyancy (LCB)	m	-153	-152	99%	OK!
Longitudinal Metacentric Radius of Keel (KML)	m	412.162	413.74	100%	ОК!
Longitudinal Metacentric Radius of Buoyancy (BML)	m	401.568	403.02	100%	OK!

Tabel IV.2 Hasil validasi model kapal FSO dengan software MOSES 7.0

Sedangkan permodelan pada *hexagonal* SBM dicukupkan dengan bantuan *software* MOSES 7.0 karena bentuknya yang sederhana hanya berupa *hexagonal* dan silinder sekaligus mendapatkan *output* yang akan dianalisis selanjutnya tanpa perlu menggunakan MAXSURF *Modeler* sebagaimana pada kapal FSO karena bentuknya yang lebih rumit untuk menentukan titik-titik koordinatnya secara manual. Berikut ini hasil *screenshot* dari permodelan dengan MOSES 7.0 beserta hasil validasinya berdasarkan ABS MODU 2016.

Gambar IV.3 Permodelan hexagonal SBM dengan software MOSES 7.0

Karakteristik	Unit	Data Awal	MOSES	<u>Validitas</u>	<u>Status</u>
Circumscribed diameter	m	14	14	100%	OK!
Height	m	5.5	5.514	100%	OK!
Displacement	mT	408	402	99%	OK!

Tabel IV.3 Hasil validasi model hexagonal SBM dengan software MOSES 7.0

4.2 SKENARIO ANALISIS KARAKTERISTIK GERAK STRUKTUR

Skenario analisis karakteristik gerak pada kapal FSO dan *hexagonal* SBM diperlukan sebelum melanjutkan pada langkah analisis berikutnya. Adapun skenario muatan dan pembebanannya adalah sebagai berikut:

- a) Kapal FSO kondisi muatan 100% atau full load condition
- b) Kapal FSO kondisi muatan 10% atau ballast condition

Variasi muatan tersebut diharapkan dapat mewakili kondisi rill saat kapal FSO sedang beroperasi dan dapat mempengaruhi titik beratnya pada dua kondisi tersebut. Secara teori, perubahan titik berat dapat mempengaruhi nilai radius girasi yang fungsinya memperoleh momen inersia kapal terutama gerakan yang sifatnya rotasi seperti gerakan *roll, pitch, dan yaw.*

4.2.1 Perhitungan Titik Berat Struktur

Permodelan kapal FSO dengan MAXSURF *Modeler* dan MOSES 7.0 hanya didasarkan pada lambung kapal saja sehingga untuk titik beratnya pada dua kondisi perlu dilakukan perhitungan secara manual yang hasilnya ketika dimasukkan kedua *software* tersebut akan mengubah tinggi sarat kapalnya beserta parameter hidrostatis lainnya. Proses perhitungannya didasari dengan mengacu pada *General Arrangement* (AutoCAD) dari kapal pembanding yang memiliki ukuran utama yang sama dengan data awal lalu diasumsikan memiliki bentuk dan peralatan yang sama sehingga selanjutnya dapat menerapkan skenario dua variasi kondisi saat beroperasinya kapal FSO. Jika dua kondisi telah divariasikan beban muatannya, maka titik berat dan tinggi saratnya akan berubah serta memiliki karakteristik gerakan atau fungsi RAO yang berbeda dari dua kondisi tersebut. Perhitungan manualnya dapat diperhatikan secara lengkap pada Lampiran B-1.

4.2.2 Perhitungan Radius Girasi Struktur

Selain perhitungan penentuan titik berat pada struktur kapal FSO, radius girasi struktur juga perlu diperhitungkan dengan menggunakan variabel titik berat sebelumnya. Radius girasi dari gerak rotasi struktur merupakan hasil akar dari jumlah massa dikalikan masing-masing jarak massa tersebut dari titik beratnya (Bhattacharyya, 1978). Sehingga fungsi penentuan radius girasi struktur adalah untuk mendeskripsikan gerakan struktur secara rotasi atau memiliki sifat kekakuan seperti pada gerakan *roll, pitch,* dan *yaw*.

Pada penelitian ini, pendekatan rumus yang digunakan berdasarkan standar Bureau Veritas karena bentuk kapal yang dianalisis tidak homogen sehingga relatif lebih rumit untuk penentuan titik *point mass* dari sebuah volume benda tak beraturan. Rumus yang digunakan berdasarkan pada persamaan 2.6.4 dan 2.6.5.

Berikut ini merupakan hasil perhitungan titik berat dan radius girasi kapal dalam dua kondisi yakni *full load* dan *ballast* sebagai berikut:

<u>FSO - full load (T = 20.67 m)</u>							
Titik Bera	Titik Berat Kapal (meter)			Radius Girasi Kapal (meter)			
х	У	Z	k _{xx} k _{yy}		k _{zz}		
163.91	0.00	17.61	22.84	93.93	93.93		

Tabel IV.4 Perhitungan titik berat dan radius girasi kapal untuk kondisi *full load*

Tabel IV.5	Perhitungan	titik berat	dan radius	girasi k	apal	untuk	kondisi	ball	as
------------	-------------	-------------	------------	----------	------	-------	---------	------	----

	<u>FSO - ballast (T = 18.32 m)</u>									
Titik Bera	t Kapal (meter) Radius Girasi Kapal (mete			l (meter)						
х	У	Z	k _{xx}	k _{yy}	k _{zz}					
174.58	0.00	14.09	20.57	93.93	93.93					

4.2.3 Skenario Pembebanan

Skenario pembebanan lingkungan terhadap struktur kapal FSO dan *hexagonal* SBM untuk tujuan analisis karakteristik responsnya pada awalnya berdasarkan arah pembebanan 0° (*following seas*), 45° (*quartering seas*), 90° (*beam seas*), 135° (*quartering seas*), dan 180° (*heading seas*) namun pembahasan pada penelitian ini hanya difokuskan pada tiga arah pembebanan berdasarkan respons yang paling maksimum di antara 0° atau 180°, 45° atau 135°, dan 90°.

Selain itu, pembebanannya dilakukan secara *collinear*, yaitu beban gelombang, arus, dan angin berasal dari arah yang sama sebab struktur akan memperoleh beban maksimum sehingga dapat diketahui respons maksimum dan *tension* maksimum pada *mooring line*.

4.2.4 Skenario Analisis

Skenario analisis yang dilakukan pada penelitian ini terdiri dari kondisi struktur kapal FSO dan *hexagonal* SBM mengapung bebas (*free floating*) pada
gelombang reguler dan gelombang acak (JONSWAP Spektrum). Fungsi RAO yang didapatkan dari masing-masing struktur tersebut kemudian dilakukan analisis *tension* maksimum pada *mooring line* dan selanjutnya dilakukan analisis tegangan lokal maksimum pada *chain stopper hexagonal* SBM.

4.3 PERHITUNGAN DATA SEBARAN BEBAN LINGKUNGAN PADA PERAIRAN KEPULAUAN SERIBU

Sebelum pada tahap analisis respons pergerakan kapal FSO dan *hexagonal* SBM akibat beban gelombang saat *free floating*, perlu dilakukan perhitungan data sebaran gelombang pada perairan Kepulauan Seribu 2004-2014 dengan metode distribusi probabilitas Weibull untuk mengetahui tinggi gelombang signifikan dan periode puncak gelombang kurun waktu 10, 50, dan 100-tahunan.

T _P (s)	H _s (m)									
	0.0-0.25	0.25-0.50	0.50-0.75	0.75-1.00	1.00-1.25	1.25-1.50	1.50-1.75	>1.75		
4-5	387	1226	1298	611	37	0	0	0		
5-6	1268	9488	13068	12103	5717	2099	398	71		
6-7	305	3990	13895	3975	936	499	176	60		
7-8	17	600	2118	8744	490	62	0	0		
8-9	0	90	429	460	266	1	0	0		
9-10	0	2	96	64	11	0	0	0		

 Tabel IV.6 Data sebaran gelombang pada perairan Kepulauan Seribu 2004-2014

Tabel IV.6 menunjukkan data sebaran gelombang dari hasil pengukuran di suatu perairan Kepulauan Seribu dengan masa periode 2004-2014. Direkomendasikan jumlah total gelombang dari tabel ditambah 0.5 untuk mengantisipasi kejadian gelombang-gelombang signifikan di atas 1.75 meter dan kejadian puncak periode gelombang di atas 10 sekon. Selanjutnya prosedur yang diterapkan pada analisis kurun waktu panjang dalam prediksi tinggi gelombang signifikan dan periode puncak gelombang adalah menggunakan bantuan grafis dalam penyelesaiannya.

Tabel IV.7 Perhitungan jumlah presentasi gelombang dan kumulatifnya tiap interval

H₅ (m)	Τ _p (s)						τοται	Kumulatif
	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL	Kumulatii
0.0-0.25	387	1268	305	17	0	0	1977	1977
0.25-0.50	1226	9488	3990	600	90	2	15396	17373
0.50-0.75	1298	13068	13895	2118	429	96	30904	48277
0.75-1.00	611	12103	3975	8744	460	64	25957	74234

1.00-1.25	37	5717	936	490	266	11	7457	81691
1.25-1.50	0	2099	499	62	1	0	2661	84352
1.50-1.75	0	398	176	0	0	0	574	84926
>1.75	0	71	60	0	0	0	131	85057
TOTAL	3559	44212	23836	12031	1246	173	85057	

Tabel IV.7 menunjukkan hasil penjumlahan banyaknya gelombang yang terjadi pada tiap-tiap interval dan perhitungan jumlah kumulatif setiap kenaikan interval sampai dengan harga H_s dan T_p maksimum.

Tabel IV.8 Tabulasi perhitungan komponen peluang kumulatif $H_s(m)$

Hs	P(H _s)	In (H _s - a)	ln [ln{1/1-P(H _s)}]
(1)	(2)	(3)	(4)
0.25	0.02324	-1.3863	-3.7500
0.50	0.20425	-0.6931	-1.4763
0.75	0.56758	-0.2877	-0.1763
1.00	0.87275	0.0000	0.7235
1.25	0.96042	0.2231	1.1723
1.50	0.99171	0.4055	1.5670
1.75	0.99845	0.5596	1.8675

Tabel IV.9 Tabulasi perhitungan komponen peluang kumulatif $T_p(s)$

Τp	P(T _p)	In (T _p - a)	ln [ln{1/1-P(T _p)}]
(1)	(2)	(3)	(4)
5.00	0.04184	1.6094	-3.1526
6.00	0.56163	1.7918	-0.1927
7.00	0.84187	1.9459	0.6121
8.00	0.98331	2.0794	1.4093
9.00	0.99796	2.1972	1.8237
10.00	0.99999	2.3026	2.4886

Keterangan pada tabulasi perhitungan Tabel IV.8 dan Tabel IV.9 adalah sebagai berikut:

- Harga acuan batas bawah tinggi gelombang *a* diambil sama dengan 0.0 m.
- Untuk perhitungan P(H_s) dan P(T_p) berikut jumlah gelombang total diambil sebesar 85057 + 0.5 = 85075.5 gelombang. Nilai 0.5 jumlah gelombang adalah untuk mengantisipasi ketidaktentuan karena kemungkinan adanya gelombang dengan intensitas di atas $H_s = 1.75$ m dan puncak periode gelombang dengan intensitas di atas $T_p = 10$ s.

 P(H_s) adalah jumlah kumulatif pada setiap tinggi gelombang signifikan dibagi dengan jumlah gelombang total 85075.5 dan begitu pula dengan P(T_p).

Dengan menggunakan data dari Tabel IV.8 dan Tabel IV.9 akan menghasilkan grafik pada Gambar IV.4 dan Gambar IV.5 yang menunjukkan hubungan antara parameter dalam kolom (3) sebagai absis dan kolom (4) sebagai ordinat. Kurva yang terbentuk dengan persamaan garisnya dapat dijadikan acuan analisis regresi atau perkiraan *trendline* sebaran data sebagai bahan untuk dapat memprediksi tinggi gelombang signifikan dan puncak periode gelombang dalam kurun waktu tertentu.

Gambar IV.4 Grafik korelasi antara tinggi gelombang dan distribusi kumulatif

Gambar IV.4 menunjukkan bahwa persamaan *trendline*nya adalah y = 2.9151x + 0.4806 dengan sumbu-x $\rightarrow \ln(H_s - a)$ dan sumbu-y $\rightarrow \ln[\ln\{1/1-P(H_s)\}]$.

Gambar IV.5 Grafik korelasi antara puncak periode gelombang dan distribusi kumulatif

Sedangkan Gambar IV.5 menunjukkan bahwa persamaan *trendline*nya adalah y = 7.4684x - 14.347 dengan sumbu-x $\rightarrow \ln(T_p - a)$ dan sumbu y $\rightarrow \ln[\ln\{1/1-P(T_p)\}]$.

Berikut ini adalah hasil perhitungan beserta keterangan proses perhitungannya untuk memprediksi tinggi gelombang signifikan dan puncak periode gelombang dalam kurun waktu 10, 50, dan 100-tahunan.

Kurun Waktu Tahun	P _y (H₅)	In [In{1/1-P _y (H _s)}]	In (H _s - a)	Hs
(1)	(2)	(3)	(4)	(5)
10	0.99997	2.3304	0.6346	1.89
50	0.99999	2.4758	0.6844	1.98
100	1.00000	2.5325	0.7039	2.02

Tabel IV.10 Tabulasi perhitungan kurun waktu panjang tinggi gelombang signifikan (m)

Tabel IV.11 Tabulasi perhitungan kurun waktu panjang puncak periode gelombang (s)

Kurun Waktu Tahun	P _y (T _p)	ln [ln{1/1-P _y (T _p)}]	In (T _p - a)	Тp
(1)	(2)	(3)	(4)	(5)
10	0.99996	2.3304	2.2331	9.33
50	0.99999	2.4758	2.2525	9.51
100	0.99999	2.5325	2.2601	9.58

Keterangan pada tabulasi perhitungan Tabel IV.10 dan Tabel IV.11 adalah sebagai berikut:

- Kolom (1) menunjukkan kurun waktu tahun tertentu
- Kolom (2) didapatkan dari persamaan P_y(H) = P_y(T) = 1 ^a/_{b×365×24}; a merupakan kurun waktu panjang (dalam tahun) kejadian gelombang; b merupakan durasi badai (3 jam)
- Kolom (3) diperoleh dari perhitungan dari kolom (2)
- Kolom (4) didapatkan dari pembacaan *trendline* dengan menggunakan persamaan garis yang didapatkan kedua grafik tersebut dengan x merupakan hasil yang dimasukkan ke dalam kolom (4)
- Kolom (5) merupakan hasil akhir berupa tinggi gelombang signifikan yang diperoleh dari inversi kolom (4) yaitu $(H_s a) = e^{\ln(H_s a)}$, di awal telah dijelaskan bahwa a = 0.0 meter maka $H_s a = H_s$ dan begitu pula untuk puncak periode gelombang

Perhitungan untuk mengetahui kecepatan angin (knot) dan kecepatan arus (m/s) kurun waktu 10, 50, dan 100-tahunan juga perlu dilakukan berdasarkan data pada Tabel III.6 dam Tabel III.7. Metode perhitungan yang digunakan sama dengan sebelumnya yakni metode distribusi probabilitas Weibull dan hasilnya akan digunakan untuk analisis dinamis struktur kapal dan SBM saat tertambat dengan bantuan *software* Orcaflex 9.2. Perhitungan selengkapnya dapat diperhatikan di Lampiran A. Tabel IV.12 ditampilkan sebagai hasil perhitungan data sebaran lingkungan perairan Kepulauan Seribu kurun waktu 10, 50, dan 100-tahunan.

Parameter	Unit	1-year return period	10-year return period	100-year return period
Tinggi Gelombang Signifikan (H _s)	m	1.89	1.98	2.02
Puncak Periode Gelombang (T _p)	S	9.33	9.51	9.58
Kecepatan Angin	knot	17.87	18.80	19.18
Kecepatan Arus	m/s	0.57	0.64	0.66

Tabel IV.12 Data lingkungan perairan Kepulauan Seribu kurun waktu tahunan tertentu

4.4 ANALISIS KARAKTERISTIK GERAK STRUKTUR

4.4.1 Analisis Karakteristik Gerak Struktur pada Gelombang Reguler

Pada prinsipnya struktur bangunan yang mengapung secara bebas (*free floating*) tanpa adanya sistem penambatan menunjukkan gerakan *heave, roll,* dan *pitch* (*vertical mode*) lebih dominan dibandingkan gerakan *surge, sway,* dan *yaw* (*horizontal mode*). Hal ini disebabkan karena gerakan *vertical mode* memiliki faktor kekakuan sebagaimana telah dibahas pada sub-bab 2.2.3.1. Selain itu, faktor kekakuan tersebut berpengaruh pada faktor redamannya menjadi lebih kecil sehingga akan didapati perubahan karakteristik yang melonjak secara tajam saat gerakannya mengalami resonansi.

Adapun saat struktur bangunan yang beroperasi secara stasioner ($v = 0 \text{ m/s}^2$) dalam kondisi tertambat, gerakan *horizontal mode* memiliki peranan lebih penting sebab dengan tidak adanya faktor kekakuan kecuali sedikit akibat efek kopel dengan gerakan lainnya akan berpengaruh pada faktor redamannya menjadi lebih besar sehingga hampir tidak didapati perubahan karakteristik yang melonjak secara tajam.

4.4.1.1 Kapal FSO

Gambar IV.6 Grafik RAO surge FSO dengan variasi kondisi dan arah pembebanan

Secara umum karakteristik gerakan *surge* sebagaimana pada Gambar IV.6 menunjukkan pembebanan pada haluan (180°) memberikan pengaruh tertinggi dibandingkan dengan pengaruh pembebanan pada perempat haluan (135°) dan arah samping (90°). Hal ini tentu disebabkan karena gerakan *surge* searah dengan arah pembebanan haluan sehingga pembebanan pada samping haluan hampir dipastikan tidak memberikan efek apa pun.

Tren kurva RAO pembebanan arah haluan dan perempatnya cenderung serupa di mana nilai RAOnya dimulai sekitar 0.978 m/m (kondisi *ballast* – 180°) dan 0.693 m/m (kondisi *ballast* – 135°) pada frekuensi rendah 0.1 rad/s. Idealnya tren kurva tersebut terus menurun secara gradual dari puncaknya namun kurva beranjak naik dua kali tetapi tidak signifikan hal ini disebabkan adanya efek kopel dari gerakan lainnya.

Perbandingan karakteristik gerakan *surge* pada kondisi *ballast* dengan *full load* hampir dipastikan kurang signifikan sebab hanya sekitar 0.4% lebih besar daripada kondisi *full load*.

Peninjauan karakteristik gerakan *sway* pada Gambar IV.7 menggambarkan pembebanan pada samping haluan (90°) memberikan pengaruh yang signifikan dibandingkan pembebanan pada perempat haluan (135°). Hal ini tentu dikarenakan gerakan *sway* searah dengan pembebanan pada samping haluan. Sedangkan pembebanan haluan (180°) sudah dipastikan tidak memiliki pengaruh apa pun karena arahnya yang tegak lurus dengan arah gerakan *sway*.

Tren kurva RAO pembebanan arah samping haluan cenderung konsisten menurun secara gradual pada frekuensi tinggi dari rendahnya sedangkan pembebanan arah perempat haluan sempat melonjak naik secara tajam akibat efek kopel gerakan *roll* pada rentang frekuensi antara 0.4-0.8 rad/s.

Perbandingan karakteristik gerakan *sway* pada kondisi *ballast* dengan *full load* hampir dipastikan kurang signifikan sebab hanya sekitar 0.2-0.4% sedikit lebih besar daripada kondisi *full load*.

Secara umum karakteristik gerakan *heave* sebagaimana pada Gambar IV.8 menunjukkan masing-masing arah pembebanannya memiliki pengaruh tersendiri namun pembebanan pada samping haluan (90°) memberikan pengaruh yang lebih dominan dibandingkan kedua pembebanan lainnya.

Sesuai kondisi *contouring* di mana kapal FSO bergerak mengikuti kontur elevasi gelombang maka hampir semua pembebanan bermula dari harga RAO sekitar 1.00 m/m yang berarti amplitudo gerakannya kurang lebih sama dengan amplitudo gelombangnya. Pada pembebanan samping haluan, sesaat dari frekuensi rendah telah mengalami puncak resonansi yang merupakan frekuensi alami gerakan *heave* dengan nilai sekitar 1.452 m/m (kondisi *full load*) pada frekuensi 0.5 rad/s. Selanjutnya kurva tersebut menurun secara gradual pada frekuensi tinggi dari puncak resonansinya. Pada pembebanan perempat haluan, hampir dipastikan sesaat dari frekuensi rendah cenderung konsisten mengalami penurunan pada frekuensi tingginya. Sedangkan pada pembebanan haluan, sesaat dari frekuensi rendah kemudian menurun hingga adanya sedikit melonjak secara tajam sekitar 0.385 m/m pada frekuensi 0.5 rad/s lalu menurun secara gradual pada frekuensi tingginya. Hal tersebut disebabkan adanya efek kopel gerakan *pitch* saat resonansi pertamanya pada frekuensi 0.4 rad/s yang kemudian berpengaruh pada gerakan *heave* dengan adanya sedikit melonjak pada frekuensi 0.5 rad/s.

Perbandingan karakteristik gerakan *heave* pada kondisi *full load* dengan *ballast* kurang signifikan sebab hanya sekitar 6.5% sedikit lebih besar daripada kondisi *ballast*.

Gambar IV.9 Grafik RAO *roll* FSO dengan variasi kondisi dan arah pembebanan Secara umum karakteristik gerakan *roll* sebagaimana pada Gambar IV.9 menunjukkan pembebanan pada samping haluan (90°) memberikan pengaruh yang signifikan dibandingkan pembebanan pada perempat haluan (135°). Hal ini tentu disebabkan karena gerakan *roll* searah dengan pembebanan pada samping haluan.

Sedangkan pembebanan haluan (180°) sudah dipastikan tidak memiliki pengaruh apa pun karena arahnya yang tegak lurus dengan arah gerakan *roll*.

Pembebanan pada samping haluan dan perempatnya memiliki tren kurva yang sama di mana sesaat frekuensi rendahnya sekitar 0.1 rad/s kemudian beresonansi pertama dengan nilai RAOnya 2.594 deg/m (kondisi *ballast* – 90°) dan 1.299 deg/m (kondisi *ballast* – 135°) pada frekuensi 0.4 rad/s. Kemudian tren kurva tersebut sama-sama menurun secara gradual pada frekuensi tinggi.

Pembebanan pada perempat haluan sesaat setelah turun dari puncaknya mengalami sedikit resonansi untuk kedua kalinya RAOnya bernilai 0.267 deg/m (kondisi *ballast* – 135°) dan 0.144 deg/m (kondisi *full load* – 135°) pada frekuensi 0.6 rad/s. Hal ini disebabkan adanya efek kopel dari gerakan *pitch* dan *yaw* yang meskipun tidak terlalu signifikan namun patut diperhatikan.

Hal menarik yang perlu diperhatikan adalah perbandingan nilai puncak RAO pada kondisi *ballast* dengan *full load* akibat pembebanan pada samping haluan mencapai sekitar 27% lebih besar daripada kondisi *full load*.

Peninjauan karakteristik gerakan *pitch* pada Gambar IV.10 menunjukkan pembebanan pada haluan (180°) dan perempat haluan (135°) memberikan pengaruh tertinggi dibandingkan dengan pembebanan samping haluan (90°). Hal ini tentu disebabkan karena gerakan *pitch* cenderung searah dengan arah pembebanan haluan sehingga pembebanan pada samping haluan memberikan pengaruh yang sedikit.

Tren kurva RAO pembebanan pada haluan dan perempatnya hampir serupa di mana puncak nilai RAOnya sama-sama 0.67 deg/m dan 0.4 rad/s (kondisi *full*

load). Sedangkan pembebanan pada samping haluan memiliki puncak nilai RAOnya dengan 0.243 deg/m (kondisi *full load* – 90°) pada frekuensi 0.5 rad/s atau sedikit mengalami pergeseran frekuensi ke arah kanan dari puncak pembebanan lain sebelumnya.

Perbandingan karakteristik gerakan *pitch* pada kondisi *full load* dengan *ballast* kurang signifikan kecuali pada pembebanan samping haluan di mana terdapat perbedaan sekitar 20% lebih besar daripada kondisi *ballast* namun hakikatnya tetap tidak memberikan dampak yang signifikan karena kecilnya nilai RAO tersebut.

Gambar IV.11 Grafik RAO yaw FSO dengan variasi kondisi dan arah pembebanan

Secara umum karakteristik gerakan *yaw* sebagaimana pada Gambar IV.11 menunjukkan pembebanan pada perempat haluan (135°) memberikan nilai tertinggi dibandingkan dengan nilai pembebanan lainnya. Hal ini tentu disebabkan karena gerakan *yaw* didominasi akibat pembebanan perempat haluannya sedangkan pembebanan lainnya tidak signifikan.

Tren kurva tersebut menunjukkan terjadinya resonansi pertama yang signifikan namun sebenarnya tidak jika dibandingkan gerakan rotasi yang lainnya. Hal ini bisa dibandingkan besaran rentang nilai RAOnya dengan rentang nilai RAO gerakan lainnya. Nilai RAO pada puncak pertama terjadi pada frekuensi 0.4 rad/s dengan 0.259 deg/m (kondisi *ballast* – 135°) kemudian menurun secara gradual lalu melonjak untuk puncak keduanya pada frekuensi 0.8 rad/s dengan 0.032 deg/m (kondisi *ballast* – 135°) kemudian kembali menurun sesaat lalu melonjak untuk

puncak terakhirnya pada frekuensi 1.3 rad/s dengan 0.012 deg/m (kondisi *ballast* – 135°).

Perbandingan karakteristik gerakan *yaw* pada kondisi *ballast* dengan *full load* kurang signifikan kecuali pada pembebanan samping haluan di mana terdapat perbedaan sekitar 3% lebih besar daripada kondisi *full load* namun hakikatnya tidak berpengaruh sebab nilai RAOnya kurang signifikan.

Berikut ini merupakan tabel perbandingan nilai RAO maksimum kondisi mengapung bebas dengan variasi kondisi *full load* dan *ballast* pada tiap gerakan.

Moda	l lait	RAO N	MAN		
Gerakan	Unit	90 deg. 135 deg.		180 deg.	
Surge	m/m	0.003	0.690	0.974	0.974
Sway	m/m	0.987	0.697	0.000	0.987
Heave	m/m	1.452	0.999	0.997	1.452
Roll	deg/m	1.883	1.278	0.000	1.883
Pitch	deg/m	0.243	0.670	0.673	0.673
Yaw	deg/m	0.016	0.249	0.000	0.249

Tabel IV.13 Perbandingan RAO maksimum tiap gerakan FSO saat kondisi full load

Moda	l loit	RAO I	NAAV		
Gerakan	Unit	90 deg.	135 deg.	180 deg.	
Surge	m/m	0.002	0.693	0.978	0.978
Sway	m/m	0.990	0.699	0.000	0.990
Heave	m/m	1.387	0.999	0.997	1.387
Roll	deg/m	2.594	1.299	0.001	2.594
Pitch	deg/m	0.197	0.658	0.670	0.670
Yaw	deg/m	0.023	0.259	0.000	0.259

Meninjau pada semua hasil karakteristik gerakan di atas gelombang reguler dapat dikatakan bahwa kapal FSO 330 DWT memiliki karakteristik *seakeeping* normal. Hal ini berdasarkan perbandingan dengan kapal-kapal lain pada umumnya yang mana nilai RAO maksimumnya sebagaimana ditunjukkan Tabel IV.13 dan Tabel IV.14 untuk gerakan utamanya *vertical mode* yakni *heave, roll,* dan *pitch*nya tidak berlebihan sehingga dari aspek hidrodinamikanya menunjukkan kemampuan meredam dan kekakuan yang baik. Namun, kesimpulan akan menjadi lebih akurat apabila dilakukan analisis karakteristik gerakan pada gelombang acak atau riil dengan konsep spektrum respons sebagaimana yang dijelaskan pada sub-bab berikutnya.

4.4.1.2 Hexagonal SBM

Secara umum, tren kurva pada gerakan *surge* (Gambar IV.12) dan *sway* (Gambar IV.13) memiliki pola yang sama. Hal ini dikarenakan bentuknya *hexagonal* SBM yang sangat simetris sehingga hampir dipastikan setiap arah pembebanan dan gerakannya menunjukkan pola yang sama kecuali pada arah pembebanan yang tegak lurus dengan arah gerakannya. Sebagai contoh pembebanan pada samping haluan dipastikan tidak memberikan pengaruh gerakan *surge* dan begitu juga dengan pembebanan pada haluan untuk gerakan *sway*.

Gambar IV.12 Grafik RAO surge SBM dengan variasi arah pembebanan

Gambar IV.13 Grafik RAO sway SBM dengan variasi arah pembebanan

Perbandingan nilai RAO maksimum pada gerakan *surge* dan *sway* adalah 0.756 m/m untuk *surge* akibat pembebanan haluan sedangkan 0.998 m/m untuk *sway* akibat pembebanan samping haluan. Kedua gerakan tersebut juga

menunjukkan penurunan secara gradual pada frekuensi tinggi dan hampir dipastikan tidak memiliki efek kopel kecuali sedikit namun tidak sampai terbentuknya lonjakan tajam ke atas.

Gambar IV.14 Grafik RAO heave SBM dengan variasi arah pembebanan

Peninjauan karakteristik gerakan *heave* (Gambar IV.14) menggambarkan hampir dipastikan setiap arah pembebanan horizontalnya yang berbeda memiliki tren kurva yang sama akibat gerakan *heave* yang mengarah pada vertikal. Hal ini sekali lagi disebabkan karena bentuknya yang simetris sehingga menjadi masuk akal mengapa ketiga kurva tersebut saling berimpitan. Kurva dari ketiga gerakan tersebut menunjukkan sama-sama memiliki nilai RAO sebesar 1.0 m/m pada frekuensi rendah yang berarti pada awalnya *hexagonal* SBM tersebut mengikuti pola atau kontur elevasi gelombang yang panjang sehingga rasio amplitudo gerakan dan gelombangnya menjadi sama. Nilai *heave* pada *hexagonal* SBM menunjukkan relatif berbeda karena bentuk *buoy*nya yang *hexagonal* tidak sebagaimana umumnya kebanyakan berbentuk silinder.

Gambar IV.15 Grafik RAO roll SBM dengan variasi arah pembebanan

Gambar IV.16 Grafik RAO pitch SBM dengan variasi arah pembebanan

Secara umum, tren kurva pada gerakan *roll* (Gambar IV.15) dan *pitch* (Gambar IV.16) memiliki pola yang sama. Hal ini dikarenakan bentuknya *hexagonal* SBM yang sangat simetris sehingga hampir dipastikan setiap arah pembebanan dan gerakannya menunjukkan pola yang sama kecuali pada arah pembebanan yang tegak lurus dengan arah gerakannya. Sebagai contoh pembebanan pada haluan dipastikan tidak memberikan pengaruh gerakan *roll* kecuali sangat sedikit dan begitu juga dengan pembebanan pada samping haluan untuk gerakan *pitch*.

Hal yang menarik dicermati adalah bahwa besaran RAO pada kedua gerakan tersebut berada pada puncak yang jauh lebih besar bahkan dari gerakan kapal FSO. Hal ini disebabkan karena bentuknya *hexagonal* SBM jauh lebih kecil dari kapal FSO yang notabene termasuk kategori VLCC namun secara otomatis telah diatasi dengan adanya *mooring line* sebanyak enam titik yang tertancap di *seabed* untuk meredamkan gerakan *roll* yang sangat berpengaruh dibandingkan gerakan lainnya.

Selain itu, tren kurva kedua gerakan tersebut juga terbilang unik karena hampir berbalikan dari umumnya di mana puncak resonansi keduanya justru terjadi saat mendekati frekuensi tinggi yakni 1.7 rad/s dengan nilai RAO 7.319 deg/m untuk *roll* pada pembebanan samping haluan dan 8.318 deg/m untuk *pitch* pada pembebanan haluan.

Gambar IV.17 Grafik RAO yaw SBM dengan variasi arah pembebanan

Pada umumnya kasus *buoy* untuk karakteristik gerakan *yaw* pada Gambar IV.17 hampir tidak memiliki pengaruh apa pun namun pada kasus *hexagonal* SBM terdapat sedikit lonjakan secara perlahan dari frekuensi rendah ke frekuensi 1.6 rad/s dan nilai RAO maksimumnya terbilang cukup berpengaruh yaitu 3.193 deg/m untuk pembebanan perempat haluannya.

Berikut ini tabel perbandingan RAO maksimum tiap gerakan pada *hexagonal* SBM yang menunjukkan gerakan *pitch* paling maksimum dan gerakan *surge* paling minimum.

Moda	Unit	RAO M	NAAV		
Gerakan		90 deg.	135 deg.	180 deg.	
Surge	m/m	0.001	0.535	0.756	0.756
Sway	m/m	0.998	0.706	0.000	0.998
Heave	m/m	1.000	1.000	1.000	1.000

Tabel IV.15 Perbandingan RAO maksimum tiap gerakan hexagonal SBM

Roll	deg/m	7.319	5.343	0.000	7.319
Pitch	deg/m	0.154	6.477	8.318	8.318
Yaw	deg/m	0.003	3.193	0.000	3.193

4.4.2 Analisis Karakteristik Gerak Struktur pada Gelombang Acak

Analisis ini bertujuan mengetahui karakteristik respons kapal FSO dan *hexagonal* SBM pada kondisi riil yakni saat mengapung bebas pada gelombang acak. Secara konsep, sederhananya dengan mengalikan kuadrat dari RAO tiap gerakan dengan spektrum gelombang (lihat persamaan 2.13.1) untuk mendapatkan spektrum respons tiap gerakannya. Jenis spektrum yang digunakan adalah JONSWAP karena memiliki kriteria yang cocok pada perairan Indonesia yang tertutup karena pulau-pulau sekitarnya.

Gambar IV.18 menunjukkan spektrum JONSWAP pada tinggi gelombang signifikan yang didapatkan dari sub-bab sebelumnya untuk kurun waktu 10, 50, dan 100-tahunan.

Skenario analisis yang diterapkan pada analisis spektrum respons tiap gerakan adalah pada kondisi *ballast*. Hal ini didasari nilai RAO maksimum pada *ballast* relatif sedikit lebih kritis dari kondisi *full load*. Sedangkan arah pembebanan tiap gerakannya didasarkan pembebanan maksimum tiap gerakan saat kondisi *ballast*. Oleh karena itu, spektrum respons pada kapal FSO dan *hexagonal* SBM adalah gerakan *surge* (180°), *sway* (90°), *heave* (90°), *roll* (90°), *pitch* (180°), dan *yaw* (135°).

4.4.2.1 Kapal FSO

Gambar IV.19 Grafik spektrum *surge* FSO dengan variasi tinggi gelombang signifikan Secara umum Gambar IV.19 menunjukkan tiga kurva spektrum respons gerakan *surge* dengan perbedaan kurun waktu tahunan tinggi gelombang signifikan. Jika diperhatikan besaran rentang ordinatnya maka dapat diketahui bahwa spektrum responsnya sangat kecil seperti puncak maksimumnya untuk tinggi gelombang signifikan 1.89 m, 1.98 m, dan 2.02 m adalah 0.0098 m²/(rad/s), 0.012 m²/(rad/s), dan 0.0130 m²/(rad/s). Puncak kurva yang terjadi lebih disebabkan karena interferensi dari puncak spektrum gelombang pada frekuensi yang sama dan beberapa lonjakan kecil sesaat sebelum naik dan setelah turun dari puncak tertingginya disebabkan pengaruh gerakan RAO *surge* itu sendiri. Tabel IV.16 menunjukkan amplitudo ekstrem gerakan *surge* yang terjadi tiap kurun waktu tertentu atau tinggi gelombang signifikannya.

 Tabel IV.16 Tabulasi harga amplitudo ekstrem gerakan surge kapal FSO

Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s
Amplitudo ekstrem gerakan surge (meter)	0.2218	0.2492	0.2607

Secara umum Gambar IV.20 pada rentang frekuensi 0.4-1.0 rad/s menunjukkan puncak pada frekuensi rendah akibat dari interferensi gelombang. Untuk tinggi gelombang signifikan sebesar 2.02 meter nilai spektrum responsnya

Gambar IV.20 Grafik spektrum sway FSO dengan variasi tinggi gelombang signifikan

Tabel IV.17 menunjukkan amplitudo ekstrem gerakan *sway* yang terjadi tiap kurun waktu tertentu atau tinggi gelombang signifikannya.

Tabel IV.17 Tabulasi harga amplitudo ekstrem gerakan sway kapal FSO

Gambar IV.21 Grafik spektrum *heave* FSO dengan variasi tinggi gelombang signifikan Secara umum Gambar IV.21 pada rentang frekuensi 0.4-0.8 rad/s menunjukkan puncak pada frekuensi rendah akibat dari posisi frekuensi alami gerakan *heave* sebagaimana dapat dilihat kembali pada Gambar IV.8. Tabel IV.18 menunjukkan amplitudo ekstrem gerakan *heave* yang terjadi tiap kurun waktu tertentu atau tinggi gelombang signifikannya.

Tabel IV.18 Tabulasi harga amplitudo ekstrem gerakan heave kapal FSO

Gambar IV.22 Grafik spektrum roll FSO dengan variasi tinggi gelombang signifikan

Secara umum tren kurva pada Gambar IV.22 hampir serupa dengan spektrum respons gerakan *heave* seperti pada Gambar IV.21. Hal ini disebabkan karena selain pengaruh dari interferensi gelombang yang sama juga disebabkan frekuensi alami pada gerakan *heave* dengan nilai RAOnya 1.387 m/m dan gerakan *roll* dengan nilai RAOnya 2.6 deg/m pada frekuensi yang sama yakni sekitar 0.5 rad/s. Tabel IV.19 menunjukkan amplitudo ekstrem gerakan *roll* yang terjadi tiap kurun waktu tertentu atau tinggi gelombang signifikannya.

Tabel IV.19 Tabulasi harga amplitudo ekstrem gerakan roll kapal FSO

Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s
Amplitudo ekstrem gerakan roll (deg)	2.3676	2.7716	2.9452

Peninjauan pada Gambar IV.23 menunjukkan adanya dua kali lonjakan secara tajam pada rentang frekuensi antara 0.4 - 0.8 rad/s. Puncak pertama tertinggi bernilai 0.39 deg²/(rad/s) untuk tinggi gelombang signifikan 2.02 meter yang disebabkan resonansi pertama gerakan *pitch* pada frekuensi yang sama yakni 0.4 rad/s. Puncak kedua tertinggi bernilai 0.18 deg²/(rad/s) untuk tinggi gelombang

signifikan 2.02 meter yang disebabkan interferensi gelombang pada frekuensi yang sama yakni 0.6 rad/s.

Gambar IV.23 Grafik spektrum *pitch* FSO dengan variasi tinggi gelombang signifikan Tabel IV.20 menunjukkan amplitudo ekstrem gerakan *pitch* yang terjadi tiap kurun waktu tertentu atau tinggi gelombang signifikannya.

Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s
Amplitudo ekstrem gerakan pitch (deg)	0.3753	0.4455	0.4761

Tabel IV.20 Tabulasi harga amplitudo ekstrem gerakan pitch kapal FSO

Berdasarkan Gambar IV.24 pada frekuensi 0.5 rad/s terdapat adanya sedikit bagian gemuk yang merupakan efek dari resonansi pertama gerakan *yaw* sesaat menuju puncaknya 0.027 deg²/(rad/s) pada frekuensi 0.55 rad/s yang merupakan dampak dari interferensi gelombang kemudian menurun secara gradual hingga terdapat sedikit lonjakan yang merupakan efek dari resonansi kedua gerakan *yaw*.

Tuber I (MI Tubulusi hurgu umphtudo ekstieni gerukun <i>yun</i> kupul 1 Se
--

	-	_	
Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s
Amplitudo ekstrem gerakan yaw (deg)	0.3269	0.3774	0.3987

Berikut ini merupakan tabel perbandingan nilai amplitudo ekstrem pada tiap gerakan kapal FSO.

*				
Amplitudo ekstrem gerakan 6 DoF	Tinggi gelombang signifikan			
kapal FSO	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m	
<i>Surge</i> (m)	0.2218	0.2492	0.2607	
<i>Sway</i> (m)	1.4404	1.5920	1.6549	
<i>Heave</i> (m)	2.3488	2.6775	2.8148	
<i>Roll</i> (deg)	2.3676	2.7716	2.9452	
Pitch (deg)	0.3753	0.4455	0.4761	
Yaw (deg)	0.3269	0.3774	0.3987	

Tabel IV.22 Amplitudo ekstrem tiap gerakan kapal FSO

Amplitudo ekstrem seperti yang ditunjukkan pada Tabel IV.22 dapat dianggap sebagai dasar dalam menentukan apakah operasi sistem *offloading* dengan kapal tanker tepat di belakang kapal FSO atau di samping saat tertambat dapat dilakukan atau tidak. OCIMF (*Oil Companies International Marine Forum*) merekomendasikan mengenai area *drifting* yang diizinkan yaitu daerah yang dibutuhkan untuk mengakomodasi gerakan pengangkutan kapal dengan arah

longitudinal (*surge*) dan lateral (*sway*) harus memiliki rentang efektif \pm 3.1 m. Jika gerakan kapalnya melebihi kriteria maka proses *offloading* harus dihentikan dan bila intensitas gerakan sudah di bawah rentang yang diizinkan dapat dilanjutkan kembali proses tersebut.

Dari Tabel IV.22 telah menunjukkan bahwa kriteria gerakan *surge* dan *sway* sudah memenuhi kriteria atas rekomendasi OCIMF yakni berada di bawah rentang 3.1 m dari tiap tinggi gelombang signifikan yang berbeda pada kondisi perairan yang ditinjau.

4.4.2.2 Hexagonal SBM

Pada Gambar IV.25 jelas terlihat memiliki pola kurva yang serupa dengan kurva spektrum JONSWAP yang disebabkan interferensi gelombang namun dikarenakan adanya efek gerakan *surge* puncaknya hanya mencapai 0.617 m²/(rad/s) pada frekuensi 0.65 rad/s untuk tinggi gelombang signifikan 2.02 meter lalu menurun secara gradual pada frekuensi tingginya.

Tabel IV.23 Tabulasi harga amplitudo ekstrem gerakan surge hexagonal SBM

Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s
Amplitudo ekstrem gerakan surge (meter)	2.7672	2.9880	3.0785

Gambar IV.26 Grafik spektrum sway SBM dengan variasi tinggi gelombang signifikan Pada Gambar IV.26 jelas terlihat memiliki pola kurva yang mirip dengan kurva spektrum JONSWAP yang disebabkan interferensi gelombang pada frekuensi 0.6 rad/s namun dikarenakan adanya efek gerakan sway puncaknya mencapai 1.094 m²/(rad/s) pada frekuensi 0.65 rad/s lalu menurun secara gradual pada frekuensi tingginya.

Tabel IV.24 Tabulasi harga amplitudo ekstrem gerakan sway hexagonal SBM

Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s
Amplitudo ekstrem gerakan <i>sway</i> (meter)	3.6815	3.9750	4.0952

Gambar IV.27 menunjukkan bahwa pola kurva spektrum respons gerakan *heave*nya hampir serupa dari kedua gerakan sebelumnya namun nilai puncak yang berbeda dan berarti memiliki sama-sama pengaruh besar dari interferensi gelombang pada frekuensi 0.6 rad/s ketimbang efek dari gerakan masing-masing.

Gambar IV.27 Grafik spektrum heave SBM dengan variasi tinggi gelombang signifikan

Fabel IV.25	Tabulasi harga	amplitudo ekstrem	gerakan	heave	hexagonal	SBM
	i abulasi naiga	ampinuuo eksiten	goranan	neuve	пелидониі	DDM

Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s
Amplitudo ekstrem gerakan heave (meter)	3.9041	4.2018	4.3237

Pada Gambar IV.28 dan Gambar IV.29 menunjukkan pola kurva yang sama bahkan nilai puncak spektrum responsnya kurang lebih sama yang disebabkan pengaruh interferensi gelombang dan kurva RAO gerakan keduanya yang polanya juga hampir serupa. Selain itu, besaran spektrum responsnya jauh lebih besar dibandingkan gerakan lainnya di mana besarannya mendekati rentang antara 9.0 – $10.5 \text{ deg}^2/(\text{rad/s})$ pada frekuensi 0.9 rad/s untuk tinggi gelombang signifikan 2.02 meter.

Gambar IV.28 Grafik spektrum roll SBM dengan variasi tinggi gelombang signifikan

Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m			
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s			
Amplitudo ekstrem gerakan roll (deg)	15.9576	16.7130	17.0149			

Tabel IV.26 Tabulasi harga amplitudo ekstrem gerakan roll hexagonal SBM

Gambar IV.29 Grafik spektrum pitch SBM dengan variasi tinggi gelombang signifikan

Tabel IV.27 Tabulasi harga amplitudo ekstrem gerakan pitch hexagonal SBM

Puncak yang ada pada Gambar IV.30 disebabkan karena interferensi gelombang sesaat dari frekuensi 0.6 rad/s kemudian nilai tertinggi spektrum respons yawnya 2.055 deg²/(rad/s) pada frekuensi 0.9 rad/s untuk tinggi gelombang signifikan 2.02 meter. Besaran spektrum responsnya dan pola kurvanya

menunjukkan relatif sama pada spektrum respons gerakan *sway* dan *heave* namun menurun sedikit melambat secara gradual pada frekuensi tinggi akibat gerakan *yaw*nya yang memuncak justru terjadi pada 1.8 rad/s.

Tinggi gelombang signifikan (meter)	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m
Puncak periode gelombang (meter)	T _s = 9.33 s	T _s = 9.51 s	T _s = 9.58 s
Amplitudo ekstrem gerakan yaw (deg)	7.5142	7.8752	8.0197

Tabel IV.28 Tabulasi harga amplitudo ekstrem gerakan yaw hexagonal SBM

Berikut ini merupakan tabel perbandingan nilai amplitudo ekstrem pada tiap gerakan *hexagonal* SBM.

	, ÷	-			
Amplitudo ekstrem gerakan 6 DoF	Tinggi gelombang signifikan				
hexagonal SBM	H _s = 1.89 m	H _s = 1.98 m	H _s = 2.02 m		
<i>Surge</i> (m)	2.7672	2.9880	3.0785		
<i>Sway</i> (m)	3.6815	3.9750	4.0952		
Heave (m)	3.9041	4.2018	4.3237		
Roll (deg)	15.9576	16.7130	17.0149		
Pitch (deg)	16.8930	17.6839	18.0001		
Yaw (deg)	7.5142	7.8752	8.0197		

 Tabel IV.29 Amplitudo ekstrem tiap gerakan hexagonal SBM

4.5 PERMODELAN SISTEM TAMBAT KAPAL DAN SBM

Permodelan kapal FSO pada Orcaflex 9.2 didasarkan pada penentuan koordinat titik dari geometrinya yang kemudian titik-titik tersebut akan saling berhubung membentuk garis menjadi *surface* kapal yang utuh. Model kapal FSO yang dibuat sangat sederhana dan tidak mesti berbentuk kapal yang seharusnya sebagaimana pada permodelan MAXSURF dan MOSES sebelumnya sebab bukan bentuk *surfacenya* yang mempengaruhi hal yang ingin dianalisis melainkan *input* dari berbagai *output* dari hasil analisis *seakeeping* sebelumnya dengan MOSES berupa *displacement* RAOs, *load* RAOs, *stiffness, added mass, damping, hydrodynamic drag, wind drag* dan *wave drift*. Selain itu, *input* untuk informasi data lingkungan juga diberikan seperti kedalaman laut, spektrum gelombang, kecepatan arus, kecepatan angin, dan arah *heading*nya. Sedangkan permodelan pada *hexagonal* SBM juga didasarkan pada koordinat titik sebagaimana pada kapal FSO dengan tipe *spar buoy* untuk kemudahan desain geometri dan analisisnya. Properti SBM yang di*nput* berupa inersia, *draft*, drag, *added mass* dan *damping*

untuk pendefinisian modelnya. Terdapat dua tali *hawser* sebagai penghubung antara SBM dengan kapal FSO. Selanjutnya, permodelan *mooring line* didesain dengan sistem *catenary* dan ditancapkan (*anchored*) pada *seabed* dengan kedalaman 40 m serta berjumlah enam dengan konfigurasi simetris 60° dengan properti berdasarkan data pada Tabel III.4.

Sistem tambat yang dianalisis bersifat *weathervaning* yang berarti kapal FSO dapat mengelilingi 360° mengikuti arah pembebanan gelombang sehingga konfigurasi *mooring line* pada kapal FSO dalam bentuk *in line* dan *between line* agar hasil analisisnya dapat mewakili posisi kapal FSOnya terhadap konfigurasi *mooring line*nya. Hal ini bisa diperhatikan dari hasil *layout* Orcaflex 9.2 pada Gambar IV.31 dan Gambar IV.32.

Gambar IV.31 Konfigurasi mooring line pada kapal FSO dalam bentuk in line

Gambar IV.32 Konfigurasi mooring line pada kapal FSO dalam bentuk between line

4.6 ANALISIS TEGANGAN PADA MOORING LINE

Tujuan dari analisis tegangan pada *mooring line* yang tertambat dengan kapal FSO saat kondisi *full load* dan *ballast* adalah untuk mengetahui besaran tegangan maksimum (*effective tension*) dari salah satu *mooring line* dan

memastikan telah atau belum memenuhinya kriteria secara desain berdasarkan ABS – *Single Point Mooring* 2014 sebagaimana pada Tabel IV.30 dan acuan ASTM A148 pada Tabel IV.31 untuk analisis tegangan pada *chain stopper*. Pengecekan *safety factor* dari pemilihan desain *mooring line* dari data awal dengan cara membagi MBL (lihat persamaan 2.16.3) berdasarkan data pada Tabel III.4 dengan tegangan *mooring line* yang didapat dari hasil simulasi oleh Orcaflex 9.2.

SAFETY FACTORS (ABS)							
Kondisi	Axial Stress	Shear Stress	Von Mises				
Operating	1.67	2.5	1.67				
Storm	1.25	1.88	1.25				

Tabel IV.30 Kriteria faktor keamanan tegangan mooring line dari ABS 2014

Tabel IV.31 Kriteria tegangan yang diizinkan untuk ASTM A148 (585 MPa yield stress)

ALLOWABLE STRESS (MPa)							
Kondisi	Axial Stress	Shear Stress	Von Mises				
Operating	350	234	350				
Storm 468 311							

Keterangan (ABS, 2004):

• Kondisi lingkungan operasi (operating) untuk SBM

Keadaan laut maksimum di mana kapal diizinkan untuk tetap ditambatkan ke SBM tanpa melebihi beban dan tekanan yang diizinkan yang diperlukan pada *Part 3: Mooring System Design* dan *Part 4: Equipment and Systems* dari aturan ABS 2014. Angin, gelombang, dan arus terkait yang digunakan dalam perancangan harus didasarkan pada data spesifik lokasi, seperti yang ditentukan oleh konsultan meteorologi dan oseanografi yang diakui.

 Kondisi lingkungan desain (*environmental/survival/storm*) untuk SBM Keadaan lingkungan maksimum berupa angin, gelombang, dan arus berdasarkan interval perulangan 100 tahunan. Pada kondisi ini, tidak ada kapal yang tertambat pada sistem SBM, kecuali sistem SBM dirancang khusus untuk situasi ini.

Sebagaimana yang telah dijelaskan pada sub-bab 2.2.7 tentang Analisis Dinamis pada Bab II sebelumnya, metode analisis simulasi domain pada penelitian ini menggunakan *Time Domain Analysis* dengan minimal simulasi durasi waktunya selama 10800 s (3 jam) atas rekomendasi DNV OS E301. Empat skenario analisis tegangan pada *mooring line* dilakukan untuk kondisi lingkungan operasi dan badai (*Storm*) dengan arah pembebanan gelombang 180° terhadap *heading* kapal FSO sebagaimana berikut:

- 1) SBM konfigurasi in line FSO kondisi full load
- 2) SBM konfigurasi between line FSO kondisi full load
- 3) SBM konfigurasi in line FSO kondisi ballast
- 4) SBM konfigurasi between line FSO kondisi ballast

Tabel IV.32 – Tabel IV.39 menunjukkan hasil simulasi dengan *software* Orcaflex 9.2 selama 10800 detik untuk mengetahui *output* berupa tegangan maksimum tiap enam *mooring line* dan tali *hawser*.

<u>Condition</u>		Line	<u>Tension</u>	<u>Time</u>	<u>MBL</u>	с г	<u>S. F.</u>	Status			
		Line	(kN)	(s)	(kN)	<u>3. F.</u>	(ABS)	<u>Status</u>			
		H1	168.74	10022.40	4002.13	23.72	2.50	OK!			
		H2	180.28	10022.50	4002.13	22.20	2.50	OK!			
~	In Line	ML1	1003.49	4729.70	3380.732	3.37	1.67	OK!			
σαι		ine	ine	ine	ML2	589.29	10080.70	3380.732	5.74	1.67	OK!
Full L In L		ML3	475.45	10762.20	3380.732	7.11	1.67	OK!			
		ML4	575.12	6561.60	3380.732	5.88	1.67	OK!			
		ML5	497.78	8542.90	3380.732	6.79	1.67	OK!			
		ML6	534.59	4728.70	3380.732	6.32	1.67	OK!			

Tabel IV.32 Tension maksimum hawser dan mooring line kondisi 1 – OPERASI

Tabel I	V.33	Tension	maksimum	hawser dan	mooring lin	e kondisi	1 – BADAI
---------	------	---------	----------	------------	-------------	-----------	-----------

Cons	lition	Lino	<u>Tension</u>	<u>Time</u>	MBL	с г	<u>S. F.</u>	Status				
Condition		Line	(kN)	(s)	(kN)	<u>э. г.</u>	(ABS)	Status				
		H1	329.61	9635.80	4002.13	12.14	2.50	OK!				
		H2	396.05	9635.80	4002.13	10.11	2.50	OK!				
σ						ML1	1021.98	9629.70	3380.732	3.31	1.67	ОК!
oai	ine	ML2	763.65	9612.40	3380.732	4.43	1.67	OK!				
III	In L	ML3	528.70	10740.80	3380.732	6.39	1.67	OK!				
		ML4	631.13	10740.80	3380.732	5.36	1.67	OK!				
		ML5	490.23	10740.90	3380.732	6.90	1.67	OK!				
		ML6	536.66	8305.10	3380.732	6.30	1.67	OK!				

Cons	lition	Ling	Tension	<u>Time</u>	MBL	с г	<u>S. F.</u>	Status
<u>Condition</u>		Line	(kN)	(s)	(kN)	<u>з. г.</u>	(ABS)	Status
		H1	195.41	9411.30	4002.13	20.48	2.50	OK!
		H2	208.33	9423.20	4002.13	19.21	2.50	OK!
7	ine	ML1	1157.31	9525.40	3380.732	2.92	1.67	OK!
oai	sn L	ML2	644.02	9523.90	3380.732	5.25	1.67	OK!
III	Me	ML3	686.29	3905.60	3380.732	4.93	1.67	OK!
	Bet	ML4	675.70	3905.70	3380.732	5.00	1.67	OK!
		ML5	603.92	382.60	3380.732	5.60	1.67	OK!
		ML6	1147.08	259.70	3380.732	2.95	1.67	OK!

Tabel IV.34 Tension maksimum hawser dan mooring line kondisi 2 – OPERASI

Tabel IV.35 Tension maksimum hawser dan mooring line kondisi 2 – BADAI

<u>Condition</u>		Lino	<u>Tension</u>	<u>Time</u>	<u>MBL</u>	с г	<u>S. F.</u>	Status					
		Line	(kN)	(s)	(kN)	<u>э. г.</u>	(ABS)	<u>Status</u>					
		H1	223.96	9184.00	4002.13	17.87	2.50	OK!					
		H2	238.69	9183.90	4002.13	16.77	2.50	OK!					
l ine	Between Line	en Line	en Line	en Line	ine	ine	ML1	1183.10	10497.80	3380.732	2.86	1.67	OK!
oai					ML2	632.97	9167.00	3380.732	5.34	1.67	OK!		
- III		ML3	715.10	9815.50	3380.732	4.73	1.67	OK!					
		Bet	Bet	ML4	678.79	3411.10	3380.732	4.98	1.67	OK!			
										ML5	603.71	382.50	3380.732
		ML6	1164.82	10497.80	3380.732	2.90	1.67	OK!					

Com	lition	Lino	<u>Tension</u>	<u>Time</u>	<u>MBL</u>	S E	<u>S. F.</u>	Status
Condition		Line	(kN)	(s)	(kN)	<u>з. г.</u>	(ABS)	Status
		H1	288.76	7845.70	4002.13	13.86	2.50	OK!
		H2	309.18	7845.60	4002.13	12.94	2.50	OK!
		ML1	1011.86	4729.60	3380.732	3.34	1.67	OK!
ast	ine	ML2	747.68	7838.60	3380.732	4.52	1.67	OK!
Ball	ln L	ML3	501.88	8542.90	3380.732	6.74	1.67	OK!
		ML4	577.89	9852.40	3380.732	5.85	1.67	OK!
		ML5	488.73	6624.50	3380.732	6.92	1.67	OK!
		ML6	668.80	9348.60	3380.732	5.05	1.67	OK!

Conc	ndition		<u>Tension</u>	<u>Time</u>	MBL	C E	<u>S. F.</u>	Status					
Condition		Line	(kN)	(s)	(kN)	<u>э. г.</u>	(ABS)	Status					
		H1	323.73	9184.10	4002.13	12.36	2.50	OK!					
		H2	307.11	9183.90	4002.13	13.03	2.50	OK!					
					ML1	1662.27	10498.10	3380.732	2.03	1.67	OK!		
last	ine	ML2	849.55	10497.50	3380.732	3.98	1.67	OK!					
Bal	In L	ML3	516.55	10740.80	3380.732	6.54	1.67	OK!					
							ML4	611.04	9815.80	3380.732	5.53	1.67	OK!
		ML5	484.34	9815.70	3380.732	6.98	1.67	OK!					
		ML6	771.64	9238.10	3380.732	4.38	1.67	OK!					

Tabel IV.37 Tension maksimum hawser dan mooring line kondisi 3 – BADAI

Tabel IV.38 Tension maksimum hawser dan mooring line kondisi 4 – OPERASI

<u>Condition</u>		<u>Line</u>	<u>Tension</u>	<u>Time</u>	<u>MBL</u>	<u>S. F.</u>	<u>S. F.</u>	Status
			(kN)	(s)	(kN)		(ABS)	Status
Ballast	Between Line	H1	292.61	7906.40	4002.13	13.68	2.50	OK!
		H2	310.30	7906.30	4002.13	12.90	2.50	OK!
		ML1	1178.73	7899.90	3380.732	2.87	1.67	OK!
		ML2	671.32	7898.30	3380.732	5.04	1.67	OK!
		ML3	681.55	3905.60	3380.732	4.96	1.67	OK!
		ML4	669.86	3905.70	3380.732	5.05	1.67	OK!
		ML5	632.63	6432.00	3380.732	5.34	1.67	OK!
		ML6	1152.06	259.70	3380.732	2.93	1.67	OK!

Tabel IV.39 Tension maksimum hawser dan mooring line kondisi 4 – BADAI

<u>Condition</u>		<u>Line</u>	<u>Tension</u>	<u>Time</u>	MBL	<u>S. F.</u>	<u>S. F.</u>	Status
			(kN)	(s)	(kN)		(ABS)	Status
Ballast	Between Line	H1	293.71	10389.80	4002.13	13.63	2.50	OK!
		H2	312.37	10390.20	4002.13	12.81	2.50	OK!
		ML1	1512.99	10497.80	3380.732	2.23	1.67	OK!
		ML2	655.81	10380.10	3380.732	5.16	1.67	OK!
		ML3	700.25	9815.50	3380.732	4.83	1.67	OK!
		ML4	686.45	9815.50	3380.732	4.92	1.67	OK!
		ML5	633.16	8913.40	3380.732	5.34	1.67	OK!
		ML6	1272.77	10497.90	3380.732	2.66	1.67	OK!

Tabel IV.40 dan Tabel IV.41 adalah rangkuman dari hasil tegangan maksimum *mooring line* tiap empat kondisi. Besaran tegangan maksimum dengan 1178.73 kN terjadi pada kondisi 4 saat operasi dan 1662.27 kN terjadi pada kondisi

3 saat badai menjadi acuan untuk analisis lebih lanjut mengenai tegangan lokal maksimum pada *chain stopper hexagonal* SBM.

Tabel IV.40 Tension maksimum mooring line dari empat kondisi - OPERASI

Gambar IV.33 Tampak atas simulasi Orcaflex 9.2 kondisi 4 – OPERASI (7899.90 s)

Gambar IV.33 adalah tampak atas dari hasil simulasi Orcaflex 9.2 pada detik 7899.90 dari total simulasi selama 10800 detik. Pada detik 7899.90 menunjukkan bahwa pada kondisi kapal saat *ballast* (B) dengan konfigurasi sistem tambatnya *between line* (BL) menimbulkan tegangan maksimum yang tertinggi pada *mooring line* ke-1 (ML1) dibandingkan tiga kondisi atau hasil skenario lain untuk saat kondisi operasi. Gambar tersebut juga menunjukkan bahwa kapal FSO saat di tengah kondisi operasi mengalami sedikit ketidaksejajaran yang semula kapalnya searah dengan 180° arah datangnya dominan pembebanan lingkungan. Hal ini tentu disebabkan karena kombinasi pembebanan yang ada sehingga dalam rentang waktu tertentu kapal mengalami *weathervaning* yang cukup ekstrem terhadap *hexagonal* SBM.

MBL Tension Time S. F. Condition Line <u>S. F.</u> Status (kN) (kN) (ABS) (s) FL ΒL ML1 1021.98 9629.70 3380.732 3.31 1.67 OK!

Tabel IV.41 Tension maksimum mooring line dari empat kondisi - BADAI

Gambar IV.34 Tampak atas simulasi Orcaflex 9.2 kondisi 3 – BADAI (10498.10 s)

Gambar IV.34 adalah tampak atas dari hasil simulasi Orcaflex 9.2 pada detik 10498.10 dari total simulasi selama 10800 detik. Pada detik 10498.10 menunjukkan bahwa pada kondisi kapal saat *ballast* (B) dengan konfigurasi sistem tambatnya *in line* (IL) menimbulkan tegangan maksimum yang tertinggi pada *mooring line* ke-1 (ML1) dibandingkan tiga kondisi atau hasil skenario lain untuk saat kondisi badai. Gambar tersebut juga menunjukkan bahwa kapal FSO saat di tengah kondisi badai mengalami sedikit ketidaksejajaran yang semula kapalnya searah dengan 180° arah datangnya dominan pembebanan lingkungan dan *mooring line* ke-1. Hal ini tentu disebabkan karena kombinasi pembebanan yang ada sehingga dalam rentang waktu tertentu kapal mengalami *weathervaning* yang cukup ekstrem terhadap *hexagonal* SBM.

4.7 ANALISIS TEGANGAN PADA STRUKTUR CHAIN STOPPER

4.7.1 Pengonversian Data Model Struktur Chain Stopper

Permodelan struktur *chain stopper* dalam bentuk *file* DWG (AutoCAD 3D) telah dibuat oleh PT. Adidaya Energi Mandiri berdasarkan dimensi dari data ukuran asli *general arrangement hexagonal single buoy mooring*. Karena hal tersebut maka diperlukan pengonversian format *file* DWG model *chain stopper* yang telah ada ke *file* IGES sebagai *input geometry* untuk ANSYS *Mechanical* 16.2 (*Static* *Structural*). *Screenshot* struktur *chain stopper* sebelum dan sesudah pengonversian format *file*nya ditunjukkan pada Gambar IV.35 dan Gambar IV.36.

Gambar IV.35 Model struktur chain stopper dari AutoCAD 2017 (.dwg)

Gambar IV.36 Model struktur *chain stopper* dari ANSYS *Mechanical* 16.2 (.iges) Tabel IV.42 Properti geometri struktur *chain stopper* dari ANSYS *Mechanical* 16.2

Geometric Properties				
Volume	0.21689 m ³			
Mass	1702.5 kg			

4.7.2 Analisis Sensitivitas Meshing

Sebelum dilakukan analisis tegangan lokal maksimum struktur *chain stopper*, terlebih dahulu dilakukan analisis sensitivitas *meshing* yang bertujuan untuk mengetahui ukuran yang optimum atau konsistensi – keakuratan hasil dari jumlah elemen yang digunakan. Perubahan ukuran *meshing* dilakukan dengan metode iterasi hingga hasilnya menjadi konvergen pada ukuran tertentu atau tidak adanya perubahan yang signifikan dari hasil sebelumnya.

Gambar IV.37 Grafik uji sensitivitas meshing

Ukuran Maksimum (mm)	Jumlah Elemen	Von Mises (MPa)	Error
75	2210	47.659	-
70	2558	49.350	3.55%
65	2809	48.281	2.17%
60	3322	44.238	8.37%
55	3886	53.129	20.10%
50	3886	52.146	1.85%
45	4858	50.625	2.92%
40	6117	51.391	1.51%
35	8006	50.861	1.03%

Tabel IV.43 Hasil dari uji sensitivitas meshing terhadap perubahan ukuran meshing

Dari Gambar IV.37 dan Tabel IV.43 menunjukkan bahwa konvergensi dimulai pada saat ukuran elemen 45 mm hingga 35 mm. Ukuran *meshing* yang optimum sebaiknya memiliki nilai *absolute error* di bawah 2% sehingga hal tersebut terjadi pada ukuran *meshing* pada nilai 35 mm dengan jumlah elemen 8006 (*nodes* 60202). Bentuk *meshing*nya dengan ukuran tersebut dapat diperhatikan secara seksama pada Gambar IV.38.

Gambar IV.38 Hasil running meshing tipe quadrilateral terhadap chain stopper

4.7.3 Pembebanan pada Struktur Chain Stopper

Selanjutnya dilakukan pemberian beban (*loading*) pada *chain stopper* dari hasil analisis tegangan maksimum *mooring line* dengan Orcaflex 9.2 sebelumnya. Dua skenario analisis dilakukan berdasarkan pemberian beban tegangan maksimum *mooring line* untuk kondisi operasi dan badai sebagaimana berikut:

1) Tegangan maksimum mooring line (operation) : 1178732.18 N (Tabel IV.40)

2) Tegangan maksimum *mooring line (storm)* : 1662274.90 N (Tabel IV.41)

Gambar IV.39 Pemberian area fixed support dan gaya pada chain stopper (N)

Jenis material struktur *hexagonal* SBM – *chain stopper* yang digunakan adalah ASTM A148 *Grade* 105-85 dengan *yield stress* sebesar 585 MPa sehingga hasil tegangan dari dua skenario analisis harus lebih kecil dari tegangan izinnya sebagaimana pada Tabel IV.31.

Tabel IV.44 menunjukkan hasil *running* (Solve) ANSYS Mechanical – Static Structural untuk tegangan Von Mises (Equivalent Stress) dari pembebanan yang diberikan saat kondisi operasi dan badai pada chain stopper.

<u>Parameter</u>	Operation	<u>Storm</u>	
Von Mises Stress (MPa)	328.69	463.53	
Allow. Von Mises Stress (MPa)	350	468	
Stress Ratio	0.94	0.99	

 Tabel IV.44 Hasil analisis statis pada struktur chain stopper

Dari Tabel IV.44 menunjukkan bahwa properti desain *chain stopper* pada *hexagonal* SBM yang telah ada memenuhi kriteria keamanan struktur untuk dapat beroperasi di titik perairan Kepulauan Seribu, baik saat kondisi operasi maupun badai. Hal ini dapat diperhatikan bahwa ketika terjadinya pembebanan maksimum *mooring line* pada *chain stopper* saat operasi memiliki nilai rasio tegangan sebesar
0.94 (328.69 MPa) dan saat badai memiliki nilai rasio tegangan sebesar 0.99 (463.54 MPa).

Gambar IV.40 dan Gambar IV.41 adalah model hasil *running* ANSYS *Mechanical* 16.2 untuk mengetahui tegangan Von Mises (Pa) pada kondisi operasi.

Gambar IV.40 Hasil running tegangan Von Mises (MPa) tampak iso - OPERASI

Gambar IV.41 Hasil running tegangan Von Mises (MPa) tampak detail - OPERASI

Gambar IV.42 dan Gambar IV.43 adalah model hasil *running* ANSYS *Mechanical* 16.2 untuk mengetahui tegangan Von Mises (Pa) pada kondisi badai.

Gambar IV.42 Hasil running tegangan Von Mises (MPa) tampak iso - BADAI

Gambar IV.43 Hasil running tegangan Von Mises (MPa) tampak detail – BADAI

BAB V PENUTUP

5.1 KESIMPULAN

Berdasarkan analisis yang dilakukan mengenai perilaku respons kapal FSO dan *hexagonal* SBM saat *free floating* dengan pembebanan gelombang reguler dan acak – JONSWAP, tegangan tali tambat saat masa operasi dan badai, serta tegangan lokal maksimum struktur *chain stopper* didapatkan beberapa kesimpulan sebagai berikut:

- 1. Respons struktur (6 DoF) kapal FSO dan *hexagonal* SBM ketika dibebani gelombang reguler saat *free floating* adalah sebagai berikut:
 - a. Nilai RAO maksimum kapal FSO: *surge* pada kondisi *ballast* dengan 0.978 m/m 0.1 rad/s (180°), *sway* pada kondisi *ballast* dengan 0.990 m/m 0.1 rad/s (90°), *heave* pada kondisi *full load* dengan 1.452 m/m 0.6 rad/s (90°), *roll* pada kondisi *ballast* dengan 2.594 deg./m 0.4 rad/s (90°), *pitch* pada kondisi *full load* dengan 0.673 deg./m 0.4 rad/s (180°), dan yaw pada kondisi *ballast* dengan RAO 0.259 deg./m 0.4 rad/s (180°).
 - b. Nilai RAO maksimum *hexagonal* SBM: *surge* dengan 0.756 m/m 0.1 rad/s (180°), *sway* dengan 0.998 m/m 0.1 rad/s (90°), *heave* dengan 1.000 m/m 0.1 rad/s (90°, 135°, 180°), *roll* dengan 7.319 deg./m 1.7 rad/s (90°), *pitch* dengan 8.318 deg./m 1.7 rad/s (180°), dan *yaw* dengan 3.193 deg./m 1.6 rad/s (135°).
- 2. Respons struktur kapal FSO dan *hexagonal* SBM ketika dibebani gelombang acak (JONSWAP $H_s = 2.02 \text{ m} \& T_s = 9.58 \text{ s}$) adalah sebagai berikut:
 - a. Spektrum gelombang JONSWAP wave spectral density $[S_r(\omega)]$ maksimum terjadi pada frekuensi 0.65 rad/s dengan nilai 1.3 m²/(rad/s).
 - b. Nilai amplitudo ekstrem kapal FSO kondisi *ballast: surge* dengan 0.2607 m dan 0.0130 m²/(rad/s) 0.55 rad/s (180°), *sway* dengan 1.6549 m dan 0.27 m²/(rad/s) 0.6 rad/s (180°), *heave* dengan 2.8148 m dan 1.351 m²/(rad/s) 0.55 rad/s (90°), *roll* dengan 2.9452 deg dan 1.382 deg²/(rad/s) 0.50 rad/s (90°), *pitch* dengan 0.4761 deg dan 0.039 deg²/(rad/s) 0.50 rad/s (180°), dan *yaw* dengan 0.3987 deg dan 0.027 deg²/(rad/s) 0.55 rad/s (135°).

- c. Nilai amplitudo ekstrem *hexagonal* SBM: *surge* dengan 3.0785 m dan 0.617 $m^2/(rad/s) 0.65 rad/s$ (180°), *sway* dengan 4.0952 m dan 1.09 $m^2/(rad/s) 0.65 rad/s$ (180°), *heave* dengan 4.3237 m dan 1.127 $m^2/(rad/s) 0.65 rad/s$ (90°), *roll* dengan 17.0149 deg dan 9.332 deg²/(rad/s) 0.90 rad/s (90°), *pitch* dengan 18.0001 deg dan 10.2 deg²/(rad/s) 0.9 rad/s (180°), dan *yaw* dengan 8.0197 deg dan 2.055 deg²/(rad/s) 0.85 rad/s (135°).
- 3. Tegangan maksimum yang terjadi pada sistem tambat antara SBM dan kapal FSO yang disebabkan beban lingkungan adalah sebagai berikut:
 - a. Tegangan maksimum saat masa operasi terjadi pada kondisi 4 kapal FSO saat *ballast* & konfigurasi sistem tambat *between line* dengan *mooring line* ke-1 dan *safety factor* sebesar 2.87 (1178.73 kN).
 - b. Tegangan maksimum saat masa badai (*storm*) terjadi pada kondisi 3 kapal FSO saat *ballast* & konfigurasi sistem tambat *in line* dengan *mooring line* ke-1 dan *safety factor* sebesar 2.03 (1662.27 kN).
 - c. Hasil seluruh skenario analisis yang dilakukan telah menunjukkan bahwa properti *mooring line* yang dipilih telah aman digunakan karena tiap *mooring line* dengan tegangan maksimumnya telah memenuhi ketentuan ABS 2014 yakni harus berada di atas *safety factor* 1.67.
- 4. Tegangan Von Mises maksimum struktur *chain stopper* pada *hexagonal* SBM terhadap FSO adalah sebagai berikut:
 - a. Hasil analisis statis pada struktur *chain stopper* saat masa operasi berupa tegangan Von Mises maksimum yang terjadi sebesar 328.69 MPa dengan rasio terhadap tegangan yang diizinkan berdasarkan jenis material ASTM A148 *Grade* 105-85 sebesar 0.94.
 - b. Hasil analisis statis pada struktur *chain stopper* saat masa badai (*storm*) berupa tegangan Von Mises maksimum yang terjadi sebesar 463.53 MPa dengan rasio terhadap tegangan yang diizinkan berdasarkan jenis material ASTM A148 *Grade* 105-85 sebesar 0.99.
 - c. Hasil seluruh skenario analisis yang dilakukan telah menunjukkan bahwa properti *chain stopper – hexagonal* SBM yang dipilih telah aman digunakan karena tegangan ekuivalen Von Mises maksimumnya telah memenuhi ketentuan pada jenis material ASTM A148 yakni harus berada di bawah

tegangan izin 350 MPa untuk kondisi operasi dan 468 MPa untuk kondisi badai.

5.2 SARAN

Saran yang dapat diberikan untuk analisis lebih lanjut mengenai topik penelitian tugas akhir ini adalah sebagai berikut:

- 1. Analisis kelelahan dan keandalan dengan pertimbangan faktor korosi pada struktur yang terkait dengan *hexagonal* SBM untuk mendapatkan tingkat keamanan yang tinggi.
- 2. Analisis kekuatan *chain (mooring line)* yang bervariasi dengan diameter atau jenisnya dan kekuatan *hexagonal* SBM dengan kapasitas *buoy*nya yang bervariasi pula.
- 3. Analisis respons gerak kapal FSO dan *hexagonal* SBM pada kondisi tertambat dengan *software* ANSYS Aqwa.

(Halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

- ABS. (2004). *Guide for Building and Classing: Floating Production Installations*. Houston, Texas USA: American Bureau of Shipping.
- API Recommended Practice 2SK. (1997). Recommended Practice for Design and Analysis of Stationkeeping Systems for Floating Structures. Washington D.C.: American Petroleum Institute.
- Ardhiansyah, F. (2011, 08 Senin). Diambil kembali dari Fahmy is Here: http://jagunglimabelas.blogspot.co.id/2011/08/jari-jari-girasi.html
- Azkia, N. N. (2016). Analisis Tegangan Lokal Maksimum Konstruksi Panama Chock Pada Sistem Tandem Offloading FSO Arco Ardjuna, Tugas Akhir. Surabaya: Jurusan Teknik Kelautan ITS.
- Bhattacharyya, R. (1978). *Dynamics of Marine Vehicles*. Annapolis: John Wiley & Sons Inc.
- Djatmiko, B. E. (2014). *Hidrodinamika I Teori Gelombang Airy (PowerPoint)*. ITS Surabaya.
- Djatmiko, E. B. (2012). Perilaku dan Operabilitas Bangunan Laut di Atas Gelombang Acak. Surabaya: ITS Press.
- DNV. (2004). DNV OS E301 Position Mooring. Norway: Det Norske Veritas.
- DNV. (2010). DNV RP C205 Environmental Conditions and Environmental Loads. Norway: Det Norske Veritas.
- Faltinsen, O. M. (1990). Sea Loads on Ships and Offshore Structures. United Kingdom: Cambridge University Press.
- Ferdinand P. Beer, E. R. (2012). *Mechanics of Materials sixth edition*. New York America: McGraw-Hill.
- Jamhari H. B. M., F. N. (2015). *Hydrodynamic II Class Homework Report: Barge Laydown Responses Analysis*. Surabaya: Teknik Kelautan ITS.
- Journée, J., & Massie., W. (2001). *Offshore Hydromechanics (First Edition)*. Delft: Delft University of Technology.
- Lewis, W. E. (1989). Principles of Naval Architecture (Second Revision), Volume III - Motions in Waves and Controllability. Jersey City, NJ: Society of Naval Architects and Marine Engineers.

- Murtedjo, M. (2004). *Perancangan Lines Plan Bangunan Laut Terapung*. Surabaya: ITS Press.
- Mustofa, J. H. (2016). Mengulas Ulang (Resume) Mengenai Konsep Tegangan sebagai Pengantar Kuliah Teori Pelat dan Cangkang. Surabaya: Teknik Kelautan ITS Surabaya.
- Nallayarasu. (2015). *Offshore Structures Analysis and Design.* Chennai: Department of Ocean Engineering, IIT Madras India.
- OCIMF. (2009). Tandem Mooring and Offloading Guidelines for Conventional Tankers at F(P)SO Facilities. Seamanship International.
- Oguz Yilmaz, A. I. (1994). Hydrodynamic Design of Moored Floating Platforms. *Elseiver*.
- Petropedia Inc. (2017, Februari 22). *Mobile Offshore Production Unit (MOPU)*. Diambil kembali dari Petropedia: https://www.petropedia.com/definition/7707/mobile-offshore-productionunit-mopu
- PT. Adidaya Energi Mandiri. (2015). BANNER HEX BUOY 01 GLOBAL STRUCTURE ANALYSIS. Jakarta.
- Soedjono, J. J. (1998). *Diktat Mata Kuliah Konstruksi Bangunan Laut II*. Surabaya: Jurusan Teknik Kelautan ITS.
- Wikipedia. (2017, Februari 15). Floating Production Storage and Offloading.DiambilkembalidariWikipedia:https://en.wikipedia.org/wiki/Floating_production_storage_and_offloading
- Wikipedia. (2017, Februari 19). Single Buoy Mooring. Diambil kembali dari Wikipedia: https://en.wikipedia.org/wiki/Single_buoy_mooring

LAMPIRAN A

Perhitungan Data Sebaran Kecepatan Angin dan Arus pada Perairan Kepulauan Seribu

DATA LINGKUNGAN PERAIRAN TANJUNG PRIOK (2004-2014)

:y Count	Mind Direction (deg.)	Wind Speed (knots)								
	1-3 3-5 5-7 7-9		9-11	11-13	>=13	TUTAL				
	348.75-11.25	233	232	181	57	29	1	0	733	
	11.25-33.75	203	174	71	12	2	0	0	462	
	33.75-56.25	275	336	144	26	1	0	0	782	
	56.25-78.75	415	577	512	343	96	22	3	1968	
	78.75-101.25	604	1449	2812	2738	2047	1270	531	11451	
Ħ	101.25-123.75	659	1636	3406	3792	3288	2126	1412	16319	
our	123.75-146.25	619	1354	1567	769	403	118	48	4878	
cy C	146.25-168.75	471	1010	506	64	17	7	0	2075	
nen	168.75-191.25	434	707	357	130	33	1	0	1662	
ıbə	191.25-213.75	426	687	552	391	191	74	70	2391	
Ē	213.75-236.25	369	763	1204	960	890	573	799	5558	
	236.25-258.75	364	809	1267	1308	916	569	313	5546	
	258.75-281.25	350	802	1216	16654	688	234	90	20034	
	281.25-303.75	330	745	984	962	736	428	365	4550	
	303.75-326.25	348	599	702	667	609	546	816	4287	
	326.25-348.75	229	339	340	257	152	138	96	1551	
	Total	6329	12219	15821	29130	10098	6107	4543	84247	
	Cumulative	6329	18548	34369	63499	73597	79704	84247		

SEBARAN ARAH ANGIN - KECEPATAN ANGIN

note : Untuk perhitungan P(Wind Sp.) berikut jumlah kecepatan angin total diambil sebesar 84247 + 0.5 = 84247.5 kecepatan angin. Nilai 0.5 jumlah kecepatan angin adalah untuk mengantisipasi ketaktentuan karena kemungkinan adanya arah angin dengan intensitas di atas Wind Speed = 13 knots.

DATA LINGKUNGAN PERAIRAN TANJUNG PRIOK (2004-2014)

Wind Sp.	P(Wind	In (Wind	In [In{1/1-P _y (Wind
(knots)	Sp.)	Sp a)	Sp.)}]
(1)	(2)	(3)	(4)
3	0.07512	1.0986	-2.5498
5	0.22016	1.6094	-1.3916
7	0.40795	1.9459	-0.6459
9	0.75372	2.1972	0.3374
11	0.87358	2.3979	0.7267
13	0.94607	2.5649	1.0716
15	0.99999	2.7081	2.4878

Grafik korelasi antara kecepatan angin dan distribusi kumulatif

	P _y (Wind	In [In{1/1-P _y (Wind	In (Wind	Wind Sp.
	Sp.)	Sp.)}]	Sp a)	(knots)
(1)	(2)	(3)	(4)	(5)
10	0.99997	2.3304	2.8834	17.87
50	0.99999	2.4758	2.9340	18.80
100	1.00000	2.5325	2.9537	19.18

y = 2.8749x - 5.9591					
In [In{1/1-P _y (T _p)}]	In (T _p - a)				
2.3304	2.883400258				
2.4758	2.933984572				
2.5325	2.953691127				

Kecepatan angin untuk kurun **10-tahunan** adalah **17.87 knots** Kecepatan angin untuk kurun **50-tahunan** adalah **18.80 knots** Kecepatan angin untuk kurun **100-tahunan** adalah **19.18 knots**

DATA LINGKUNGAN PERAIRAN TANJUNG PRIOK (2004-2014)

	Wind Direction (dog.)			Curr	ent Speed (m/s)			>=0.42 30 18 6 11 0 6 6 6 3 14 0 24 16 21 24 4 4 47 230	τοται
	wind Direction (deg.)	0-0.06	0.06-0.12	0.12-0.18	0.18-0.24	0.24-0.3	0.3-0.36	0.36-0.42	>=0.42	TUTAL
	348.75-11.25	1849	5631	0	2218	0	134	21	30	9883
	11.25-33.75	1724	3062	0	557	0	32	16	18	5409
	33.75-56.25	1150	1752	0	209	0	10	9	6	3136
	56.25-78.75	984	1070	0	206	0	6	6	11	2283
	78.75-101.25	1065	980	0	136	0	19	11	0	2211
Ħ	101.25-123.75	1330	1101	0	97	0	18	3	6	2555
our	123.75-146.25	1535	1554	0	229	0	52	27	6	3403
cy C	146.25-168.75	1647	1654	0	204	0	47	23	3	3578
nen	168.75-191.25	1655	1323	0	287	0	34	37	14	3350
ıbə	191.25-213.75	1442	1522	0	320	0	111	7	0	3402
Ē	213.75-236.25	1366	1629	0	489	0	127	27	24	3662
	236.25-258.75	1195	1001	0	186	0	57	19	16	2474
	258.75-281.25	1288	703	0	114	0	27	33	21	2186
	281.25-303.75	1478	1194	0	137	0	35	17	24	2885
	303.75-326.25	11366	7829	0	565	0	82	9	4	19855
	326.25-348.75	3885	6295	0	3681	0	791	84	47	14783
	Total	34959	38300	0	9635	0	1582	349	230	85055
	Cumulative	34959	73259	73259	82894	82894	84476	84825	85055	

SEBARAN ARAH ARUS - KECEPATAN ARUS

note : Untuk perhitungan P(Curr. Sp.) berikut jumlah kecepatan arus total diambil sebesar 85055 + 0.5 = 85055.5 kecepatan arus. Nilai 0.5 jumlah kecepatan arus adalah untuk mengantisipasi ketaktentuan karena kemungkinan adanya arah arus dengan intensitas di atas Current Speed = 0.42 m/s.

DATA LINGKUNGAN PERAIRAN TANJUNG PRIOK (2004-2014)

Curr. Sp.	P(Curr.	In (Curr.	In [In{1/1-P _y (Curr.
(knots)	Sp.)	Sp a)	Sp.)}]
(1)	(2)	(3)	(4)
0.06	0.41101	-2.8134	-0.6361
0.12	0.86131	-2.1203	0.6808
0.18	0.86131	-1.7148	0.6808
0.24	0.97459	-1.4271	1.3009
0.30	0.97459	-1.2040	1.3009
0.36	0.99319	-1.0217	1.6072
0.42	0.99729	-0.8675	1.7768
0.48	0.99999	-0.733969	2.4886

Grafik korelasi antara kecepatan arus dan distribusi kumulatif

Kurun Waktu Tahun	Ρ _γ (Curr. Sp.)	In [In{1/1-P _y (Curr. Sp.)}]	ln (Curr. Sp a)	Curr Sp. (m/s)
(1)	(2)	(3)	(4)	(5)
10	0.99997	2.3304	-0.5659	0.57
50	0.99999	2.4758	-0.4523	0.64
100	1.00000	2.5325	-0.4080	0.66

y = 1.2802x + 3.0548					
In [In{1/1-P _y (T _p)}]	In (T _p - a)				
2.3304	-0.565858928				
2.4758	-0.452263517				
2.5325	-0.408009202				

Kecepatan arus untuk kurun **10-tahunan** adalah **0.57 m/s** Kecepatan arus untuk kurun **50-tahunan** adalah **0.64 m/s** Kecepatan arus untuk kurun **100-tahunan** adalah **0.66 m/s**

LAMPIRAN B-1

Perhitungan Titik Berat Kapal FSO kondisi

Full Load dan Ballast

PRINCIPLE DIMENSION OF 330 M FSO VESSEL 308625 DWT

Displacement	Δ	=	308625	t
Volume (displaced)	∇	=	301097.591	m ³
Draft amidships	Т	=	20.422	m
Immersed depth		=	20.422	m
Waterline length	L _{wl}	=	330.366	m
Beam max extents on WL		=	54.252	m
Wetted Area	Sw	=	27025.599	m ²
Max sect. area		=	1103.764	m ²
Waterpl. Area	A_{wl}	=	16055.723	m ²
Prismatic coeffisien	C_p	=	0.826	
Block coeffisien	Cb	=	0.823	
Max. sect. area coeff.	C _m	=	0.996	
Waterpl. Area coeff.	C_{wp}	=	0.896	
Longituding Centre of Buoyancy	LCB	=	-152.876	frm zero pt. (+ve fwd) m
	LCB %	=	-160.427	frm zero pt. (+ve fwd) m
Longituding Contra of Elotation	LCF	=	-46.275	frm zero pt. (+ve fwd)%L _{wl}
	LCF %	=	-48.56	frm zero pt. (+ve fwd)%L _{wl}
Height above the keel	KB	=	10.594	m
Keel to Centre of Buoyancy (fluid)	KG	=	0	m
Transverse Metacentric Radius of Buoyancy	BMt	=	11.909	m
Longitudinal Metacentric Radius of Buoyancy	BML	=	401.568	m
Transverse Metacentric Radius of Gravity	GMt	=	22.503	m
Longitudinal Metacentric Radius of Gravity	GML	=	412.162	m
Transverse Metacentric Radius of Keel	KMt	=	22.503	m
Longitudinal Metacentric Radius of Keel	KML	=	412.162	m
Tonnes per Centimetre Immersion	TPc	=	164.571	tonne/cm
Moment to Trim per cm	MTc	=	3850.454	tonne.m

VLBC (250000 - 33000	0 DWT)
Length pp	$= 271.49 + 0.0001594 \cdot DWT$
Breadth	= 57.5
Depth	= 30
Draught	$= 8.32 + 0.00004424 \cdot DWT$
Lightweight/Lpp/B/D	= 0.068

APPENDIX B - Equations for Tankers Found by Analysis of HIS Fairplay Data (Page 14/15 Kristensen)

Very Large Bulk Carrier (25000 - 330000 DWT)

Deadweight	DWT	=	308625			
Length pp	L_{pp}	=	320.684825	m	= 1052.115601	ft
Breadth	В	=	57.5	m	= 188.6483	ft
Depth	D	=	30	m	= 98.4252	ft
Draught	Т	=	21.97357	m	= 72.0917674	ft
Lightweight/Lpp/B/D		=	0.068			

Deadweight	DWT	=	300000	ton					
Length between AP & FP	L_{pp}	=	319	m	=	1046.58796	ft		
Breadth	В	=	57	m	=	187.00788	ft		
Depth	D	=	30	m	=	98.4252	ft		
Draught	Т	=	21	m	=	68.89764	ft		
Lightweight/Lpp/B/D			0.068						

PRINCIPLE DIMENSION OF VLBC 330 M - 300k DWT

	DATA			VALUE		SCALE
1	DATA I	Inn	=	319	m	1 / 99
	DATA II	грр	=	214.44	m	1.400
2	DATA I	В	=	57	m	1 452
2	DATA II	D	=	39.2431	m	1.452
2	DATA I	П	=	30	m	1 35/
5	DATA II	=	22.1647	m	1.334	
4	DATA I	т	=	21	m	1 369
	DATA II	I	=	15.3448	m	1.309

	BASIC SHIP CALCULATION						
1.	Lightweight	LWT	=	0.103 x Lpp x B	x D		
			=	37093.32	ton		
2.	Panjang Garis Air Muat	L _{wl}	=	L _{pp} + (2% x L _{pp})			
			=	325.38	m		
3.	Panjang Displacement	L _{disp.}	=	0.5 x (L _{wl} + L _{pp})			
			=	322.19	m		
4.	Volume Displacement	∇	=	$L_{wl} \times B \times T \times C_b$			
			=	317161.24	m ³	0.00	
5.	Displacement	Δ	=	$L_{wl} x B x T x C_b x \rho$			
			=	325090.27	ton		

"These methods are generally based in statistical regressions

with data compiled from existing ships." -Prof. Manuel Ventura, Ship Design I, M.Sc. in Marine Engineering and Naval Architecture

	HULL FORM COEFFICIENTS							
1.	Kerlen (1970)				Γ.	Annt	able to able a vit	1
	$C_{B} = 1.179 - 2.026 \cdot Fn$	p	/ C	$r_{_B} > 0.78$	Ľ	0.16 s	$\leq F_n \leq 0.32$	
	Koefisien Block	C _b	=	0.81	432			
2.	Kerlen (1970) $C_M = 1.006 - 0.0056 \cdot C_B^{-3.56}$ Coefisien Midship	C _m	=	0.9943	65239			
3.	Parson (2003) $C_{\mu z} = \frac{C_B}{0.471 + 0.551 \cdot C_B}$ Koefisien Garis Air	C _{wp}	=	0.8854	28478			
4.	$KB = T \left(0.9 - 0.3 \cdot C_M - 0.1 \cdot C_B \right)$		Schn	eekluth				
	Jarak Keel ke Titik Apung	KB	=	10.925	42699	m		
5.	$lcb = (8.80 - 38.9 \cdot F_n) / 1$	00		[% Lpp	AV M	5]		
	Jarak Titik Apung Longitudinal	LCB	=	0.000)475	m		
			=	0.151	525	m		
			=	0.4833	36475	m	(dari Midship)	
			=	159.98	33648	m	(dari AP)	

OCEAN ENGINEERING DEPARTMENT - ITS SURABAYA Sheet: BASIC SHIP CALC.

Longitudinal Centre of Gravity

 $LCG_{hull} = -0.15 + LCB$

OCEAN ENGINEERING DEPARTMENT - ITS SURABAYA Sheet: BASIC SHIP CALC.

160.13

m

(dari AP)

LCG_{hull} =

11. Can be obtained as a function of the hull weight (Pc) and the type of ship: Wsps = 10 ~ 12 % Pc - Cargo liners -- Tankers Wsps = 6 ~ 8 % Pc -- Bulk carriers Wsps = 6 ~ 7 % Pc -**Berat Superstructure** W_{sps} = 4511.71853 ton Oordinate of the Centers of Gravity KG_{sps} = (dari keel) 50.55 m Jarak longi. COG superstructure (dari AP) $LCG_{SDSAP} =$ 33.05 m (dari FP) Jarak longi. COG superstructure $LCG_{spsFP} =$ 273.17 m

12a. From statistical analysis regression (d'Almeida, 2009):

$$W_M = k1 \cdot P_{MCR}^{k2}$$

P_{MCR}: Propulsive power [bhp]

The coefficients k1 and k2 are characteristic of the type of propulsive plant:

	k1	k2
Diesel (2 stroke)	2.41	0.62
Diesel (4 stroke)	1.88	0.60
2 x Diesel (2 stroke)	2.35	0.60
Steam Turbine	5.00	0.54

Propulsive Power	P_{MCR}	=	11832	BHP	(asumsi)
Coefficient type of propulsive plant	k1	=	2.41		
Coefficient type of propulsive plant	k2	=	0.62		
Berat Permesinan	W_{M}	=	807.8172121	ton	

Machinery (Watson and Gilfillan)					
$KG_M = h_{DB} + 0.35 \left(D - h_{DB} \right) \qquad \text{in}$	which hDB - he	eight	of double-bottom		
For DNV the minimum height is: $H_{DB} = 250 + 20 \cdot B + 50 \cdot T$ [i with: H_{DB} - height of double-bottom [mm] B - breadth, molded [mm] T - draught [mm]	mm]				
Tinggi Double Bottom dari Keel	H _{DB}	=	2440	mm	
		=	2.44	m	
Oordinate of the Centers of Gravity	КG _М	=	12.086	m	
Jarak longi. COG permesinan kpl	LCG _{MAP}	=	33	m	(dari AP)
Jarak longi. COG permesinan kpl	LCG_{MFP}	=	273.22	m	(dari FP)

MOMENT

COMPONENT	LCG (-AP)	KG (-keel)	WEIGHT(ton)	MOMENT X	MOMENT Z
Hull Structure	160.13	13.74	64453.12	10321095.27	885803.46
Superstructure	33.05	50.55	4511.72	149112.30	228067.37
Machinery	33.00	12.09	807.82	26657.97	9763.28
Equipment	20.68	32.50	1510.76	31247.57	49099.71
TOTAL	246.87	108.88	71283.42	10528113.11	1172733.82
				CC	DG
				x (m)	z (m)
				147.7	16.5

SHIP FULL LOAD CONDITION CALCULATION

TANK DIMENSION - FULL LOAD CONDITION

Crude Oil Specific Weight

0.915 ton/m³

<u>Dimensi Tangki Minyak No. 1 (dari GA)</u>						
Jumlah Tangki	=	2	buah			
Luas Alas	=	680.9022	m²			
Tinggi	=	31.6512	m			
Faktor Bentuk	=	0.7				
Volume	=	15085.96	m³			
Massa Jenis Minyak	=	0.915	ton/m ³			
Faktor Kondisi	=	1				
Massa	=	13803.65	ton			

<u>Dimensi Tangki Minyak No. 2 (dari GA)</u>						
Jumlah Tangki	=	2	buah			
Luas Alas	=	995.4678	m ²			
Tinggi	=	31.6512	m			
Faktor Bentuk	=	0.9				
Volume	=	28356.98	m ³			
Massa Jenis Minyak	=	0.915	ton/m ³			
Faktor Kondisi	=	1				
Massa	=	25946.63	ton			

<mark>Dimensi Tangki Minyak</mark>	No.	<mark>3, 4, 5, d</mark> an	<mark>6 (dari GA</mark>
Jumlah Tangki	=	8	buah
Luas Alas	=	886.2386	m²
Tinggi	=	31.6512	m
Faktor Bentuk	=	1	
Volume	=	28050.52	m³
Massa Jenis Minyak	=	0.915	ton/m ³
Faktor Kondisi	=	1	
Massa	=	25666.22	ton

<u>Dimensi Tangki Minyak No. 7 (dari GA)</u>						
Jumlah Tangki	=	2	buah			
Luas Alas	=	596.8952	m ²			
Tinggi	=	31.6512	m			
Faktor Bentuk	=	0.8				
Volume	=	15113.96	m ³			
Massa Jenis Minyak	=	0.915	ton/m ³			
Faktor Kondisi	=	1				
Massa	=	13829.27	ton			

Water Ballast Specific Weight

1.025 ton/m³

<u>Dimensi Tangki Air No. 1 (dari GA)</u>							
Jumlah Tangki	=	2	buah				
Luas alas 'bottom'	=	705.1057	m ²				
Tinggi 'bottom	=	3.7236	m				
Luas alas 'side'	=	367.8162	m²				
Tinggi 'side	=	28.8072	m				
Faktor Bentuk	=	0.7					
Volume	=	9254.9	m ³				
Massa Jenis Air	=	1.025	ton/m ³				
Faktor Kondisi	=	0.1					
Massa	=	948.6273	ton				

<u>Dimensi Tangki Air No. 2 (dari GA)</u>						
Jumlah Tangki	=	2	buah			
Luas alas 'bottom'	=	1064.657	m ²			
Tinggi 'bottom	=	3.7236	m			
Luas alas 'side'	=	211.1795	m ²			
Tinggi 'side	=	28.8072	m			
Faktor Bentuk	=	0.9				
Volume	=	9043.062	m ³			
Massa Jenis Air	=	1.025	ton/m ³			
Faktor Kondisi	=	0.1				
Massa	=	926.9138	ton			

Dimensi Tangki Air No	. 3,	4, 5, dan 6	(dari GA)
Jumlah Tangki	=	8	buah
Luas alas 'bottom'	=	955.2949	m²
Tinggi 'bottom	=	3.7236	m
Luas alas 'side'	=	101.1817	m ²
Tinggi 'side	=	28.8072	m
Faktor Bentuk	=	1	
Volume	=	6471.898	m ³
Massa Jenis Air	=	1.025	ton/m ³
Faktor Kondisi	=	0.1	
Massa	=	663.3695	ton

<u>Dimensi Tangki Air No. 7 (dari GA)</u>						
Jumlah Tangki	=	1	buah			
Luas alas 'bottom'	=	1292.677	m²			
Tinggi 'bottom	=	3.7236	m			
Luas alas 'side'	=	281.8635	m²			
Tinggi 'side	=	28.8072	m			
Faktor bentuk	=	0.8				
Volume	=	10346.49	m ³			
Massa Jenis Air	=	1.025	ton/m ³			
Faktor Kondisi	=	0.1				
Massa	=	1060.515	ton			

COG CALCULATION

FULL LOAD									
No	Crude Oil	LCG (·	TCG	KG	$\lambda = (m^3)$	W/(top)	N	/loment (ton.m	ı)
NO.	Tank	AP)	(-CL)	(-keel)	voi. (m)	w (ton)	x	У	z
1	COT (P)	280.96	-12.27	18.13	15085.96	13803.65	3878213.77	-169310.09	250222.97
1	COT (S)	280.96	12.27	18.13	15085.96	13803.65	3878213.77	169310.09	250222.97
2	COT (P)	236.39	-12.27	18.13	28356.98	25946.63	6133623.05	-318251.02	470342.39
2	COT (S)	236.39	12.27	18.13	28356.98	25946.63	6133623.05	318251.02	470342.39
3	COT (P)	198.73	-12.27	18.13	28050.52	25666.22	5100586.58	-314811.61	465259.29
3	COT (S)	198.73	12.27	18.13	28050.52	25666.22	5100586.58	314811.61	465259.29
4	COT (P)	164.63	-12.27	18.13	28050.52	25666.22	4225394.09	-314811.61	465259.29
4	COT (S)	164.63	12.27	18.13	28050.52	25666.22	4225394.09	314811.61	465259.29
5	COT (P)	130.53	-12.27	18.13	28050.52	25666.22	3350304.28	-314811.61	465259.29
5	COT (S)	130.53	12.27	18.13	28050.52	25666.22	3350304.28	314811.61	465259.29
6	COT (P)	96.42	-12.27	18.13	28050.52	25666.22	2474634.40	-314811.61	465259.29
6	COT (S)	96.42	12.27	18.13	28050.52	25666.22	2474634.40	314811.61	465259.29
7	COT (P)	67.92	-12.27	18.13	15113.96	13829.27	939242.73	-169624.33	250687.38
7	COT (S)	67.92	12.27	18.13	15113.96	13829.27	939242.73	169624.33	250687.38
					TOT _{COT}	312488.89	52203997.80	0.00	5664579.84

(lanjutan...)

No	Water Ballast	LCG (·	TCG	KG	$\lambda(a)$ (m^3) $M(tan)$		N	/loment (ton.m	ו)
NO.	Tank	AP)	(-CL)	(-keel)	voi. (m)	vv (ton)	x	У	z
1	WBT (P)	280.49	-35.70	9.85	9254.90	948.63	266076.11	-33868.53	9346.17
1	WBT (S)	280.49	35.70	9.85	9254.90	948.63	266076.11	33868.53	9346.17
2	WBT (P)	237.89	-35.70	9.85	9043.06	926.91	220507.70	-33093.30	9132.24
2	WBT (S)	237.89	35.70	9.85	9043.06	926.91	220507.70	33093.30	9132.24
3	WBT (P)	200.44	-35.70	9.85	6471.90	663.37	132968.24	-23684.06	6535.72
3	WBT (S)	200.44	35.70	9.85	6471.90	663.37	132968.24	23684.06	6535.72
4	WBT (P)	166.35	-35.70	9.85	6471.90	663.37	110349.92	-23684.06	6535.72
4	WBT (S)	166.35	35.70	9.85	6471.90	663.37	110349.92	23684.06	6535.72
5	WBT (P)	132.24	-35.70	9.85	6471.90	663.37	87724.85	-23684.06	6535.72
5	WBT (S)	132.24	35.70	9.85	6471.90	663.37	87724.85	23684.06	6535.72
6	WBT (P)	97.89	-35.70	9.85	6471.90	663.37	64933.92	-23684.06	6535.72
6	WBT (S)	97.89	35.70	9.85	6471.90	663.37	64933.92	23684.06	6535.72
7	WBT	63.02	0.00	9.85	10346.49	1060.51	66833.65	0.00	10448.52
					TOT _{WBT}	10118.55	1831955.12	0.00	99691.12
					TOTAL _{COT+WBT}	322607.44	54035952.93	0.00	5764270.95
								COG*	
							x (m)	y (m)	z (m)
							163.91	0.00	17.61
							DWT _{fullload}	393890.86	ton
							T _{fullload}	20.67	m

SHIP BALLAST CONDITION CALCULATION

TANK DIMENSION - BALLAST CONDITION

Crude Oil Specific Weight

0.915 ton/m³

<u>Dimensi Tangki Minyak No. 1 (dari GA)</u>					
Jumlah Tangki	=	2	buah		
Luas Alas	=	680.9022	m²		
Tinggi	=	31.6512	m		
Faktor Bentuk	=	0.7			
Volume	=	15085.96	m ³		
Massa Jenis Minyak	=	0.915	ton/m ³		
Faktor Kondisi	=	0.1			
Massa	=	1380.365	ton		

<u>Dimensi Tangki Minyak No. 2 (dari GA)</u>					
Jumlah Tangki	=	2	buah		
Luas Alas	=	995.4678	m²		
Tinggi	=	31.6512	m		
Faktor Bentuk	=	0.9			
Volume	=	28356.98	m ³		
Massa Jenis Minyak	=	0.915	ton/m ³		
Faktor Kondisi	=	0.5			
Massa	=	12973.32	ton		

Dimensi Tangki Minyak	No.	<mark>3, 4, 5, dan</mark>	6 (dari GA
Jumlah Tangki	=	8	buah
Luas Alas	=	886.2386	m²
Tinggi	=	31.6512	m
Faktor Bentuk	=	1	
Volume	=	28050.52	m³
Massa Jenis Minyak	=	0.915	ton/m ³
Faktor Kondisi	=	0.1	
Massa	=	2566.622	ton

<u>Dimensi Tangki Minyak No. 7 (dari GA)</u>						
Jumlah Tangki	=	2	buah			
Luas Alas	=	596.8952	m ²			
Tinggi	=	31.6512	m			
Faktor Bentuk	=	0.8				
Volume	=	15113.96	m³			
Massa Jenis Minyak	=	0.915	ton/m ³			
Faktor Kondisi	=	0.1				
Massa	=	1382.927	ton			

Water Ballast Specific Weight

1.025 ton/m³

<u>Dimensi Tangki Air No. 1 (dari GA)</u>						
Jumlah Tangki	=	2	buah			
Luas alas 'bottom'	=	705.1057	m ²			
Tinggi 'bottom	=	3.7236	m			
Luas alas 'side'	=	367.8162	m ²			
Tinggi 'side	=	28.8072	m			
Faktor Bentuk	=	0.7				
Volume	=	9254.9	m ³			
Massa Jenis Air	=	1.025	ton/m ³			
Faktor Kondisi	=	1				
Massa	=	9486.273	ton			

<u>Dimensi Tangki Air No. 2 (dari GA)</u>						
Jumlah Tangki	=	2	buah			
Luas alas 'bottom'	=	1064.657	m ²			
Tinggi 'bottom	=	2.6076	m			
Luas alas 'side'	=	211.1795	m ²			
Tinggi 'side	=	28.8072	m			
Faktor Bentuk	=	0.9				
Volume	=	7973.72	m ³			
Massa Jenis Air	=	1.025	ton/m ³			
Faktor Kondisi	=	1				
Massa	=	8173.063	ton			

Dimensi Tangki Air N	o. 3,	4, 5, dan 6	(dari GA)
Jumlah Tangki	=	8	buah
Luas alas 'bottom'	=	955.2949	m ²
Tinggi 'bottom	=	2.6076	m
Luas alas 'side'	=	101.1817	m ²
Tinggi 'side	=	28.8072	m
Faktor Bentuk	=	1	
Volume	=	5405.788	m ³
Massa Jenis Air	=	1.025	ton/m ³
Faktor Kondisi	=	1	
Massa	=	5540.933	ton

<u>Dimensi Tangki Air No. 7 (dari GA)</u>							
Jumlah Tangki	=	1	buah				
Luas alas 'bottom'	=	1292.677	m²				
Tinggi 'bottom	=	2.6076	m				
Luas alas 'side'	=	281.8635	m²				
Tinggi 'side	=	28.8072	m				
Faktor bentuk	=	0.8					
Volume	=	9192.386	m ³				
Massa Jenis Air	=	1.025	ton/m ³				
Faktor Kondisi	=	1					
Massa	=	9422.195	ton				

SHIP BALLAST CONDITION CALCULATION

COG CALCULATION

FULL LOAD									
	Crude Oil	LCG (·	TCG	KG	N (1 (1 ³)	W (ton)	Moment (ton.m)		
NO.	Tank	AP)	(-CL)	(-keel)	voi. (m)		x	У	z
1	COT (P)	280.96	-12.27	18.13	15085.96	1380.37	387821.38	-16931.01	25022.30
1	COT (S)	280.96	12.27	18.13	15085.96	1380.37	387821.38	16931.01	25022.30
2	COT (P)	236.39	-12.27	18.13	28356.98	12973.32	3066811.52	-159125.51	235171.20
2	COT (S)	236.39	12.27	18.13	28356.98	12973.32	3066811.52	159125.51	235171.20
3	COT (P)	198.73	-12.27	18.13	28050.52	2566.62	510058.66	-31481.16	46525.93
3	COT (S)	198.73	12.27	18.13	28050.52	2566.62	510058.66	31481.16	46525.93
4	COT (P)	164.63	-12.27	18.13	28050.52	2566.62	422539.41	-31481.16	46525.93
4	COT (S)	164.63	12.27	18.13	28050.52	2566.62	422539.41	31481.16	46525.93
5	COT (P)	130.53	-12.27	18.13	28050.52	2566.62	335030.43 -31481.16		46525.93
5	COT (S)	130.53	12.27	18.13	28050.52	2566.62	335030.43	31481.16	46525.93
6	COT (P)	96.42	-12.27	18.13	28050.52	2566.62	247463.44	-31481.16	46525.93
6	COT (S)	96.42	12.27	18.13	28050.52	2566.62	247463.44	31481.16	46525.93
7	COT (P)	67.92	-12.27	18.13	15113.96	1382.93	93924.27	-16962.43	25068.74
7	COT (S)	67.92	12.27	18.13	15113.96	1382.93	93924.27	16962.43	25068.74
				TOT _{COT}	52006.19	10127298.22	0.00	942731.90	

(lanjutan...)

Water Ballast		LCG (·	TCG	KG	$\lambda = (m^3)$	W/ (top)	Moment (ton.m)		
NO.	Tank	AP)	(-CL)	(-keel)	voi. (m)	. (m) vv (ton)	x	У	z
1	WBT (P)	280.49	-35.70	9.85	9254.90	9486.27	2660761.08	-338685.29	93461.70
1	WBT (S)	280.49	35.70	9.85	9254.90	9486.27	2660761.08	338685.29	93461.70
2	WBT (P)	237.89	-35.70	9.85	7973.72	8173.06	1944326.80	-291800.20	80523.55
2	WBT (S)	237.89	35.70	9.85	7973.72	8173.06	1944326.80	291800.20	80523.55
3	WBT (P)	200.44	-35.70	9.85	5405.79	5540.93	1110645.14	-197826.12	54590.99
3	WBT (S)	200.44	35.70	9.85	5405.79	5540.93	1110645.14	197826.12	54590.99
4	WBT (P)	166.35	-35.70	9.85	5405.79	5540.93	921720.93	-197826.12	54590.99
4	WBT (S)	166.35	35.70	9.85	5405.79	5540.93	921720.93	197826.12	54590.99
5	WBT (P)	132.24	-35.70	9.85	5405.79	5540.93	732740.20	-197826.12	54590.99
5	WBT (S)	132.24	35.70	9.85	5405.79	5540.93	732740.20	197826.12	54590.99
6	WBT (P)	97.89	-35.70	9.85	5405.79	5540.93	542374.24	-197826.12	54590.99
6	WBT (S)	97.89	35.70	9.85	5405.79	5540.93	542374.24	197826.12	54590.99
7	WBT	63.02	0.00	9.85	9192.39	9422.20	593786.76	0.00	92830.38
					TOT _{WBT}	89068.33	16418923.55	0.00	877528.77
					TOTAL _{COT+WBT}	141074.53	26546221.77	0.00	1820260.66
						COG			
							x (m)	y (m)	z (m)
							174.58	0.00	14.09
							DWT _{ballast}	212357.95	ton
							T _{ballast}	18.323	m

FULL LOAD CONDITION - TABLE

MOTION RESPONSE OPERATORS										
Of Point On Body FSO_300K at X = 152.0, Y = 0.0, Z = 17.6										
Erog (rad/s)	Surge (m/m)	Sway (m/m)	Heave (m/m)	Roll (deg/m)	Pitch (deg/m)	Yaw (deg/m)				
Fied. (Iau/s)	Amplitudo									
0.100	0	0.987	1		0.002	0				
0.200	0	0.948	1.006	0.328	0.003	0.001				
0.300	0	0.881	1.043	1.883	0.012	0.016				
0.400	0.001	0.733	1.198	0.877	0.057	0.013				
0.500	0.003	0.614	1.452	0.359	0.243	0.009				
0.600	0.002	0.484	0.769	0.183	0.186	0.008				
0.700	0.001	0.364	0.3	0.096	0.08	0.006				
0.800	0	0.264	0.129	0.05	0.04	0.005				
0.900	0	0.187	0.068	0.027	0.024	0.004				
0.999	0	0.131	0.036	0.015	0.015	0.004				
1.100	0	0.091	0.02	0.012	0.01	0.003				
1.199	0	0.064	0.01	0.009	0.006	0.003				
1.301	0	0.044	0.008	0.007	0.004	0.003				
1.399	0	0.033	0.003	0.005	0.002	0.002				
1.500	0	0.026	0.002	0.003	0.001	0.002				
1.599	0	0.019	0.001	0.002	0.001	0.001				
1.698	0	0.014	0.001	0.001	0.001	0.001				
1.800	0	0.005	0	0.003	0	0.001				
1.898	0	0.009	0	0.001	0	0.001				
2.001	0	0.007	0.001	0.002	0.001	0.001				
Draft	raft = 20.7 meters Trim Angle		= 0.0 Degree	GMT	= 6.5 meters					
Roll Gy Rad.	= 22.8 meters	Pitch Gy. Radius		= 93.9 m	Yaw Gy. Radius	= 93.9 m				
Heading	= 90 degrees	Forward Speed		= 0 knots	Linear.	1/20				
MOTION RESPONSE OPERATORS										
---------------------------	---------------	--------------------	--------------------	------------------------	----------------	--------------	--	--	--	--
		Of Point On Body F	SO_300K at X = 152	2.0, Y = 0.0, Z = 17.6						
Frog (rad/s)	Surge (m/m)	Sway (m/m)	Heave (m/m)	Roll (deg/m)	Pitch (deg/m)	Yaw (deg/m)				
Freq. (rau/s)										
0.100	0.69	0.697	0.999	0.044	0.045	0.025				
0.200	0.65	0.652	0.978	0.224	0.184	0.095				
0.300	0.549	0.541	0.888	1.278	0.412	0.197				
0.400	0.365	0.32	0.703	0.278	0.67	0.249				
0.500	0.135	0.071	0.337	0.083	0.581	0.223				
0.600	0.042	0.125	0.233	0.114	0.094	0.105				
0.700	0.066	0.161	0.055	0.053	0.068	0.03				
0.800	0.011	0.11	0.05	0.062	0.004	0.029				
0.900	0.019	0.053	0.015	0.049	0.014	0.015				
0.999	0.011	0.024	0.009	0.013	0.009	0.004				
1.100	0.001	0.011	0.01	0.016	0.007	0.009				
1.199	0.004	0.022	0.007	0.005	0.006	0.01				
1.301	0.003	0.013	0.002	0.008	0.005	0.01				
1.399	0.002	0.007	0.003	0.006	0.003	0.006				
1.500	0.001	0.011	0.002	0.003	0.001	0.002				
1.599	0.001	0.005	0.001	0.003	0.001	0.001				
1.698	0	0.001	0	0.001	0	0.003				
1.800	0	0.005	0.001	0.001	0.001	0.002				
1.898	0	0.001	0.001	0.002	0.001	0.003				
2.001	0	0.001	0.001	0.002	0.001	0.001				
Draft	= 20.7 meters	Trim Angle		= 0.0 Degree	GMT	= 6.5 meters				
Roll Gy Rad.	= 22.8 meters	Pitch Gy. Radius		= 93.9 m	Yaw Gy. Radius	= 93.9 m				
Heading	= 135 degrees	Forward Speed		= 0 knots	Linear.	1/20				

	MOTION RESPONSE OPERATORS												
	Of Point On Body FSO_300K at X = 152.0, Y = 0.0, Z = 17.6												
Frog (rad/s)	Surge (m/m)	Sway (m/m)	Heave (m/m)	Roll (deg/m)	Pitch (deg/m)	Yaw (deg/m)							
rieg. (iau/s)			Amp	litudo									
0.100	0.974	0	0.997	0	0.064	0							
0.200	0.895	0	0.949	0	0.256	0							
0.300	0.671	0	0.742	0	0.531	0							
0.400	0.288	0	0.303	0	0.673	0							
0.500	0.059	0	0.385	0	0.27	0							
0.600	0.097	0	0.172	0	0.127	0							
0.700	0.036	0	0.095	0	0.011	0							
0.800	0.006	0	0.035	0	0.013	0							
0.900	0.012	0	0.012	0	0.022	0							
0.999	0.01	0	0.021	0	0.005	0							
1.100	0.006	0	0.016	0	0.007	0							
1.199	0.003	0	0.005	0	0.01	0							
1.301	0.002	0	0.005	0	0.003	0							
1.399	0.001	0	0.004	0	0.002	0							
1.500	0.001	0	0.002	0	0.001	0							
1.599	0.001	0	0.001	0	0.002	0							
1.698	0	0	0.001	0	0.001	0							
1.800	0	0	0.001	0	0.001	0							
1.898	0	0	0.001	0	0.001	0							
2.001	0	0	0	0	0.001	0							
Draft	= 20.7 meters	Trim Angle		= 0.0 Degree	GMT	= 6.5 meters							
Roll Gy Rad.	= 22.8 meters	Pitch Gy. Radius		= 93.9 m	Yaw Gy. Radius	= 93.9 m							
Heading	= 180 degrees	Forward Speed		= 0 knots	Linear.	1/20							

BALLAST CONDITION - TABLE

MOTION RESPONSE OPERATORS											
		Of Point On Body F	SO_300K at X = 150).5, Y = 0.0, Z = 14.1							
Eroa (rad/s)	Surge (m/m)	Surge (m/m) Sway (m/m) Heave (m/m) Roll (deg/m) Pitch (deg/m)									
rieg. (lau/s)	Amplitudo										
0.100	0	0.99	1	0.06	0.002	0					
0.200	0	0.957	1.005	0.264	0.004	0.001					
0.300	0	0.906	1.034	0.767	0.01	0.004					
0.400	0	0.814	1.149	2.594	0.044	0.021					
0.500	0.002	0.548	1.387	1.779	0.185	0.023					
0.600	0.002	0.478	0.895	0.685	0.197	0.013					
0.700	0.001	0.372	0.368	0.35	0.09	0.009					
0.800	0	0.275	0.161	0.192	0.045	0.006					
0.900	0	0.197	0.08	0.11	0.024	0.005					
0.999	0	0.14	0.044	0.064	0.016	0.004					
1.100	0	0.099	0.023	0.045	0.01	0.004					
1.199	0	0.07	0.012	0.027	0.007	0.003					
1.301	0	0.05	0.009	0.017	0.003	0.003					
1.399	0	0.036	0.003	0.011	0.002	0.002					
1.500	0	0.029	0.002	0.008	0.001	0.002					
1.599	0	0.022	0.001	0.005	0.001	0.002					
1.698	0	0.017	0.002	0.004	0.001	0.001					
1.800	0	0.004	0.001	0.01	0.001	0.001					
1.898	0	0.01	0.001	0.004	0.001	0.001					
2.001	0	0.008	0.001	0.003	0.001	0.001					
Draft	= 18.3 meters	Trim Angle		= 0.0 Degree	GMT	= 10.28 meters					
Roll Gy Rad.	= 20.6 meters	Pitch Gy. Radius		= 93.9 m	Yaw Gy. Radius	= 93.9 m					
Heading	= 90 degrees	Forward Speed		= 0 knots	Linear.	1/20					

MOTION RESPONSE OPERATORS											
		Of Point On Body F	SO_300K at X = 150	0.5, Y = 0.0, Z = 14.1							
Frog (rad/s)	Surge (m/m)	Sway (m/m)	Heave (m/m)	Roll (deg/m)	Pitch (deg/m)	Yaw (deg/m)					
rieg. (iau/s)			Amp	litudo							
0.100	0.693	0.699	0.999	0.042	0.045	0.025					
0.200	0.656	0.659	0.978	0.181	0.184	0.094					
0.300	0.56	0.557	0.886	0.462	0.41	0.186					
0.400	0.379	0.362	0.684	1.299	0.658	0.259					
0.500	0.146	0.08	0.336	0.157	0.618	0.225					
0.600	0.04	0.119	0.243	0.267	0.136	0.114					
0.700	0.071	0.172	0.083	0.127	0.071	0.032					
0.800	0.011	0.122	0.061	0.045	0.008	0.032					
0.900	0.022	0.057	0.017	0.069	0.021	0.018					
0.999	0.011	0.026	0.013	0.021	0.011	0.003					
1.100	0.001	0.013	0.012	0.027	0.01	0.009					
1.199	0.005	0.023	0.009	0.011	0.008	0.012					
1.301	0.004	0.015	0.003	0.009	0.006	0.011					
1.399	0.002	0.008	0.002	0.009	0.004	0.007					
1.500	0.001	0.013	0.002	0.005	0.001	0.002					
1.599	0.001	0.005	0.001	0.004	0	0.002					
1.698	0	0.001	0	0.001	0	0.003					
1.800	0	0.005	0	0.002	0.001	0.002					
1.898	0	0	0.002	0.003	0.002	0.003					
2.001	0	0.002	0.001	0.002	0.001	0.001					
Draft	= 18.3 meters	Trim Angle		= 0.0 Degree	GMT	= 10.28 meters					
Roll Gy Rad.	= 20.6 meters	Pitch Gy. Radius		= 93.9 m	Yaw Gy. Radius	= 93.9 m					
Heading	= 135 degrees	Forward Speed		= 0 knots	Linear.	1/20					

	MOTION RESPONSE OPERATORS											
	Of Point On Body FSO_300K at X = 150.5, Y = 0.0, Z = 14.1											
Frog (rad/s)	Surge (m/m)	Sway (m/m)	Heave (m/m)	Roll (deg/m)	Pitch (deg/m)	Yaw (deg/m)						
rieg. (lau/s)			Amp	litudo								
0.100	0.978	0	0.997	0	0.064	0						
0.200	0.904	0	0.95	0	0.256	0						
0.300	0.686	0	0.746	0	0.53	0						
0.400	0.305	0	0.309	0	0.67	0						
0.500	0.054	0	0.353	0.001	0.299	0						
0.600	0.104	0	0.241	0.001	0.124	0						
0.700	0.036	0	0.101	0	0.002	0						
0.800	0.008	0	0.048	0	0.015	0						
0.900	0.015	0	0.015	0	0.029	0						
0.999	0.012	0	0.029	0	0.006	0						
1.100	0.008	0	0.022	0	0.009	0						
1.199	0.004	0	0.007	0	0.014	0						
1.301	0.002	0	0.008	0	0.005	0						
1.399	0.001	0	0.005	0	0.004	0						
1.500	0.001	0	0.004	0	0.001	0						
1.599	0.001	0	0.001	0	0.002	0						
1.698	0	0	0.001	0	0.001	0						
1.800	0	0	0.001	0	0.001	0						
1.898	0	0	0.002	0	0.002	0						
2.001	0	0	0	0	0.001	0						
Draft	= 18.3 meters	Trim Angle		= 0.0 Degree	GMT	= 10.28 meters						
Roll Gy Rad.	= 20.6 meters	Pitch Gy. Radius		= 93.9 m	Yaw Gy. Radius	= 93.9 m						
Heading	= 180 degrees	Forward Speed		= 0 knots	Linear.	1/20						

Tabel Perhitungan Spektrum JONSWAP

Kapal FSO

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - SURGE

Calculation for H significant 1.89 m

(10 year period) - SURGE (180°)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

	0	0		Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
	Z	9	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3171	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	0.9890	9.8E-01	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9780	9.6E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.9540	9.1E-01	2	1.174E-217	2.347E-217	3.521E-218	5.281E-219	1.188E-220
0.2	2.31E-67	0.9040	8.2E-01	4	1.885E-67	7.540E-67	1.508E-67	3.016E-68	1.206E-69
0.25	1.28E-26	0.8180	6.7E-01	2	8.596E-27	1.719E-26	4.298E-27	1.075E-27	6.716E-29
0.3	3.33E-12	0.6860	4.7E-01	4	1.568E-12	6.272E-12	1.881E-12	5.644E-13	5.080E-14
0.35	3.44E-06	0.5100	2.6E-01	2	8.946E-07	1.789E-06	6.262E-07	2.192E-07	2.685E-08
0.4	2.13E-03	0.3050	9.3E-02	4	1.979E-04	7.915E-04	3.166E-04	1.266E-04	2.026E-05
0.45	5.15E-02	0.1050	1.1E-02	2	5.679E-04	1.136E-03	5.111E-04	2.300E-04	4.657E-05
0.5	2.63E-01	0.0540	2.9E-03	4	7.672E-04	3.069E-03	1.534E-03	7.672E-04	1.918E-04
0.55	6.02E-01	0.1220	1.5E-02	2	8.966E-03	1.793E-02	9.863E-03	5.424E-03	1.641E-03
0.6	8.91E-01	0.1040	1.1E-02	4	9.636E-03	3.855E-02	2.313E-02	1.388E-02	4.996E-03
0.65	1.03E+00	0.0360	1.3E-03	2	1.333E-03	2.666E-03	1.733E-03	1.126E-03	4.759E-04
0.7	1.03E+00	0.0360	1.3E-03	4	1.332E-03	5.328E-03	3.730E-03	2.611E-03	1.279E-03
0.75	9.43E-01	0.0420	1.8E-03	2	1.663E-03	3.325E-03	2.494E-03	1.871E-03	1.052E-03
0.8	8.21E-01	0.0080	6.4E-05	4	5.257E-05	2.103E-04	1.682E-04	1.346E-04	8.612E-05
0.85	6.94E-01	0.0240	5.8E-04	2	4.000E-04	8.000E-04	6.800E-04	5.780E-04	4.176E-04
0.9	5.77E-01	0.0150	2.3E-04	4	1.298E-04	5.194E-04	4.674E-04	4.207E-04	3.408E-04
0.95	4.75E-01	0.0100	1.0E-04	2	4.753E-05	9.506E-05	9.031E-05	8.579E-05	7.743E-05
1	3.90E-01	0.0120	1.4E-04	4	5.616E-05	2.246E-04	2.246E-04	2.246E-04	2.246E-04
1.05	3.20E-01	0.0060	3.6E-05	2	1.151E-05	2.303E-05	2.418E-05	2.539E-05	2.799E-05
1.1	2.63E-01	0.0080	6.4E-05	4	1.681E-05	6.725E-05	7.398E-05	8.138E-05	9.847E-05
1.15	2.16E-01	0.0050	2.5E-05	2	5.412E-06	1.082E-05	1.245E-05	1.431E-05	1.893E-05
1.2	1.79E-01	0.0040	1.6E-05	4	2.865E-06	1.146E-05	1.375E-05	1.650E-05	2.376E-05
1.25	1.49E-01	0.0030	9.0E-06	2	1.339E-06	2.677E-06	3.347E-06	4.184E-06	6.537E-06
1.3	1.24E-01	0.0020	4.0E-06	4	4.966E-07	1.986E-06	2.582E-06	3.357E-06	5.673E-06
1.35	1.04E-01	0.0020	4.0E-06	2	4.164E-07	8.328E-07	1.124E-06	1.518E-06	2.766E-06
1.4	8.77E-02	0.0010	1.0E-06	4	8.771E-08	3.508E-07	4.912E-07	6.876E-07	1.348E-06
1.45	7.42E-02	0.0010	1.0E-06	2	7.424E-08	1.485E-07	2.153E-07	3.122E-07	6.564E-07
1.5	6.31E-02	0.0010	1.0E-06	4	6.313E-08	2.525E-07	3.788E-07	5.682E-07	1.278E-06
1.55	5.39E-02	0.0010	1.0E-06	2	5.392E-08	1.078E-07	1.672E-07	2.591E-07	6.225E-07
1.6	4.63E-02	0.0010	1.0E-06	4	4.625E-08	1.850E-07	2.960E-07	4.736E-07	1.212E-06

FSO VLCC

1.65	3.98E-02	0.0010	1.0E-06	2	3.984E-08	7.967E-08	1.315E-07	2.169E-07	5.905E-07
1.7	3.44E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.75	2.99E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.8	2.60E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.85	2.28E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.9	2.00E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.95	1.76E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2	1.55E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2.05	1.37E-02	0.0000	0.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
						7.48E-02	4.51E-02	2.76E-02	1.10E-02
						Σ0	Σ1	Σ2	Σ4

$m_{r0} = 0.00124607$	7 m ²
$m_{r1} = 0.00075122$	2 m ² (rad/s)
$m_{r2} = 0.00046043$	$3 \text{ m}^2(\text{rad}^2/\text{s}^2)$
$m_{r4} = 0.00018398$	$3 \text{ m}^2(\text{rad}^4/\text{s}^4)$

T ₀ =	10.4221	S
$T_p =$	9.9397	S
$T_z =$	10.3364	S
ω ₀ =	0.6029	rad/s
ω _p =	0.6321	rad/s
$\omega_z =$	0.6079	rad/s
$\zeta_{zs} =$	0.0706	m
$\zeta_{zav} =$	0.0441	m
$\zeta_{z1/10} =$	0.0897	m
$\zeta_{zext(\alpha=0.01)} =$	0.2218	m

Calculation for H significant 1.98 m

(50 year period) - SURGE (180°)

$H_s =$	1.98	m
T _p =	9.51	S
$\omega_p =$	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	0	0		ß	2 x 4	5 x 6	① x ⑦	(1) ² x (7)	(1) ⁴ x (7)
Ū	Z	9	Ŧ	9	6	1	8	9	10
ω	S(ω)	RAO	RAO ²	SМ	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^2/m^2)	3141	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	[m2(rad3/s3)]
0.05	0.00E+00	0.9890	9.8E-01	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9780	9.6E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.9540	9.1E-01	2	4.309E-201	8.617E-201	1.293E-201	1.939E-202	4.362E-204
0.2	4.19E-62	0.9040	8.2E-01	4	3.425E-62	1.370E-61	2.740E-62	5.479E-63	2.192E-64
0.25	1.90E-24	0.8180	6.7E-01	2	1.271E-24	2.542E-24	6.354E-25	1.589E-25	9.929E-27
0.3	3.83E-11	0.6860	4.7E-01	4	1.800E-11	7.202E-11	2.161E-11	6.482E-12	5.833E-13
0.35	1.32E-05	0.5100	2.6E-01	2	3.436E-06	6.871E-06	2.405E-06	8.417E-07	1.031E-07
0.4	4.80E-03	0.3050	9.3E-02	4	4.466E-04	1.786E-03	7.145E-04	2.858E-04	4.573E-05
0.45	8.76E-02	0.1050	1.1E-02	2	9.657E-04	1.931E-03	8.691E-04	3.911E-04	7.920E-05
0.5	3.81E-01	0.0540	2.9E-03	4	1.110E-03	4.440E-03	2.220E-03	1.110E-03	2.775E-04
0.55	7.90E-01	0.1220	1.5E-02	2	1.176E-02	2.353E-02	1.294E-02	7.117E-03	2.153E-03
0.6	1.10E+00	0.1040	1.1E-02	4	1.188E-02	4.753E-02	2.852E-02	1.711E-02	6.160E-03
0.65	1.22E+00	0.0360	1.3E-03	2	1.578E-03	3.157E-03	2.052E-03	1.334E-03	5.635E-04
0.7	1.18E+00	0.0360	1.3E-03	4	1.534E-03	6.136E-03	4.295E-03	3.006E-03	1.473E-03
0.75	1.06E+00	0.0420	1.8E-03	2	1.878E-03	3.756E-03	2.817E-03	2.113E-03	1.188E-03
0.8	9.15E-01	0.0080	6.4E-05	4	5.855E-05	2.342E-04	1.874E-04	1.499E-04	9.594E-05
0.85	7.66E-01	0.0240	5.8E-04	2	4.411E-04	8.821E-04	7.498E-04	6.373E-04	4.605E-04
0.9	6.32E-01	0.0150	2.3E-04	4	1.421E-04	5.684E-04	5.116E-04	4.604E-04	3.729E-04
0.95	5.17E-01	0.0100	1.0E-04	2	5.172E-05	1.034E-04	9.827E-05	9.336E-05	8.425E-05
1	4.22E-01	0.0120	1.4E-04	4	6.084E-05	2.434E-04	2.434E-04	2.434E-04	2.434E-04
1.05	3.45E-01	0.0060	3.6E-05	2	1.243E-05	2.486E-05	2.610E-05	2.741E-05	3.022E-05
1.1	2.83E-01	0.0080	6.4E-05	4	1.811E-05	7.242E-05	7.966E-05	8.763E-05	1.060E-04
1.15	2.33E-01	0.0050	2.5E-05	2	5.815E-06	1.163E-05	1.337E-05	1.538E-05	2.034E-05
1.2	1.92E-01	0.0040	1.6E-05	4	3.073E-06	1.229E-05	1.475E-05	1.770E-05	2.549E-05
1.25	1.59E-01	0.0030	9.0E-06	2	1.434E-06	2.868E-06	3.585E-06	4.481E-06	7.002E-06
1.3	1.33E-01	0.0020	4.0E-06	4	5.313E-07	2.125E-06	2.763E-06	3.592E-06	6.070E-06
1.35	1.11E-01	0.0020	4.0E-06	2	4.451E-07	8.902E-07	1.202E-06	1.622E-06	2.957E-06
1.4	9.37E-02	0.0010	1.0E-06	4	9.368E-08	3.747E-07	5.246E-07	7.344E-07	1.439E-06
1.45	7.92E-02	0.0010	1.0E-06	2	7.924E-08	1.585E-07	2.298E-07	3.332E-07	7.006E-07
1.5	6.73E-02	0.0010	1.0E-06	4	6.735E-08	2.694E-07	4.041E-07	6.061E-07	1.364E-06
1.55	5.75E-02	0.0010	1.0E-06	2	5.749E-08	1.150E-07	1.782E-07	2.763E-07	6.637E-07
1.6	4.93E-02	0.0010	1.0E-06	4	4.930E-08	1.972E-07	3.155E-07	5.048E-07	1.292E-06

OCEAN ENGINEERING DEPARTMENT - ITS SURABAYA Sheet: SPECTRAL FSO (0.05 B)

FSO VLCC

1.65	4.24E-02	0.0010	1.0E-06	2	4.244E-08	8.489E-08	1.401E-07	2.311E-07	6.292E-07
1.7	3.67E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.75	3.18E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.8	2.77E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.85	2.42E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.9	2.13E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.95	1.87E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2	1.65E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2.05	1.46E-02	0.0000	0.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
						9.44E-02	5.64E-02	3.42E-02	1.34E-02
						Σ0	Σ1	Σ2	Σ4

m_{r0} = 0.00157386	m²
m_{r1} = 0.00093938	m ² (rad/s)
m_{r2} = 0.00057023	$m^{2}(rad^{2}/s^{2})$
$m_{r4} = 0.00022336$	$m^{2}(rad^{4}/s^{4})$

T ₀ =	10.5271	S
$T_p =$	10.0392	S
$T_z =$	10.4385	S
ω ₀ =	0.5969	rad/s
ω _p =	0.6259	rad/s
$\omega_z =$	0.6019	rad/s
$\zeta_{zs} =$	0.0793	m
$\zeta_{zav} =$	0.0496	m
$\zeta_{z1/10} =$	0.1008	m
$\zeta_{zext(\alpha=0.01)} =$	0.2492	m

Calculation for H significant 2.02 m

(100 year period) - SURGE (180°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

				ß	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū		9	Ŧ	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	SN4	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3141	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	0.9890	9.8E-01	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9780	9.6E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.9540	9.1E-01	2	5.584E-195	1.117E-194	1.675E-195	2.513E-196	5.653E-198
0.2	3.66E-60	0.9040	8.2E-01	4	2.990E-60	1.196E-59	2.392E-60	4.784E-61	1.914E-62
0.25	1.20E-23	0.8180	6.7E-01	2	8.040E-24	1.608E-23	4.020E-24	1.005E-24	6.281E-26
0.3	9.43E-11	0.6860	4.7E-01	4	4.437E-11	1.775E-10	5.324E-11	1.597E-11	1.438E-12
0.35	2.17E-05	0.5100	2.6E-01	2	5.651E-06	1.130E-05	3.956E-06	1.385E-06	1.696E-07
0.4	6.49E-03	0.3050	9.3E-02	4	6.037E-04	2.415E-03	9.660E-04	3.864E-04	6.182E-05
0.45	1.07E-01	0.1050	1.1E-02	2	1.176E-03	2.352E-03	1.059E-03	4.763E-04	9.646E-05
0.5	4.37E-01	0.0540	2.9E-03	4	1.274E-03	5.094E-03	2.547E-03	1.274E-03	3.184E-04
0.55	8.75E-01	0.1220	1.5E-02	2	1.302E-02	2.604E-02	1.432E-02	7.876E-03	2.383E-03
0.6	1.19E+00	0.1040	1.1E-02	4	1.285E-02	5.142E-02	3.085E-02	1.851E-02	6.664E-03
0.65	1.30E+00	0.0360	1.3E-03	2	1.682E-03	3.364E-03	2.186E-03	1.421E-03	6.004E-04
0.7	1.25E+00	0.0360	1.3E-03	4	1.618E-03	6.472E-03	4.530E-03	3.171E-03	1.554E-03
0.75	1.11E+00	0.0420	1.8E-03	2	1.967E-03	3.934E-03	2.950E-03	2.213E-03	1.245E-03
0.8	9.53E-01	0.0080	6.4E-05	4	6.101E-05	2.440E-04	1.952E-04	1.562E-04	9.996E-05
0.85	7.95E-01	0.0240	5.8E-04	2	4.578E-04	9.157E-04	7.783E-04	6.616E-04	4.780E-04
0.9	6.54E-01	0.0150	2.3E-04	4	1.471E-04	5.884E-04	5.296E-04	4.766E-04	3.860E-04
0.95	5.34E-01	0.0100	1.0E-04	2	5.343E-05	1.069E-04	1.015E-04	9.643E-05	8.703E-05
1	4.36E-01	0.0120	1.4E-04	4	6.274E-05	2.510E-04	2.510E-04	2.510E-04	2.510E-04
1.05	3.56E-01	0.0060	3.6E-05	2	1.280E-05	2.561E-05	2.689E-05	2.823E-05	3.113E-05
1.1	2.91E-01	0.0080	6.4E-05	4	1.863E-05	7.452E-05	8.197E-05	9.017E-05	1.091E-04
1.15	2.39E-01	0.0050	2.5E-05	2	5.979E-06	1.196E-05	1.375E-05	1.581E-05	2.091E-05
1.2	1.97E-01	0.0040	1.6E-05	4	3.157E-06	1.263E-05	1.516E-05	1.819E-05	2.619E-05
1.25	1.64E-01	0.0030	9.0E-06	2	1.473E-06	2.945E-06	3.682E-06	4.602E-06	7.191E-06
1.3	1.36E-01	0.0020	4.0E-06	4	5.454E-07	2.182E-06	2.836E-06	3.687E-06	6.231E-06
1.35	1.14E-01	0.0020	4.0E-06	2	4.567E-07	9.135E-07	1.233E-06	1.665E-06	3.034E-06
1.4	9.61E-02	0.0010	1.0E-06	4	9.610E-08	3.844E-07	5.382E-07	7.534E-07	1.477E-06
1.45	8.13E-02	0.0010	1.0E-06	2	8.127E-08	1.625E-07	2.357E-07	3.418E-07	7.185E-07
1.5	6.91E-02	0.0010	1.0E-06	4	6.906E-08	2.762E-07	4.143E-07	6.215E-07	1.398E-06
1.55	5.89E-02	0.0010	1.0E-06	2	5.894E-08	1.179E-07	1.827E-07	2.832E-07	6.805E-07
1.6	5.05E-02	0.0010	1.0E-06	4	5.053E-08	2.021E-07	3.234E-07	5.175E-07	1.325E-06

FSO VLCC

1.65	4.35E-02	0.0010	1.0E-06	2	4.350E-08	8.701E-08	1.436E-07	2.369E-07	6.449E-07
1.7	3.76E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.75	3.26E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.8	2.84E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.85	2.48E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.9	2.18E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.95	1.92E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2	1.69E-02	0.0000	0.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2.05	1.50E-02	0.0000	0.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
						1.03E-01	6.14E-02	3.71E-02	1.44E-02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	0.00172228	m²
m _{r1} =	0.00102363	m ² (rad/s)
m _{r2} =	0.00061895	$m^{2}(rad^{2}/s^{2})$
m _{r4} =	0.00024057	$m^{2}(rad^{4}/s^{4})$

T ₀ =	10.5716	S
$T_p =$	10.0782	S
T _z =	10.4811	S
ω ₀ =	0.5943	rad/s
ω _p =	0.6234	rad/s
$\omega_z =$	0.5995	rad/s
$\zeta_{zs} =$	0.0830	m
$\zeta_{zav} =$	0.0519	m
$\zeta_{z1/10} =$	0.1054	m
$\zeta_{zext(\alpha=0.01)} =$	0.2607	m

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - SWAY

Calculation for H significant 1.89 m

(10 year period) - SWAY (90°)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

	0	0		Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
	Z	9	Ŧ	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3171	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	0.9980	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9900	9.8E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.9760	9.5E-01	2	1.228E-217	2.457E-217	3.685E-218	5.528E-219	1.244E-220
0.2	2.31E-67	0.9570	9.2E-01	4	2.113E-67	8.450E-67	1.690E-67	3.380E-68	1.352E-69
0.25	1.28E-26	0.9330	8.7E-01	2	1.118E-26	2.237E-26	5.592E-27	1.398E-27	8.737E-29
0.3	3.33E-12	0.9060	8.2E-01	4	2.735E-12	1.094E-11	3.282E-12	9.845E-13	8.861E-14
0.35	3.44E-06	0.8830	7.8E-01	2	2.682E-06	5.364E-06	1.877E-06	6.570E-07	8.049E-08
0.4	2.13E-03	0.8140	6.6E-01	4	1.409E-03	5.638E-03	2.255E-03	9.020E-04	1.443E-04
0.45	5.15E-02	0.5890	3.5E-01	2	1.787E-02	3.574E-02	1.608E-02	7.237E-03	1.465E-03
0.5	2.63E-01	0.5480	3.0E-01	4	7.901E-02	3.161E-01	1.580E-01	7.901E-02	1.975E-02
0.55	6.02E-01	0.5250	2.8E-01	2	1.660E-01	3.321E-01	1.826E-01	1.005E-01	3.039E-02
0.6	8.91E-01	0.4780	2.3E-01	4	2.036E-01	8.143E-01	4.886E-01	2.931E-01	1.055E-01
0.65	1.03E+00	0.4250	1.8E-01	2	1.858E-01	3.716E-01	2.415E-01	1.570E-01	6.633E-02
0.7	1.03E+00	0.3720	1.4E-01	4	1.422E-01	5.689E-01	3.982E-01	2.788E-01	1.366E-01
0.75	9.43E-01	0.3210	1.0E-01	2	9.712E-02	1.942E-01	1.457E-01	1.093E-01	6.146E-02
0.8	8.21E-01	0.2750	7.6E-02	4	6.211E-02	2.485E-01	1.988E-01	1.590E-01	1.018E-01
0.85	6.94E-01	0.2330	5.4E-02	2	3.770E-02	7.540E-02	6.409E-02	5.448E-02	3.936E-02
0.9	5.77E-01	0.1970	3.9E-02	4	2.240E-02	8.959E-02	8.063E-02	7.256E-02	5.878E-02
0.95	4.75E-01	0.1660	2.8E-02	2	1.310E-02	2.619E-02	2.488E-02	2.364E-02	2.134E-02
1	3.90E-01	0.1390	1.9E-02	4	7.535E-03	3.014E-02	3.014E-02	3.014E-02	3.014E-02
1.05	3.20E-01	0.1140	1.3E-02	2	4.156E-03	8.313E-03	8.728E-03	9.165E-03	1.010E-02
1.1	2.63E-01	0.0990	9.8E-03	4	2.575E-03	1.030E-02	1.133E-02	1.246E-02	1.508E-02
1.15	2.16E-01	0.0810	6.6E-03	2	1.420E-03	2.840E-03	3.267E-03	3.757E-03	4.968E-03
1.2	1.79E-01	0.0700	4.9E-03	4	8.773E-04	3.509E-03	4.211E-03	5.053E-03	7.277E-03
1.25	1.49E-01	0.0590	3.5E-03	2	5.178E-04	1.036E-03	1.294E-03	1.618E-03	2.528E-03
1.3	1.24E-01	0.0500	2.5E-03	4	3.104E-04	1.241E-03	1.614E-03	2.098E-03	3.546E-03
1.35	1.04E-01	0.0420	1.8E-03	2	1.836E-04	3.673E-04	4.958E-04	6.693E-04	1.220E-03
1.4	8.77E-02	0.0360	1.3E-03	4	1.137E-04	4.547E-04	6.365E-04	8.912E-04	1.747E-03
1.45	7.42E-02	0.0300	9.0E-04	2	6.682E-05	1.336E-04	1.938E-04	2.810E-04	5.907E-04
1.5	6.31E-02	0.0290	8.4E-04	4	5.309E-05	2.124E-04	3.186E-04	4.778E-04	1.075E-03
1.55	5.39E-02	0.0240	5.8E-04	2	3.106E-05	6.212E-05	9.628E-05	1.492E-04	3.585E-04
1.6	4.63E-02	0.0220	4.8E-04	4	2.239E-05	8.954E-05	1.433E-04	2.292E-04	5.868E-04

FSO VLCC 1.65 3.98E-02 0.0190 3.6E-04 2 1.438E-05 2.876E-05 4.746E-05 7.830E-05 2.132E-04 1.7 3.44E-02 0.0170 2.9E-04 4 9.955E-06 3.982E-05 6.769E-05 1.151E-04 3.326E-04 0.0140 2.0E-04 2 5.860E-06 2.051E-05 3.589E-05 1.099E-04 1.75 2.99E-02 1.172E-05 1.6E-05 4 2.60E-02 0.0040 4.168E-07 1.667E-06 3.001E-06 5.401E-06 1.750E-05 1.8 1.85 2.28E-02 0.0130 1.7E-04 2 3.848E-06 7.696E-06 1.424E-05 2.634E-05 9.015E-05 1.9 2.00E-02 0.0100 1.0E-04 4 1.997E-06 7.989E-06 1.518E-05 2.884E-05 1.041E-04 1.95 1.76E-02 0.0100 1.0E-04 2 1.757E-06 3.515E-06 6.854E-06 1.336E-05 5.082E-05 2 9.927E-07 1.55E-02 0.0080 6.4E-05 4 3.971E-06 7.941E-06 1.588E-05 6.353E-05 2.05 1.37E-02 0.0060 3.6E-05 4.943E-07 4.943E-07 1.013E-06 2.077E-06 8.729E-06 1 2.06E+00 3.14E+00 1.40E+00 7.23E-01

m _{r0} =	0.05228286	m²
m _{r1} =	0.03440077	m ² (rad/s)
m _{r2} =	0.02337960	$m^2(rad^2/s^2)$
m _{r4} =	0.01205195	$m^{2}(rad^{4}/s^{4})$

Σ1

Σ2

Σ4

T ₀ =	9.5493	S
T _p =	8.7512	S
T _z =	9.3960	S
ω ₀ =	0.6580	rad/s
ω _p =	0.7180	rad/s
$\omega_z =$	0.6687	rad/s
$\zeta_{zs} =$	0.4573	m
$\zeta_{zav} =$	0.2858	m
$\zeta_{z1/10} =$	0.5808	m
$\zeta_{zext(\alpha=0.01)} =$	1.4404	m

Calculation for H significant 1.98 m

(50 year period) - SWAY (180°)

H _s =	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

				ſ	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
	2	9	4	9	6	7	8	9	10
ω	S(ω)	RAO	RAO ²	C N A	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	2141	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m²)	[m ² (rad/s)]	[m2(rad3/s3)]
0.05	0.00E+00	0.9980	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9900	9.8E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.9760	9.5E-01	2	4.510E-201	9.019E-201	1.353E-201	2.029E-202	4.566E-204
0.2	4.19E-62	0.9570	9.2E-01	4	3.838E-62	1.535E-61	3.070E-62	6.141E-63	2.456E-64
0.25	1.90E-24	0.9330	8.7E-01	2	1.653E-24	3.307E-24	8.267E-25	2.067E-25	1.292E-26
0.3	3.83E-11	0.9060	8.2E-01	4	3.140E-11	1.256E-10	3.769E-11	1.131E-11	1.017E-12
0.35	1.32E-05	0.8830	7.8E-01	2	1.030E-05	2.060E-05	7.209E-06	2.523E-06	3.091E-07
0.4	4.80E-03	0.8140	6.6E-01	4	3.181E-03	1.272E-02	5.089E-03	2.036E-03	3.257E-04
0.45	8.76E-02	0.5890	3.5E-01	2	3.039E-02	6.077E-02	2.735E-02	1.231E-02	2.492E-03
0.5	3.81E-01	0.5480	3.0E-01	4	1.143E-01	4.572E-01	2.286E-01	1.143E-01	2.858E-02
0.55	7.90E-01	0.5250	2.8E-01	2	2.178E-01	4.357E-01	2.396E-01	1.318E-01	3.987E-02
0.6	1.10E+00	0.4780	2.3E-01	4	2.510E-01	1.004E+00	6.025E-01	3.615E-01	1.301E-01
0.65	1.22E+00	0.4250	1.8E-01	2	2.200E-01	4.399E-01	2.860E-01	1.859E-01	7.853E-02
0.7	1.18E+00	0.3720	1.4E-01	4	1.638E-01	6.551E-01	4.586E-01	3.210E-01	1.573E-01
0.75	1.06E+00	0.3210	1.0E-01	2	1.097E-01	2.194E-01	1.646E-01	1.234E-01	6.942E-02
0.8	9.15E-01	0.2750	7.6E-02	4	6.919E-02	2.768E-01	2.214E-01	1.771E-01	1.134E-01
0.85	7.66E-01	0.2330	5.4E-02	2	4.157E-02	8.314E-02	7.067E-02	6.007E-02	4.340E-02
0.9	6.32E-01	0.1970	3.9E-02	4	2.451E-02	9.804E-02	8.824E-02	7.942E-02	6.433E-02
0.95	5.17E-01	0.1660	2.8E-02	2	1.425E-02	2.850E-02	2.708E-02	2.572E-02	2.322E-02
1	4.22E-01	0.1390	1.9E-02	4	8.163E-03	3.265E-02	3.265E-02	3.265E-02	3.265E-02
1.05	3.45E-01	0.1140	1.3E-02	2	4.488E-03	8.975E-03	9.424E-03	9.895E-03	1.091E-02
1.1	2.83E-01	0.0990	9.8E-03	4	2.773E-03	1.109E-02	1.220E-02	1.342E-02	1.624E-02
1.15	2.33E-01	0.0810	6.6E-03	2	1.526E-03	3.052E-03	3.510E-03	4.036E-03	5.338E-03
1.2	1.92E-01	0.0700	4.9E-03	4	9.411E-04	3.764E-03	4.517E-03	5.421E-03	7.806E-03
1.25	1.59E-01	0.0590	3.5E-03	2	5.546E-04	1.109E-03	1.387E-03	1.733E-03	2.708E-03
1.3	1.33E-01	0.0500	2.5E-03	4	3.321E-04	1.328E-03	1.727E-03	2.245E-03	3.794E-03
1.35	1.11E-01	0.0420	1.8E-03	2	1.963E-04	3.926E-04	5.300E-04	7.155E-04	1.304E-03
1.4	9.37E-02	0.0360	1.3E-03	4	1.214E-04	4.856E-04	6.799E-04	9.518E-04	1.866E-03
1.45	7.92E-02	0.0300	9.0E-04	2	7.132E-05	1.426E-04	2.068E-04	2.999E-04	6.305E-04
1.5	6.73E-02	0.0290	8.4E-04	4	5.664E-05	2.266E-04	3.398E-04	5.097E-04	1.147E-03
1.55	5.75E-02	0.0240	5.8E-04	2	3.312E-05	6.623E-05	1.027E-04	1.591E-04	3.823E-04
1.6	4.93E-02	0.0220	4.8E-04	4	2.386E-05	9.544E-05	1.527E-04	2.443E-04	6.255E-04

FSO VLCC									
1.65	4.24E-02	0.0190	3.6E-04	2	1.532E-05	3.064E-05	5.056E-05	8.343E-05	2.271E-04
1.7	3.67E-02	0.0170	2.9E-04	4	1.060E-05	4.242E-05	7.211E-05	1.226E-04	3.543E-04
1.75	3.18E-02	0.0140	2.0E-04	2	6.241E-06	1.248E-05	2.184E-05	3.822E-05	1.171E-04
1.8	2.77E-02	0.0040	1.6E-05	4	4.437E-07	1.775E-06	3.195E-06	5.750E-06	1.863E-05
1.85	2.42E-02	0.0130	1.7E-04	2	4.096E-06	8.192E-06	1.516E-05	2.804E-05	9.596E-05
1.9	2.13E-02	0.0100	1.0E-04	4	2.126E-06	8.502E-06	1.615E-05	3.069E-05	1.108E-04
1.95	1.87E-02	0.0100	1.0E-04	2	1.870E-06	3.740E-06	7.293E-06	1.422E-05	5.408E-05
2	1.65E-02	0.0080	6.4E-05	4	1.056E-06	4.225E-06	8.450E-06	1.690E-05	6.760E-05
2.05	1.46E-02	0.0060	3.6E-05	1	5.259E-07	5.259E-07	1.078E-06	2.210E-06	9.287E-06
						3.83E+00	2.49E+00	1.67E+00	8.37E-01
						ΣΟ	Σ1	Σ2	Σ4

m _{r0} =	0.06391616	m ²
m _{r1} =	0.04145475	m ² (rad/s)
m _{r2} =	0.02778659	$m^2(rad^2/s^2)$
m _{r4} =	0.01395678	$m^{2}(rad^{4}/s^{4})$

T ₀ =	9.6876	S
T _p =	8.8655	S
T _z =	9.5294	S
ω ₀ =	0.6486	rad/s
ω _p =	0.7087	rad/s
$\omega_z =$	0.6593	rad/s
$\zeta_{zs} =$	0.5056	m
$\zeta_{zav} =$	0.3160	m
$\zeta_{z1/10} =$	0.6422	m
$\zeta_{zext(\alpha=0.01)} =$	1.5920	m

Calculation for H significant 2.02 m

(100 year period) - SWAY (180°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

	0	٩		ſ	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	(1) ⁴ x (7)
Ū	Z	9	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3171	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	0.9980	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9900	9.8E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.9760	9.5E-01	2	5.844E-195	1.169E-194	1.753E-195	2.630E-196	5.917E-198
0.2	3.66E-60	0.9570	9.2E-01	4	3.351E-60	1.340E-59	2.681E-60	5.362E-61	2.145E-62
0.25	1.20E-23	0.9330	8.7E-01	2	1.046E-23	2.092E-23	5.230E-24	1.307E-24	8.171E-26
0.3	9.43E-11	0.9060	8.2E-01	4	7.739E-11	3.096E-10	9.287E-11	2.786E-11	2.507E-12
0.35	2.17E-05	0.8830	7.8E-01	2	1.694E-05	3.388E-05	1.186E-05	4.151E-06	5.084E-07
0.4	6.49E-03	0.8140	6.6E-01	4	4.300E-03	1.720E-02	6.880E-03	2.752E-03	4.403E-04
0.45	1.07E-01	0.5890	3.5E-01	2	3.701E-02	7.402E-02	3.331E-02	1.499E-02	3.035E-03
0.5	4.37E-01	0.5480	3.0E-01	4	1.312E-01	5.246E-01	2.623E-01	1.312E-01	3.279E-02
0.55	8.75E-01	0.5250	2.8E-01	2	2.411E-01	4.822E-01	2.652E-01	1.459E-01	4.412E-02
0.6	1.19E+00	0.4780	2.3E-01	4	2.716E-01	1.086E+00	6.517E-01	3.910E-01	1.408E-01
0.65	1.30E+00	0.4250	1.8E-01	2	2.344E-01	4.688E-01	3.047E-01	1.981E-01	8.368E-02
0.7	1.25E+00	0.3720	1.4E-01	4	1.728E-01	6.910E-01	4.837E-01	3.386E-01	1.659E-01
0.75	1.11E+00	0.3210	1.0E-01	2	1.149E-01	2.298E-01	1.723E-01	1.292E-01	7.270E-02
0.8	9.53E-01	0.2750	7.6E-02	4	7.209E-02	2.884E-01	2.307E-01	1.846E-01	1.181E-01
0.85	7.95E-01	0.2330	5.4E-02	2	4.315E-02	8.630E-02	7.336E-02	6.235E-02	4.505E-02
0.9	6.54E-01	0.1970	3.9E-02	4	2.537E-02	1.015E-01	9.134E-02	8.221E-02	6.659E-02
0.95	5.34E-01	0.1660	2.8E-02	2	1.472E-02	2.944E-02	2.797E-02	2.657E-02	2.398E-02
1	4.36E-01	0.1390	1.9E-02	4	8.418E-03	3.367E-02	3.367E-02	3.367E-02	3.367E-02
1.05	3.56E-01	0.1140	1.3E-02	2	4.622E-03	9.244E-03	9.706E-03	1.019E-02	1.124E-02
1.1	2.91E-01	0.0990	9.8E-03	4	2.853E-03	1.141E-02	1.255E-02	1.381E-02	1.671E-02
1.15	2.39E-01	0.0810	6.6E-03	2	1.569E-03	3.138E-03	3.609E-03	4.150E-03	5.488E-03
1.2	1.97E-01	0.0700	4.9E-03	4	9.670E-04	3.868E-03	4.641E-03	5.570E-03	8.020E-03
1.25	1.64E-01	0.0590	3.5E-03	2	5.696E-04	1.139E-03	1.424E-03	1.780E-03	2.781E-03
1.3	1.36E-01	0.0500	2.5E-03	4	3.409E-04	1.363E-03	1.773E-03	2.304E-03	3.894E-03
1.35	1.14E-01	0.0420	1.8E-03	2	2.014E-04	4.029E-04	5.438E-04	7.342E-04	1.338E-03
1.4	9.61E-02	0.0360	1.3E-03	4	1.245E-04	4.982E-04	6.975E-04	9.765E-04	1.914E-03
1.45	8.13E-02	0.0300	9.0E-04	2	7.315E-05	1.463E-04	2.121E-04	3.076E-04	6.467E-04
1.5	6.91E-02	0.0290	8.4E-04	4	5.808E-05	2.323E-04	3.485E-04	5.227E-04	1.176E-03
1.55	5.89E-02	0.0240	5.8E-04	2	3.395E-05	6.790E-05	1.053E-04	1.631E-04	3.919E-04
1.6	5.05E-02	0.0220	4.8E-04	4	2.446E-05	9.783E-05	1.565E-04	2.504E-04	6.411E-04

FSO VLCC										
1.65	4.35E-02	0.0190	3.6E-04	2	1.570E-05	3.141E-05	5.183E-05	8.551E-05	2.328E-04	
1.7	3.76E-02	0.0170	2.9E-04	4	1.087E-05	4.347E-05	7.390E-05	1.256E-04	3.631E-04	
1.75	3.26E-02	0.0140	2.0E-04	2	6.395E-06	1.279E-05	2.238E-05	3.917E-05	1.200E-04	
1.8	2.84E-02	0.0040	1.6E-05	4	4.547E-07	1.819E-06	3.273E-06	5.892E-06	1.909E-05	
1.85	2.48E-02	0.0130	1.7E-04	2	4.197E-06	8.394E-06	1.553E-05	2.873E-05	9.832E-05	
1.9	2.18E-02	0.0100	1.0E-04	4	2.178E-06	8.711E-06	1.655E-05	3.145E-05	1.135E-04	
1.95	1.92E-02	0.0100	1.0E-04	2	1.916E-06	3.832E-06	7.472E-06	1.457E-05	5.540E-05	
2	1.69E-02	0.0080	6.4E-05	4	1.082E-06	4.328E-06	8.656E-06	1.731E-05	6.925E-05	
2.05	1.50E-02	0.0060	3.6E-05	1	5.387E-07	5.387E-07	1.104E-06	2.264E-06	9.514E-06	
						4.14E+00	2.67E+00	1.78E+00	8.86E-01	
						Σ0	Σ1	Σ2	Σ4	

m _{r0} =	0.06908140	m ²
m _{r1} =	0.04455365	m ² (rad/s)
m _{r2} =	0.02970312	$m^2(rad^2/s^2)$
m _{r4} =	0.01476978	$m^{2}(rad^{4}/s^{4})$

T ₀ =	9.7422	S
T _p =	8.9103	S
T _z =	9.5821	S
ω ₀ =	0.6449	rad/s
ω_p =	0.7052	rad/s
$\omega_z =$	0.6557	rad/s
$\zeta_{zs} =$	0.5257	m
$\zeta_{zav} =$	0.3285	m
$\zeta_{z1/10} =$	0.6676	m
$\zeta_{zext(\alpha=0.01)} =$	1.6549	m

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - HEAVE

Calculation for H significant 1.89 m

(10 year period) - HEAVE (90°)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

				Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	2	9	4	ଔ	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	5171	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	1.0000	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	1.0000	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	1.0010	1.0E+00	2	1.292E-217	2.584E-217	3.876E-218	5.814E-219	1.308E-220
0.2	2.31E-67	1.0050	1.0E+00	4	2.330E-67	9.319E-67	1.864E-67	3.728E-68	1.491E-69
0.25	1.28E-26	1.0140	1.0E+00	2	1.321E-26	2.642E-26	6.605E-27	1.651E-27	1.032E-28
0.3	3.33E-12	1.0340	1.1E+00	4	3.562E-12	1.425E-11	4.275E-12	1.282E-12	1.154E-13
0.35	3.44E-06	1.0740	1.2E+00	2	3.967E-06	7.935E-06	2.777E-06	9.720E-07	1.191E-07
0.4	2.13E-03	1.1490	1.3E+00	4	2.808E-03	1.123E-02	4.493E-03	1.797E-03	2.876E-04
0.45	5.15E-02	1.2760	1.6E+00	2	8.386E-02	1.677E-01	7.548E-02	3.396E-02	6.878E-03
0.5	2.63E-01	1.3870	1.9E+00	4	5.062E-01	2.025E+00	1.012E+00	5.062E-01	1.265E-01
0.55	6.02E-01	1.2430	1.5E+00	2	9.307E-01	1.861E+00	1.024E+00	5.631E-01	1.703E-01
0.6	8.91E-01	0.8950	8.0E-01	4	7.137E-01	2.855E+00	1.713E+00	1.028E+00	3.700E-01
0.65	1.03E+00	0.5780	3.3E-01	2	3.436E-01	6.873E-01	4.467E-01	2.904E-01	1.227E-01
0.7	1.03E+00	0.3680	1.4E-01	4	1.392E-01	5.567E-01	3.897E-01	2.728E-01	1.337E-01
0.75	9.43E-01	0.2410	5.8E-02	2	5.475E-02	1.095E-01	8.212E-02	6.159E-02	3.464E-02
0.8	8.21E-01	0.1610	2.6E-02	4	2.129E-02	8.516E-02	6.813E-02	5.450E-02	3.488E-02
0.85	6.94E-01	0.1180	1.4E-02	2	9.669E-03	1.934E-02	1.644E-02	1.397E-02	1.009E-02
0.9	5.77E-01	0.0800	6.4E-03	4	3.693E-03	1.477E-02	1.330E-02	1.197E-02	9.693E-03
0.95	4.75E-01	0.0590	3.5E-03	2	1.655E-03	3.309E-03	3.144E-03	2.986E-03	2.695E-03
1	3.90E-01	0.0430	1.8E-03	4	7.211E-04	2.884E-03	2.884E-03	2.884E-03	2.884E-03
1.05	3.20E-01	0.0320	1.0E-03	2	3.275E-04	6.550E-04	6.877E-04	7.221E-04	7.961E-04
1.1	2.63E-01	0.0230	5.3E-04	4	1.390E-04	5.559E-04	6.115E-04	6.726E-04	8.139E-04
1.15	2.16E-01	0.0170	2.9E-04	2	6.256E-05	1.251E-04	1.439E-04	1.655E-04	2.188E-04
1.2	1.79E-01	0.0120	1.4E-04	4	2.578E-05	1.031E-04	1.238E-04	1.485E-04	2.139E-04
1.25	1.49E-01	0.0080	6.4E-05	2	9.520E-06	1.904E-05	2.380E-05	2.975E-05	4.648E-05
1.3	1.24E-01	0.0090	8.1E-05	4	1.006E-05	4.022E-05	5.229E-05	6.798E-05	1.149E-04
1.35	1.04E-01	0.0060	3.6E-05	2	3.748E-06	7.495E-06	1.012E-05	1.366E-05	2.490E-05
1.4	8.77E-02	0.0030	9.0E-06	4	7.894E-07	3.157E-06	4.420E-06	6.189E-06	1.213E-05
1.45	7.42E-02	0.0030	9.0E-06	2	6.682E-07	1.336E-06	1.938E-06	2.810E-06	5.907E-06
1.5	6.31E-02	0.0020	4.0E-06	4	2.525E-07	1.010E-06	1.515E-06	2.273E-06	5.114E-06
1.55	5.39E-02	0.0010	1.0E-06	2	5.392E-08	1.078E-07	1.672E-07	2.591E-07	6.225E-07
1.6	4.63E-02	0.0010	1.0E-06	4	4.625E-08	1.850E-07	2.960E-07	4.736E-07	1.212E-06

FSO VLCC									
1.65	3.98E-02	0.0100	1.0E-04	2	3.984E-06	7.967E-06	1.315E-05	2.169E-05	5.905E-05
1.7	3.44E-02	0.0020	4.0E-06	4	1.378E-07	5.511E-07	9.369E-07	1.593E-06	4.603E-06
1.75	2.99E-02	0.0010	1.0E-06	2	2.990E-08	5.980E-08	1.046E-07	1.831E-07	5.608E-07
1.8	2.60E-02	0.0010	1.0E-06	4	2.605E-08	1.042E-07	1.875E-07	3.376E-07	1.094E-06
1.85	2.28E-02	0.0010	1.0E-06	2	2.277E-08	4.554E-08	8.425E-08	1.559E-07	5.334E-07
1.9	2.00E-02	0.0010	1.0E-06	4	1.997E-08	7.989E-08	1.518E-07	2.884E-07	1.041E-06
1.95	1.76E-02	0.0030	9.0E-06	2	1.582E-07	3.163E-07	6.168E-07	1.203E-06	4.574E-06
2	1.55E-02	0.0010	1.0E-06	4	1.551E-08	6.204E-08	1.241E-07	2.482E-07	9.927E-07
2.05	1.37E-02	0.0010	1.0E-06	1	1.373E-08	1.373E-08	2.815E-08	5.770E-08	2.425E-07
						8.40E+00	4.85E+00	2.85E+00	1.03E+00
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	0.14000553	m²
m _{r1} =	0.08088477	m ² (rad/s)
m _{r2} =	0.04742770	$m^2(rad^2/s^2)$
m _{r4} =	0.01712653	$m^{2}(rad^{4}/s^{4})$

T ₀ =	10.8757	S
T _p =	10.4559	S
T _z =	10.7953	S
ω ₀ =	0.5777	rad/s
ω _p =	0.6009	rad/s
$\omega_z =$	0.5820	rad/s
$\zeta_{zs} =$	0.7483	m
$\zeta_{zav} =$	0.4677	m
$\zeta_{z1/10} =$	0.9504	m
$\zeta_{zext(\alpha=0.01)} =$	2.3488	m

Calculation for H significant 1.98 m

(50 year period) - HEAVE (90°)

$H_s =$	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	0	(2)		ß	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Ľ	3	Ŧ	9	6	\overline{O}	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3171	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	1.0000	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	1.0000	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	1.0010	1.0E+00	2	4.743E-201	9.487E-201	1.423E-201	2.135E-202	4.803E-204
0.2	4.19E-62	1.0050	1.0E+00	4	4.232E-62	1.693E-61	3.386E-62	6.772E-63	2.709E-64
0.25	1.90E-24	1.0140	1.0E+00	2	1.953E-24	3.906E-24	9.764E-25	2.441E-25	1.526E-26
0.3	3.83E-11	1.0340	1.1E+00	4	4.090E-11	1.636E-10	4.909E-11	1.473E-11	1.325E-12
0.35	1.32E-05	1.0740	1.2E+00	2	1.524E-05	3.047E-05	1.067E-05	3.733E-06	4.573E-07
0.4	4.80E-03	1.1490	1.3E+00	4	6.337E-03	2.535E-02	1.014E-02	4.056E-03	6.490E-04
0.45	8.76E-02	1.2760	1.6E+00	2	1.426E-01	2.852E-01	1.284E-01	5.776E-02	1.170E-02
0.5	3.81E-01	1.3870	1.9E+00	4	7.323E-01	2.929E+00	1.465E+00	7.323E-01	1.831E-01
0.55	7.90E-01	1.2430	1.5E+00	2	1.221E+00	2.442E+00	1.343E+00	7.387E-01	2.235E-01
0.6	1.10E+00	0.8950	8.0E-01	4	8.801E-01	3.520E+00	2.112E+00	1.267E+00	4.562E-01
0.65	1.22E+00	0.5780	3.3E-01	2	4.068E-01	8.137E-01	5.289E-01	3.438E-01	1.452E-01
0.7	1.18E+00	0.3680	1.4E-01	4	1.603E-01	6.411E-01	4.488E-01	3.142E-01	1.539E-01
0.75	1.06E+00	0.2410	5.8E-02	2	6.183E-02	1.237E-01	9.275E-02	6.956E-02	3.913E-02
0.8	9.15E-01	0.1610	2.6E-02	4	2.372E-02	9.486E-02	7.589E-02	6.071E-02	3.886E-02
0.85	7.66E-01	0.1180	1.4E-02	2	1.066E-02	2.132E-02	1.813E-02	1.541E-02	1.113E-02
0.9	6.32E-01	0.0800	6.4E-03	4	4.042E-03	1.617E-02	1.455E-02	1.310E-02	1.061E-02
0.95	5.17E-01	0.0590	3.5E-03	2	1.800E-03	3.601E-03	3.421E-03	3.250E-03	2.933E-03
1	4.22E-01	0.0430	1.8E-03	4	7.812E-04	3.125E-03	3.125E-03	3.125E-03	3.125E-03
1.05	3.45E-01	0.0320	1.0E-03	2	3.536E-04	7.072E-04	7.425E-04	7.797E-04	8.596E-04
1.1	2.83E-01	0.0230	5.3E-04	4	1.496E-04	5.986E-04	6.585E-04	7.243E-04	8.764E-04
1.15	2.33E-01	0.0170	2.9E-04	2	6.722E-05	1.344E-04	1.546E-04	1.778E-04	2.351E-04
1.2	1.92E-01	0.0120	1.4E-04	4	2.766E-05	1.106E-04	1.327E-04	1.593E-04	2.294E-04
1.25	1.59E-01	0.0080	6.4E-05	2	1.020E-05	2.039E-05	2.549E-05	3.187E-05	4.979E-05
1.3	1.33E-01	0.0090	8.1E-05	4	1.076E-05	4.303E-05	5.595E-05	7.273E-05	1.229E-04
1.35	1.11E-01	0.0060	3.6E-05	2	4.006E-06	8.012E-06	1.082E-05	1.460E-05	2.661E-05
1.4	9.37E-02	0.0030	9.0E-06	4	8.431E-07	3.372E-06	4.721E-06	6.610E-06	1.296E-05
1.45	7.92E-02	0.0030	9.0E-06	2	7.132E-07	1.426E-06	2.068E-06	2.999E-06	6.305E-06
1.5	6.73E-02	0.0020	4.0E-06	4	2.694E-07	1.078E-06	1.616E-06	2.424E-06	5.455E-06
1.55	5.75E-02	0.0010	1.0E-06	2	5.749E-08	1.150E-07	1.782E-07	2.763E-07	6.637E-07
1.6	4.93E-02	0.0010	1.0E-06	4	4.930E-08	1.972E-07	3.155E-07	5.048E-07	1.292E-06

FSO VLCC									
1.65	4.24E-02	0.0100	1.0E-04	2	4.244E-06	8.489E-06	1.401E-05	2.311E-05	6.292E-05
1.7	3.67E-02	0.0020	4.0E-06	4	1.468E-07	5.871E-07	9.980E-07	1.697E-06	4.903E-06
1.75	3.18E-02	0.0010	1.0E-06	2	3.184E-08	6.368E-08	1.114E-07	1.950E-07	5.972E-07
1.8	2.77E-02	0.0010	1.0E-06	4	2.773E-08	1.109E-07	1.997E-07	3.594E-07	1.164E-06
1.85	2.42E-02	0.0010	1.0E-06	2	2.424E-08	4.848E-08	8.968E-08	1.659E-07	5.678E-07
1.9	2.13E-02	0.0010	1.0E-06	4	2.126E-08	8.502E-08	1.615E-07	3.069E-07	1.108E-06
1.95	1.87E-02	0.0030	9.0E-06	2	1.683E-07	3.366E-07	6.564E-07	1.280E-06	4.867E-06
2	1.65E-02	0.0010	1.0E-06	4	1.650E-08	6.601E-08	1.320E-07	2.641E-07	1.056E-06
2.05	1.46E-02	0.0010	1.0E-06	1	1.461E-08	1.461E-08	2.994E-08	6.139E-08	2.580E-07
						1.09E+01	6.25E+00	3.63E+00	1.28E+00

m _{r0} =	0.18202321	m ²
m _{r1} =	0.10409648	m ² (rad/s)
m _{r2} =	0.06042083	$m^2(rad^2/s^2)$
m _{r4} =	0.02137649	$m^{2}(rad^{4}/s^{4})$

Σ0

Σ1

Σ2

T ₀ =	10.9868	S
$T_p =$	10.5634	S
$T_z =$	10.9056	S
ω ₀ =	0.5719	rad/s
ω_{p} =	0.5948	rad/s
$\omega_z =$	0.5761	rad/s
$\zeta_{zs} =$	0.8533	m
$\zeta_{zav} =$	0.5333	m
$\zeta_{z1/10} =$	1.0837	m
$\zeta_{zext(\alpha=0.01)} =$	2.6775	m

Calculation for H significant 2.02 m

(100 year period) - HEAVE (90°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

	0	(2)		ß	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Z	9	4	9	6	\overline{O}	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	$\omega^2 x S_r(\omega) x S M$	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3171	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	1.0000	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	1.0000	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	1.0010	1.0E+00	2	6.147E-195	1.229E-194	1.844E-195	2.766E-196	6.224E-198
0.2	3.66E-60	1.0050	1.0E+00	4	3.696E-60	1.478E-59	2.957E-60	5.913E-61	2.365E-62
0.25	1.20E-23	1.0140	1.0E+00	2	1.235E-23	2.471E-23	6.177E-24	1.544E-24	9.652E-26
0.3	9.43E-11	1.0340	1.1E+00	4	1.008E-10	4.032E-10	1.210E-10	3.629E-11	3.266E-12
0.35	2.17E-05	1.0740	1.2E+00	2	2.506E-05	5.012E-05	1.754E-05	6.140E-06	7.522E-07
0.4	6.49E-03	1.1490	1.3E+00	4	8.568E-03	3.427E-02	1.371E-02	5.484E-03	8.774E-04
0.45	1.07E-01	1.2760	1.6E+00	2	1.737E-01	3.474E-01	1.563E-01	7.035E-02	1.425E-02
0.5	4.37E-01	1.3870	1.9E+00	4	8.402E-01	3.361E+00	1.680E+00	8.402E-01	2.101E-01
0.55	8.75E-01	1.2430	1.5E+00	2	1.351E+00	2.703E+00	1.487E+00	8.176E-01	2.473E-01
0.6	1.19E+00	0.8950	8.0E-01	4	9.520E-01	3.808E+00	2.285E+00	1.371E+00	4.935E-01
0.65	1.30E+00	0.5780	3.3E-01	2	4.335E-01	8.671E-01	5.636E-01	3.663E-01	1.548E-01
0.7	1.25E+00	0.3680	1.4E-01	4	1.691E-01	6.763E-01	4.734E-01	3.314E-01	1.624E-01
0.75	1.11E+00	0.2410	5.8E-02	2	6.476E-02	1.295E-01	9.714E-02	7.285E-02	4.098E-02
0.8	9.53E-01	0.1610	2.6E-02	4	2.471E-02	9.884E-02	7.907E-02	6.326E-02	4.048E-02
0.85	7.95E-01	0.1180	1.4E-02	2	1.107E-02	2.214E-02	1.881E-02	1.599E-02	1.155E-02
0.9	6.54E-01	0.0800	6.4E-03	4	4.184E-03	1.674E-02	1.506E-02	1.356E-02	1.098E-02
0.95	5.34E-01	0.0590	3.5E-03	2	1.860E-03	3.719E-03	3.533E-03	3.357E-03	3.030E-03
1	4.36E-01	0.0430	1.8E-03	4	8.056E-04	3.223E-03	3.223E-03	3.223E-03	3.223E-03
1.05	3.56E-01	0.0320	1.0E-03	2	3.642E-04	7.284E-04	7.648E-04	8.030E-04	8.854E-04
1.1	2.91E-01	0.0230	5.3E-04	4	1.540E-04	6.159E-04	6.775E-04	7.453E-04	9.018E-04
1.15	2.39E-01	0.0170	2.9E-04	2	6.911E-05	1.382E-04	1.590E-04	1.828E-04	2.418E-04
1.2	1.97E-01	0.0120	1.4E-04	4	2.842E-05	1.137E-04	1.364E-04	1.637E-04	2.357E-04
1.25	1.64E-01	0.0080	6.4E-05	2	1.047E-05	2.094E-05	2.618E-05	3.273E-05	5.113E-05
1.3	1.36E-01	0.0090	8.1E-05	4	1.104E-05	4.418E-05	5.743E-05	7.466E-05	1.262E-04
1.35	1.14E-01	0.0060	3.6E-05	2	4.111E-06	8.221E-06	1.110E-05	1.498E-05	2.731E-05
1.4	9.61E-02	0.0030	9.0E-06	4	8.649E-07	3.460E-06	4.844E-06	6.781E-06	1.329E-05
1.45	8.13E-02	0.0030	9.0E-06	2	7.315E-07	1.463E-06	2.121E-06	3.076E-06	6.467E-06
1.5	6.91E-02	0.0020	4.0E-06	4	2.762E-07	1.105E-06	1.657E-06	2.486E-06	5.594E-06
1.55	5.89E-02	0.0010	1.0E-06	2	5.894E-08	1.179E-07	1.827E-07	2.832E-07	6.805E-07
1.6	5.05E-02	0.0010	1.0E-06	4	5.053E-08	2.021E-07	3.234E-07	5.175E-07	1.325E-06

FSO VLCC									
1.65	4.35E-02	0.0100	1.0E-04	2	4.350E-06	8.701E-06	1.436E-05	2.369E-05	6.449E-05
1.7	3.76E-02	0.0020	4.0E-06	4	1.504E-07	6.016E-07	1.023E-06	1.739E-06	5.025E-06
1.75	3.26E-02	0.0010	1.0E-06	2	3.263E-08	6.526E-08	1.142E-07	1.998E-07	6.120E-07
1.8	2.84E-02	0.0010	1.0E-06	4	2.842E-08	1.137E-07	2.046E-07	3.683E-07	1.193E-06
1.85	2.48E-02	0.0010	1.0E-06	2	2.483E-08	4.967E-08	9.189E-08	1.700E-07	5.818E-07
1.9	2.18E-02	0.0010	1.0E-06	4	2.178E-08	8.711E-08	1.655E-07	3.145E-07	1.135E-06
1.95	1.92E-02	0.0030	9.0E-06	2	1.724E-07	3.449E-07	6.725E-07	1.311E-06	4.986E-06
2	1.69E-02	0.0010	1.0E-06	4	1.691E-08	6.763E-08	1.353E-07	2.705E-07	1.082E-06
2.05	1.50E-02	0.0010	1.0E-06	1	1.496E-08	1.496E-08	3.067E-08	6.288E-08	2.643E-07
						1.21E+01	6.88E+00	3.98E+00	1.40E+00

m _{r0} =	0.20121301	m ²
m _{r1} =	0.11462704	m ² (rad/s)
m _{r2} =	0.06627662	$m^2(rad^2/s^2)$
m _{r4} =	0.02326688	$m^{2}(rad^{4}/s^{4})$

Σ0

Σ1

Σ2

T ₀ =	11.0293	S
$T_p =$	10.6045	S
T _z =	10.9478	S
ω ₀ =	0.5697	rad/s
ω _p =	0.5925	rad/s
$\omega_z =$	0.5739	rad/s
$\zeta_{zs} =$	0.8971	m
$\zeta_{zav} =$	0.5607	m
$\zeta_{z1/10} =$	1.1394	m
$\zeta_{zext(\alpha=0.01)} =$	2.8148	m

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - ROLL

Calculation for H significant 1.89 m

(10 year period) - ROLL (90 $^{\circ}$)

$H_s =$	1.89	m
$T_p =$	9.33	S
$\omega_p =$	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

				Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
		9	4	9	6	7	8	9	10
ω	S(ω)	RAO	RAO ²	СЛЛ	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	2141	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0150	2.3E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0600	3.6E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.1400	2.0E-02	2	2.527E-219	5.055E-219	7.582E-220	1.137E-220	2.559E-222
0.2	2.31E-67	0.2640	7.0E-02	4	1.608E-68	6.431E-68	1.286E-68	2.572E-69	1.029E-70
0.25	1.28E-26	0.4540	2.1E-01	2	2.648E-27	5.296E-27	1.324E-27	3.310E-28	2.069E-29
0.3	3.33E-12	0.7670	5.9E-01	4	1.960E-12	7.840E-12	2.352E-12	7.056E-13	6.350E-14
0.35	3.44E-06	1.3960	1.9E+00	2	6.703E-06	1.341E-05	4.692E-06	1.642E-06	2.012E-07
0.4	2.13E-03	2.5940	6.7E+00	4	1.431E-02	5.725E-02	2.290E-02	9.161E-03	1.466E-03
0.45	5.15E-02	2.9330	8.6E+00	2	4.431E-01	8.862E-01	3.988E-01	1.794E-01	3.634E-02
0.5	2.63E-01	1.7790	3.2E+00	4	8.327E-01	3.331E+00	1.665E+00	8.327E-01	2.082E-01
0.55	6.02E-01	1.0400	1.1E+00	2	6.516E-01	1.303E+00	7.167E-01	3.942E-01	1.192E-01
0.6	8.91E-01	0.6850	4.7E-01	4	4.181E-01	1.672E+00	1.003E+00	6.020E-01	2.167E-01
0.65	1.03E+00	0.4820	2.3E-01	2	2.390E-01	4.779E-01	3.107E-01	2.019E-01	8.532E-02
0.7	1.03E+00	0.3500	1.2E-01	4	1.259E-01	5.036E-01	3.525E-01	2.468E-01	1.209E-01
0.75	9.43E-01	0.2580	6.7E-02	2	6.274E-02	1.255E-01	9.411E-02	7.058E-02	3.970E-02
0.8	8.21E-01	0.1920	3.7E-02	4	3.028E-02	1.211E-01	9.689E-02	7.751E-02	4.961E-02
0.85	6.94E-01	0.1460	2.1E-02	2	1.480E-02	2.960E-02	2.516E-02	2.139E-02	1.545E-02
0.9	5.77E-01	0.1100	1.2E-02	4	6.983E-03	2.793E-02	2.514E-02	2.262E-02	1.833E-02
0.95	4.75E-01	0.0840	7.1E-03	2	3.354E-03	6.707E-03	6.372E-03	6.053E-03	5.463E-03
1	3.90E-01	0.0630	4.0E-03	4	1.548E-03	6.191E-03	6.191E-03	6.191E-03	6.191E-03
1.05	3.20E-01	0.0370	1.4E-03	2	4.378E-04	8.756E-04	9.194E-04	9.654E-04	1.064E-03
1.1	2.63E-01	0.0450	2.0E-03	4	5.320E-04	2.128E-03	2.341E-03	2.575E-03	3.116E-03
1.15	2.16E-01	0.0300	9.0E-04	2	1.948E-04	3.896E-04	4.481E-04	5.153E-04	6.815E-04
1.2	1.79E-01	0.0270	7.3E-04	4	1.305E-04	5.221E-04	6.265E-04	7.518E-04	1.083E-03
1.25	1.49E-01	0.0220	4.8E-04	2	7.199E-05	1.440E-04	1.800E-04	2.250E-04	3.515E-04
1.3	1.24E-01	0.0170	2.9E-04	4	3.588E-05	1.435E-04	1.866E-04	2.425E-04	4.099E-04
1.35	1.04E-01	0.0140	2.0E-04	2	2.040E-05	4.081E-05	5.509E-05	7.437E-05	1.355E-04
1.4	8.77E-02	0.0110	1.2E-04	4	1.061E-05	4.245E-05	5.943E-05	8.320E-05	1.631E-04
1.45	7.42E-02	0.0080	6.4E-05	2	4.751E-06	9.503E-06	1.378E-05	1.998E-05	4.201E-05
1.5	6.31E-02	0.0080	6.4E-05	4	4.040E-06	1.616E-05	2.424E-05	3.636E-05	8.182E-05
1.55	5.39E-02	0.0060	3.6E-05	2	1.941E-06	3.882E-06	6.017E-06	9.327E-06	2.241E-05
1.6	4.63E-02	0.0050	2.5E-05	4	1.156E-06	4.625E-06	7.400E-06	1.184E-05	3.031E-05

FSO VLCC 1.65 3.98E-02 0.0040 1.6E-05 2 6.374E-07 1.275E-06 2.103E-06 3.470E-06 9.448E-06 1.7 3.44E-02 0.0040 1.6E-05 4 5.511E-07 2.205E-06 3.748E-06 6.371E-06 1.841E-05 0.0040 1.6E-05 2 4.784E-07 9.568E-07 2.930E-06 1.75 2.99E-02 1.674E-06 8.974E-06 2.60E-02 0.0100 1.0E-04 2.605E-06 1.042E-05 1.875E-05 3.376E-05 1.094E-04 1.8 4 0.0040 3.643E-07 1.85 2.28E-02 1.6E-05 2 7.286E-07 1.348E-06 2.494E-06 8.535E-06 1.9 2.00E-02 0.0040 1.6E-05 4 3.196E-07 1.278E-06 2.429E-06 4.614E-06 1.666E-05 1.95 1.76E-02 0.0030 9.0E-06 2 1.582E-07 3.163E-07 6.168E-07 1.203E-06 4.574E-06 2 1.55E-02 0.0030 9.0E-06 1.396E-07 5.584E-07 1.117E-06 2.234E-06 8.934E-06 4 2.05 1.37E-02 0.0030 9.0E-06 1.236E-07 2.533E-07 5.193E-07 2.182E-06 1 1.236E-07 9.30E-01 8.55E+00 4.73E+00 2.68E+00

m _{r0} =	0.14254300	deg ²
m _{r1} =	0.07881881	m ² (rad/s)
m _{r2} =	0.04460246	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	0.01550490	$deg^{2}(rad^{4}/s^{4})$

Σ1

Σ2

Σ4

T ₀ =	11.3631	S
T _p =	10.6568	S
T _z =	11.2324	S
ω ₀ =	0.5529	rad/s
ω_p =	0.5896	rad/s
$\omega_z =$	0.5594	rad/s
$\zeta_{zs} =$	0.7551	deg
$\zeta_{zav} =$	0.4719	deg
$\zeta_{z1/10} =$	0.9590	deg
$\zeta_{zext(\alpha=0.01)} =$	2.3676	deg

Calculation for H significant 1.98 m

(50 year period) - ROLL (90°)

H _s =	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

				Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	2	9	4	୦	6	7	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0150	2.3E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0600	3.6E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.1400	2.0E-02	2	9.279E-203	1.856E-202	2.784E-203	4.175E-204	9.395E-206
0.2	4.19E-62	0.2640	7.0E-02	4	2.921E-63	1.168E-62	2.336E-63	4.673E-64	1.869E-65
0.25	1.90E-24	0.4540	2.1E-01	2	3.915E-25	7.830E-25	1.957E-25	4.893E-26	3.058E-27
0.3	3.83E-11	0.7670	5.9E-01	4	2.251E-11	9.003E-11	2.701E-11	8.103E-12	7.292E-13
0.35	1.32E-05	1.3960	1.9E+00	2	2.574E-05	5.148E-05	1.802E-05	6.307E-06	7.726E-07
0.4	4.80E-03	2.5940	6.7E+00	4	3.230E-02	1.292E-01	5.168E-02	2.067E-02	3.308E-03
0.45	8.76E-02	2.9330	8.6E+00	2	7.535E-01	1.507E+00	6.782E-01	3.052E-01	6.180E-02
0.5	3.81E-01	1.7790	3.2E+00	4	1.205E+00	4.819E+00	2.409E+00	1.205E+00	3.012E-01
0.55	7.90E-01	1.0400	1.1E+00	2	8.548E-01	1.710E+00	9.403E-01	5.172E-01	1.564E-01
0.6	1.10E+00	0.6850	4.7E-01	4	5.155E-01	2.062E+00	1.237E+00	7.424E-01	2.673E-01
0.65	1.22E+00	0.4820	2.3E-01	2	2.829E-01	5.658E-01	3.678E-01	2.391E-01	1.010E-01
0.7	1.18E+00	0.3500	1.2E-01	4	1.450E-01	5.799E-01	4.060E-01	2.842E-01	1.392E-01
0.75	1.06E+00	0.2580	6.7E-02	2	7.087E-02	1.417E-01	1.063E-01	7.972E-02	4.484E-02
0.8	9.15E-01	0.1920	3.7E-02	4	3.373E-02	1.349E-01	1.079E-01	8.634E-02	5.526E-02
0.85	7.66E-01	0.1460	2.1E-02	2	1.632E-02	3.264E-02	2.775E-02	2.359E-02	1.704E-02
0.9	6.32E-01	0.1100	1.2E-02	4	7.642E-03	3.057E-02	2.751E-02	2.476E-02	2.006E-02
0.95	5.17E-01	0.0840	7.1E-03	2	3.649E-03	7.299E-03	6.934E-03	6.587E-03	5.945E-03
1	4.22E-01	0.0630	4.0E-03	4	1.677E-03	6.708E-03	6.708E-03	6.708E-03	6.708E-03
1.05	3.45E-01	0.0370	1.4E-03	2	4.727E-04	9.454E-04	9.927E-04	1.042E-03	1.149E-03
1.1	2.83E-01	0.0450	2.0E-03	4	5.729E-04	2.291E-03	2.521E-03	2.773E-03	3.355E-03
1.15	2.33E-01	0.0300	9.0E-04	2	2.093E-04	4.187E-04	4.815E-04	5.537E-04	7.322E-04
1.2	1.92E-01	0.0270	7.3E-04	4	1.400E-04	5.600E-04	6.720E-04	8.065E-04	1.161E-03
1.25	1.59E-01	0.0220	4.8E-04	2	7.712E-05	1.542E-04	1.928E-04	2.410E-04	3.765E-04
1.3	1.33E-01	0.0170	2.9E-04	4	3.839E-05	1.535E-04	1.996E-04	2.595E-04	4.385E-04
1.35	1.11E-01	0.0140	2.0E-04	2	2.181E-05	4.362E-05	5.889E-05	7.950E-05	1.449E-04
1.4	9.37E-02	0.0110	1.2E-04	4	1.133E-05	4.534E-05	6.348E-05	8.887E-05	1.742E-04
1.45	7.92E-02	0.0080	6.4E-05	2	5.072E-06	1.014E-05	1.471E-05	2.133E-05	4.484E-05
1.5	6.73E-02	0.0080	6.4E-05	4	4.310E-06	1.724E-05	2.586E-05	3.879E-05	8.728E-05
1.55	5.75E-02	0.0060	3.6E-05	2	2.070E-06	4.140E-06	6.416E-06	9.945E-06	2.389E-05
1.6	4.93E-02	0.0050	2.5E-05	4	1.232E-06	4.930E-06	7.887E-06	1.262E-05	3.231E-05

FSO VLCC										
1.65	4.24E-02	0.0040	1.6E-05	2	6.791E-07	1.358E-06	2.241E-06	3.698E-06	1.007E-05	
1.7	3.67E-02	0.0040	1.6E-05	4	5.871E-07	2.348E-06	3.992E-06	6.786E-06	1.961E-05	
1.75	3.18E-02	0.0040	1.6E-05	2	5.094E-07	1.019E-06	1.783E-06	3.120E-06	9.556E-06	
1.8	2.77E-02	0.0100	1.0E-04	4	2.773E-06	1.109E-05	1.997E-05	3.594E-05	1.164E-04	
1.85	2.42E-02	0.0040	1.6E-05	2	3.878E-07	7.756E-07	1.435E-06	2.655E-06	9.085E-06	
1.9	2.13E-02	0.0040	1.6E-05	4	3.401E-07	1.360E-06	2.585E-06	4.911E-06	1.773E-05	
1.95	1.87E-02	0.0030	9.0E-06	2	1.683E-07	3.366E-07	6.564E-07	1.280E-06	4.867E-06	
2	1.65E-02	0.0030	9.0E-06	4	1.485E-07	5.941E-07	1.188E-06	2.376E-06	9.506E-06	
2.05	1.46E-02	0.0030	9.0E-06	1	1.315E-07	1.315E-07	2.695E-07	5.525E-07	2.322E-06	
						1.17E+01	6.38E+00	3.55E+00	1.19E+00	
						Σ0	Σ1	Σ2	Σ4	

 deg^2 m_{r0}= 0.19551834 m_{r1} = 0.10631608 m²(rad/s) m_{r2} = 0.05911674 deg²(rad²/s²) $m_{r4} = 0.01979991 \text{ deg}^2(rad^4/s^4)$

T ₀ =	11.5550	S
T _p =	10.8568	S
T _z =	11.4266	S
ω ₀ =	0.5438	rad/s
ω_p =	0.5787	rad/s
$\omega_z =$	0.5499	rad/s
$\zeta_{zs} =$	0.8843	deg
$\zeta_{zav} =$	0.5527	deg
$\zeta_{z1/10} =$	1.1231	deg
$\zeta_{zext(\alpha=0.01)} =$	2.7716	deg

Calculation for H significant 2.02 m

(100 year period) - ROLL (90°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

	0			ß	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Z	9	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3101	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	[dg ² (rad ³ /s ³)]
0.05	0.00E+00	0.0150	2.3E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0600	3.6E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.1400	2.0E-02	2	1.202E-196	2.405E-196	3.607E-197	5.411E-198	1.217E-199
0.2	3.66E-60	0.2640	7.0E-02	4	2.550E-61	1.020E-60	2.040E-61	4.080E-62	1.632E-63
0.25	1.20E-23	0.4540	2.1E-01	2	2.477E-24	4.953E-24	1.238E-24	3.096E-25	1.935E-26
0.3	9.43E-11	0.7670	5.9E-01	4	5.546E-11	2.219E-10	6.656E-11	1.997E-11	1.797E-12
0.35	2.17E-05	1.3960	1.9E+00	2	4.234E-05	8.469E-05	2.964E-05	1.037E-05	1.271E-06
0.4	6.49E-03	2.5940	6.7E+00	4	4.367E-02	1.747E-01	6.987E-02	2.795E-02	4.472E-03
0.45	1.07E-01	2.9330	8.6E+00	2	9.177E-01	1.835E+00	8.260E-01	3.717E-01	7.526E-02
0.5	4.37E-01	1.7790	3.2E+00	4	1.382E+00	5.529E+00	2.765E+00	1.382E+00	3.456E-01
0.55	8.75E-01	1.0400	1.1E+00	2	9.461E-01	1.892E+00	1.041E+00	5.724E-01	1.731E-01
0.6	1.19E+00	0.6850	4.7E-01	4	5.577E-01	2.231E+00	1.338E+00	8.031E-01	2.891E-01
0.65	1.30E+00	0.4820	2.3E-01	2	3.015E-01	6.030E-01	3.919E-01	2.548E-01	1.076E-01
0.7	1.25E+00	0.3500	1.2E-01	4	1.529E-01	6.117E-01	4.282E-01	2.997E-01	1.469E-01
0.75	1.11E+00	0.2580	6.7E-02	2	7.422E-02	1.484E-01	1.113E-01	8.349E-02	4.696E-02
0.8	9.53E-01	0.1920	3.7E-02	4	3.514E-02	1.406E-01	1.125E-01	8.996E-02	5.758E-02
0.85	7.95E-01	0.1460	2.1E-02	2	1.694E-02	3.389E-02	2.880E-02	2.448E-02	1.769E-02
0.9	6.54E-01	0.1100	1.2E-02	4	7.911E-03	3.164E-02	2.848E-02	2.563E-02	2.076E-02
0.95	5.34E-01	0.0840	7.1E-03	2	3.770E-03	7.539E-03	7.162E-03	6.804E-03	6.141E-03
1	4.36E-01	0.0630	4.0E-03	4	1.729E-03	6.917E-03	6.917E-03	6.917E-03	6.917E-03
1.05	3.56E-01	0.0370	1.4E-03	2	4.869E-04	9.738E-04	1.022E-03	1.074E-03	1.184E-03
1.1	2.91E-01	0.0450	2.0E-03	4	5.895E-04	2.358E-03	2.594E-03	2.853E-03	3.452E-03
1.15	2.39E-01	0.0300	9.0E-04	2	2.152E-04	4.305E-04	4.950E-04	5.693E-04	7.529E-04
1.2	1.97E-01	0.0270	7.3E-04	4	1.439E-04	5.754E-04	6.905E-04	8.286E-04	1.193E-03
1.25	1.64E-01	0.0220	4.8E-04	2	7.919E-05	1.584E-04	1.980E-04	2.475E-04	3.867E-04
1.3	1.36E-01	0.0170	2.9E-04	4	3.940E-05	1.576E-04	2.049E-04	2.664E-04	4.502E-04
1.35	1.14E-01	0.0140	2.0E-04	2	2.238E-05	4.476E-05	6.043E-05	8.158E-05	1.487E-04
1.4	9.61E-02	0.0110	1.2E-04	4	1.163E-05	4.651E-05	6.512E-05	9.117E-05	1.787E-04
1.45	8.13E-02	0.0080	6.4E-05	2	5.202E-06	1.040E-05	1.508E-05	2.187E-05	4.599E-05
1.5	6.91E-02	0.0080	6.4E-05	4	4.420E-06	1.768E-05	2.652E-05	3.978E-05	8.950E-05
1.55	5.89E-02	0.0060	3.6E-05	2	2.122E-06	4.244E-06	6.578E-06	1.020E-05	2.450E-05
1.6	5.05E-02	0.0050	2.5E-05	4	1.263E-06	5.053E-06	8.085E-06	1.294E-05	3.312E-05

	FSO VLCC										
1.6	5 4.35E-02	0.0040	1.6E-05	2	6.961E-07	1.392E-06	2.297E-06	3.790E-06	1.032E-05		
1.7	3.76E-02	0.0040	1.6E-05	4	6.016E-07	2.407E-06	4.091E-06	6.955E-06	2.010E-05		
1.7	5 3.26E-02	0.0040	1.6E-05	2	5.221E-07	1.044E-06	1.827E-06	3.198E-06	9.793E-06		
1.8	2.84E-02	0.0100	1.0E-04	4	2.842E-06	1.137E-05	2.046E-05	3.683E-05	1.193E-04		
1.8	5 2.48E-02	0.0040	1.6E-05	2	3.974E-07	7.947E-07	1.470E-06	2.720E-06	9.309E-06		
1.9	2.18E-02	0.0040	1.6E-05	4	3.484E-07	1.394E-06	2.648E-06	5.032E-06	1.816E-05		
1.9	5 1.92E-02	0.0030	9.0E-06	2	1.724E-07	3.449E-07	6.725E-07	1.311E-06	4.986E-06		
2	1.69E-02	0.0030	9.0E-06	4	1.522E-07	6.086E-07	1.217E-06	2.435E-06	9.738E-06		
2.0	5 1.50E-02	0.0030	9.0E-06	1	1.347E-07	1.347E-07	2.761E-07	5.659E-07	2.378E-06		
						1.33E+01	7.16E+00	3.96E+00	1.31E+00		
						Σ0	Σ1	Σ2	Σ4		

m _{r0} =	0.22084438	deg ²
m _{r1} =	0.11933682	m ² (rad/s)
m _{r2} =	0.06592149	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	0.02177080	$deg^{2}(rad^{4}/s^{4})$

T ₀ =	11.6276	S
T _p =	10.9334	S
$T_z =$	11.5003	S
ω ₀ =	0.5404	rad/s
ω _p =	0.5747	rad/s
$\omega_z =$	0.5463	rad/s
$\zeta_{zs} =$	0.9399	deg
$\zeta_{zav} =$	0.5874	deg
$\zeta_{z1/10} =$	1.1936	deg
$\zeta_{zext(\alpha=0.01)} =$	2.9452	deg

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - PITCH

Calculation for H significant 1.89 m

(10 year period) - PITCH (180°)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

				Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
		3	4	ଓ	6	7	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	2111	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0160	2.6E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0640	4.1E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.1450	2.1E-02	2	2.711E-219	5.422E-219	8.133E-220	1.220E-220	2.745E-222
0.2	2.31E-67	0.2560	6.6E-02	4	1.512E-68	6.047E-68	1.209E-68	2.419E-69	9.675E-71
0.25	1.28E-26	0.3910	1.5E-01	2	1.964E-27	3.928E-27	9.820E-28	2.455E-28	1.534E-29
0.3	3.33E-12	0.5300	2.8E-01	4	9.359E-13	3.743E-12	1.123E-12	3.369E-13	3.032E-14
0.35	3.44E-06	0.6400	4.1E-01	2	1.409E-06	2.818E-06	9.862E-07	3.452E-07	4.228E-08
0.4	2.13E-03	0.6700	4.5E-01	4	9.549E-04	3.820E-03	1.528E-03	6.111E-04	9.778E-05
0.45	5.15E-02	0.5590	3.1E-01	2	1.609E-02	3.219E-02	1.449E-02	6.518E-03	1.320E-03
0.5	2.63E-01	0.2990	8.9E-02	4	2.352E-02	9.409E-02	4.705E-02	2.352E-02	5.881E-03
0.55	6.02E-01	0.0820	6.7E-03	2	4.051E-03	8.101E-03	4.456E-03	2.451E-03	7.413E-04
0.6	8.91E-01	0.1240	1.5E-02	4	1.370E-02	5.480E-02	3.288E-02	1.973E-02	7.102E-03
0.65	1.03E+00	0.0880	7.7E-03	2	7.966E-03	1.593E-02	1.036E-02	6.731E-03	2.844E-03
0.7	1.03E+00	0.0020	4.0E-06	4	4.111E-06	1.644E-05	1.151E-05	8.058E-06	3.948E-06
0.75	9.43E-01	0.0330	1.1E-03	2	1.026E-03	2.053E-03	1.540E-03	1.155E-03	6.496E-04
0.8	8.21E-01	0.0150	2.3E-04	4	1.848E-04	7.392E-04	5.914E-04	4.731E-04	3.028E-04
0.85	6.94E-01	0.0230	5.3E-04	2	3.673E-04	7.347E-04	6.245E-04	5.308E-04	3.835E-04
0.9	5.77E-01	0.0290	8.4E-04	4	4.853E-04	1.941E-03	1.747E-03	1.572E-03	1.274E-03
0.95	4.75E-01	0.0190	3.6E-04	2	1.716E-04	3.432E-04	3.260E-04	3.097E-04	2.795E-04
1	3.90E-01	0.0060	3.6E-05	4	1.404E-05	5.616E-05	5.616E-05	5.616E-05	5.616E-05
1.05	3.20E-01	0.0110	1.2E-04	2	3.870E-05	7.739E-05	8.126E-05	8.533E-05	9.407E-05
1.1	2.63E-01	0.0090	8.1E-05	4	2.128E-05	8.512E-05	9.363E-05	1.030E-04	1.246E-04
1.15	2.16E-01	0.0080	6.4E-05	2	1.385E-05	2.771E-05	3.186E-05	3.664E-05	4.846E-05
1.2	1.79E-01	0.0140	2.0E-04	4	3.509E-05	1.404E-04	1.684E-04	2.021E-04	2.911E-04
1.25	1.49E-01	0.0070	4.9E-05	2	7.289E-06	1.458E-05	1.822E-05	2.278E-05	3.559E-05
1.3	1.24E-01	0.0050	2.5E-05	4	3.104E-06	1.241E-05	1.614E-05	2.098E-05	3.546E-05
1.35	1.04E-01	0.0010	1.0E-06	2	1.041E-07	2.082E-07	2.811E-07	3.794E-07	6.915E-07
1.4	8.77E-02	0.0040	1.6E-05	4	1.403E-06	5.613E-06	7.859E-06	1.100E-05	2.156E-05
1.45	7.42E-02	0.0030	9.0E-06	2	6.682E-07	1.336E-06	1.938E-06	2.810E-06	5.907E-06
1.5	6.31E-02	0.0010	1.0E-06	4	6.313E-08	2.525E-07	3.788E-07	5.682E-07	1.278E-06
1.55	5.39E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.6	4.63E-02	0.0020	4.0E-06	4	1.850E-07	7.400E-07	1.184E-06	1.894E-06	4.850E-06

	FSO VLCC								
1.65	3.98E-02	0.0010	1.0E-06	2	3.984E-08	7.967E-08	1.315E-07	2.169E-07	5.905E-07
1.7	3.44E-02	0.0010	1.0E-06	4	3.445E-08	1.378E-07	2.342E-07	3.982E-07	1.151E-06
1.75	2.99E-02	0.0010	1.0E-06	2	2.990E-08	5.980E-08	1.046E-07	1.831E-07	5.608E-07
1.8	2.60E-02	0.0010	1.0E-06	4	2.605E-08	1.042E-07	1.875E-07	3.376E-07	1.094E-06
1.85	2.28E-02	0.0010	1.0E-06	2	2.277E-08	4.554E-08	8.425E-08	1.559E-07	5.334E-07
1.9	2.00E-02	0.0020	4.0E-06	4	7.989E-08	3.196E-07	6.072E-07	1.154E-06	4.164E-06
1.95	1.76E-02	0.0010	1.0E-06	2	1.757E-08	3.515E-08	6.854E-08	1.336E-07	5.082E-07
2	1.55E-02	0.0010	1.0E-06	4	1.551E-08	6.204E-08	1.241E-07	2.482E-07	9.927E-07
2.05	1.37E-02	0.0010	1.0E-06	1	1.373E-08	1.373E-08	2.815E-08	5.770E-08	2.425E-07
						2.15E-01	1.16E-01	6.42E-02	2.16E-02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	0.00358639	deg ²
m _{r1} =	0.00193447	m ² (rad/s)
m _{r2} =	0.00106928	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	0.00036013	$deg^{2}(rad^{4}/s^{4})$

T ₀ =	11.6486	S
T _p =	10.8267	S
$T_z =$	11.5070	S
ω ₀ =	0.5394	rad/s
ω _p =	0.5803	rad/s
ω_z =	0.5460	rad/s
$\zeta_{zs} =$	0.1198	deg
$\zeta_{zav} =$	0.0749	deg
$\zeta_{z1/10} =$	0.1521	deg
$\zeta_{zext(\alpha=0.01)} =$	0.3753	deg

Calculation for H significant 1.98 m

(50 year period) - PITCH (180°)

H _s =	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	0			Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
		3	4	9	6	\overline{O}	8	9	10
ω	S(ω)	RAO	RAO ²	SM	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0160	2.6E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0640	4.1E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.1450	2.1E-02	2	9.953E-203	1.991E-202	2.986E-203	4.479E-204	1.008E-205
0.2	4.19E-62	0.2560	6.6E-02	4	2.746E-63	1.099E-62	2.197E-63	4.394E-64	1.758E-65
0.25	1.90E-24	0.3910	1.5E-01	2	2.904E-25	5.807E-25	1.452E-25	3.630E-26	2.269E-27
0.3	3.83E-11	0.5300	2.8E-01	4	1.075E-11	4.299E-11	1.290E-11	3.869E-12	3.482E-13
0.35	1.32E-05	0.6400	4.1E-01	2	5.410E-06	1.082E-05	3.787E-06	1.326E-06	1.624E-07
0.4	4.80E-03	0.6700	4.5E-01	4	2.155E-03	8.619E-03	3.448E-03	1.379E-03	2.207E-04
0.45	8.76E-02	0.5590	3.1E-01	2	2.737E-02	5.474E-02	2.463E-02	1.109E-02	2.245E-03
0.5	3.81E-01	0.2990	8.9E-02	4	3.403E-02	1.361E-01	6.806E-02	3.403E-02	8.508E-03
0.55	7.90E-01	0.0820	6.7E-03	2	5.314E-03	1.063E-02	5.845E-03	3.215E-03	9.725E-04
0.6	1.10E+00	0.1240	1.5E-02	4	1.689E-02	6.757E-02	4.054E-02	2.433E-02	8.758E-03
0.65	1.22E+00	0.0880	7.7E-03	2	9.431E-03	1.886E-02	1.226E-02	7.969E-03	3.367E-03
0.7	1.18E+00	0.0020	4.0E-06	4	4.734E-06	1.894E-05	1.326E-05	9.279E-06	4.547E-06
0.75	1.06E+00	0.0330	1.1E-03	2	1.159E-03	2.319E-03	1.739E-03	1.304E-03	7.337E-04
0.8	9.15E-01	0.0150	2.3E-04	4	2.059E-04	8.234E-04	6.587E-04	5.270E-04	3.373E-04
0.85	7.66E-01	0.0230	5.3E-04	2	4.051E-04	8.101E-04	6.886E-04	5.853E-04	4.229E-04
0.9	6.32E-01	0.0290	8.4E-04	4	5.312E-04	2.125E-03	1.912E-03	1.721E-03	1.394E-03
0.95	5.17E-01	0.0190	3.6E-04	2	1.867E-04	3.734E-04	3.548E-04	3.370E-04	3.042E-04
1	4.22E-01	0.0060	3.6E-05	4	1.521E-05	6.084E-05	6.084E-05	6.084E-05	6.084E-05
1.05	3.45E-01	0.0110	1.2E-04	2	4.178E-05	8.356E-05	8.774E-05	9.213E-05	1.016E-04
1.1	2.83E-01	0.0090	8.1E-05	4	2.291E-05	9.166E-05	1.008E-04	1.109E-04	1.342E-04
1.15	2.33E-01	0.0080	6.4E-05	2	1.489E-05	2.977E-05	3.424E-05	3.937E-05	5.207E-05
1.2	1.92E-01	0.0140	2.0E-04	4	3.764E-05	1.506E-04	1.807E-04	2.168E-04	3.122E-04
1.25	1.59E-01	0.0070	4.9E-05	2	7.807E-06	1.561E-05	1.952E-05	2.440E-05	3.812E-05
1.3	1.33E-01	0.0050	2.5E-05	4	3.321E-06	1.328E-05	1.727E-05	2.245E-05	3.794E-05
1.35	1.11E-01	0.0010	1.0E-06	2	1.113E-07	2.225E-07	3.004E-07	4.056E-07	7.392E-07
1.4	9.37E-02	0.0040	1.6E-05	4	1.499E-06	5.995E-06	8.394E-06	1.175E-05	2.303E-05
1.45	7.92E-02	0.0030	9.0E-06	2	7.132E-07	1.426E-06	2.068E-06	2.999E-06	6.305E-06
1.5	6.73E-02	0.0010	1.0E-06	4	6.735E-08	2.694E-07	4.041E-07	6.061E-07	1.364E-06
1.55	5.75E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.6	4.93E-02	0.0020	4.0E-06	4	1.972E-07	7.887E-07	1.262E-06	2.019E-06	5.169E-06

FSO VLCC									
1.65	4.24E-02	0.0010	1.0E-06	2	4.244E-08	8.489E-08	1.401E-07	2.311E-07	6.292E-07
1.7	3.67E-02	0.0010	1.0E-06	4	3.669E-08	1.468E-07	2.495E-07	4.242E-07	1.226E-06
1.75	3.18E-02	0.0010	1.0E-06	2	3.184E-08	6.368E-08	1.114E-07	1.950E-07	5.972E-07
1.8	2.77E-02	0.0010	1.0E-06	4	2.773E-08	1.109E-07	1.997E-07	3.594E-07	1.164E-06
1.85	2.42E-02	0.0010	1.0E-06	2	2.424E-08	4.848E-08	8.968E-08	1.659E-07	5.678E-07
1.9	2.13E-02	0.0020	4.0E-06	4	8.502E-08	3.401E-07	6.462E-07	1.228E-06	4.432E-06
1.95	1.87E-02	0.0010	1.0E-06	2	1.870E-08	3.740E-08	7.293E-08	1.422E-07	5.408E-07
2	1.65E-02	0.0010	1.0E-06	4	1.650E-08	6.601E-08	1.320E-07	2.641E-07	1.056E-06
2.05	1.46E-02	0.0010	1.0E-06	1	1.461E-08	1.461E-08	2.994E-08	6.139E-08	2.580E-07
						3.03E-01	1.61E-01	8.71E-02	2.81E-02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	0.00505801	deg ²
m _{r1} =	0.00267796	m ² (rad/s)
m _{r2} =	0.00145130	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	0.00046751	$deg^{2}(rad^{4}/s^{4})$

T ₀ =	11.8674	S
T _p =	11.0704	S
$T_z =$	11.7298	S
ω ₀ =	0.5294	rad/s
ω _p =	0.5676	rad/s
$\omega_z =$	0.5357	rad/s
$\zeta_{zs} =$	0.1422	deg
$\zeta_{zav} =$	0.0889	deg
$\zeta_{z1/10} =$	0.1806	deg
$\zeta_{zext(\alpha=0.01)} =$	0.4455	deg

Calculation for H significant 2.02 m

(100 year period) - PITCH (180°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

			Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦	
Ū	Z	9	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0160	2.6E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0640	4.1E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.1450	2.1E-02	2	1.290E-196	2.580E-196	3.870E-197	5.804E-198	1.306E-199
0.2	3.66E-60	0.2560	6.6E-02	4	2.398E-61	9.592E-61	1.918E-61	3.837E-62	1.535E-63
0.25	1.20E-23	0.3910	1.5E-01	2	1.837E-24	3.674E-24	9.185E-25	2.296E-25	1.435E-26
0.3	9.43E-11	0.5300	2.8E-01	4	2.648E-11	1.059E-10	3.178E-11	9.534E-12	8.581E-13
0.35	2.17E-05	0.6400	4.1E-01	2	8.900E-06	1.780E-05	6.230E-06	2.180E-06	2.671E-07
0.4	6.49E-03	0.6700	4.5E-01	4	2.913E-03	1.165E-02	4.661E-03	1.865E-03	2.983E-04
0.45	1.07E-01	0.5590	3.1E-01	2	3.334E-02	6.667E-02	3.000E-02	1.350E-02	2.734E-03
0.5	4.37E-01	0.2990	8.9E-02	4	3.905E-02	1.562E-01	7.809E-02	3.905E-02	9.762E-03
0.55	8.75E-01	0.0820	6.7E-03	2	5.881E-03	1.176E-02	6.469E-03	3.558E-03	1.076E-03
0.6	1.19E+00	0.1240	1.5E-02	4	1.827E-02	7.310E-02	4.386E-02	2.632E-02	9.474E-03
0.65	1.30E+00	0.0880	7.7E-03	2	1.005E-02	2.010E-02	1.306E-02	8.492E-03	3.588E-03
0.7	1.25E+00	0.0020	4.0E-06	4	4.994E-06	1.997E-05	1.398E-05	9.787E-06	4.796E-06
0.75	1.11E+00	0.0330	1.1E-03	2	1.214E-03	2.428E-03	1.821E-03	1.366E-03	7.683E-04
0.8	9.53E-01	0.0150	2.3E-04	4	2.145E-04	8.579E-04	6.864E-04	5.491E-04	3.514E-04
0.85	7.95E-01	0.0230	5.3E-04	2	4.205E-04	8.410E-04	7.148E-04	6.076E-04	4.390E-04
0.9	6.54E-01	0.0290	8.4E-04	4	5.498E-04	2.199E-03	1.979E-03	1.781E-03	1.443E-03
0.95	5.34E-01	0.0190	3.6E-04	2	1.929E-04	3.857E-04	3.664E-04	3.481E-04	3.142E-04
1	4.36E-01	0.0060	3.6E-05	4	1.569E-05	6.274E-05	6.274E-05	6.274E-05	6.274E-05
1.05	3.56E-01	0.0110	1.2E-04	2	4.303E-05	8.607E-05	9.037E-05	9.489E-05	1.046E-04
1.1	2.91E-01	0.0090	8.1E-05	4	2.358E-05	9.431E-05	1.037E-04	1.141E-04	1.381E-04
1.15	2.39E-01	0.0080	6.4E-05	2	1.530E-05	3.061E-05	3.520E-05	4.048E-05	5.354E-05
1.2	1.97E-01	0.0140	2.0E-04	4	3.868E-05	1.547E-04	1.857E-04	2.228E-04	3.208E-04
1.25	1.64E-01	0.0070	4.9E-05	2	8.018E-06	1.604E-05	2.004E-05	2.506E-05	3.915E-05
1.3	1.36E-01	0.0050	2.5E-05	4	3.409E-06	1.363E-05	1.773E-05	2.304E-05	3.894E-05
1.35	1.14E-01	0.0010	1.0E-06	2	1.142E-07	2.284E-07	3.083E-07	4.162E-07	7.585E-07
1.4	9.61E-02	0.0040	1.6E-05	4	1.538E-06	6.151E-06	8.611E-06	1.206E-05	2.363E-05
1.45	8.13E-02	0.0030	9.0E-06	2	7.315E-07	1.463E-06	2.121E-06	3.076E-06	6.467E-06
1.5	6.91E-02	0.0010	1.0E-06	4	6.906E-08	2.762E-07	4.143E-07	6.215E-07	1.398E-06
1.55	5.89E-02	0.0000	0.0E+00	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.6	5.05E-02	0.0020	4.0E-06	4	2.021E-07	8.085E-07	1.294E-06	2.070E-06	5.299E-06

FSO VLCC									
1.65	4.35E-02	0.0010	1.0E-06	2	4.350E-08	8.701E-08	1.436E-07	2.369E-07	6.449E-07
1.7	3.76E-02	0.0010	1.0E-06	4	3.760E-08	1.504E-07	2.557E-07	4.347E-07	1.256E-06
1.75	3.26E-02	0.0010	1.0E-06	2	3.263E-08	6.526E-08	1.142E-07	1.998E-07	6.120E-07
1.8	2.84E-02	0.0010	1.0E-06	4	2.842E-08	1.137E-07	2.046E-07	3.683E-07	1.193E-06
1.85	2.48E-02	0.0010	1.0E-06	2	2.483E-08	4.967E-08	9.189E-08	1.700E-07	5.818E-07
1.9	2.18E-02	0.0020	4.0E-06	4	8.711E-08	3.484E-07	6.620E-07	1.258E-06	4.541E-06
1.95	1.92E-02	0.0010	1.0E-06	2	1.916E-08	3.832E-08	7.472E-08	1.457E-07	5.540E-07
2	1.69E-02	0.0010	1.0E-06	4	1.691E-08	6.763E-08	1.353E-07	2.705E-07	1.082E-06
2.05	1.50E-02	0.0010	1.0E-06	1	1.496E-08	1.496E-08	3.067E-08	6.288E-08	2.643E-07
						3.47E-01	1.82E-01	9.80E-02	3.11E-02

m _{r0} =	0.00577819	deg ²
m _{r1} =	0.00303781	m ² (rad/s)
m _{r2} =	0.00163411	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	0.00051765	$deg^{2}(rad^{4}/s^{4})$

Σ1

Σ2

Σ4

ΣΟ

T ₀ =	11.9512	S
T _p =	11.1636	S
$T_z =$	11.8150	S
ω ₀ =	0.5257	rad/s
ω _p =	0.5628	rad/s
$\omega_z =$	0.5318	rad/s
$\zeta_{zs} =$	0.1520	deg
$\zeta_{zav} =$	0.0950	deg
$\zeta_{z1/10} =$	0.1931	deg
$\zeta_{zext(\alpha=0.01)} =$	0.4761	deg
SPECTRAL CALCULATION AND ANALYSIS FSO VLCC

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - YAW

Calculation for H significant 1.89 m

(10 year period) - YAW (135°)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α=	0.0052	

	0		6	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦	
	Z	9	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.006	3.6E-05	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.025	6.3E-04	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.054	2.9E-03	2	3.760E-220	7.520E-220	1.128E-220	1.692E-221	3.807E-223
0.2	2.31E-67	0.094	8.8E-03	4	2.038E-69	8.153E-69	1.631E-69	3.261E-70	1.304E-71
0.25	1.28E-26	0.139	1.9E-02	2	2.482E-28	4.964E-28	1.241E-28	3.103E-29	1.939E-30
0.3	3.33E-12	0.186	3.5E-02	4	1.153E-13	4.611E-13	1.383E-13	4.149E-14	3.735E-15
0.35	3.44E-06	0.227	5.2E-02	2	1.772E-07	3.545E-07	1.241E-07	4.342E-08	5.319E-09
0.4	2.13E-03	0.259	6.7E-02	4	1.427E-04	5.708E-04	2.283E-04	9.132E-05	1.461E-05
0.45	5.15E-02	0.254	6.5E-02	2	3.323E-03	6.646E-03	2.991E-03	1.346E-03	2.725E-04
0.5	2.63E-01	0.225	5.1E-02	4	1.332E-02	5.328E-02	2.664E-02	1.332E-02	3.330E-03
0.55	6.02E-01	0.176	3.1E-02	2	1.866E-02	3.732E-02	2.053E-02	1.129E-02	3.415E-03
0.6	8.91E-01	0.114	1.3E-02	4	1.158E-02	4.632E-02	2.779E-02	1.667E-02	6.002E-03
0.65	1.03E+00	0.057	3.2E-03	2	3.342E-03	6.684E-03	4.345E-03	2.824E-03	1.193E-03
0.7	1.03E+00	0.032	1.0E-03	4	1.052E-03	4.210E-03	2.947E-03	2.063E-03	1.011E-03
0.75	9.43E-01	0.036	1.3E-03	2	1.222E-03	2.443E-03	1.832E-03	1.374E-03	7.730E-04
0.8	8.21E-01	0.032	1.0E-03	4	8.411E-04	3.364E-03	2.691E-03	2.153E-03	1.378E-03
0.85	6.94E-01	0.024	5.8E-04	2	4.000E-04	8.000E-04	6.800E-04	5.780E-04	4.176E-04
0.9	5.77E-01	0.018	3.2E-04	4	1.870E-04	7.479E-04	6.731E-04	6.058E-04	4.907E-04
0.95	4.75E-01	0.008	6.4E-05	2	3.042E-05	6.084E-05	5.780E-05	5.491E-05	4.955E-05
1	3.90E-01	0.003	9.0E-06	4	3.510E-06	1.404E-05	1.404E-05	1.404E-05	1.404E-05
1.05	3.20E-01	0.003	9.0E-06	2	2.878E-06	5.757E-06	6.044E-06	6.347E-06	6.997E-06
1.1	2.63E-01	0.009	8.1E-05	4	2.128E-05	8.512E-05	9.363E-05	1.030E-04	1.246E-04
1.15	2.16E-01	0.016	2.6E-04	2	5.542E-05	1.108E-04	1.275E-04	1.466E-04	1.938E-04
1.2	1.79E-01	0.012	1.4E-04	4	2.578E-05	1.031E-04	1.238E-04	1.485E-04	2.139E-04
1.25	1.49E-01	0.003	9.0E-06	2	1.339E-06	2.677E-06	3.347E-06	4.184E-06	6.537E-06
1.3	1.24E-01	0.011	1.2E-04	4	1.502E-05	6.009E-05	7.811E-05	1.015E-04	1.716E-04
1.35	1.04E-01	0.005	2.5E-05	2	2.603E-06	5.205E-06	7.027E-06	9.486E-06	1.729E-05
1.4	8.77E-02	0.007	4.9E-05	4	4.298E-06	1.719E-05	2.407E-05	3.369E-05	6.604E-05
1.45	7.42E-02	0.008	6.4E-05	2	4.751E-06	9.503E-06	1.378E-05	1.998E-05	4.201E-05
1.5	6.31E-02	0.002	4.0E-06	4	2.525E-07	1.010E-06	1.515E-06	2.273E-06	5.114E-06
1.55	5.39E-02	0.003	9.0E-06	2	4.853E-07	9.706E-07	1.504E-06	2.332E-06	5.602E-06
1.6	4.63E-02	0.002	4.0E-06	4	1.850E-07	7.400E-07	1.184E-06	1.894E-06	4.850E-06

FSO VLCC										
1.65	3.98E-02	0.001	1.0E-06	2	3.984E-08	7.967E-08	1.315E-07	2.169E-07	5.905E-07	
1.7	3.44E-02	0.003	9.0E-06	4	3.100E-07	1.240E-06	2.108E-06	3.584E-06	1.036E-05	
1.75	2.99E-02	0.001	1.0E-06	2	2.990E-08	5.980E-08	1.046E-07	1.831E-07	5.608E-07	
1.8	2.60E-02	0.002	4.0E-06	4	1.042E-07	4.168E-07	7.502E-07	1.350E-06	4.375E-06	
1.85	2.28E-02	0.002	4.0E-06	2	9.108E-08	1.822E-07	3.370E-07	6.234E-07	2.134E-06	
1.9	2.00E-02	0.003	9.0E-06	4	1.797E-07	7.190E-07	1.366E-06	2.596E-06	9.370E-06	
1.95	1.76E-02	0.001	1.0E-06	2	1.757E-08	3.515E-08	6.854E-08	1.336E-07	5.082E-07	
2	1.55E-02	0.001	1.0E-06	4	1.551E-08	6.204E-08	1.241E-07	2.482E-07	9.927E-07	
2.05	1.37E-02	0.001	1.0E-06	1	1.373E-08	1.373E-08	2.815E-08	5.770E-08	2.425E-07	
		_				1.63E-01	9.19E-02	5.30E-02	1.92E-02	

m _{r0} =	0.00271437	deg ²
m _{r1} =	0.00153168	m ² (rad/s)
m _{r2} =	0.00088293	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	0.00032082	$deg^{2}(rad^{4}/s^{4})$

Σ1

Σ2

Σ4

Σ0

T ₀ =	11.1347	S
T _p =	10.4235	S
$T_z =$	11.0167	S
ω ₀ =	0.5643	rad/s
ω _p =	0.6028	rad/s
$\omega_z =$	0.5703	rad/s
$\zeta_{zs} =$	0.1042	deg
$\zeta_{zav} =$	0.0651	deg
$\zeta_{z1/10} =$	0.1323	deg
$\zeta_{\text{zext}(\alpha=0.01)} =$	0.3269	deg

SPECTRAL CALCULATION AND ANALYSIS FSO VLCC

Calculation for H significant 1.98 m

(50 year period) - YAW (135°)

H _s =	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	ୢ				(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Ľ	3	4	9	6	\overline{O}	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3141	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0060	3.6E-05	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0250	6.3E-04	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.0540	2.9E-03	2	1.380E-203	2.761E-203	4.141E-204	6.212E-205	1.398E-206
0.2	4.19E-62	0.0940	8.8E-03	4	3.703E-64	1.481E-63	2.962E-64	5.924E-65	2.370E-66
0.25	1.90E-24	0.1390	1.9E-02	2	3.670E-26	7.339E-26	1.835E-26	4.587E-27	2.867E-28
0.3	3.83E-11	0.1860	3.5E-02	4	1.324E-12	5.294E-12	1.588E-12	4.765E-13	4.288E-14
0.35	1.32E-05	0.2270	5.2E-02	2	6.806E-07	1.361E-06	4.764E-07	1.668E-07	2.043E-08
0.4	4.80E-03	0.2590	6.7E-02	4	3.220E-04	1.288E-03	5.152E-04	2.061E-04	3.297E-05
0.45	8.76E-02	0.2540	6.5E-02	2	5.651E-03	1.130E-02	5.086E-03	2.289E-03	4.635E-04
0.5	3.81E-01	0.2250	5.1E-02	4	1.927E-02	7.708E-02	3.854E-02	1.927E-02	4.818E-03
0.55	7.90E-01	0.1760	3.1E-02	2	2.448E-02	4.896E-02	2.693E-02	1.481E-02	4.480E-03
0.6	1.10E+00	0.1140	1.3E-02	4	1.428E-02	5.711E-02	3.427E-02	2.056E-02	7.402E-03
0.65	1.22E+00	0.0570	3.2E-03	2	3.957E-03	7.913E-03	5.144E-03	3.343E-03	1.413E-03
0.7	1.18E+00	0.0320	1.0E-03	4	1.212E-03	4.848E-03	3.394E-03	2.375E-03	1.164E-03
0.75	1.06E+00	0.0360	1.3E-03	2	1.380E-03	2.760E-03	2.070E-03	1.552E-03	8.731E-04
0.8	9.15E-01	0.0320	1.0E-03	4	9.369E-04	3.748E-03	2.998E-03	2.398E-03	1.535E-03
0.85	7.66E-01	0.0240	5.8E-04	2	4.411E-04	8.821E-04	7.498E-04	6.373E-04	4.605E-04
0.9	6.32E-01	0.0180	3.2E-04	4	2.046E-04	8.185E-04	7.367E-04	6.630E-04	5.370E-04
0.95	5.17E-01	0.0080	6.4E-05	2	3.310E-05	6.620E-05	6.289E-05	5.975E-05	5.392E-05
1	4.22E-01	0.0030	9.0E-06	4	3.802E-06	1.521E-05	1.521E-05	1.521E-05	1.521E-05
1.05	3.45E-01	0.0030	9.0E-06	2	3.108E-06	6.215E-06	6.526E-06	6.853E-06	7.555E-06
1.1	2.83E-01	0.0090	8.1E-05	4	2.291E-05	9.166E-05	1.008E-04	1.109E-04	1.342E-04
1.15	2.33E-01	0.0160	2.6E-04	2	5.954E-05	1.191E-04	1.370E-04	1.575E-04	2.083E-04
1.2	1.92E-01	0.0120	1.4E-04	4	2.766E-05	1.106E-04	1.327E-04	1.593E-04	2.294E-04
1.25	1.59E-01	0.0030	9.0E-06	2	1.434E-06	2.868E-06	3.585E-06	4.481E-06	7.002E-06
1.3	1.33E-01	0.0110	1.2E-04	4	1.607E-05	6.429E-05	8.357E-05	1.086E-04	1.836E-04
1.35	1.11E-01	0.0050	2.5E-05	2	2.782E-06	5.564E-06	7.511E-06	1.014E-05	1.848E-05
1.4	9.37E-02	0.0070	4.9E-05	4	4.590E-06	1.836E-05	2.571E-05	3.599E-05	7.053E-05
1.45	7.92E-02	0.0080	6.4E-05	2	5.072E-06	1.014E-05	1.471E-05	2.133E-05	4.484E-05
1.5	6.73E-02	0.0020	4.0E-06	4	2.694E-07	1.078E-06	1.616E-06	2.424E-06	5.455E-06
1.55	5.75E-02	0.0030	9.0E-06	2	5.174E-07	1.035E-06	1.604E-06	2.486E-06	5.973E-06
1.6	4.93E-02	0.0020	4.0E-06	4	1.972E-07	7.887E-07	1.262E-06	2.019E-06	5.169E-06

	FSO VLCC										
1.65	4.24E-02	0.0010	1.0E-06	2	4.244E-08	8.489E-08	1.401E-07	2.311E-07	6.292E-07		
1.7	3.67E-02	0.0030	9.0E-06	4	3.302E-07	1.321E-06	2.246E-06	3.817E-06	1.103E-05		
1.75	3.18E-02	0.0010	1.0E-06	2	3.184E-08	6.368E-08	1.114E-07	1.950E-07	5.972E-07		
1.8	2.77E-02	0.0020	4.0E-06	4	1.109E-07	4.437E-07	7.987E-07	1.438E-06	4.658E-06		
1.85	2.42E-02	0.0020	4.0E-06	2	9.695E-08	1.939E-07	3.587E-07	6.636E-07	2.271E-06		
1.9	2.13E-02	0.0030	9.0E-06	4	1.913E-07	7.652E-07	1.454E-06	2.762E-06	9.972E-06		
1.95	1.87E-02	0.0010	1.0E-06	2	1.870E-08	3.740E-08	7.293E-08	1.422E-07	5.408E-07		
2	1.65E-02	0.0010	1.0E-06	4	1.650E-08	6.601E-08	1.320E-07	2.641E-07	1.056E-06		
2.05	1.46E-02	0.0010	1.0E-06	1	1.461E-08	1.461E-08	2.994E-08	6.139E-08	2.580E-07		
						2.17E-01	1.21E-01	6.88E-02	2.42E-02		
						Σ0	Σ1	Σ2	Σ4		

m _{r0} =	0.00362056	deg ²
m _{r1} =	0.00201718	m ² (rad/s)
m _{r2} =	0.00114689	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	0.00040332	$deg^{2}(rad^{4}/s^{4})$

T ₀ =	11.2774	S
T _p =	10.5954	S
$T_z =$	11.1636	S
ω ₀ =	0.5571	rad/s
ω _p =	0.5930	rad/s
ω_z =	0.5628	rad/s
$\zeta_{zs} =$	0.1203	deg
$\zeta_{zav} =$	0.0752	deg
$\zeta_{z1/10} =$	0.1528	deg
$\zeta_{zext(\alpha=0.01)} =$	0.3774	deg

SPECTRAL CALCULATION AND ANALYSIS FSO VLCC

Calculation for H significant 2.02 m

(100 year period) - YAW (135°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

	0	0		(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦	
Ū	Z	3	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	SM	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	$\omega^2 x S_r(\omega) x S M$	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3141	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0060	3.6E-05	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0250	6.3E-04	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.0540	2.9E-03	2	1.789E-197	3.578E-197	5.367E-198	8.050E-199	1.811E-200
0.2	3.66E-60	0.0940	8.8E-03	4	3.233E-62	1.293E-61	2.586E-62	5.173E-63	2.069E-64
0.25	1.20E-23	0.1390	1.9E-02	2	2.322E-25	4.643E-25	1.161E-25	2.902E-26	1.814E-27
0.3	9.43E-11	0.1860	3.5E-02	4	3.262E-12	1.305E-11	3.914E-12	1.174E-12	1.057E-13
0.35	2.17E-05	0.2270	5.2E-02	2	1.120E-06	2.239E-06	7.837E-07	2.743E-07	3.360E-08
0.4	6.49E-03	0.2590	6.7E-02	4	4.353E-04	1.741E-03	6.966E-04	2.786E-04	4.458E-05
0.45	1.07E-01	0.2540	6.5E-02	2	6.883E-03	1.377E-02	6.194E-03	2.787E-03	5.645E-04
0.5	4.37E-01	0.2250	5.1E-02	4	2.211E-02	8.844E-02	4.422E-02	2.211E-02	5.528E-03
0.55	8.75E-01	0.1760	3.1E-02	2	2.709E-02	5.419E-02	2.980E-02	1.639E-02	4.959E-03
0.6	1.19E+00	0.1140	1.3E-02	4	1.545E-02	6.178E-02	3.707E-02	2.224E-02	8.007E-03
0.65	1.30E+00	0.0570	3.2E-03	2	4.216E-03	8.432E-03	5.481E-03	3.563E-03	1.505E-03
0.7	1.25E+00	0.0320	1.0E-03	4	1.278E-03	5.113E-03	3.579E-03	2.506E-03	1.228E-03
0.75	1.11E+00	0.0360	1.3E-03	2	1.445E-03	2.890E-03	2.167E-03	1.626E-03	9.144E-04
0.8	9.53E-01	0.0320	1.0E-03	4	9.761E-04	3.905E-03	3.124E-03	2.499E-03	1.599E-03
0.85	7.95E-01	0.0240	5.8E-04	2	4.578E-04	9.157E-04	7.783E-04	6.616E-04	4.780E-04
0.9	6.54E-01	0.0180	3.2E-04	4	2.118E-04	8.473E-04	7.626E-04	6.863E-04	5.559E-04
0.95	5.34E-01	0.0080	6.4E-05	2	3.419E-05	6.838E-05	6.497E-05	6.172E-05	5.570E-05
1	4.36E-01	0.0030	9.0E-06	4	3.921E-06	1.569E-05	1.569E-05	1.569E-05	1.569E-05
1.05	3.56E-01	0.0030	9.0E-06	2	3.201E-06	6.402E-06	6.722E-06	7.058E-06	7.781E-06
1.1	2.91E-01	0.0090	8.1E-05	4	2.358E-05	9.431E-05	1.037E-04	1.141E-04	1.381E-04
1.15	2.39E-01	0.0160	2.6E-04	2	6.122E-05	1.224E-04	1.408E-04	1.619E-04	2.141E-04
1.2	1.97E-01	0.0120	1.4E-04	4	2.842E-05	1.137E-04	1.364E-04	1.637E-04	2.357E-04
1.25	1.64E-01	0.0030	9.0E-06	2	1.473E-06	2.945E-06	3.682E-06	4.602E-06	7.191E-06
1.3	1.36E-01	0.0110	1.2E-04	4	1.650E-05	6.599E-05	8.579E-05	1.115E-04	1.885E-04
1.35	1.14E-01	0.0050	2.5E-05	2	2.855E-06	5.709E-06	7.708E-06	1.041E-05	1.896E-05
1.4	9.61E-02	0.0070	4.9E-05	4	4.709E-06	1.884E-05	2.637E-05	3.692E-05	7.236E-05
1.45	8.13E-02	0.0080	6.4E-05	2	5.202E-06	1.040E-05	1.508E-05	2.187E-05	4.599E-05
1.5	6.91E-02	0.0020	4.0E-06	4	2.762E-07	1.105E-06	1.657E-06	2.486E-06	5.594E-06
1.55	5.89E-02	0.0030	9.0E-06	2	5.305E-07	1.061E-06	1.645E-06	2.549E-06	6.124E-06
1.6	5.05E-02	0.0020	4.0E-06	4	2.021E-07	8.085E-07	1.294E-06	2.070E-06	5.299E-06

OCEAN ENGINEERING DEPARTMENT - ITS SURABAYA Sheet: SPECTRAL FSO (0.05 B)

FSO VLCC									
1.65	4.35E-02	0.0010	1.0E-06	2	4.350E-08	8.701E-08	1.436E-07	2.369E-07	6.449E-07
1.7	3.76E-02	0.0030	9.0E-06	4	3.384E-07	1.354E-06	2.301E-06	3.912E-06	1.131E-05
1.75	3.26E-02	0.0010	1.0E-06	2	3.263E-08	6.526E-08	1.142E-07	1.998E-07	6.120E-07
1.8	2.84E-02	0.0020	4.0E-06	4	1.137E-07	4.547E-07	8.184E-07	1.473E-06	4.773E-06
1.85	2.48E-02	0.0020	4.0E-06	2	9.934E-08	1.987E-07	3.676E-07	6.800E-07	2.327E-06
1.9	2.18E-02	0.0030	9.0E-06	4	1.960E-07	7.840E-07	1.490E-06	2.830E-06	1.022E-05
1.95	1.92E-02	0.0010	1.0E-06	2	1.916E-08	3.832E-08	7.472E-08	1.457E-07	5.540E-07
2	1.69E-02	0.0010	1.0E-06	4	1.691E-08	6.763E-08	1.353E-07	2.705E-07	1.082E-06
2.05	1.50E-02	0.0010	1.0E-06	1	1.496E-08	1.496E-08	3.067E-08	6.288E-08	2.643E-07
						2.43E-01	1.34E-01	7.61E-02	2.64E-02
						ΣΟ	Σ1	Σ2	Σ4

m _{r0} =	0.00404266	deg ²
m _{r1} =	0.00224162	m ² (rad/s)
m _{r2} =	0.00126798	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	0.00044053	$deg^{2}(rad^{4}/s^{4})$

T ₀ =	11.3314	S
T _p =	10.6597	S
$T_z =$	11.2191	S
ω ₀ =	0.5545	rad/s
ω _p =	0.5894	rad/s
$\omega_z =$	0.5600	rad/s
$\zeta_{zs} =$	0.1272	deg
$\zeta_{zav} =$	0.0795	deg
$\zeta_{z1/10} =$	0.1615	deg
$\zeta_{zext(\alpha=0.01)} =$	0.3987	deg

SHIP FULL LOAD BALLAST CONDITION MOTION ANALYSIS

RAO SBM - TABLE

MOTION RESPONSE OPERATORS											
	Of Point On Body SBM_408M at X = 0, Y = 0.0, Z = 1.8										
Eron (rod/c)	Surge (m/m)	Sway (m/m)	Heave (m/m)	Roll (deg/m)	Pitch (deg/m)	Yaw (deg/m)					
Freq. (rad/s)	Amplitudo										
0.100	0	0.998	1	0.072	0	0					
0.200	0	0.994	0.996	0.313	0.001	0					
0.300	0	0.988	0.989	1.024	0.009	0					
0.400	0	0.97	0.977	0.446	0.005	0					
0.500	0	0.954	0.962	1.124	0.003	0					
0.600	0	0.932	0.943	1.739	0.002	0					
0.700	0	0.903	0.921	2.388	0.001	0					
0.800	0	0.867	0.897	3.08	0	0					
0.900	0	0.823	0.876	3.778	0.001	0					
0.999	0	0.772	0.858	4.458	0.005	0					
1.100	0	0.713	0.849	5.104	0.01	0					
1.199	0	0.648	0.85	5.661	0.021	0					
1.301	0	0.575	0.86	6.156	0.045	0.001					
1.399	0	0.501	0.839	6.571	0.094	0.001					
1.500	0.001	0.424	0.628	6.947	0.152	0.001					
1.599	0.001	0.346	0.283	7.241	0.154	0.002					
1.698	0.001	0.267	0.067	7.319	0.144	0.002					
1.800	0.001	0.202	0.033	6.462	0.113	0.003					
1.898	0.001	0.187	0.063	3.961	0.071	0.002					
2.001	0	0.174	0.068	1.372	0.045	0.001					
Draft	= 1.6 meters	Trim Angle		= 0.0 Degree	GMT	= 3.48 meters					
Roll Gy Rad.	= 3.6 meters	Pitch Gy. Radius		= 3.6 m	Yaw Gy. Radius	= 3.6 m					
Heading	= 90 degrees	Forward Speed		= 0 knots	Linear.	1/20					

MOTION RESPONSE OPERATORS										
	Of Point On Body SBM_408M at X = 0, Y = 0.0, Z = 1.8									
Frog (rad/s)	Surge (m/m)	Sway (m/m)	Heave (m/m)	Roll (deg/m)	Pitch (deg/m)	Yaw (deg/m)				
Fleg. (lau/s)										
0.100	0.535	0.706	1	0.051	0.05	0.025				
0.200	0.531	0.703	0.996	0.222	0.218	0.1				
0.300	0.522	0.699	0.989	0.785	0.827	0.224				
0.400	0.521	0.686	0.978	0.314	0.412	0.394				
0.500	0.51	0.675	0.963	0.793	0.845	0.607				
0.600	0.497	0.66	0.944	1.226	1.279	0.859				
0.700	0.482	0.641	0.921	1.684	1.745	1.142				
0.800	0.464	0.617	0.896	2.171	2.247	1.45				
0.900	0.444	0.588	0.87	2.666	2.762	1.768				
0.999	0.421	0.554	0.846	3.15	3.272	2.081				
1.100	0.395	0.514	0.825	3.626	3.783	2.386				
1.199	0.367	0.47	0.811	4.038	4.262	2.654				
1.301	0.337	0.42	0.803	4.411	4.739	2.885				
1.399	0.305	0.368	0.769	4.719	5.197	3.052				
1.500	0.271	0.313	0.577	5	5.691	3.16				
1.599	0.233	0.255	0.258	5.256	6.245	3.193				
1.698	0.195	0.192	0.06	5.343	6.477	3.146				
1.800	0.172	0.135	0.043	4.64	5.183	3.015				
1.898	0.164	0.116	0.07	2.69	2.813	2.813				
2.001	0.148	0.1	0.075	0.886	1.015	2.529				
Draft	= 1.6 meters	Trim Angle		= 0.0 Degree	GMT	= 3.48 meters				
Roll Gy Rad.	= 3.6 meters	Pitch Gy. Radius		= 3.6 m	Yaw Gy. Radius	= 3.6 m				
Heading	= 135 degrees	Forward Speed		= 0 knots	Linear.	1/20				

MOTION RESPONSE OPERATORS											
	Of Point On Body SBM_408M at X = 0, Y = 0.0, Z = 1.8										
Frog (rod/s)	Surge (m/m)	Sway (m/m)	Heave (m/m)	Roll (deg/m)	Pitch (deg/m)	Yaw (deg/m)					
Fley. (rau/s)	Amplitudo										
0.100	0.756	0	1	0	0.071	0					
0.200	0.751	0	0.996	0	0.308	0					
0.300	0.739	0	0.989	0	1.171	0					
0.400	0.736	0	0.978	0	0.58	0					
0.500	0.72	0	0.964	0	1.193	0					
0.600	0.701	0	0.945	0	1.808	0					
0.700	0.678	0	0.922	0	2.469	0					
0.800	0.65	0	0.895	0	3.183	0					
0.900	0.617	0	0.865	0	3.915	0					
0.999	0.58	0	0.834	0	4.639	0					
1.100	0.537	0	0.801	0	5.36	0					
1.199	0.491	0	0.771	0	6.02	0					
1.301	0.439	0	0.742	0	6.655	0					
1.399	0.385	0	0.692	0	7.241	0					
1.500	0.327	0	0.516	0	7.811	0					
1.599	0.265	0	0.225	0	8.304	0					
1.698	0.203	0	0.056	0	8.318	0					
1.800	0.158	0	0.063	0	6.435	0					
1.898	0.136	0	0.086	0	3.385	0					
2.001	0.111	0	0.089	0	1.095	0					
Draft	= 1.6 meters	Trim Angle		= 0.0 Degree	GMT	= 3.48 meters					
Roll Gy Rad.	= 3.6 meters	Pitch Gy. Radius		= 3.6 m	Yaw Gy. Radius	= 3.6 m					
Heading	= 180 degrees	Forward Speed		= 0 knots	Linear.	1/20					

LAMPIRAN C-2

Tabel Perhitungan Spektrum JONSWAP

Hexagonal SBM

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - SURGE

Calculation for H significant 1.89 m

(10 year period) - SURGE (180°)

$$H_{s} = 1.89 \text{ m}$$

$$T_{p} = 9.33 \text{ s}$$

$$\omega_{p} = 0.6736 \text{ rad/s}$$

$$\phi = 6.7923$$

$$\Upsilon = 1$$

$$\alpha = 0.0052$$

	0	0		ß	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Ľ	3	Ŧ	9	6	\overline{O}	8	9	10
ω	S(ω)	RAO	RAO ²	C M	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3101	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	0.7570	5.7E-01	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.7560	5.7E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.7540	5.7E-01	2	7.331E-218	1.466E-217	2.199E-218	3.299E-219	7.423E-221
0.2	2.31E-67	0.7510	5.6E-01	4	1.301E-67	5.204E-67	1.041E-67	2.082E-68	8.326E-70
0.25	1.28E-26	0.7470	5.6E-01	2	7.169E-27	1.434E-26	3.584E-27	8.961E-28	5.601E-29
0.3	3.33E-12	0.7390	5.5E-01	4	1.820E-12	7.278E-12	2.183E-12	6.550E-13	5.895E-14
0.35	3.44E-06	0.7440	5.5E-01	2	1.904E-06	3.808E-06	1.333E-06	4.665E-07	5.714E-08
0.4	2.13E-03	0.7360	5.4E-01	4	1.152E-03	4.609E-03	1.844E-03	7.375E-04	1.180E-04
0.45	5.15E-02	0.7280	5.3E-01	2	2.730E-02	5.460E-02	2.457E-02	1.106E-02	2.239E-03
0.5	2.63E-01	0.7200	5.2E-01	4	1.364E-01	5.456E-01	2.728E-01	1.364E-01	3.410E-02
0.55	6.02E-01	0.7110	5.1E-01	2	3.045E-01	6.090E-01	3.350E-01	1.842E-01	5.573E-02
0.6	8.91E-01	0.7010	4.9E-01	4	4.378E-01	1.751E+00	1.051E+00	6.305E-01	2.270E-01
0.65	1.03E+00	0.6900	4.8E-01	2	4.897E-01	9.794E-01	6.366E-01	4.138E-01	1.748E-01
0.7	1.03E+00	0.6780	4.6E-01	4	4.725E-01	1.890E+00	1.323E+00	9.260E-01	4.537E-01
0.75	9.43E-01	0.6640	4.4E-01	2	4.156E-01	8.312E-01	6.234E-01	4.675E-01	2.630E-01
0.8	8.21E-01	0.6500	4.2E-01	4	3.470E-01	1.388E+00	1.110E+00	8.884E-01	5.686E-01
0.85	6.94E-01	0.6340	4.0E-01	2	2.791E-01	5.582E-01	4.745E-01	4.033E-01	2.914E-01
0.9	5.77E-01	0.6170	3.8E-01	4	2.197E-01	8.788E-01	7.909E-01	7.118E-01	5.766E-01
0.95	4.75E-01	0.5990	3.6E-01	2	1.705E-01	3.411E-01	3.240E-01	3.078E-01	2.778E-01
1	3.90E-01	0.5790	3.4E-01	4	1.307E-01	5.229E-01	5.229E-01	5.229E-01	5.229E-01
1.05	3.20E-01	0.5590	3.1E-01	2	9.993E-02	1.999E-01	2.099E-01	2.204E-01	2.429E-01
1.1	2.63E-01	0.5370	2.9E-01	4	7.576E-02	3.030E-01	3.333E-01	3.667E-01	4.437E-01
1.15	2.16E-01	0.5140	2.6E-01	2	5.719E-02	1.144E-01	1.315E-01	1.513E-01	2.000E-01
1.2	1.79E-01	0.4910	2.4E-01	4	4.317E-02	1.727E-01	2.072E-01	2.486E-01	3.580E-01
1.25	1.49E-01	0.4660	2.2E-01	2	3.230E-02	6.460E-02	8.075E-02	1.009E-01	1.577E-01
1.3	1.24E-01	0.4390	1.9E-01	4	2.393E-02	9.570E-02	1.244E-01	1.617E-01	2.733E-01
1.35	1.04E-01	0.4120	1.7E-01	2	1.767E-02	3.534E-02	4.771E-02	6.441E-02	1.174E-01
1.4	8.77E-02	0.3850	1.5E-01	4	1.300E-02	5.200E-02	7.280E-02	1.019E-01	1.998E-01
1.45	7.42E-02	0.3550	1.3E-01	2	9.356E-03	1.871E-02	2.713E-02	3.934E-02	8.272E-02
1.5	6.31E-02	0.3270	1.1E-01	4	6.750E-03	2.700E-02	4.050E-02	6.075E-02	1.367E-01
1.55	5.39E-02	0.2950	8.7E-02	2	4.692E-03	9.385E-03	1.455E-02	2.255E-02	5.417E-02
1.6	4.63E-02	0.2650	7.0E-02	4	3.248E-03	1.299E-02	2.079E-02	3.326E-02	8.514E-02

						Σ0	Σ1	Σ2	Σ4
						1.15E+01	8.83E+00	7.23E+00	5.98E+00
2.05	1.37E-02	0.0980	9.6E-03	1	1.319E-04	1.319E-04	2.703E-04	5.542E-04	2.329E-03
2	1.55E-02	0.1110	1.2E-02	4	1.911E-04	7.644E-04	1.529E-03	3.058E-03	1.223E-02
1.95	1.76E-02	0.1230	1.5E-02	2	2.659E-04	5.317E-04	1.037E-03	2.022E-03	7.689E-03
1.9	2.00E-02	0.1360	1.8E-02	4	3.694E-04	1.478E-03	2.807E-03	5.334E-03	1.926E-02
1.85	2.28E-02	0.1470	2.2E-02	2	4.920E-04	9.841E-04	1.821E-03	3.368E-03	1.153E-02
1.8	2.60E-02	0.1580	2.5E-02	4	6.502E-04	2.601E-03	4.682E-03	8.427E-03	2.730E-02
1.75	2.99E-02	0.1760	3.1E-02	2	9.262E-04	1.852E-03	3.242E-03	5.673E-03	1.737E-02
1.7	3.44E-02	0.2030	4.1E-02	4	1.419E-03	5.678E-03	9.653E-03	1.641E-02	4.742E-02
1.65	3.98E-02	0.2330	5.4E-02	2	2.163E-03	4.325E-03	7.137E-03	1.178E-02	3.206E-02

m _{r0} =	0.1913113	m ²
m _{r1} =	0.1472234	m ² (rad/s)
m _{r2} =	0.1205494	$m^2(rad^2/s^2)$
m _{r4} =	0.0996136	$m^2(rad^4/s^4)$
T ₀ =	8.1648	S
T _p =	6.9120	S
T _z =	7.9153	S
ω ₀ =	0.7695	rad/s
ω _p =	0.9090	rad/s
$\omega_z =$	0.7938	rad/s
$\zeta_{zs} =$	0.8748	m
$\zeta_{zav} =$	0.5467	m
$\zeta_{z1/10} =$	1.1110	m
$\zeta_{zext(\alpha=0.01)} =$	2.7672	m

Calculation for H significant 1.98 m

(50 year period) - SURGE (180°)

	0	(2)		ß	(2) x (4)	(5) x (6)	① x ⑦	① ² x ⑦	① ⁴ x ⑦
Ū	Z	9	Ŧ	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	2141	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	0.7570	5.7E-01	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.7560	5.7E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.7540	5.7E-01	2	2.691E-201	5.383E-201	8.074E-202	1.211E-202	2.725E-204
0.2	4.19E-62	0.7510	5.6E-01	4	2.363E-62	9.454E-62	1.891E-62	3.781E-63	1.513E-64
0.25	1.90E-24	0.7470	5.6E-01	2	1.060E-24	2.120E-24	5.299E-25	1.325E-25	8.280E-27
0.3	3.83E-11	0.7390	5.5E-01	4	2.089E-11	8.358E-11	2.507E-11	7.522E-12	6.770E-13
0.35	1.32E-05	0.7440	5.5E-01	2	7.311E-06	1.462E-05	5.118E-06	1.791E-06	2.194E-07
0.4	4.80E-03	0.7360	5.4E-01	4	2.600E-03	1.040E-02	4.161E-03	1.664E-03	2.663E-04
0.45	8.76E-02	0.7280	5.3E-01	2	4.642E-02	9.284E-02	4.178E-02	1.880E-02	3.807E-03
0.5	3.81E-01	0.7200	5.2E-01	4	1.973E-01	7.893E-01	3.947E-01	1.973E-01	4.933E-02
0.55	7.90E-01	0.7110	5.1E-01	2	3.995E-01	7.990E-01	4.395E-01	2.417E-01	7.312E-02
0.6	1.10E+00	0.7010	4.9E-01	4	5.399E-01	2.160E+00	1.296E+00	7.774E-01	2.799E-01
0.65	1.22E+00	0.6900	4.8E-01	2	5.798E-01	1.160E+00	7.537E-01	4.899E-01	2.070E-01
0.7	1.18E+00	0.6780	4.6E-01	4	5.441E-01	2.176E+00	1.523E+00	1.066E+00	5.225E-01
0.75	1.06E+00	0.6640	4.4E-01	2	4.694E-01	9.388E-01	7.041E-01	5.281E-01	2.970E-01
0.8	9.15E-01	0.6500	4.2E-01	4	3.866E-01	1.546E+00	1.237E+00	9.896E-01	6.333E-01
0.85	7.66E-01	0.6340	4.0E-01	2	3.078E-01	6.156E-01	5.232E-01	4.448E-01	3.213E-01
0.9	6.32E-01	0.6170	3.8E-01	4	2.404E-01	9.617E-01	8.656E-01	7.790E-01	6.310E-01
0.95	5.17E-01	0.5990	3.6E-01	2	1.856E-01	3.711E-01	3.526E-01	3.350E-01	3.023E-01
1	4.22E-01	0.5790	3.4E-01	4	1.416E-01	5.665E-01	5.665E-01	5.665E-01	5.665E-01
1.05	3.45E-01	0.5590	3.1E-01	2	1.079E-01	2.158E-01	2.266E-01	2.379E-01	2.623E-01
1.1	2.83E-01	0.5370	2.9E-01	4	8.158E-02	3.263E-01	3.589E-01	3.948E-01	4.777E-01
1.15	2.33E-01	0.5140	2.6E-01	2	6.145E-02	1.229E-01	1.413E-01	1.625E-01	2.150E-01
1.2	1.92E-01	0.4910	2.4E-01	4	4.630E-02	1.852E-01	2.222E-01	2.667E-01	3.840E-01
1.25	1.59E-01	0.4660	2.2E-01	2	3.460E-02	6.920E-02	8.650E-02	1.081E-01	1.689E-01
1.3	1.33E-01	0.4390	1.9E-01	4	2.560E-02	1.024E-01	1.331E-01	1.730E-01	2.924E-01
1.35	1.11E-01	0.4120	1.7E-01	2	1.889E-02	3.778E-02	5.100E-02	6.885E-02	1.255E-01
1.4	9.37E-02	0.3850	1.5E-01	4	1.389E-02	5.554E-02	7.776E-02	1.089E-01	2.134E-01
1.45	7.92E-02	0.3550	1.3E-01	2	9.987E-03	1.997E-02	2.896E-02	4.199E-02	8.829E-02
1.5	6.73E-02	0.3270	1.1E-01	4	7.201E-03	2.880E-02	4.321E-02	6.481E-02	1.458E-01
1.55	5.75E-02	0.2950	8.7E-02	2	5.003E-03	1.001E-02	1.551E-02	2.404E-02	5.776E-02
1.6	4.93E-02	0.2650	7.0E-02	4	3.462E-03	1.385E-02	2.216E-02	3.545E-02	9.075E-02

						Σ0	Σ1	Σ2	Σ4
						1.34E+01	1.01E+01	8.18E+00	6.60E+00
2.05	1.46E-02	0.0980	9.6E-03	1	1.403E-04	1.403E-04	2.876E-04	5.895E-04	2.478E-03
2	1.65E-02	0.1110	1.2E-02	4	2.033E-04	8.134E-04	1.627E-03	3.253E-03	1.301E-02
1.95	1.87E-02	0.1230	1.5E-02	2	2.829E-04	5.658E-04	1.103E-03	2.152E-03	8.182E-03
1.9	2.13E-02	0.1360	1.8E-02	4	3.932E-04	1.573E-03	2.988E-03	5.677E-03	2.049E-02
1.85	2.42E-02	0.1470	2.2E-02	2	5.238E-04	1.048E-03	1.938E-03	3.585E-03	1.227E-02
1.8	2.77E-02	0.1580	2.5E-02	4	6.923E-04	2.769E-03	4.984E-03	8.972E-03	2.907E-02
1.75	3.18E-02	0.1760	3.1E-02	2	9.863E-04	1.973E-03	3.452E-03	6.041E-03	1.850E-02
1.7	3.67E-02	0.2030	4.1E-02	4	1.512E-03	6.048E-03	1.028E-02	1.748E-02	5.051E-02
1.65	4.24E-02	0.2330	5.4E-02	2	2.304E-03	4.608E-03	7.604E-03	1.255E-02	3.416E-02

m _{r0} =	0.2232391	m ²
m _{r1} =	0.1690586	m ² (rad/s)
m _{r2} =	0.1363935	$m^2(rad^2/s^2)$
m _{r4} =	0.1099674	$m^2(rad^4/s^4)$
T ₀ =	8.2968	S
T _p =	6.9975	S
T _z =	8.0384	S
ω ₀ =	0.7573	rad/s
ω _p =	0.8979	rad/s
$\omega_z =$	0.7816	rad/s
$\zeta_{zs} =$	0.9450	m
$\zeta_{zav} =$	0.5906	m
$\zeta_{z1/10} =$	1.2001	m
$\zeta_{zext(\alpha=0.01)} =$	2.9880	m

Calculation for H significant 2.02 m

(100 year period) - SURGE (180°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

					(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
	2	9	4	9	6	1	8	9	10
ω	S(ω)	RAO	RAO ²	C M	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3101	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	0.7570	5.7E-01	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.7560	5.7E-01	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.7540	5.7E-01	2	3.488E-195	6.976E-195	1.046E-195	1.570E-196	3.531E-198
0.2	3.66E-60	0.7510	5.6E-01	4	2.064E-60	8.255E-60	1.651E-60	3.302E-61	1.321E-62
0.25	1.20E-23	0.7470	5.6E-01	2	6.705E-24	1.341E-23	3.352E-24	8.381E-25	5.238E-26
0.3	9.43E-11	0.7390	5.5E-01	4	5.149E-11	2.060E-10	6.179E-11	1.854E-11	1.668E-12
0.35	2.17E-05	0.7440	5.5E-01	2	1.203E-05	2.405E-05	8.419E-06	2.947E-06	3.610E-07
0.4	6.49E-03	0.7360	5.4E-01	4	3.516E-03	1.406E-02	5.625E-03	2.250E-03	3.600E-04
0.45	1.07E-01	0.7280	5.3E-01	2	5.654E-02	1.131E-01	5.089E-02	2.290E-02	4.637E-03
0.5	4.37E-01	0.7200	5.2E-01	4	2.264E-01	9.057E-01	4.528E-01	2.264E-01	5.660E-02
0.55	8.75E-01	0.7110	5.1E-01	2	4.422E-01	8.843E-01	4.864E-01	2.675E-01	8.092E-02
0.6	1.19E+00	0.7010	4.9E-01	4	5.840E-01	2.336E+00	1.402E+00	8.410E-01	3.028E-01
0.65	1.30E+00	0.6900	4.8E-01	2	6.178E-01	1.236E+00	8.032E-01	5.221E-01	2.206E-01
0.7	1.25E+00	0.6780	4.6E-01	4	5.739E-01	2.295E+00	1.607E+00	1.125E+00	5.511E-01
0.75	1.11E+00	0.6640	4.4E-01	2	4.916E-01	9.832E-01	7.374E-01	5.530E-01	3.111E-01
0.8	9.53E-01	0.6500	4.2E-01	4	4.028E-01	1.611E+00	1.289E+00	1.031E+00	6.599E-01
0.85	7.95E-01	0.6340	4.0E-01	2	3.195E-01	6.390E-01	5.431E-01	4.617E-01	3.336E-01
0.9	6.54E-01	0.6170	3.8E-01	4	2.489E-01	9.955E-01	8.960E-01	8.064E-01	6.532E-01
0.95	5.34E-01	0.5990	3.6E-01	2	1.917E-01	3.834E-01	3.642E-01	3.460E-01	3.123E-01
1	4.36E-01	0.5790	3.4E-01	4	1.461E-01	5.843E-01	5.843E-01	5.843E-01	5.843E-01
1.05	3.56E-01	0.5590	3.1E-01	2	1.111E-01	2.223E-01	2.334E-01	2.451E-01	2.702E-01
1.1	2.91E-01	0.5370	2.9E-01	4	8.394E-02	3.358E-01	3.693E-01	4.063E-01	4.916E-01
1.15	2.39E-01	0.5140	2.6E-01	2	6.318E-02	1.264E-01	1.453E-01	1.671E-01	2.210E-01
1.2	1.97E-01	0.4910	2.4E-01	4	4.757E-02	1.903E-01	2.284E-01	2.740E-01	3.946E-01
1.25	1.64E-01	0.4660	2.2E-01	2	3.553E-02	7.106E-02	8.883E-02	1.110E-01	1.735E-01
1.3	1.36E-01	0.4390	1.9E-01	4	2.628E-02	1.051E-01	1.366E-01	1.776E-01	3.002E-01
1.35	1.14E-01	0.4120	1.7E-01	2	1.938E-02	3.877E-02	5.233E-02	7.065E-02	1.288E-01
1.4	9.61E-02	0.3850	1.5E-01	4	1.424E-02	5.698E-02	7.977E-02	1.117E-01	2.189E-01
1.45	8.13E-02	0.3550	1.3E-01	2	1.024E-02	2.049E-02	2.970E-02	4.307E-02	9.055E-02
1.5	6.91E-02	0.3270	1.1E-01	4	7.384E-03	2.954E-02	4.431E-02	6.646E-02	1.495E-01
1.55	5.89E-02	0.2950	8.7E-02	2	5.130E-03	1.026E-02	1.590E-02	2.465E-02	5.922E-02
1.6	5.05E-02	0.2650	7.0E-02	4	3.549E-03	1.419E-02	2.271E-02	3.634E-02	9.303E-02

						Σ0	Σ1	Σ2	Σ4
						1.42E+01	1.07E+01	8.59E+00	6.86E+00
2.05	1.50E-02	0.0980	9.6E-03	1	1.437E-04	1.437E-04	2.946E-04	6.039E-04	2.538E-03
2	1.69E-02	0.1110	1.2E-02	4	2.083E-04	8.332E-04	1.666E-03	3.333E-03	1.333E-02
1.95	1.92E-02	0.1230	1.5E-02	2	2.899E-04	5.797E-04	1.130E-03	2.204E-03	8.382E-03
1.9	2.18E-02	0.1360	1.8E-02	4	4.028E-04	1.611E-03	3.061E-03	5.816E-03	2.100E-02
1.85	2.48E-02	0.1470	2.2E-02	2	5.366E-04	1.073E-03	1.986E-03	3.673E-03	1.257E-02
1.8	2.84E-02	0.1580	2.5E-02	4	7.094E-04	2.837E-03	5.107E-03	9.193E-03	2.979E-02
1.75	3.26E-02	0.1760	3.1E-02	2	1.011E-03	2.021E-03	3.537E-03	6.190E-03	1.896E-02
1.7	3.76E-02	0.2030	4.1E-02	4	1.550E-03	6.198E-03	1.054E-02	1.791E-02	5.177E-02
1.65	4.35E-02	0.2330	5.4E-02	2	2.362E-03	4.724E-03	7.794E-03	1.286E-02	3.501E-02

m _{r0} =	0.2370320	m ²
m _{r1} =	0.1783823	m ² (rad/s)
m _{r2} =	0.1430854	$m^2(rad^2/s^2)$
m _{r4} =	0.1142603	$m^2(rad^4/s^4)$
T ₀ =	8.3490	S
T _p =	7.0312	S
T _z =	8.0870	S
ω ₀ =	0.7526	rad/s
ω _p =	0.8936	rad/s
$\omega_z =$	0.7770	rad/s
$\zeta_{zs} =$	0.9737	m
$\zeta_{zav} =$	0.6086	m
$\zeta_{z1/10} =$	1.2366	m
$\zeta_{\text{zext}(\alpha=0.01)} =$	3.0785	m

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - SWAY

Calculation for H significant 1.89 m

(10 year period) - SWAY (90°)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

				ſ	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
		3	4	ଔ	6	\overline{O}	8	9	10
ω	S(ω)	RAO	RAO ²	C M	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	2141	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	[m2(rad3/s3)]
0.05	0.00E+00	0.9990	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9980	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.9970	9.9E-01	2	1.282E-217	2.564E-217	3.845E-218	5.768E-219	1.298E-220
0.2	2.31E-67	0.9940	9.9E-01	4	2.279E-67	9.116E-67	1.823E-67	3.647E-68	1.459E-69
0.25	1.28E-26	0.9910	9.8E-01	2	1.262E-26	2.523E-26	6.308E-27	1.577E-27	9.857E-29
0.3	3.33E-12	0.9880	9.8E-01	4	3.252E-12	1.301E-11	3.903E-12	1.171E-12	1.054E-13
0.35	3.44E-06	0.9700	9.4E-01	2	3.236E-06	6.473E-06	2.265E-06	7.929E-07	9.713E-08
0.4	2.13E-03	0.9700	9.4E-01	4	2.001E-03	8.006E-03	3.202E-03	1.281E-03	2.049E-04
0.45	5.15E-02	0.9630	9.3E-01	2	4.777E-02	9.553E-02	4.299E-02	1.935E-02	3.917E-03
0.5	2.63E-01	0.9540	9.1E-01	4	2.395E-01	9.579E-01	4.789E-01	2.395E-01	5.987E-02
0.55	6.02E-01	0.9440	8.9E-01	2	5.368E-01	1.074E+00	5.905E-01	3.248E-01	9.824E-02
0.6	8.91E-01	0.9320	8.7E-01	4	7.739E-01	3.096E+00	1.857E+00	1.114E+00	4.012E-01
0.65	1.03E+00	0.9180	8.4E-01	2	8.668E-01	1.734E+00	1.127E+00	7.325E-01	3.095E-01
0.7	1.03E+00	0.9030	8.2E-01	4	8.381E-01	3.352E+00	2.347E+00	1.643E+00	8.049E-01
0.75	9.43E-01	0.8860	7.8E-01	2	7.399E-01	1.480E+00	1.110E+00	8.324E-01	4.682E-01
0.8	8.21E-01	0.8670	7.5E-01	4	6.174E-01	2.470E+00	1.976E+00	1.581E+00	1.012E+00
0.85	6.94E-01	0.8460	7.2E-01	2	4.970E-01	9.940E-01	8.449E-01	7.182E-01	5.189E-01
0.9	5.77E-01	0.8230	6.8E-01	4	3.909E-01	1.564E+00	1.407E+00	1.266E+00	1.026E+00
0.95	4.75E-01	0.7980	6.4E-01	2	3.027E-01	6.053E-01	5.751E-01	5.463E-01	4.931E-01
1	3.90E-01	0.7720	6.0E-01	4	2.324E-01	9.297E-01	9.297E-01	9.297E-01	9.297E-01
1.05	3.20E-01	0.7430	5.5E-01	2	1.766E-01	3.531E-01	3.708E-01	3.893E-01	4.292E-01
1.1	2.63E-01	0.7130	5.1E-01	4	1.336E-01	5.342E-01	5.876E-01	6.464E-01	7.822E-01
1.15	2.16E-01	0.6800	4.6E-01	2	1.001E-01	2.002E-01	2.302E-01	2.647E-01	3.501E-01
1.2	1.79E-01	0.6480	4.2E-01	4	7.518E-02	3.007E-01	3.609E-01	4.331E-01	6.236E-01
1.25	1.49E-01	0.6120	3.7E-01	2	5.571E-02	1.114E-01	1.393E-01	1.741E-01	2.720E-01
1.3	1.24E-01	0.5750	3.3E-01	4	4.105E-02	1.642E-01	2.134E-01	2.775E-01	4.689E-01
1.35	1.04E-01	0.5380	2.9E-01	2	3.013E-02	6.026E-02	8.135E-02	1.098E-01	2.002E-01
1.4	8.77E-02	0.5010	2.5E-01	4	2.201E-02	8.806E-02	1.233E-01	1.726E-01	3.383E-01
1.45	7.42E-02	0.4620	2.1E-01	2	1.585E-02	3.169E-02	4.595E-02	6.663E-02	1.401E-01
1.5	6.31E-02	0.4240	1.8E-01	4	1.135E-02	4.540E-02	6.810E-02	1.021E-01	2.298E-01
1.55	5.39E-02	0.3840	1.5E-01	2	7.951E-03	1.590E-02	2.465E-02	3.820E-02	9.178E-02
1.6	4.63E-02	0.3460	1.2E-01	4	5.537E-03	2.215E-02	3.544E-02	5.670E-02	1.451E-01

						Σ0	Σ1	Σ2	Σ4
						2.03E+01	1.56E+01	1.28E+01	1.05E+01
2.05	1.37E-02	0.1600	2.6E-02	1	3.515E-04	3.515E-04	7.205E-04	1.477E-03	6.208E-03
2	1.55E-02	0.1740	3.0E-02	4	4.696E-04	1.878E-03	3.757E-03	7.514E-03	3.005E-02
1.95	1.76E-02	0.1830	3.3E-02	2	5.885E-04	1.177E-03	2.295E-03	4.476E-03	1.702E-02
1.9	2.00E-02	0.1870	3.5E-02	4	6.984E-04	2.794E-03	5.308E-03	1.008E-02	3.641E-02
1.85	2.28E-02	0.1890	3.6E-02	2	8.134E-04	1.627E-03	3.009E-03	5.568E-03	1.905E-02
1.8	2.60E-02	0.2020	4.1E-02	4	1.063E-03	4.251E-03	7.652E-03	1.377E-02	4.463E-02
1.75	2.99E-02	0.2290	5.2E-02	2	1.568E-03	3.136E-03	5.488E-03	9.604E-03	2.941E-02
1.7	3.44E-02	0.2670	7.1E-02	4	2.456E-03	9.823E-03	1.670E-02	2.839E-02	8.204E-02
1.65	3.98E-02	0.3060	9.4E-02	2	3.730E-03	7.460E-03	1.231E-02	2.031E-02	5.529E-02

m _{r0} =	0.3386394	m ²
m _{r1} =	0.2604510	m ² (rad/s)
m _{r2} =	0.2130052	$m^2(rad^2/s^2)$
m _{r4} =	0.1752739	$m^2(rad^4/s^4)$
T ₀ =	8.1694	S
T _p =	6.9265	S
T _z =	7.9223	S
ω ₀ =	0.7691	rad/s
ω _p =	0.9071	rad/s
$\omega_z =$	0.7931	rad/s
$\zeta_{zs} =$	1.1639	m
$\zeta_{zav} =$	0.7274	m
$\zeta_{z1/10} =$	1.4781	m
$\zeta_{zext(\alpha=0.01)} =$	3.6815	m

Calculation for H significant 1.98 m

(50 year period) - SWAY (180°)

$H_s =$	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	0	0		ß	2 x 4	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Z	9	Ŧ	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3101	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	$[m^2(rad^3/s^3)]$
0.05	0.00E+00	0.9990	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9980	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.9970	9.9E-01	2	4.706E-201	9.411E-201	1.412E-201	2.118E-202	4.764E-204
0.2	4.19E-62	0.9940	9.9E-01	4	4.140E-62	1.656E-61	3.312E-62	6.625E-63	2.650E-64
0.25	1.90E-24	0.9910	9.8E-01	2	1.865E-24	3.731E-24	9.326E-25	2.332E-25	1.457E-26
0.3	3.83E-11	0.9880	9.8E-01	4	3.735E-11	1.494E-10	4.482E-11	1.344E-11	1.210E-12
0.35	1.32E-05	0.9700	9.4E-01	2	1.243E-05	2.486E-05	8.700E-06	3.045E-06	3.730E-07
0.4	4.80E-03	0.9700	9.4E-01	4	4.517E-03	1.807E-02	7.227E-03	2.891E-03	4.625E-04
0.45	8.76E-02	0.9630	9.3E-01	2	8.123E-02	1.625E-01	7.311E-02	3.290E-02	6.662E-03
0.5	3.81E-01	0.9540	9.1E-01	4	3.464E-01	1.386E+00	6.929E-01	3.464E-01	8.661E-02
0.55	7.90E-01	0.9440	8.9E-01	2	7.043E-01	1.409E+00	7.747E-01	4.261E-01	1.289E-01
0.6	1.10E+00	0.9320	8.7E-01	4	9.543E-01	3.817E+00	2.290E+00	1.374E+00	4.947E-01
0.65	1.22E+00	0.9180	8.4E-01	2	1.026E+00	2.053E+00	1.334E+00	8.672E-01	3.664E-01
0.7	1.18E+00	0.9030	8.2E-01	4	9.651E-01	3.860E+00	2.702E+00	1.892E+00	9.269E-01
0.75	1.06E+00	0.8860	7.8E-01	2	8.357E-01	1.671E+00	1.254E+00	9.402E-01	5.289E-01
0.8	9.15E-01	0.8670	7.5E-01	4	6.877E-01	2.751E+00	2.201E+00	1.761E+00	1.127E+00
0.85	7.66E-01	0.8460	7.2E-01	2	5.480E-01	1.096E+00	9.317E-01	7.919E-01	5.722E-01
0.9	6.32E-01	0.8230	6.8E-01	4	4.278E-01	1.711E+00	1.540E+00	1.386E+00	1.123E+00
0.95	5.17E-01	0.7980	6.4E-01	2	3.294E-01	6.587E-01	6.258E-01	5.945E-01	5.365E-01
1	4.22E-01	0.7720	6.0E-01	4	2.518E-01	1.007E+00	1.007E+00	1.007E+00	1.007E+00
1.05	3.45E-01	0.7430	5.5E-01	2	1.906E-01	3.812E-01	4.003E-01	4.203E-01	4.634E-01
1.1	2.83E-01	0.7130	5.1E-01	4	1.438E-01	5.753E-01	6.328E-01	6.961E-01	8.422E-01
1.15	2.33E-01	0.6800	4.6E-01	2	1.076E-01	2.151E-01	2.474E-01	2.845E-01	3.762E-01
1.2	1.92E-01	0.6480	4.2E-01	4	8.065E-02	3.226E-01	3.871E-01	4.645E-01	6.689E-01
1.25	1.59E-01	0.6120	3.7E-01	2	5.968E-02	1.194E-01	1.492E-01	1.865E-01	2.914E-01
1.3	1.33E-01	0.5750	3.3E-01	4	4.391E-02	1.757E-01	2.284E-01	2.969E-01	5.017E-01
1.35	1.11E-01	0.5380	2.9E-01	2	3.221E-02	6.442E-02	8.696E-02	1.174E-01	2.140E-01
1.4	9.37E-02	0.5010	2.5E-01	4	2.351E-02	9.405E-02	1.317E-01	1.843E-01	3.613E-01
1.45	7.92E-02	0.4620	2.1E-01	2	1.691E-02	3.383E-02	4.905E-02	7.112E-02	1.495E-01
1.5	6.73E-02	0.4240	1.8E-01	4	1.211E-02	4.843E-02	7.264E-02	1.090E-01	2.452E-01
1.55	5.75E-02	0.3840	1.5E-01	2	8.478E-03	1.696E-02	2.628E-02	4.074E-02	9.787E-02
1.6	4.93E-02	0.3460	1.2E-01	4	5.902E-03	2.361E-02	3.777E-02	6.043E-02	1.547E-01

1.65	4.24E-02	0.3060	9.4E-02	2	3.974E-03	7.949E-03	1.312E-02	2.164E-02	5.892E-02
1.7	3.67E-02	0.2670	7.1E-02	4	2.616E-03	1.046E-02	1.779E-02	3.024E-02	8.739E-02
1.75	3.18E-02	0.2290	5.2E-02	2	1.670E-03	3.339E-03	5.844E-03	1.023E-02	3.132E-02
1.8	2.77E-02	0.2020	4.1E-02	4	1.132E-03	4.526E-03	8.147E-03	1.466E-02	4.751E-02
1.85	2.42E-02	0.1890	3.6E-02	2	8.658E-04	1.732E-03	3.204E-03	5.926E-03	2.028E-02
1.9	2.13E-02	0.1870	3.5E-02	4	7.433E-04	2.973E-03	5.649E-03	1.073E-02	3.875E-02
1.95	1.87E-02	0.1830	3.3E-02	2	6.263E-04	1.253E-03	2.442E-03	4.763E-03	1.811E-02
2	1.65E-02	0.1740	3.0E-02	4	4.997E-04	1.999E-03	3.997E-03	7.994E-03	3.198E-02
2.05	1.46E-02	0.1600	2.6E-02	1	3.739E-04	3.739E-04	7.666E-04	1.571E-03	6.604E-03
						2.37E+01	1.79E+01	1.45E+01	1.16E+01
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	0.3950958	m ²
m _{r1} =	0.2990701	m ² (rad/s)
m _{r2} =	0.2410209	$m^2(rad^2/s^2)$
m _{r4} =	0.1935348	$m^2(rad^4/s^4)$
T ₀ =	8.3006	S
T _p =	7.0118	S
T _z =	8.0446	S
ω ₀ =	0.7570	rad/s
ω _p =	0.8961	rad/s
$\omega_z =$	0.7810	rad/s
$\zeta_{zs} =$	1.2571	m
$\zeta_{zav} =$	0.7857	m
$\zeta_{z1/10} =$	1.5966	m
$\zeta_{\text{zext}(\alpha=0.01)} =$	3.9750	m

Calculation for H significant 2.02 m

(100 year period) - SWAY (180°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

					(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
		3	4	9	6	\overline{O}	8	9	10
ω	S(ω)	RAO	RAO ²	SN4	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3101	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	[m2(rad3/s3)]
0.05	0.00E+00	0.9990	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.9980	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.9970	9.9E-01	2	6.098E-195	1.220E-194	1.829E-195	2.744E-196	6.174E-198
0.2	3.66E-60	0.9940	9.9E-01	4	3.615E-60	1.446E-59	2.892E-60	5.784E-61	2.314E-62
0.25	1.20E-23	0.9910	9.8E-01	2	1.180E-23	2.360E-23	5.900E-24	1.475E-24	9.219E-26
0.3	9.43E-11	0.9880	9.8E-01	4	9.203E-11	3.681E-10	1.104E-10	3.313E-11	2.982E-12
0.35	2.17E-05	0.9700	9.4E-01	2	2.044E-05	4.089E-05	1.431E-05	5.009E-06	6.136E-07
0.4	6.49E-03	0.9700	9.4E-01	4	6.106E-03	2.443E-02	9.770E-03	3.908E-03	6.253E-04
0.45	1.07E-01	0.9630	9.3E-01	2	9.893E-02	1.979E-01	8.904E-02	4.007E-02	8.114E-03
0.5	4.37E-01	0.9540	9.1E-01	4	3.975E-01	1.590E+00	7.950E-01	3.975E-01	9.938E-02
0.55	8.75E-01	0.9440	8.9E-01	2	7.795E-01	1.559E+00	8.574E-01	4.716E-01	1.427E-01
0.6	1.19E+00	0.9320	8.7E-01	4	1.032E+00	4.129E+00	2.478E+00	1.487E+00	5.352E-01
0.65	1.30E+00	0.9180	8.4E-01	2	1.094E+00	2.187E+00	1.422E+00	9.241E-01	3.904E-01
0.7	1.25E+00	0.9030	8.2E-01	4	1.018E+00	4.072E+00	2.850E+00	1.995E+00	9.776E-01
0.75	1.11E+00	0.8860	7.8E-01	2	8.752E-01	1.750E+00	1.313E+00	9.846E-01	5.539E-01
0.8	9.53E-01	0.8670	7.5E-01	4	7.166E-01	2.866E+00	2.293E+00	1.834E+00	1.174E+00
0.85	7.95E-01	0.8460	7.2E-01	2	5.689E-01	1.138E+00	9.671E-01	8.220E-01	5.939E-01
0.9	6.54E-01	0.8230	6.8E-01	4	4.428E-01	1.771E+00	1.594E+00	1.435E+00	1.162E+00
0.95	5.34E-01	0.7980	6.4E-01	2	3.402E-01	6.804E-01	6.464E-01	6.141E-01	5.542E-01
1	4.36E-01	0.7720	6.0E-01	4	2.597E-01	1.039E+00	1.039E+00	1.039E+00	1.039E+00
1.05	3.56E-01	0.7430	5.5E-01	2	1.963E-01	3.927E-01	4.123E-01	4.329E-01	4.773E-01
1.1	2.91E-01	0.7130	5.1E-01	4	1.480E-01	5.919E-01	6.511E-01	7.162E-01	8.666E-01
1.15	2.39E-01	0.6800	4.6E-01	2	1.106E-01	2.212E-01	2.543E-01	2.925E-01	3.868E-01
1.2	1.97E-01	0.6480	4.2E-01	4	8.286E-02	3.315E-01	3.977E-01	4.773E-01	6.873E-01
1.25	1.64E-01	0.6120	3.7E-01	2	6.129E-02	1.226E-01	1.532E-01	1.915E-01	2.992E-01
1.3	1.36E-01	0.5750	3.3E-01	4	4.508E-02	1.803E-01	2.344E-01	3.047E-01	5.150E-01
1.35	1.14E-01	0.5380	2.9E-01	2	3.305E-02	6.610E-02	8.924E-02	1.205E-01	2.196E-01
1.4	9.61E-02	0.5010	2.5E-01	4	2.412E-02	9.649E-02	1.351E-01	1.891E-01	3.707E-01
1.45	8.13E-02	0.4620	2.1E-01	2	1.735E-02	3.469E-02	5.031E-02	7.295E-02	1.534E-01
1.5	6.91E-02	0.4240	1.8E-01	4	1.241E-02	4.966E-02	7.449E-02	1.117E-01	2.514E-01
1.55	5.89E-02	0.3840	1.5E-01	2	8.692E-03	1.738E-02	2.694E-02	4.176E-02	1.003E-01
1.6	5.05E-02	0.3460	1.2E-01	4	6.050E-03	2.420E-02	3.872E-02	6.195E-02	1.586E-01

						Σ0	Σ1	Σ2	Σ4
						2.52E+01	1.89E+01	1.52E+01	1.21E+01
2.05	1.50E-02	0.1600	2.6E-02	1	3.831E-04	3.831E-04	7.853E-04	1.610E-03	6.765E-03
2	1.69E-02	0.1740	3.0E-02	4	5.119E-04	2.047E-03	4.095E-03	8.190E-03	3.276E-02
1.95	1.92E-02	0.1830	3.3E-02	2	6.416E-04	1.283E-03	2.502E-03	4.879E-03	1.855E-02
1.9	2.18E-02	0.1870	3.5E-02	4	7.615E-04	3.046E-03	5.788E-03	1.100E-02	3.970E-02
1.85	2.48E-02	0.1890	3.6E-02	2	8.871E-04	1.774E-03	3.282E-03	6.072E-03	2.078E-02
1.8	2.84E-02	0.2020	4.1E-02	4	1.159E-03	4.638E-03	8.348E-03	1.503E-02	4.869E-02
1.75	3.26E-02	0.2290	5.2E-02	2	1.711E-03	3.422E-03	5.989E-03	1.048E-02	3.210E-02
1.7	3.76E-02	0.2670	7.1E-02	4	2.681E-03	1.072E-02	1.823E-02	3.099E-02	8.956E-02
1.65	4.35E-02	0.3060	9.4E-02	2	4.074E-03	8.147E-03	1.344E-02	2.218E-02	6.039E-02

m _{r0} =	0.4194790	m ²
m _{r1} =	0.3155576	m ² (rad/s)
m _{r2} =	0.2528523	$m^2(rad^2/s^2)$
m _{r4} =	0.2011062	$m^2(rad^4/s^4)$
T ₀ =	8.3524	S
T _p =	7.0453	S
T _z =	8.0929	S
ω ₀ =	0.7523	rad/s
ω _p =	0.8918	rad/s
$\omega_z =$	0.7764	rad/s
$\zeta_{zs} =$	1.2953	m
$\zeta_{zav} =$	0.8096	m
$\zeta_{z1/10} =$	1.6451	m
$\zeta_{\text{zext}(\alpha=0.01)} =$	4.0952	m

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - HEAVE

Calculation for H significant 1.89 m

(10 year period) - HEAVE (90°)

$$H_{s} = 1.89 m$$

$$T_{p} = 9.33 s$$

$$ω_{p} = 0.6736 rad/s$$

$$φ = 6.7923$$

$$Y = 1$$

$$α = 0.0052$$

	0	0		ß	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Ľ	3	Ŧ	9	6	\overline{O}	8	9	10
ω	S(ω)	RAO	RAO ²	C M	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3101	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	[m2(rad3/s3)]
0.05	0.00E+00	1.0000	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	1.0000	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.9980	1.0E+00	2	1.284E-217	2.569E-217	3.853E-218	5.780E-219	1.300E-220
0.2	2.31E-67	0.9960	9.9E-01	4	2.288E-67	9.153E-67	1.831E-67	3.661E-68	1.465E-69
0.25	1.28E-26	0.9930	9.9E-01	2	1.267E-26	2.534E-26	6.334E-27	1.583E-27	9.897E-29
0.3	3.33E-12	0.9890	9.8E-01	4	3.259E-12	1.304E-11	3.911E-12	1.173E-12	1.056E-13
0.35	3.44E-06	0.9840	9.7E-01	2	3.330E-06	6.661E-06	2.331E-06	8.159E-07	9.995E-08
0.4	2.13E-03	0.9770	9.5E-01	4	2.030E-03	8.122E-03	3.249E-03	1.299E-03	2.079E-04
0.45	5.15E-02	0.9700	9.4E-01	2	4.846E-02	9.693E-02	4.362E-02	1.963E-02	3.975E-03
0.5	2.63E-01	0.9620	9.3E-01	4	2.435E-01	9.740E-01	4.870E-01	2.435E-01	6.087E-02
0.55	6.02E-01	0.9530	9.1E-01	2	5.471E-01	1.094E+00	6.018E-01	3.310E-01	1.001E-01
0.6	8.91E-01	0.9430	8.9E-01	4	7.923E-01	3.169E+00	1.901E+00	1.141E+00	4.107E-01
0.65	1.03E+00	0.9320	8.7E-01	2	8.935E-01	1.787E+00	1.162E+00	7.550E-01	3.190E-01
0.7	1.03E+00	0.9210	8.5E-01	4	8.718E-01	3.487E+00	2.441E+00	1.709E+00	8.373E-01
0.75	9.43E-01	0.9090	8.3E-01	2	7.788E-01	1.558E+00	1.168E+00	8.762E-01	4.929E-01
0.8	8.21E-01	0.8970	8.0E-01	4	6.609E-01	2.643E+00	2.115E+00	1.692E+00	1.083E+00
0.85	6.94E-01	0.8860	7.8E-01	2	5.451E-01	1.090E+00	9.267E-01	7.877E-01	5.691E-01
0.9	5.77E-01	0.8760	7.7E-01	4	4.429E-01	1.771E+00	1.594E+00	1.435E+00	1.162E+00
0.95	4.75E-01	0.8660	7.5E-01	2	3.565E-01	7.129E-01	6.773E-01	6.434E-01	5.807E-01
1	3.90E-01	0.8580	7.4E-01	4	2.871E-01	1.148E+00	1.148E+00	1.148E+00	1.148E+00
1.05	3.20E-01	0.8520	7.3E-01	2	2.322E-01	4.643E-01	4.875E-01	5.119E-01	5.644E-01
1.1	2.63E-01	0.8490	7.2E-01	4	1.894E-01	7.575E-01	8.332E-01	9.165E-01	1.109E+00
1.15	2.16E-01	0.8480	7.2E-01	2	1.557E-01	3.113E-01	3.580E-01	4.117E-01	5.445E-01
1.2	1.79E-01	0.8500	7.2E-01	4	1.294E-01	5.175E-01	6.209E-01	7.451E-01	1.073E+00
1.25	1.49E-01	0.8550	7.3E-01	2	1.087E-01	2.175E-01	2.718E-01	3.398E-01	5.309E-01
1.3	1.24E-01	0.8600	7.4E-01	4	9.182E-02	3.673E-01	4.774E-01	6.207E-01	1.049E+00
1.35	1.04E-01	0.8600	7.4E-01	2	7.699E-02	1.540E-01	2.079E-01	2.806E-01	5.115E-01
1.4	8.77E-02	0.8390	7.0E-01	4	6.174E-02	2.470E-01	3.457E-01	4.840E-01	9.487E-01
1.45	7.42E-02	0.7640	5.8E-01	2	4.333E-02	8.667E-02	1.257E-01	1.822E-01	3.831E-01
1.5	6.31E-02	0.6280	3.9E-01	4	2.490E-02	9.959E-02	1.494E-01	2.241E-01	5.042E-01
1.55	5.39E-02	0.4420	2.0E-01	2	1.053E-02	2.107E-02	3.266E-02	5.062E-02	1.216E-01
1.6	4.63E-02	0.2830	8.0E-02	4	3.704E-03	1.482E-02	2.371E-02	3.793E-02	9.710E-02

						ΣΟ	Σ1	Σ2	Σ4
						2.28E+01	1.82E+01	1.56E+01	1.42E+01
2.05	1.37E-02	0.0640	4.1E-03	1	5.624E-05	5.624E-05	1.153E-04	2.363E-04	9.932E-04
2	1.55E-02	0.0680	4.6E-03	4	7.172E-05	2.869E-04	5.738E-04	1.148E-03	4.590E-03
1.95	1.76E-02	0.0670	4.5E-03	2	7.889E-05	1.578E-04	3.077E-04	5.999E-04	2.281E-03
1.9	2.00E-02	0.0630	4.0E-03	4	7.927E-05	3.171E-04	6.024E-04	1.145E-03	4.132E-03
1.85	2.28E-02	0.0520	2.7E-03	2	6.157E-05	1.231E-04	2.278E-04	4.215E-04	1.442E-03
1.8	2.60E-02	0.0330	1.1E-03	4	2.837E-05	1.135E-04	2.042E-04	3.676E-04	1.191E-03
1.75	2.99E-02	0.0160	2.6E-04	2	7.654E-06	1.531E-05	2.679E-05	4.688E-05	1.436E-04
1.7	3.44E-02	0.0670	4.5E-03	4	1.546E-04	6.185E-04	1.051E-03	1.788E-03	5.166E-03
1.65	3.98E-02	0.1530	2.3E-02	2	9.325E-04	1.865E-03	3.077E-03	5.078E-03	1.382E-02

m _{r0} =	0.3800409	m ²
m _{r1} =	0.3034914	m ² (rad/s)
m _{r2} =	0.2599733	$m^2(rad^2/s^2)$
m _{r4} =	0.2373133	$m^{2}(rad^{4}/s^{4})$
T ₀ =	7.8680	S
T _p =	6.5763	S
T _z =	7.5968	S
ω ₀ =	0.7986	rad/s
ω _p =	0.9554	rad/s
$\omega_z =$	0.8271	rad/s
$\zeta_{zs} =$	1.2329	m
$\zeta_{zav} =$	0.7706	m
$\zeta_{z1/10} =$	1.5658	m
$\zeta_{zext(\alpha=0.01)} =$	3.9041	m

Calculation for H significant 1.98 m

(50 year period) - HEAVE (90°)

$H_s =$	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	0			P	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
		3	4	ଔ	6	7	8	9	10
ω	S(ω)	RAO	RAO ²	SM	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3141	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	[m2(rad3/s3)]
0.05	0.00E+00	1.0000	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	1.0000	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.9980	1.0E+00	2	4.715E-201	9.430E-201	1.415E-201	2.122E-202	4.774E-204
0.2	4.19E-62	0.9960	9.9E-01	4	4.157E-62	1.663E-61	3.326E-62	6.651E-63	2.660E-64
0.25	1.90E-24	0.9930	9.9E-01	2	1.873E-24	3.746E-24	9.364E-25	2.341E-25	1.463E-26
0.3	3.83E-11	0.9890	9.8E-01	4	3.742E-11	1.497E-10	4.491E-11	1.347E-11	1.212E-12
0.35	1.32E-05	0.9840	9.7E-01	2	1.279E-05	2.558E-05	8.953E-06	3.133E-06	3.838E-07
0.4	4.80E-03	0.9770	9.5E-01	4	4.582E-03	1.833E-02	7.331E-03	2.933E-03	4.692E-04
0.45	8.76E-02	0.9700	9.4E-01	2	8.241E-02	1.648E-01	7.417E-02	3.338E-02	6.759E-03
0.5	3.81E-01	0.9620	9.3E-01	4	3.523E-01	1.409E+00	7.045E-01	3.523E-01	8.807E-02
0.55	7.90E-01	0.9530	9.1E-01	2	7.178E-01	1.436E+00	7.895E-01	4.342E-01	1.314E-01
0.6	1.10E+00	0.9430	8.9E-01	4	9.770E-01	3.908E+00	2.345E+00	1.407E+00	5.065E-01
0.65	1.22E+00	0.9320	8.7E-01	2	1.058E+00	2.116E+00	1.375E+00	8.938E-01	3.776E-01
0.7	1.18E+00	0.9210	8.5E-01	4	1.004E+00	4.016E+00	2.811E+00	1.968E+00	9.642E-01
0.75	1.06E+00	0.9090	8.3E-01	2	8.797E-01	1.759E+00	1.320E+00	9.896E-01	5.567E-01
0.8	9.15E-01	0.8970	8.0E-01	4	7.362E-01	2.945E+00	2.356E+00	1.885E+00	1.206E+00
0.85	7.66E-01	0.8860	7.8E-01	2	6.011E-01	1.202E+00	1.022E+00	8.686E-01	6.276E-01
0.9	6.32E-01	0.8760	7.7E-01	4	4.847E-01	1.939E+00	1.745E+00	1.570E+00	1.272E+00
0.95	5.17E-01	0.8660	7.5E-01	2	3.879E-01	7.758E-01	7.370E-01	7.001E-01	6.319E-01
1	4.22E-01	0.8580	7.4E-01	4	3.110E-01	1.244E+00	1.244E+00	1.244E+00	1.244E+00
1.05	3.45E-01	0.8520	7.3E-01	2	2.507E-01	5.013E-01	5.264E-01	5.527E-01	6.093E-01
1.1	2.83E-01	0.8490	7.2E-01	4	2.039E-01	8.156E-01	8.972E-01	9.869E-01	1.194E+00
1.15	2.33E-01	0.8480	7.2E-01	2	1.673E-01	3.345E-01	3.847E-01	4.424E-01	5.851E-01
1.2	1.92E-01	0.8500	7.2E-01	4	1.388E-01	5.550E-01	6.661E-01	7.993E-01	1.151E+00
1.25	1.59E-01	0.8550	7.3E-01	2	1.165E-01	2.329E-01	2.912E-01	3.640E-01	5.687E-01
1.3	1.33E-01	0.8600	7.4E-01	4	9.824E-02	3.929E-01	5.108E-01	6.641E-01	1.122E+00
1.35	1.11E-01	0.8600	7.4E-01	2	8.230E-02	1.646E-01	2.222E-01	3.000E-01	5.467E-01
1.4	9.37E-02	0.8390	7.0E-01	4	6.594E-02	2.638E-01	3.693E-01	5.170E-01	1.013E+00
1.45	7.92E-02	0.7640	5.8E-01	2	4.625E-02	9.251E-02	1.341E-01	1.945E-01	4.089E-01
1.5	6.73E-02	0.6280	3.9E-01	4	2.656E-02	1.062E-01	1.594E-01	2.390E-01	5.378E-01
1.55	5.75E-02	0.4420	2.0E-01	2	1.123E-02	2.246E-02	3.482E-02	5.397E-02	1.297E-01
1.6	4.93E-02	0.2830	8.0E-02	4	3.948E-03	1.579E-02	2.527E-02	4.043E-02	1.035E-01

						Σ0	Σ1	Σ2	Σ4
						2.64E+01	2.08E+01	1.75E+01	1.56E+01
2.05	1.46E-02	0.0640	4.1E-03	1	5.983E-05	5.983E-05	1.227E-04	2.514E-04	1.057E-03
2	1.65E-02	0.0680	4.6E-03	4	7.631E-05	3.052E-04	6.105E-04	1.221E-03	4.884E-03
1.95	1.87E-02	0.0670	4.5E-03	2	8.395E-05	1.679E-04	3.274E-04	6.384E-04	2.428E-03
1.9	2.13E-02	0.0630	4.0E-03	4	8.437E-05	3.375E-04	6.412E-04	1.218E-03	4.398E-03
1.85	2.42E-02	0.0520	2.7E-03	2	6.554E-05	1.311E-04	2.425E-04	4.486E-04	1.535E-03
1.8	2.77E-02	0.0330	1.1E-03	4	3.020E-05	1.208E-04	2.174E-04	3.914E-04	1.268E-03
1.75	3.18E-02	0.0160	2.6E-04	2	8.151E-06	1.630E-05	2.853E-05	4.992E-05	1.529E-04
1.7	3.67E-02	0.0670	4.5E-03	4	1.647E-04	6.588E-04	1.120E-03	1.904E-03	5.503E-03
1.65	4.24E-02	0.1530	2.3E-02	2	9.936E-04	1.987E-03	3.279E-03	5.410E-03	1.473E-02

m _{r0} =	0.4405573	m ²
m _{r1} =	0.3459586	m ² (rad/s)
m _{r2} =	0.2919060	$m^2(rad^2/s^2)$
m _{r4} =	0.2603272	$m^2(rad^4/s^4)$
T ₀ =	8.0013	S
T _p =	6.6534	S
T _z =	7.7190	S
ω ₀ =	0.7853	rad/s
ω _p =	0.9444	rad/s
$\omega_z =$	0.8140	rad/s
$\zeta_{zs} =$	1.3275	m
$\zeta_{zav} =$	0.8297	m
$\zeta_{z1/10} =$	1.6859	m
$\zeta_{zext(\alpha=0.01)} =$	4.2018	m

Calculation for H significant 2.02 m

(100 year period) - HEAVE (90°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α =	0.0057	

	0	()		ß	2 x 4	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Z	9	Ŧ	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(m/m)	(m^{2}/m^{2})	3101	[(m ² /(rad/s)]	[(m ² /(rad/s)]	(m ²)	[m ² (rad/s)]	[m2(rad3/s3)]
0.05	0.00E+00	1.0000	1.0E+00	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	1.0000	1.0E+00	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.9980	1.0E+00	2	6.110E-195	1.222E-194	1.833E-195	2.750E-196	6.187E-198
0.2	3.66E-60	0.9960	9.9E-01	4	3.630E-60	1.452E-59	2.904E-60	5.808E-61	2.323E-62
0.25	1.20E-23	0.9930	9.9E-01	2	1.185E-23	2.370E-23	5.924E-24	1.481E-24	9.256E-26
0.3	9.43E-11	0.9890	9.8E-01	4	9.222E-11	3.689E-10	1.107E-10	3.320E-11	2.988E-12
0.35	2.17E-05	0.9840	9.7E-01	2	2.104E-05	4.208E-05	1.473E-05	5.154E-06	6.314E-07
0.4	6.49E-03	0.9770	9.5E-01	4	6.195E-03	2.478E-02	9.912E-03	3.965E-03	6.343E-04
0.45	1.07E-01	0.9700	9.4E-01	2	1.004E-01	2.008E-01	9.034E-02	4.065E-02	8.232E-03
0.5	4.37E-01	0.9620	9.3E-01	4	4.042E-01	1.617E+00	8.084E-01	4.042E-01	1.011E-01
0.55	8.75E-01	0.9530	9.1E-01	2	7.944E-01	1.589E+00	8.738E-01	4.806E-01	1.454E-01
0.6	1.19E+00	0.9430	8.9E-01	4	1.057E+00	4.228E+00	2.537E+00	1.522E+00	5.479E-01
0.65	1.30E+00	0.9320	8.7E-01	2	1.127E+00	2.254E+00	1.465E+00	9.525E-01	4.024E-01
0.7	1.25E+00	0.9210	8.5E-01	4	1.059E+00	4.236E+00	2.965E+00	2.076E+00	1.017E+00
0.75	1.11E+00	0.9090	8.3E-01	2	9.213E-01	1.843E+00	1.382E+00	1.036E+00	5.830E-01
0.8	9.53E-01	0.8970	8.0E-01	4	7.670E-01	3.068E+00	2.454E+00	1.964E+00	1.257E+00
0.85	7.95E-01	0.8860	7.8E-01	2	6.240E-01	1.248E+00	1.061E+00	9.016E-01	6.514E-01
0.9	6.54E-01	0.8760	7.7E-01	4	5.017E-01	2.007E+00	1.806E+00	1.625E+00	1.317E+00
0.95	5.34E-01	0.8660	7.5E-01	2	4.007E-01	8.013E-01	7.613E-01	7.232E-01	6.527E-01
1	4.36E-01	0.8580	7.4E-01	4	3.208E-01	1.283E+00	1.283E+00	1.283E+00	1.283E+00
1.05	3.56E-01	0.8520	7.3E-01	2	2.582E-01	5.163E-01	5.422E-01	5.693E-01	6.276E-01
1.1	2.91E-01	0.8490	7.2E-01	4	2.098E-01	8.393E-01	9.232E-01	1.016E+00	1.229E+00
1.15	2.39E-01	0.8480	7.2E-01	2	1.720E-01	3.439E-01	3.955E-01	4.549E-01	6.015E-01
1.2	1.97E-01	0.8500	7.2E-01	4	1.426E-01	5.703E-01	6.844E-01	8.212E-01	1.183E+00
1.25	1.64E-01	0.8550	7.3E-01	2	1.196E-01	2.392E-01	2.990E-01	3.738E-01	5.841E-01
1.3	1.36E-01	0.8600	7.4E-01	4	1.008E-01	4.034E-01	5.244E-01	6.817E-01	1.152E+00
1.35	1.14E-01	0.8600	7.4E-01	2	8.445E-02	1.689E-01	2.280E-01	3.078E-01	5.610E-01
1.4	9.61E-02	0.8390	7.0E-01	4	6.765E-02	2.706E-01	3.788E-01	5.304E-01	1.040E+00
1.45	8.13E-02	0.7640	5.8E-01	2	4.744E-02	9.488E-02	1.376E-01	1.995E-01	4.194E-01
1.5	6.91E-02	0.6280	3.9E-01	4	2.724E-02	1.089E-01	1.634E-01	2.451E-01	5.515E-01
1.55	5.89E-02	0.4420	2.0E-01	2	1.152E-02	2.303E-02	3.570E-02	5.533E-02	1.329E-01
1.6	5.05E-02	0.2830	8.0E-02	4	4.047E-03	1.619E-02	2.590E-02	4.144E-02	1.061E-01

						Σ0	Σ1	Σ2	Σ4
						2.80E+01	2.18E+01	1.83E+01	1.62E+01
2.05	1.50E-02	0.0640	4.1E-03	1	6.129E-05	6.129E-05	1.256E-04	2.576E-04	1.082E-03
2	1.69E-02	0.0680	4.6E-03	4	7.818E-05	3.127E-04	6.254E-04	1.251E-03	5.003E-03
1.95	1.92E-02	0.0670	4.5E-03	2	8.600E-05	1.720E-04	3.354E-04	6.541E-04	2.487E-03
1.9	2.18E-02	0.0630	4.0E-03	4	8.644E-05	3.457E-04	6.569E-04	1.248E-03	4.506E-03
1.85	2.48E-02	0.0520	2.7E-03	2	6.715E-05	1.343E-04	2.485E-04	4.597E-04	1.573E-03
1.8	2.84E-02	0.0330	1.1E-03	4	3.094E-05	1.238E-04	2.228E-04	4.010E-04	1.299E-03
1.75	3.26E-02	0.0160	2.6E-04	2	8.353E-06	1.671E-05	2.923E-05	5.116E-05	1.567E-04
1.7	3.76E-02	0.0670	4.5E-03	4	1.688E-04	6.752E-04	1.148E-03	1.951E-03	5.639E-03
1.65	4.35E-02	0.1530	2.3E-02	2	1.018E-03	2.037E-03	3.361E-03	5.545E-03	1.510E-02

m _{r0} =	0.4666219	m ²
m _{r1} =	0.3640282	m ² (rad/s)
m _{r2} =	0.3053398	$m^2(rad^2/s^2)$
m _{r4} =	0.2698336	$m^2(rad^4/s^4)$
T ₀ =	8.0540	S
T _p =	6.6838	S
T _z =	7.7673	S
ω ₀ =	0.7801	rad/s
ω _p =	0.9401	rad/s
$\omega_z =$	0.8089	rad/s
$\zeta_{zs} =$	1.3662	m
$\zeta_{zav} =$	0.8539	m
$\zeta_{z1/10} =$	1.7351	m
$\zeta_{zext(\alpha=0.01)} =$	4.3237	m

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - ROLL

Calculation for H significant 1.89 m

(10 year period) - ROLL (90 $^{\circ}$)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

	0			ß	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
	Z	9	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0180	3.2E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0720	5.2E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.1670	2.8E-02	2	3.596E-219	7.193E-219	1.079E-219	1.618E-220	3.641E-222
0.2	2.31E-67	0.3130	9.8E-02	4	2.260E-68	9.039E-68	1.808E-68	3.616E-69	1.446E-70
0.25	1.28E-26	0.5510	3.0E-01	2	3.900E-27	7.801E-27	1.950E-27	4.875E-28	3.047E-29
0.3	3.33E-12	1.0240	1.0E+00	4	3.494E-12	1.397E-11	4.192E-12	1.258E-12	1.132E-13
0.35	3.44E-06	0.5830	3.4E-01	2	1.169E-06	2.338E-06	8.183E-07	2.864E-07	3.509E-08
0.4	2.13E-03	0.4460	2.0E-01	4	4.231E-04	1.693E-03	6.770E-04	2.708E-04	4.333E-05
0.45	5.15E-02	0.8160	6.7E-01	2	3.430E-02	6.859E-02	3.087E-02	1.389E-02	2.813E-03
0.5	2.63E-01	1.1240	1.3E+00	4	3.324E-01	1.330E+00	6.648E-01	3.324E-01	8.310E-02
0.55	6.02E-01	1.4290	2.0E+00	2	1.230E+00	2.460E+00	1.353E+00	7.442E-01	2.251E-01
0.6	8.91E-01	1.7390	3.0E+00	4	2.694E+00	1.078E+01	6.466E+00	3.880E+00	1.397E+00
0.65	1.03E+00	2.0580	4.2E+00	2	4.357E+00	8.713E+00	5.664E+00	3.681E+00	1.555E+00
0.7	1.03E+00	2.3880	5.7E+00	4	5.861E+00	2.344E+01	1.641E+01	1.149E+01	5.629E+00
0.75	9.43E-01	2.7290	7.4E+00	2	7.020E+00	1.404E+01	1.053E+01	7.897E+00	4.442E+00
0.8	8.21E-01	3.0800	9.5E+00	4	7.792E+00	3.117E+01	2.493E+01	1.995E+01	1.277E+01
0.85	6.94E-01	3.4280	1.2E+01	2	8.160E+00	1.632E+01	1.387E+01	1.179E+01	8.519E+00
0.9	5.77E-01	3.7780	1.4E+01	4	8.237E+00	3.295E+01	2.965E+01	2.669E+01	2.162E+01
0.95	4.75E-01	4.1280	1.7E+01	2	8.099E+00	1.620E+01	1.539E+01	1.462E+01	1.319E+01
1	3.90E-01	4.4690	2.0E+01	4	7.788E+00	3.115E+01	3.115E+01	3.115E+01	3.115E+01
1.05	3.20E-01	4.8020	2.3E+01	2	7.375E+00	1.475E+01	1.549E+01	1.626E+01	1.793E+01
1.1	2.63E-01	5.1040	2.6E+01	4	6.844E+00	2.738E+01	3.011E+01	3.312E+01	4.008E+01
1.15	2.16E-01	5.3930	2.9E+01	2	6.296E+00	1.259E+01	1.448E+01	1.665E+01	2.202E+01
1.2	1.79E-01	5.6610	3.2E+01	4	5.738E+00	2.295E+01	2.754E+01	3.305E+01	4.759E+01
1.25	1.49E-01	5.9090	3.5E+01	2	5.194E+00	1.039E+01	1.298E+01	1.623E+01	2.536E+01
1.3	1.24E-01	6.1560	3.8E+01	4	4.705E+00	1.882E+01	2.446E+01	3.180E+01	5.375E+01
1.35	1.04E-01	6.3800	4.1E+01	2	4.237E+00	8.475E+00	1.144E+01	1.545E+01	2.815E+01
1.4	8.77E-02	6.5710	4.3E+01	4	3.787E+00	1.515E+01	2.121E+01	2.969E+01	5.819E+01
1.45	7.42E-02	6.7730	4.6E+01	2	3.406E+00	6.811E+00	9.877E+00	1.432E+01	3.011E+01
1.5	6.31E-02	6.9470	4.8E+01	4	3.047E+00	1.219E+01	1.828E+01	2.742E+01	6.170E+01
1.55	5.39E-02	7.1170	5.1E+01	2	2.731E+00	5.462E+00	8.466E+00	1.312E+01	3.153E+01
1.6	4.63E-02	7.2410	5.2E+01	4	2.425E+00	9.700E+00	1.552E+01	2.483E+01	6.357E+01

1.65	3.98E-02	7.3320	5.4E+01	2	2.141E+00	4.283E+00	7.067E+00	1.166E+01	3.175E+01
1.7	3.44E-02	7.3190	5.4E+01	4	1.845E+00	7.381E+00	1.255E+01	2.133E+01	6.165E+01
1.75	2.99E-02	7.0900	5.0E+01	2	1.503E+00	3.006E+00	5.260E+00	9.206E+00	2.819E+01
1.8	2.60E-02	6.4620	4.2E+01	4	1.088E+00	4.351E+00	7.831E+00	1.410E+01	4.567E+01
1.85	2.28E-02	5.5140	3.0E+01	2	6.923E-01	1.385E+00	2.562E+00	4.739E+00	1.622E+01
1.9	2.00E-02	3.9610	1.6E+01	4	3.134E-01	1.253E+00	2.381E+00	4.525E+00	1.633E+01
1.95	1.76E-02	2.4640	6.1E+00	2	1.067E-01	2.134E-01	4.161E-01	8.114E-01	3.085E+00
2	1.55E-02	1.3720	1.9E+00	4	2.920E-02	1.168E-01	2.336E-01	4.672E-01	1.869E+00
2.05	1.37E-02	0.5600	3.1E-01	1	4.306E-03	4.306E-03	8.827E-03	1.809E-02	7.604E-02
						3.75E+02	4.04E+02	4.71E+02	7.85E+02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	6.2545374	deg ²
m _{r1} =	6.7381863	m ² (rad/s)
m _{r2} =	7.8507234	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	13.0900067	$deg^{2}(rad^{4}/s^{4})$

T ₀ =	5.8322	S
T _p =	4.8659	S
$T_z =$	5.6082	S
ω ₀ =	1.0773	rad/s
ω _p =	1.2913	rad/s
$\omega_z =$	1.1204	rad/s
$\zeta_{zs} =$	5.0018	deg
$\zeta_{zav} =$	3.1261	deg
$\zeta_{z1/10} =$	6.3523	deg
$\zeta_{zext(\alpha=0.01)} =$	15.9576	deg

Calculation for H significant 1.98 m

(50 year period) - ROLL (90°)

$H_s =$	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	0				(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
	2	9	4	୦	6	7	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3141	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0180	3.2E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0720	5.2E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.1670	2.8E-02	2	1.320E-202	2.641E-202	3.961E-203	5.941E-204	1.337E-205
0.2	4.19E-62	0.3130	9.8E-02	4	4.105E-63	1.642E-62	3.284E-63	6.569E-64	2.627E-65
0.25	1.90E-24	0.5510	3.0E-01	2	5.766E-25	1.153E-24	2.883E-25	7.208E-26	4.505E-27
0.3	3.83E-11	1.0240	1.0E+00	4	4.012E-11	1.605E-10	4.814E-11	1.444E-11	1.300E-12
0.35	1.32E-05	0.5830	3.4E-01	2	4.489E-06	8.979E-06	3.143E-06	1.100E-06	1.347E-07
0.4	4.80E-03	0.4460	2.0E-01	4	9.549E-04	3.819E-03	1.528E-03	6.111E-04	9.778E-05
0.45	8.76E-02	0.8160	6.7E-01	2	5.832E-02	1.166E-01	5.249E-02	2.362E-02	4.783E-03
0.5	3.81E-01	1.1240	1.3E+00	4	4.809E-01	1.924E+00	9.618E-01	4.809E-01	1.202E-01
0.55	7.90E-01	1.4290	2.0E+00	2	1.614E+00	3.228E+00	1.775E+00	9.764E-01	2.954E-01
0.6	1.10E+00	1.7390	3.0E+00	4	3.323E+00	1.329E+01	7.974E+00	4.784E+00	1.722E+00
0.65	1.22E+00	2.0580	4.2E+00	2	5.158E+00	1.032E+01	6.705E+00	4.358E+00	1.841E+00
0.7	1.18E+00	2.3880	5.7E+00	4	6.749E+00	2.700E+01	1.890E+01	1.323E+01	6.482E+00
0.75	1.06E+00	2.7290	7.4E+00	2	7.929E+00	1.586E+01	1.189E+01	8.920E+00	5.017E+00
0.8	9.15E-01	3.0800	9.5E+00	4	8.679E+00	3.472E+01	2.777E+01	2.222E+01	1.422E+01
0.85	7.66E-01	3.4280	1.2E+01	2	8.998E+00	1.800E+01	1.530E+01	1.300E+01	9.394E+00
0.9	6.32E-01	3.7780	1.4E+01	4	9.015E+00	3.606E+01	3.245E+01	2.921E+01	2.366E+01
0.95	5.17E-01	4.1280	1.7E+01	2	8.813E+00	1.763E+01	1.675E+01	1.591E+01	1.436E+01
1	4.22E-01	4.4690	2.0E+01	4	8.438E+00	3.375E+01	3.375E+01	3.375E+01	3.375E+01
1.05	3.45E-01	4.8020	2.3E+01	2	7.962E+00	1.592E+01	1.672E+01	1.756E+01	1.936E+01
1.1	2.83E-01	5.1040	2.6E+01	4	7.370E+00	2.948E+01	3.243E+01	3.567E+01	4.316E+01
1.15	2.33E-01	5.3930	2.9E+01	2	6.765E+00	1.353E+01	1.556E+01	1.789E+01	2.366E+01
1.2	1.92E-01	5.6610	3.2E+01	4	6.155E+00	2.462E+01	2.954E+01	3.545E+01	5.105E+01
1.25	1.59E-01	5.9090	3.5E+01	2	5.563E+00	1.113E+01	1.391E+01	1.738E+01	2.716E+01
1.3	1.33E-01	6.1560	3.8E+01	4	5.034E+00	2.013E+01	2.617E+01	3.403E+01	5.751E+01
1.35	1.11E-01	6.3800	4.1E+01	2	4.529E+00	9.059E+00	1.223E+01	1.651E+01	3.009E+01
1.4	9.37E-02	6.5710	4.3E+01	4	4.045E+00	1.618E+01	2.265E+01	3.171E+01	6.215E+01
1.45	7.92E-02	6.7730	4.6E+01	2	3.635E+00	7.270E+00	1.054E+01	1.529E+01	3.214E+01
1.5	6.73E-02	6.9470	4.8E+01	4	3.250E+00	1.300E+01	1.950E+01	2.925E+01	6.582E+01
1.55	5.75E-02	7.1170	5.1E+01	2	2.912E+00	5.824E+00	9.028E+00	1.399E+01	3.362E+01
1.6	4.93E-02	7.2410	5.2E+01	4	2.585E+00	1.034E+01	1.654E+01	2.647E+01	6.776E+01

1.65	4.24E-02	7.3320	5.4E+01	2	2.282E+00	4.563E+00	7.530E+00	1.242E+01	3.382E+01
1.7	3.67E-02	7.3190	5.4E+01	4	1.965E+00	7.862E+00	1.337E+01	2.272E+01	6.566E+01
1.75	3.18E-02	7.0900	5.0E+01	2	1.601E+00	3.201E+00	5.602E+00	9.803E+00	3.002E+01
1.8	2.77E-02	6.4620	4.2E+01	4	1.158E+00	4.632E+00	8.338E+00	1.501E+01	4.862E+01
1.85	2.42E-02	5.5140	3.0E+01	2	7.369E-01	1.474E+00	2.727E+00	5.044E+00	1.726E+01
1.9	2.13E-02	3.9610	1.6E+01	4	3.335E-01	1.334E+00	2.535E+00	4.816E+00	1.738E+01
1.95	1.87E-02	2.4640	6.1E+00	2	1.135E-01	2.271E-01	4.428E-01	8.635E-01	3.283E+00
2	1.65E-02	1.3720	1.9E+00	4	3.107E-02	1.243E-01	2.485E-01	4.971E-01	1.988E+00
2.05	1.46E-02	0.5600	3.1E-01	1	4.581E-03	4.581E-03	9.391E-03	1.925E-02	8.090E-02
						4.12E+02	4.40E+02	5.09E+02	8.42E+02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	6.8631713	deg ²
m _{r1} =	7.3317228	m ² (rad/s)
m _{r2} =	8.4876291	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	14.0411783	$deg^{2}(rad^{4}/s^{4})$

T ₀ =	5.8816	S
T _p =	4.8851	S
$T_z =$	5.6500	S
ω ₀ =	1.0683	rad/s
ω _p =	1.2862	rad/s
$\omega_z =$	1.1121	rad/s
$\zeta_{zs} =$	5.2395	deg
$\zeta_{zav} =$	3.2747	deg
$\zeta_{z1/10} =$	6.6542	deg
$\zeta_{zext(\alpha=0.01)} =$	16.7130	deg

Calculation for H significant 2.02 m

(100 year period) - ROLL (90°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α=	0.0057	

		a @	Ē	(2) x (4)	(5 x (6	① x ⑦	(1) ² x (7)	① ⁴ x ⑦	
Ū	Ľ		4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	5171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0180	3.2E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0720	5.2E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.1670	2.8E-02	2	1.711E-196	3.422E-196	5.133E-197	7.699E-198	1.732E-199
0.2	3.66E-60	0.3130	9.8E-02	4	3.585E-61	1.434E-60	2.868E-61	5.735E-62	2.294E-63
0.25	1.20E-23	0.5510	3.0E-01	2	3.648E-24	7.296E-24	1.824E-24	4.560E-25	2.850E-26
0.3	9.43E-11	1.0240	1.0E+00	4	9.886E-11	3.954E-10	1.186E-10	3.559E-11	3.203E-12
0.35	2.17E-05	0.5830	3.4E-01	2	7.385E-06	1.477E-05	5.170E-06	1.809E-06	2.216E-07
0.4	6.49E-03	0.4460	2.0E-01	4	1.291E-03	5.164E-03	2.066E-03	8.262E-04	1.322E-04
0.45	1.07E-01	0.8160	6.7E-01	2	7.103E-02	1.421E-01	6.393E-02	2.877E-02	5.826E-03
0.5	4.37E-01	1.1240	1.3E+00	4	5.518E-01	2.207E+00	1.104E+00	5.518E-01	1.379E-01
0.55	8.75E-01	1.4290	2.0E+00	2	1.786E+00	3.572E+00	1.965E+00	1.081E+00	3.269E-01
0.6	1.19E+00	1.7390	3.0E+00	4	3.594E+00	1.438E+01	8.626E+00	5.176E+00	1.863E+00
0.65	1.30E+00	2.0580	4.2E+00	2	5.496E+00	1.099E+01	7.145E+00	4.644E+00	1.962E+00
0.7	1.25E+00	2.3880	5.7E+00	4	7.119E+00	2.848E+01	1.993E+01	1.395E+01	6.837E+00
0.75	1.11E+00	2.7290	7.4E+00	2	8.303E+00	1.661E+01	1.246E+01	9.341E+00	5.255E+00
0.8	9.53E-01	3.0800	9.5E+00	4	9.043E+00	3.617E+01	2.894E+01	2.315E+01	1.482E+01
0.85	7.95E-01	3.4280	1.2E+01	2	9.340E+00	1.868E+01	1.588E+01	1.350E+01	9.752E+00
0.9	6.54E-01	3.7780	1.4E+01	4	9.332E+00	3.733E+01	3.359E+01	3.023E+01	2.449E+01
0.95	5.34E-01	4.1280	1.7E+01	2	9.104E+00	1.821E+01	1.730E+01	1.643E+01	1.483E+01
1	4.36E-01	4.4690	2.0E+01	4	8.702E+00	3.481E+01	3.481E+01	3.481E+01	3.481E+01
1.05	3.56E-01	4.8020	2.3E+01	2	8.201E+00	1.640E+01	1.722E+01	1.808E+01	1.994E+01
1.1	2.91E-01	5.1040	2.6E+01	4	7.583E+00	3.033E+01	3.337E+01	3.670E+01	4.441E+01
1.15	2.39E-01	5.3930	2.9E+01	2	6.955E+00	1.391E+01	1.600E+01	1.840E+01	2.433E+01
1.2	1.97E-01	5.6610	3.2E+01	4	6.324E+00	2.530E+01	3.036E+01	3.643E+01	5.245E+01
1.25	1.64E-01	5.9090	3.5E+01	2	5.713E+00	1.143E+01	1.428E+01	1.785E+01	2.790E+01
1.3	1.36E-01	6.1560	3.8E+01	4	5.167E+00	2.067E+01	2.687E+01	3.493E+01	5.903E+01
1.35	1.14E-01	6.3800	4.1E+01	2	4.648E+00	9.296E+00	1.255E+01	1.694E+01	3.088E+01
1.4	9.61E-02	6.5710	4.3E+01	4	4.149E+00	1.660E+01	2.324E+01	3.253E+01	6.376E+01
1.45	8.13E-02	6.7730	4.6E+01	2	3.728E+00	7.457E+00	1.081E+01	1.568E+01	3.296E+01
1.5	6.91E-02	6.9470	4.8E+01	4	3.333E+00	1.333E+01	2.000E+01	2.999E+01	6.749E+01
1.55	5.89E-02	7.1170	5.1E+01	2	2.986E+00	5.971E+00	9.255E+00	1.435E+01	3.447E+01
1.6	5.05E-02	7.2410	5.2E+01	4	2.650E+00	1.060E+01	1.696E+01	2.713E+01	6.946E+01

1.65	4.35E-02	7.3320	5.4E+01	2	2.339E+00	4.677E+00	7.718E+00	1.273E+01	3.467E+01
1.7	3.76E-02	7.3190	5.4E+01	4	2.014E+00	8.057E+00	1.370E+01	2.329E+01	6.730E+01
1.75	3.26E-02	7.0900	5.0E+01	2	1.640E+00	3.280E+00	5.741E+00	1.005E+01	3.077E+01
1.8	2.84E-02	6.4620	4.2E+01	4	1.187E+00	4.746E+00	8.543E+00	1.538E+01	4.982E+01
1.85	2.48E-02	5.5140	3.0E+01	2	7.551E-01	1.510E+00	2.794E+00	5.168E+00	1.769E+01
1.9	2.18E-02	3.9610	1.6E+01	4	3.417E-01	1.367E+00	2.597E+00	4.934E+00	1.781E+01
1.95	1.92E-02	2.4640	6.1E+00	2	1.163E-01	2.326E-01	4.536E-01	8.846E-01	3.364E+00
2	1.69E-02	1.3720	1.9E+00	4	3.182E-02	1.273E-01	2.546E-01	5.092E-01	2.037E+00
2.05	1.50E-02	0.5600	3.1E-01	1	4.692E-03	4.692E-03	9.620E-03	1.972E-02	8.287E-02
						4.27E+02	4.55E+02	5.25E+02	8.66E+02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	7.1144038	deg ²
m _{r1} =	7.5752886	m ² (rad/s)
m _{r2} =	8.7478990	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	14.4281952	deg ² (rad ⁴ /s ⁴)

T ₀ =	5.9009	S
T _p =	4.8924	S
$T_z =$	5.6663	S
ω ₀ =	1.0648	rad/s
ω _p =	1.2843	rad/s
$\omega_z =$	1.1089	rad/s
$\zeta_{zs} =$	5.3346	deg
$\zeta_{zav} =$	3.3341	deg
$\zeta_{z1/10} =$	6.7749	deg
$\zeta_{zext(\alpha=0.01)} =$	17.0149	deg

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - PITCH

Calculation for H significant 1.89 m

(10 year period) - PITCH (180°)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

				(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦			
		3	4		4 3		6	7	8	9	10
ω	S(ω)	RAO	RAO ²	C M	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM		
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	5171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$		
0.05	0.00E+00	0.0180	3.2E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
0.1	0.00E+00	0.0710	5.0E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
0.15	1.29E-217	0.1650	2.7E-02	2	3.511E-219	7.021E-219	1.053E-219	1.580E-220	3.555E-222		
0.2	2.31E-67	0.3080	9.5E-02	4	2.188E-68	8.753E-68	1.751E-68	3.501E-69	1.400E-70		
0.25	1.28E-26	0.5430	2.9E-01	2	3.788E-27	7.576E-27	1.894E-27	4.735E-28	2.959E-29		
0.3	3.33E-12	1.1710	1.4E+00	4	4.569E-12	1.827E-11	5.482E-12	1.645E-12	1.480E-13		
0.35	3.44E-06	0.3190	1.0E-01	2	3.500E-07	7.000E-07	2.450E-07	8.575E-08	1.050E-08		
0.4	2.13E-03	0.5800	3.4E-01	4	7.156E-04	2.862E-03	1.145E-03	4.580E-04	7.328E-05		
0.45	5.15E-02	0.8990	8.1E-01	2	4.163E-02	8.326E-02	3.746E-02	1.686E-02	3.414E-03		
0.5	2.63E-01	1.1930	1.4E+00	4	3.745E-01	1.498E+00	7.490E-01	3.745E-01	9.362E-02		
0.55	6.02E-01	1.4960	2.2E+00	2	1.348E+00	2.696E+00	1.483E+00	8.156E-01	2.467E-01		
0.6	8.91E-01	1.8080	3.3E+00	4	2.912E+00	1.165E+01	6.990E+00	4.194E+00	1.510E+00		
0.65	1.03E+00	2.1310	4.5E+00	2	4.671E+00	9.342E+00	6.072E+00	3.947E+00	1.668E+00		
0.7	1.03E+00	2.4690	6.1E+00	4	6.265E+00	2.506E+01	1.754E+01	1.228E+01	6.017E+00		
0.75	9.43E-01	2.8190	7.9E+00	2	7.490E+00	1.498E+01	1.124E+01	8.427E+00	4.740E+00		
0.8	8.21E-01	3.1830	1.0E+01	4	8.321E+00	3.329E+01	2.663E+01	2.130E+01	1.363E+01		
0.85	6.94E-01	3.5470	1.3E+01	2	8.737E+00	1.747E+01	1.485E+01	1.262E+01	9.121E+00		
0.9	5.77E-01	3.9150	1.5E+01	4	8.845E+00	3.538E+01	3.184E+01	2.866E+01	2.321E+01		
0.95	4.75E-01	4.2860	1.8E+01	2	8.731E+00	1.746E+01	1.659E+01	1.576E+01	1.422E+01		
1	3.90E-01	4.6510	2.2E+01	4	8.436E+00	3.374E+01	3.374E+01	3.374E+01	3.374E+01		
1.05	3.20E-01	5.0120	2.5E+01	2	8.034E+00	1.607E+01	1.687E+01	1.771E+01	1.953E+01		
1.1	2.63E-01	5.3600	2.9E+01	4	7.548E+00	3.019E+01	3.321E+01	3.653E+01	4.420E+01		
1.15	2.16E-01	5.7030	3.3E+01	2	7.040E+00	1.408E+01	1.619E+01	1.862E+01	2.463E+01		
1.2	1.79E-01	6.0200	3.6E+01	4	6.489E+00	2.596E+01	3.115E+01	3.738E+01	5.382E+01		
1.25	1.49E-01	6.3380	4.0E+01	2	5.975E+00	1.195E+01	1.494E+01	1.867E+01	2.918E+01		
1.3	1.24E-01	6.6550	4.4E+01	4	5.498E+00	2.199E+01	2.859E+01	3.717E+01	6.281E+01		
1.35	1.04E-01	6.9550	4.8E+01	2	5.036E+00	1.007E+01	1.360E+01	1.835E+01	3.345E+01		
1.4	8.77E-02	7.2410	5.2E+01	4	4.599E+00	1.839E+01	2.575E+01	3.605E+01	7.067E+01		
1.45	7.42E-02	7.5460	5.7E+01	2	4.227E+00	8.455E+00	1.226E+01	1.778E+01	3.738E+01		
1.5	6.31E-02	7.8110	6.1E+01	4	3.852E+00	1.541E+01	2.311E+01	3.467E+01	7.800E+01		
1.55	5.39E-02	8.0780	6.5E+01	2	3.518E+00	7.037E+00	1.091E+01	1.691E+01	4.062E+01		
1.6	4.63E-02	8.3040	6.9E+01	4	3.189E+00	1.276E+01	2.041E+01	3.266E+01	8.360E+01		
SPECTRAL CALCULATION AND ANALYSIS

HEXAGONAL SBM

1.65	3.98E-02	8.4410	7.1E+01	2	2.838E+00	5.677E+00	9.366E+00	1.545E+01	4.207E+01
1.7	3.44E-02	8.3180	6.9E+01	4	2.383E+00	9.533E+00	1.621E+01	2.755E+01	7.962E+01
1.75	2.99E-02	7.6700	5.9E+01	2	1.759E+00	3.518E+00	6.156E+00	1.077E+01	3.299E+01
1.8	2.60E-02	6.4350	4.1E+01	4	1.079E+00	4.314E+00	7.766E+00	1.398E+01	4.529E+01
1.85	2.28E-02	4.9330	2.4E+01	2	5.541E-01	1.108E+00	2.050E+00	3.793E+00	1.298E+01
1.9	2.00E-02	3.3850	1.1E+01	4	2.288E-01	9.154E-01	1.739E+00	3.305E+00	1.193E+01
1.95	1.76E-02	2.0400	4.2E+00	2	7.313E-02	1.463E-01	2.852E-01	5.562E-01	2.115E+00
2	1.55E-02	1.0950	1.2E+00	4	1.860E-02	7.439E-02	1.488E-01	2.976E-01	1.190E+00
2.05	1.37E-02	0.4070	1.7E-01	1	2.274E-03	2.274E-03	4.662E-03	9.558E-03	4.017E-02
						4.20E+02	4.58E+02	5.40E+02	9.14E+02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	7.0051237	deg ²
m _{r1} =	7.6412678	m ² (rad/s)
m _{r2} =	9.0059933	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	15.2388535	deg ² (rad ⁴ /s ⁴)

T ₀ =	5.7601	S
T _p =	4.8302	S
$T_z =$	5.5414	S
ω ₀ =	1.0908	rad/s
ω _p =	1.3008	rad/s
$\omega_z =$	1.1339	rad/s
$\zeta_{zs} =$	5.2934	deg
$\zeta_{zav} =$	3.3084	deg
$\zeta_{z1/10} =$	6.7227	deg
$\zeta_{zext(\alpha=0.01)} =$	16.8930	deg

SPECTRAL CALCULATION AND ANALYSIS HEXAGONAL SBM

Calculation for H significant 1.98 m

(50 year period) - PITCH (180°)

$H_s =$	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	0			Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
	2	9	4	9	6	7	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0180	3.2E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0710	5.0E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.1650	2.7E-02	2	1.289E-202	2.578E-202	3.867E-203	5.800E-204	1.305E-205
0.2	4.19E-62	0.3080	9.5E-02	4	3.975E-63	1.590E-62	3.180E-63	6.360E-64	2.544E-65
0.25	1.90E-24	0.5430	2.9E-01	2	5.600E-25	1.120E-24	2.800E-25	7.000E-26	4.375E-27
0.3	3.83E-11	1.1710	1.4E+00	4	5.246E-11	2.098E-10	6.295E-11	1.889E-11	1.700E-12
0.35	1.32E-05	0.3190	1.0E-01	2	1.344E-06	2.688E-06	9.409E-07	3.293E-07	4.034E-08
0.4	4.80E-03	0.5800	3.4E-01	4	1.615E-03	6.459E-03	2.584E-03	1.033E-03	1.654E-04
0.45	8.76E-02	0.8990	8.1E-01	2	7.079E-02	1.416E-01	6.371E-02	2.867E-02	5.806E-03
0.5	3.81E-01	1.1930	1.4E+00	4	5.418E-01	2.167E+00	1.084E+00	5.418E-01	1.354E-01
0.55	7.90E-01	1.4960	2.2E+00	2	1.769E+00	3.537E+00	1.946E+00	1.070E+00	3.237E-01
0.6	1.10E+00	1.8080	3.3E+00	4	3.591E+00	1.437E+01	8.619E+00	5.172E+00	1.862E+00
0.65	1.22E+00	2.1310	4.5E+00	2	5.530E+00	1.106E+01	7.189E+00	4.673E+00	1.974E+00
0.7	1.18E+00	2.4690	6.1E+00	4	7.215E+00	2.886E+01	2.020E+01	1.414E+01	6.929E+00
0.75	1.06E+00	2.8190	7.9E+00	2	8.460E+00	1.692E+01	1.269E+01	9.518E+00	5.354E+00
0.8	9.15E-01	3.1830	1.0E+01	4	9.269E+00	3.708E+01	2.966E+01	2.373E+01	1.519E+01
0.85	7.66E-01	3.5470	1.3E+01	2	9.634E+00	1.927E+01	1.638E+01	1.392E+01	1.006E+01
0.9	6.32E-01	3.9150	1.5E+01	4	9.680E+00	3.872E+01	3.485E+01	3.136E+01	2.541E+01
0.95	5.17E-01	4.2860	1.8E+01	2	9.501E+00	1.900E+01	1.805E+01	1.715E+01	1.548E+01
1	4.22E-01	4.6510	2.2E+01	4	9.139E+00	3.656E+01	3.656E+01	3.656E+01	3.656E+01
1.05	3.45E-01	5.0120	2.5E+01	2	8.674E+00	1.735E+01	1.822E+01	1.913E+01	2.109E+01
1.1	2.83E-01	5.3600	2.9E+01	4	8.127E+00	3.251E+01	3.576E+01	3.934E+01	4.760E+01
1.15	2.33E-01	5.7030	3.3E+01	2	7.565E+00	1.513E+01	1.740E+01	2.001E+01	2.646E+01
1.2	1.92E-01	6.0200	3.6E+01	4	6.960E+00	2.784E+01	3.341E+01	4.009E+01	5.773E+01
1.25	1.59E-01	6.3380	4.0E+01	2	6.400E+00	1.280E+01	1.600E+01	2.000E+01	3.125E+01
1.3	1.33E-01	6.6550	4.4E+01	4	5.883E+00	2.353E+01	3.059E+01	3.977E+01	6.721E+01
1.35	1.11E-01	6.9550	4.8E+01	2	5.383E+00	1.077E+01	1.453E+01	1.962E+01	3.576E+01
1.4	9.37E-02	7.2410	5.2E+01	4	4.912E+00	1.965E+01	2.751E+01	3.851E+01	7.548E+01
1.45	7.92E-02	7.5460	5.7E+01	2	4.512E+00	9.025E+00	1.309E+01	1.897E+01	3.989E+01
1.5	6.73E-02	7.8110	6.1E+01	4	4.109E+00	1.644E+01	2.465E+01	3.698E+01	8.320E+01
1.55	5.75E-02	8.0780	6.5E+01	2	3.752E+00	7.503E+00	1.163E+01	1.803E+01	4.331E+01
1.6	4.93E-02	8.3040	6.9E+01	4	3.399E+00	1.360E+01	2.176E+01	3.481E+01	8.911E+01

SPECTRAL CALCULATION AND ANALYSIS

HEXAGONAL SBM									
1.65	4.24E-02	8.4410	7.1E+01	2	3.024E+00	6.048E+00	9.980E+00	1.647E+01	4.483E+01
1.7	3.67E-02	8.3180	6.9E+01	4	2.539E+00	1.015E+01	1.726E+01	2.935E+01	8.481E+01
1.75	3.18E-02	7.6700	5.9E+01	2	1.873E+00	3.746E+00	6.556E+00	1.147E+01	3.514E+01
1.8	2.77E-02	6.4350	4.1E+01	4	1.148E+00	4.593E+00	8.268E+00	1.488E+01	4.822E+01
1.85	2.42E-02	4.9330	2.4E+01	2	5.898E-01	1.180E+00	2.182E+00	4.037E+00	1.382E+01
1.9	2.13E-02	3.3850	1.1E+01	4	2.436E-01	9.742E-01	1.851E+00	3.517E+00	1.270E+01
1.95	1.87E-02	2.0400	4.2E+00	2	7.783E-02	1.557E-01	3.035E-01	5.919E-01	2.251E+00
2	1.65E-02	1.0950	1.2E+00	4	1.979E-02	7.915E-02	1.583E-01	3.166E-01	1.266E+00
2.05	1.46E-02	0.4070	1.7E-01	1	2.420E-03	2.420E-03	4.960E-03	1.017E-02	4.273E-02
						4.61E+02	4.98E+02	5.84E+02	9.80E+02

m _{r0} =	7.6791767	deg ²
m _{r1} =	8.3066423	m ² (rad/s)
m _{r2} =	9.7292476	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	16.3403477	$deg^{2}(rad^{4}/s^{4})$

Σ0

Σ1

Σ2

Σ4

T ₀ =	5.8086	S
T _p =	4.8483	S
T _z =	5.5821	S
ω ₀ =	1.0817	rad/s
ω _p =	1.2960	rad/s
$\omega_z =$	1.1256	rad/s
$\zeta_{zs} =$	5.5423	deg
$\zeta_{zav} =$	3.4639	deg
$\zeta_{z1/10} =$	7.0387	deg
$\zeta_{zext(\alpha=0.01)} =$	17.6839	deg

SPECTRAL CALCULATION AND ANALYSIS HEXAGONAL SBM

Calculation for H significant 2.02 m

(100 year period) - PITCH (180°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α =	0.0057	

	0	0			(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Z	3	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	SM	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	$\omega^2 x S_r(\omega) x S M$	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3141	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0180	3.2E-04	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0710	5.0E-03	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.1650	2.7E-02	2	1.670E-196	3.340E-196	5.011E-197	7.516E-198	1.691E-199
0.2	3.66E-60	0.3080	9.5E-02	4	3.471E-61	1.388E-60	2.777E-61	5.554E-62	2.221E-63
0.25	1.20E-23	0.5430	2.9E-01	2	3.543E-24	7.086E-24	1.771E-24	4.428E-25	2.768E-26
0.3	9.43E-11	1.1710	1.4E+00	4	1.293E-10	5.171E-10	1.551E-10	4.654E-11	4.189E-12
0.35	2.17E-05	0.3190	1.0E-01	2	2.211E-06	4.422E-06	1.548E-06	5.417E-07	6.636E-08
0.4	6.49E-03	0.5800	3.4E-01	4	2.183E-03	8.733E-03	3.493E-03	1.397E-03	2.236E-04
0.45	1.07E-01	0.8990	8.1E-01	2	8.622E-02	1.724E-01	7.760E-02	3.492E-02	7.071E-03
0.5	4.37E-01	1.1930	1.4E+00	4	6.216E-01	2.486E+00	1.243E+00	6.216E-01	1.554E-01
0.55	8.75E-01	1.4960	2.2E+00	2	1.958E+00	3.915E+00	2.153E+00	1.184E+00	3.583E-01
0.6	1.19E+00	1.8080	3.3E+00	4	3.885E+00	1.554E+01	9.324E+00	5.595E+00	2.014E+00
0.65	1.30E+00	2.1310	4.5E+00	2	5.893E+00	1.179E+01	7.661E+00	4.980E+00	2.104E+00
0.7	1.25E+00	2.4690	6.1E+00	4	7.610E+00	3.044E+01	2.131E+01	1.492E+01	7.309E+00
0.75	1.11E+00	2.8190	7.9E+00	2	8.860E+00	1.772E+01	1.329E+01	9.968E+00	5.607E+00
0.8	9.53E-01	3.1830	1.0E+01	4	9.658E+00	3.863E+01	3.091E+01	2.472E+01	1.582E+01
0.85	7.95E-01	3.5470	1.3E+01	2	1.000E+01	2.000E+01	1.700E+01	1.445E+01	1.044E+01
0.9	6.54E-01	3.9150	1.5E+01	4	1.002E+01	4.008E+01	3.607E+01	3.247E+01	2.630E+01
0.95	5.34E-01	4.2860	1.8E+01	2	9.814E+00	1.963E+01	1.865E+01	1.771E+01	1.599E+01
1	4.36E-01	4.6510	2.2E+01	4	9.425E+00	3.770E+01	3.770E+01	3.770E+01	3.770E+01
1.05	3.56E-01	5.0120	2.5E+01	2	8.934E+00	1.787E+01	1.876E+01	1.970E+01	2.172E+01
1.1	2.91E-01	5.3600	2.9E+01	4	8.363E+00	3.345E+01	3.680E+01	4.048E+01	4.898E+01
1.15	2.39E-01	5.7030	3.3E+01	2	7.778E+00	1.556E+01	1.789E+01	2.057E+01	2.721E+01
1.2	1.97E-01	6.0200	3.6E+01	4	7.152E+00	2.861E+01	3.433E+01	4.119E+01	5.932E+01
1.25	1.64E-01	6.3380	4.0E+01	2	6.573E+00	1.315E+01	1.643E+01	2.054E+01	3.209E+01
1.3	1.36E-01	6.6550	4.4E+01	4	6.039E+00	2.415E+01	3.140E+01	4.082E+01	6.899E+01
1.35	1.14E-01	6.9550	4.8E+01	2	5.523E+00	1.105E+01	1.491E+01	2.013E+01	3.669E+01
1.4	9.61E-02	7.2410	5.2E+01	4	5.039E+00	2.016E+01	2.822E+01	3.950E+01	7.743E+01
1.45	8.13E-02	7.5460	5.7E+01	2	4.628E+00	9.256E+00	1.342E+01	1.946E+01	4.092E+01
1.5	6.91E-02	7.8110	6.1E+01	4	4.213E+00	1.685E+01	2.528E+01	3.792E+01	8.532E+01
1.55	5.89E-02	8.0780	6.5E+01	2	3.846E+00	7.693E+00	1.192E+01	1.848E+01	4.440E+01
1.6	5.05E-02	8.3040	6.9E+01	4	3.485E+00	1.394E+01	2.230E+01	3.568E+01	9.135E+01

SPECTRAL CALCULATION AND ANALYSIS

HEXAGONAL SBM

1.65	4.35E-02	8.4410	7.1E+01	2	3.100E+00	6.199E+00	1.023E+01	1.688E+01	4.595E+01
1.7	3.76E-02	8.3180	6.9E+01	4	2.602E+00	1.041E+01	1.769E+01	3.008E+01	8.692E+01
1.75	3.26E-02	7.6700	5.9E+01	2	1.919E+00	3.839E+00	6.718E+00	1.176E+01	3.601E+01
1.8	2.84E-02	6.4350	4.1E+01	4	1.177E+00	4.707E+00	8.472E+00	1.525E+01	4.941E+01
1.85	2.48E-02	4.9330	2.4E+01	2	6.043E-01	1.209E+00	2.236E+00	4.137E+00	1.416E+01
1.9	2.18E-02	3.3850	1.1E+01	4	2.495E-01	9.981E-01	1.896E+00	3.603E+00	1.301E+01
1.95	1.92E-02	2.0400	4.2E+00	2	7.973E-02	1.595E-01	3.110E-01	6.064E-01	2.306E+00
2	1.69E-02	1.0950	1.2E+00	4	2.027E-02	8.109E-02	1.622E-01	3.243E-01	1.297E+00
2.05	1.50E-02	0.4070	1.7E-01	1	2.479E-03	2.479E-03	5.081E-03	1.042E-02	4.378E-02
						4.77E+02	5.15E+02	6.01E+02	1.01E+03
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	7.9573461	deg ²
m _{r1} =	8.5796025	m ² (rad/s)
m _{r2} =	10.0247202	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	16.7884704	$deg^{2}(rad^{4}/s^{4})$

T ₀ =	5.8275	S
T _p =	4.8552	S
$T_z =$	5.5979	S
ω ₀ =	1.0782	rad/s
ω_p =	1.2941	rad/s
$\omega_z =$	1.1224	rad/s
$\zeta_{zs} =$	5.6418	deg
$\zeta_{zav} =$	3.5261	deg
$\zeta_{z1/10} =$	7.1650	deg
$\zeta_{zext(\alpha=0.01)} =$	18.0001	deg

SPECTRAL CALCULATION AND ANALYSIS HEXAGONAL SBM

WAVE SPECTRUM OF JONSWAP CALCULATION AND THE MOMENTS - YAW

Calculation for H significant 1.89 m

(10 year period) - YAW (135°)

$H_s =$	1.89	m
T _p =	9.33	S
ω_p =	0.6736	rad/s
φ=	6.7923	
Υ =	1	
α =	0.0052	

	0			Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
	Z	3	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.006	3.6E-05	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.025	6.3E-04	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	1.29E-217	0.056	3.1E-03	2	4.044E-220	8.088E-220	1.213E-220	1.820E-221	4.094E-223
0.2	2.31E-67	0.1	1.0E-02	4	2.307E-69	9.227E-69	1.845E-69	3.691E-70	1.476E-71
0.25	1.28E-26	0.156	2.4E-02	2	3.126E-28	6.253E-28	1.563E-28	3.908E-29	2.443E-30
0.3	3.33E-12	0.224	5.0E-02	4	1.672E-13	6.687E-13	2.006E-13	6.018E-14	5.416E-15
0.35	3.44E-06	0.303	9.2E-02	2	3.158E-07	6.316E-07	2.210E-07	7.737E-08	9.477E-09
0.4	2.13E-03	0.394	1.6E-01	4	3.302E-04	1.321E-03	5.283E-04	2.113E-04	3.381E-05
0.45	5.15E-02	0.495	2.5E-01	2	1.262E-02	2.524E-02	1.136E-02	5.111E-03	1.035E-03
0.5	2.63E-01	0.607	3.7E-01	4	9.695E-02	3.878E-01	1.939E-01	9.695E-02	2.424E-02
0.55	6.02E-01	0.729	5.3E-01	2	3.201E-01	6.403E-01	3.522E-01	1.937E-01	5.859E-02
0.6	8.91E-01	0.859	7.4E-01	4	6.574E-01	2.630E+00	1.578E+00	9.467E-01	3.408E-01
0.65	1.03E+00	0.997	9.9E-01	2	1.022E+00	2.045E+00	1.329E+00	8.640E-01	3.650E-01
0.7	1.03E+00	1.142	1.3E+00	4	1.340E+00	5.362E+00	3.753E+00	2.627E+00	1.287E+00
0.75	9.43E-01	1.293	1.7E+00	2	1.576E+00	3.152E+00	2.364E+00	1.773E+00	9.972E-01
0.8	8.21E-01	1.45	2.1E+00	4	1.727E+00	6.907E+00	5.526E+00	4.421E+00	2.829E+00
0.85	6.94E-01	1.608	2.6E+00	2	1.796E+00	3.591E+00	3.052E+00	2.595E+00	1.875E+00
0.9	5.77E-01	1.768	3.1E+00	4	1.804E+00	7.216E+00	6.494E+00	5.845E+00	4.734E+00
0.95	4.75E-01	1.929	3.7E+00	2	1.769E+00	3.537E+00	3.360E+00	3.192E+00	2.881E+00
1	3.90E-01	2.086	4.4E+00	4	1.697E+00	6.788E+00	6.788E+00	6.788E+00	6.788E+00
1.05	3.20E-01	2.24	5.0E+00	2	1.605E+00	3.209E+00	3.370E+00	3.538E+00	3.901E+00
1.1	2.63E-01	2.386	5.7E+00	4	1.496E+00	5.983E+00	6.581E+00	7.239E+00	8.759E+00
1.15	2.16E-01	2.528	6.4E+00	2	1.383E+00	2.767E+00	3.182E+00	3.659E+00	4.839E+00
1.2	1.79E-01	2.654	7.0E+00	4	1.261E+00	5.045E+00	6.054E+00	7.264E+00	1.046E+01
1.25	1.49E-01	2.774	7.7E+00	2	1.145E+00	2.289E+00	2.862E+00	3.577E+00	5.589E+00
1.3	1.24E-01	2.885	8.3E+00	4	1.033E+00	4.133E+00	5.373E+00	6.985E+00	1.180E+01
1.35	1.04E-01	2.978	8.9E+00	2	9.232E-01	1.846E+00	2.493E+00	3.365E+00	6.133E+00
1.4	8.77E-02	3.052	9.3E+00	4	8.170E-01	3.268E+00	4.575E+00	6.405E+00	1.255E+01
1.45	7.42E-02	3.116	9.7E+00	2	7.208E-01	1.442E+00	2.090E+00	3.031E+00	6.373E+00
1.5	6.31E-02	3.16	1.0E+01	4	6.304E-01	2.522E+00	3.782E+00	5.674E+00	1.277E+01
1.55	5.39E-02	3.187	1.0E+01	2	5.477E-01	1.095E+00	1.698E+00	2.632E+00	6.322E+00
1.6	4.63E-02	3.193	1.0E+01	4	4.715E-01	1.886E+00	3.018E+00	4.829E+00	1.236E+01

SPECTRAL CALCULATION AND ANALYSIS

HEXAGONAL	SBM
-----------	-----

1.65	3.98E-02	3.179	1.0E+01	2	4.026E-01	8.052E-01	1.329E+00	2.192E+00	5.968E+00
1.7	3.44E-02	3.146	9.9E+00	4	3.409E-01	1.364E+00	2.318E+00	3.941E+00	1.139E+01
1.75	2.99E-02	3.09	9.5E+00	2	2.855E-01	5.710E-01	9.992E-01	1.749E+00	5.355E+00
1.8	2.60E-02	3.015	9.1E+00	4	2.368E-01	9.471E-01	1.705E+00	3.069E+00	9.942E+00
1.85	2.28E-02	2.925	8.6E+00	2	1.948E-01	3.896E-01	7.208E-01	1.333E+00	4.564E+00
1.9	2.00E-02	2.813	7.9E+00	4	1.580E-01	6.322E-01	1.201E+00	2.282E+00	8.238E+00
1.95	1.76E-02	2.675	7.2E+00	2	1.258E-01	2.515E-01	4.904E-01	9.563E-01	3.636E+00
2	1.55E-02	2.529	6.4E+00	4	9.920E-02	3.968E-01	7.936E-01	1.587E+00	6.349E+00
2.05	1.37E-02	2.36	5.6E+00	1	7.647E-02	7.647E-02	1.568E-01	3.214E-01	1.351E+00
						8.32E+01	8.96E+01	1.05E+02	1.81E+02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	1.3866625	deg ²
m _{r1} =	1.4932080	m ² (rad/s)
m _{r2} =	1.7495804	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	3.0139331	$deg^{2}(rad^{4}/s^{4})$
T ₀ =	5.8349	S
T _p =	4.7872	S
T _z =	5.5937	S
ω ₀ =	1.0768	rad/s
ω _p =	1.3125	rad/s
$\omega_z =$	1.1233	rad/s
$\zeta_{zs} =$	2.3551	deg
$\zeta_{zav} =$	1.4720	deg
$\zeta_{z1/10} =$	2.9910	deg
$\zeta_{zext(\alpha=0.01)} =$	7.5142	deg

SPECTRAL CALCULATION AND ANALYSIS HEXAGONAL SBM

Calculation for H significant 1.98 m

(50 year period) - YAW (135°)

$H_s =$	1.98	m
T _p =	9.51	S
ω_p =	0.6606	rad/s
φ=	6.7552	
Υ =	1	
α=	0.0056	

	0	0		Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	Z	3	4	9	6	\bigcirc	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	$\omega^2 x S_r(\omega) x S M$	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0060	3.6E-05	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0250	6.3E-04	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	4.73E-201	0.0560	3.1E-03	2	1.485E-203	2.969E-203	4.454E-204	6.681E-205	1.503E-206
0.2	4.19E-62	0.1000	1.0E-02	4	4.190E-64	1.676E-63	3.352E-64	6.705E-65	2.682E-66
0.25	1.90E-24	0.1560	2.4E-02	2	4.622E-26	9.244E-26	2.311E-26	5.778E-27	3.611E-28
0.3	3.83E-11	0.2240	5.0E-02	4	1.920E-12	7.679E-12	2.304E-12	6.911E-13	6.220E-14
0.35	1.32E-05	0.3030	9.2E-02	2	1.213E-06	2.425E-06	8.489E-07	2.971E-07	3.640E-08
0.4	4.80E-03	0.3940	1.6E-01	4	7.452E-04	2.981E-03	1.192E-03	4.769E-04	7.631E-05
0.45	8.76E-02	0.4950	2.5E-01	2	2.146E-02	4.292E-02	1.932E-02	8.692E-03	1.760E-03
0.5	3.81E-01	0.6070	3.7E-01	4	1.403E-01	5.610E-01	2.805E-01	1.403E-01	3.506E-02
0.55	7.90E-01	0.7290	5.3E-01	2	4.200E-01	8.400E-01	4.620E-01	2.541E-01	7.687E-02
0.6	1.10E+00	0.8590	7.4E-01	4	8.107E-01	3.243E+00	1.946E+00	1.167E+00	4.203E-01
0.65	1.22E+00	0.9970	9.9E-01	2	1.210E+00	2.421E+00	1.574E+00	1.023E+00	4.322E-01
0.7	1.18E+00	1.1420	1.3E+00	4	1.544E+00	6.174E+00	4.322E+00	3.025E+00	1.482E+00
0.75	1.06E+00	1.2930	1.7E+00	2	1.780E+00	3.560E+00	2.670E+00	2.002E+00	1.126E+00
0.8	9.15E-01	1.4500	2.1E+00	4	1.924E+00	7.694E+00	6.156E+00	4.924E+00	3.152E+00
0.85	7.66E-01	1.6080	2.6E+00	2	1.980E+00	3.960E+00	3.366E+00	2.861E+00	2.067E+00
0.9	6.32E-01	1.7680	3.1E+00	4	1.974E+00	7.897E+00	7.107E+00	6.396E+00	5.181E+00
0.95	5.17E-01	1.9290	3.7E+00	2	1.925E+00	3.849E+00	3.657E+00	3.474E+00	3.135E+00
1	4.22E-01	2.0860	4.4E+00	4	1.838E+00	7.354E+00	7.354E+00	7.354E+00	7.354E+00
1.05	3.45E-01	2.2400	5.0E+00	2	1.733E+00	3.465E+00	3.638E+00	3.820E+00	4.212E+00
1.1	2.83E-01	2.3860	5.7E+00	4	1.611E+00	6.442E+00	7.086E+00	7.795E+00	9.432E+00
1.15	2.33E-01	2.5280	6.4E+00	2	1.486E+00	2.973E+00	3.419E+00	3.932E+00	5.200E+00
1.2	1.92E-01	2.6540	7.0E+00	4	1.353E+00	5.411E+00	6.493E+00	7.792E+00	1.122E+01
1.25	1.59E-01	2.7740	7.7E+00	2	1.226E+00	2.452E+00	3.065E+00	3.831E+00	5.987E+00
1.3	1.33E-01	2.8850	8.3E+00	4	1.106E+00	4.422E+00	5.749E+00	7.473E+00	1.263E+01
1.35	1.11E-01	2.9780	8.9E+00	2	9.868E-01	1.974E+00	2.664E+00	3.597E+00	6.556E+00
1.4	9.37E-02	3.0520	9.3E+00	4	8.726E-01	3.490E+00	4.886E+00	6.841E+00	1.341E+01
1.45	7.92E-02	3.1160	9.7E+00	2	7.694E-01	1.539E+00	2.231E+00	3.235E+00	6.802E+00
1.5	6.73E-02	3.1600	1.0E+01	4	6.725E-01	2.690E+00	4.035E+00	6.052E+00	1.362E+01
1.55	5.75E-02	3.1870	1.0E+01	2	5.840E-01	1.168E+00	1.810E+00	2.806E+00	6.741E+00
1.6	4.93E-02	3.1930	1.0E+01	4	5.026E-01	2.010E+00	3.217E+00	5.146E+00	1.317E+01

SPECTRAL CALCULATION AND ANALYSIS

HEXAGONAL SBM

1.65	4.24E-02	3.1790	1.0E+01	2	4.289E-01	8.579E-01	1.416E+00	2.336E+00	6.359E+00
1.7	3.67E-02	3.1460	9.9E+00	4	3.631E-01	1.453E+00	2.469E+00	4.198E+00	1.213E+01
1.75	3.18E-02	3.0900	9.5E+00	2	3.040E-01	6.080E-01	1.064E+00	1.862E+00	5.703E+00
1.8	2.77E-02	3.0150	9.1E+00	4	2.521E-01	1.008E+00	1.815E+00	3.267E+00	1.059E+01
1.85	2.42E-02	2.9250	8.6E+00	2	2.074E-01	4.147E-01	7.673E-01	1.419E+00	4.858E+00
1.9	2.13E-02	2.8130	7.9E+00	4	1.682E-01	6.728E-01	1.278E+00	2.429E+00	8.768E+00
1.95	1.87E-02	2.6750	7.2E+00	2	1.338E-01	2.676E-01	5.219E-01	1.018E+00	3.870E+00
2	1.65E-02	2.5290	6.4E+00	4	1.056E-01	4.222E-01	8.444E-01	1.689E+00	6.755E+00
2.05	1.46E-02	2.3600	5.6E+00	1	8.136E-02	8.136E-02	1.668E-01	3.419E-01	1.437E+00
						9.14E+01	9.76E+01	1.14E+02	1.94E+02
						Σ0	Σ1	Σ2	Σ4

m -	1 5326705	-l ²
m _{r0} –	1.5250765	aeg
m _{r1} =	1.6258389	m ² (rad/s)
m _{r2} =	1.8918676	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	3.2318445	$deg^{2}(rad^{4}/s^{4})$
T ₀ =	5.8884	S
T _p =	4.8073	S
T _z =	5.6387	S
ω ₀ =	1.0670	rad/s
ω_p =	1.3070	rad/s
$\omega_z =$	1.1143	rad/s
$\zeta_{zs} =$	2.4687	deg
$\zeta_{zav} =$	1.5430	deg
$\zeta_{z1/10} =$	3.1353	deg
$\zeta_{zext(\alpha=0.01)} =$	7.8752	deg

SPECTRAL CALCULATION AND ANALYSIS HEXAGONAL SBM

Calculation for H significant 2.02 m

(50 year period) - YAW (135°)

$H_s =$	2.02	m
T _p =	9.58	S
ω_p =	0.6556	rad/s
φ=	6.7408	
Υ =	1	
α =	0.0057	

	0	0		Ē	(2) x (4)	(5) x (6)	① x ⑦	(1) ² x (7)	① ⁴ x ⑦
Ū	2	9	4	୦	6	7	8	9	10
ω	S(ω)	RAO	RAO ²	см	S _r (ω)	S _r (ω)xSM	ωxS _r (ω)xSM	ω²xS _r (ω)xSM	ω ⁴ xS _r (ω)xSM
(rad/s)	[(m ² /(rad/s)]	(deg/m)	(deg^2/m^2)	3171	[(dg ² /(rad/s)]	[(dg ² /(rad/s)]	(m ²)	[deg ² (rad/s)]	$[dg^{2}(rad^{3}/s^{3})]$
0.05	0.00E+00	0.0060	3.6E-05	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.1	0.00E+00	0.0250	6.3E-04	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.15	6.13E-195	0.0560	3.1E-03	2	1.924E-197	3.848E-197	5.772E-198	8.658E-199	1.948E-200
0.2	3.66E-60	0.1000	1.0E-02	4	3.659E-62	1.464E-61	2.927E-62	5.854E-63	2.342E-64
0.25	1.20E-23	0.1560	2.4E-02	2	2.924E-25	5.848E-25	1.462E-25	3.655E-26	2.284E-27
0.3	9.43E-11	0.2240	5.0E-02	4	4.731E-12	1.892E-11	5.677E-12	1.703E-12	1.533E-13
0.35	2.17E-05	0.3030	9.2E-02	2	1.995E-06	3.990E-06	1.396E-06	4.887E-07	5.987E-08
0.4	6.49E-03	0.3940	1.6E-01	4	1.007E-03	4.030E-03	1.612E-03	6.448E-04	1.032E-04
0.45	1.07E-01	0.4950	2.5E-01	2	2.614E-02	5.228E-02	2.353E-02	1.059E-02	2.144E-03
0.5	4.37E-01	0.6070	3.7E-01	4	1.609E-01	6.437E-01	3.219E-01	1.609E-01	4.023E-02
0.55	8.75E-01	0.7290	5.3E-01	2	4.648E-01	9.297E-01	5.113E-01	2.812E-01	8.507E-02
0.6	1.19E+00	0.8590	7.4E-01	4	8.770E-01	3.508E+00	2.105E+00	1.263E+00	4.546E-01
0.65	1.30E+00	0.9970	9.9E-01	2	1.290E+00	2.580E+00	1.677E+00	1.090E+00	4.605E-01
0.7	1.25E+00	1.1420	1.3E+00	4	1.628E+00	6.512E+00	4.559E+00	3.191E+00	1.564E+00
0.75	1.11E+00	1.2930	1.7E+00	2	1.864E+00	3.728E+00	2.796E+00	2.097E+00	1.180E+00
0.8	9.53E-01	1.4500	2.1E+00	4	2.004E+00	8.017E+00	6.414E+00	5.131E+00	3.284E+00
0.85	7.95E-01	1.6080	2.6E+00	2	2.055E+00	4.110E+00	3.494E+00	2.970E+00	2.146E+00
0.9	6.54E-01	1.7680	3.1E+00	4	2.044E+00	8.174E+00	7.357E+00	6.621E+00	5.363E+00
0.95	5.34E-01	1.9290	3.7E+00	2	1.988E+00	3.976E+00	3.777E+00	3.588E+00	3.238E+00
1	4.36E-01	2.0860	4.4E+00	4	1.896E+00	7.584E+00	7.584E+00	7.584E+00	7.584E+00
1.05	3.56E-01	2.2400	5.0E+00	2	1.785E+00	3.569E+00	3.748E+00	3.935E+00	4.338E+00
1.1	2.91E-01	2.3860	5.7E+00	4	1.657E+00	6.629E+00	7.291E+00	8.021E+00	9.705E+00
1.15	2.39E-01	2.5280	6.4E+00	2	1.528E+00	3.057E+00	3.515E+00	4.042E+00	5.346E+00
1.2	1.97E-01	2.6540	7.0E+00	4	1.390E+00	5.560E+00	6.672E+00	8.006E+00	1.153E+01
1.25	1.64E-01	2.7740	7.7E+00	2	1.259E+00	2.518E+00	3.148E+00	3.935E+00	6.148E+00
1.3	1.36E-01	2.8850	8.3E+00	4	1.135E+00	4.539E+00	5.901E+00	7.672E+00	1.297E+01
1.35	1.14E-01	2.9780	8.9E+00	2	1.013E+00	2.025E+00	2.734E+00	3.691E+00	6.727E+00
1.4	9.61E-02	3.0520	9.3E+00	4	8.952E-01	3.581E+00	5.013E+00	7.018E+00	1.376E+01
1.45	8.13E-02	3.1160	9.7E+00	2	7.891E-01	1.578E+00	2.288E+00	3.318E+00	6.977E+00
1.5	6.91E-02	3.1600	1.0E+01	4	6.896E-01	2.758E+00	4.137E+00	6.206E+00	1.396E+01
1.55	5.89E-02	3.1870	1.0E+01	2	5.987E-01	1.197E+00	1.856E+00	2.877E+00	6.911E+00
1.6	5.05E-02	3.1930	1.0E+01	4	5.152E-01	2.061E+00	3.297E+00	5.276E+00	1.351E+01

SPECTRAL CALCULATION AND ANALYSIS

HEXAGONAL SBM

1.65	4.35E-02	3.1790	1.0E+01	2	4.397E-01	8.793E-01	1.451E+00	2.394E+00	6.517E+00
1.7	3.76E-02	3.1460	9.9E+00	4	3.722E-01	1.489E+00	2.531E+00	4.302E+00	1.243E+01
1.75	3.26E-02	3.0900	9.5E+00	2	3.115E-01	6.231E-01	1.090E+00	1.908E+00	5.844E+00
1.8	2.84E-02	3.0150	9.1E+00	4	2.583E-01	1.033E+00	1.860E+00	3.348E+00	1.085E+01
1.85	2.48E-02	2.9250	8.6E+00	2	2.125E-01	4.249E-01	7.862E-01	1.454E+00	4.978E+00
1.9	2.18E-02	2.8130	7.9E+00	4	1.723E-01	6.893E-01	1.310E+00	2.488E+00	8.983E+00
1.95	1.92E-02	2.6750	7.2E+00	2	1.371E-01	2.742E-01	5.347E-01	1.043E+00	3.964E+00
2	1.69E-02	2.5290	6.4E+00	4	1.081E-01	4.325E-01	8.651E-01	1.730E+00	6.920E+00
2.05	1.50E-02	2.3600	5.6E+00	1	8.334E-02	8.334E-02	1.708E-01	3.502E-01	1.472E+00
						9.48E+01	1.01E+02	1.17E+02	1.99E+02
						Σ0	Σ1	Σ2	Σ4

m _{r0} =	1.5803461	deg ²
m _{r1} =	1.6803275	m ² (rad/s)
m _{r2} =	1.9500462	$deg^{2}(rad^{2}/s^{2})$
m _{r4} =	3.3205165	$deg^{2}(rad^{4}/s^{4})$
T ₀ =	5.9093	S
T _p =	4.8150	S
T _z =	5.6563	S
ω ₀ =	1.0633	rad/s
ω_p =	1.3049	rad/s
$\omega_z =$	1.1108	rad/s
$\zeta_{zs} =$	2.5142	deg
$\zeta_{zav} =$	1.5714	deg
$\zeta_{z1/10} =$	3.1931	deg
$\zeta_{\text{zext}(\alpha=0.01)} =$	8.0197	deg


```
$_____$
1
2
   $ -PROJECT : TUGAS AKHIR 2017
                                                      Ś
З
               ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR
                                                      Ś
   Ś
               CHAIN STOPPER PADA HEXAGONAL SINGLE BUOY MOORING $
4
   Ś
              TERHADAP FSO SAAT SISTEM OFFLOADING
5
   Ś
                                                      Ś
   $ -AUTHOR : JAMHARI H.B.M. (4313100149)
6
                                                      Ś
7
   $ -SUPERVISORS: -Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D.
                                                      Ś
8
   Ś
       -Suntoyo, S.T., M.Eng., Ph.D.
                                                      Ś
9
   $===============
                                     =========================$
   10
                                                                         Ľ
                                                                         V
11
     &DIMEN -REMEMBER -DIMEN METERS M-TONS
      &DEVICE -OECHO NO -PRIMARY DEVICE -AUXIN FSO 300K DWT.dat
12
      &TITLE MODELLING & RAO ANALYSIS OF FSO 300000 DWT (ballast)
13
      &SUBTITLE OCEAN ENGINEERING DEPARTMENT - TUGAS AKHIR 2017
14
                                                                        Ľ
   15
16
      INMODEL
      &INSTATE FSO 300K_DWT -CONDITION 18.32
17
18
      &PLTMODEL
19
            PIC ISO
20
            PIC SIDE
            PIC TOP
21
22
            PIC BOW
23
            PIC STERN
24
      END
                                                                        Ľ
   25
26
    &WEIGHT -COMPUTE FSO 300K DWT 14.09 20.57 93.93 93.93
27
      &EQUI
            -iter 50
28
      &STATUS B W
   29
30
     HYDRODYNAMICS
31
32
     &PARAMETER -M DISTANCE 2
                                                                        V
33
         G PRESSURE -HEADING 0 45 90 135 180 \
                  -PERIOD 62.83 31.42 20.94 15.71 12.57 10.47 \
34
35
                        8.98 7.85 6.98 6.29 5.71 5.24 4.83 \
36
                        4.49 4.19 3.93 3.70 3.49 3.31 3.14
37
        &ENV SEA
38
        &STATUS FORCE
        HYDR SUM
39
         V MDRIFT
40
41
         REPORT
42
         END
                                                                        Ľ
43
     END
44
         HSTATIC
            CFORM 0 0 0 -DRAFT 0.5 49
45
46
            REPORT
47
            END
48
         END
   49
                                                                         V
50
      FREQ_RESP
                                                                         V
         RAO -SPEED 0
51
52
         FP_STD &BODY (CG FS0_300K_DWT)
         EQU SUM
53
         MATRICES -FILE YES
54
55
         REPORT
56
     END
                                                                        Ľ
57
  &FINISH
                                                                        V
```

ľ V

Ľ

Ľ

Ľ

Ľ

Ľ

```
$_____$
1
2
   $ -PROJECT : TUGAS AKHIR 2017
                                                       Ś
З
               ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR
                                                      Ś
   Ś
               CHAIN STOPPER PADA HEXAGONAL SINGLE BUOY MOORING $
4
   Ś
              TERHADAP FSO SAAT SISTEM OFFLOADING
5
   Ś
                                                      Ś
   $ -AUTHOR : JAMHARI H.B.M. (4313100149)
6
                                                      Ś
7
   $ -SUPERVISORS: -Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D.
                                                      Ś
8
   Ś
       -Suntoyo, S.T., M.Eng., Ph.D.
                                                      Ś
9
   $===============
                                     ============================$
   10
11
     &DIMEN -REMEMBER -DIMEN METERS M-TONS
      &DEVICE -OECHO NO -PRIMARY DEVICE -AUXIN FSO 300K DWT.dat
12
      &TITLE MODELLING & RAO ANALYSIS OF FSO 300000 DWT (full load)
13
      &SUBTITLE OCEAN ENGINEERING DEPARTMENT - TUGAS AKHIR 2017
14
   15
    INMODEL
16
      &INSTATE FS0_300K_DWT -CONDITION 20.67
17
18
      &PLTMODEL
19
            PIC ISO
20
            PIC SIDE
            PIC TOP
21
22
            PIC BOW
23
            PIC STERN
24
     END
   25
      &WEIGHT -COMPUTE FSO_300K_DWT 17.61 22.84 93.93 93.93
26
27
            -iter 50
      &EOUI
28
      &STATUS B W
   29
30
     HYDRODYNAMICS
31
     &PARAMETER -M DISTANCE 2
32
33
         G_PRESSURE -HEADING 0 45 90 135 180 \setminus
34
                   -PERIOD 62.83 31.42 20.94 15.71 12.57 10.47 \
                         8.98 7.85 6.98 6.29 5.71 5.24 4.83 \
35
                         4.49 4.19 3.93 3.70 3.49 3.31 3.14
36
        &ENV SEA
37
38
        &STATUS FORCE
        HYDR SUM
39
         V MDRIFT
40
         REPORT
41
42
         END
43
     END
44
         HSTATIC
            CFORM 0 0 0 -DRAFT 0.5 49
45
46
            REPORT
47
            END
48
         END
   49
50
      FREQ_RESP
51
         RAO -SPEED 0
         FP STD &BODY (CG FSO_300K_DWT)
52
53
         EQU SUM
         MATRICES -FILE YES
54
55
         REPORT
56
     END
57
     &FINISH
```

1	\$========				==============================\$
2	S -PROJECT	• TUGAS	AKHTR 2	2017	Ś
2	¢ 11000001	. 100110 ANATTO		NCAN TOKAT	
1	¢	CUAIN		MGAN LONAL	CONAL CINCLE DUCK MOODING
4	2 2	CHAIN	STOPPER	C PADA HEXA	JONAL SINGLE BUOY MOURING \$
5	Ş •	TERHAL	DAP FSO	SAAT SISTER	M OFFLOADING Ş
6	S -AUTHOR	: JAMHAF	RI H.B.N	4. (4313100)	L49) Ş
7	\$ -SUPERVIS	ORS: -Yoyok	s Setyo	Hadiwidodo,	, S.T., M.T., Ph.D. \$
8	\$	-Sunto	oyo, S.I	1., M.Eng.,	Ph.D. \$
9	\$========				\$
10	\$DIMENSIONS	* * * * * * * * * * *	******	**********	*********************
11	&DIMEN	-DIMEN MET	ERS M-T	ONS -SAVE	
12	\$BODIES & PA	ARTS			\$
13	&DESCRI	BE BODY FS) 300K	DWT	
14	pgen A	-perm 1.0		0 0 -DTFTY	PE strip
15	PLANE 0.0	75 -CART	0	5 52	
16	0.0	5 789	0	0.02	1
17		-CAPT	0	2 702	λ.
10	PLANE 0.5	-CARI	0	5.702	\ \
10	0	0 \			
19	0	/./48	0	0 700	
20	PLANE I	-CART	0	2.738	\setminus
21	0	6 \			
22	0	8.86			
23	PLANE 1.5	-CART	0	2.042	\setminus
24	0	2.5 \			
25	0	2.718 \			
26	0.303	6 \			
27	0.429	9.754			
28	PLANE 2	-CART	0	1.529	\setminus
29	0	2			
30	0	25 \			
31	0 406	2 718 \			
32	0.732	6			
33	0.752	10 599			
24	DIANE 2 5	10.399	0	1 1 2 1	
24	PLANE 2.5		0	1.131	Λ
30	0	1.5 \			
36	0	2			
37	0.405	2.5 \			
38	0.814	2.718			
39	1.116	6 \			
40	1.227	11.458			
41	PLANE 3	-CART	0	0.807	\setminus
42	0	1 \			
43	0	1.5 \			
44	0.059	2			
45	0.268	2.5 \			
46	0.4	2.718			
47	0.46	6 \			
48	0.788	11.939			
49	1 164	12 \			
50	1 445	12 497			
51	PLANE 3 5	-CART	0	0 565	Λ.
52	0		0	0.000	1
52	0				
55	0	1.0 \			
54	0.633	2			
55	0.998	2.5			
56	1.052	2.718			
57	1.109	6 \			
58	1.463	11.934 \			
59	1.737	12 \			
60	1.842	13.686			
61	PLANE 4	-CART	0	0.389	\setminus
62	0	0.5 \			
63	0	1 \			
64	0.295	1.5 \			
65	0.931	2 \			
66	1.385	2.5 \			
67	1.492	2.718 \			
68	1.543	6 \			
69	1.731	11.927 \			
70	2.009	12 \			
		,			

71	2.118	15.095			
72	PLANE 4.5	-CART	0	0.259	\backslash
73	0	0.5 \			
74	0	1			
75	0.612	1.5 \			
76	0.926	2			
77	1.186	2.5 \			
78	1 636	2 718 \			
79	1 932	6 \			
80	1 981	11 919 \			
81	1 987	12 \			
01	2 276	17 240			
02		17.240	0	0 220	\
0.0	PLANE 4.0	-CARI	0	0.230	1
84	0	0.5 \			
85	0				
86	0	1.5 \			
87	0	2			
88	0.015	2.5			
89	0.665	2./18			
90	1.191	6			
91	1.235	11.917 \			
92	1.685	12 \			
93	2.017	18 \			
94	2.038	18.319 \			
95	2.065	18.32 \			
96	2.329	18.821 \			
97	2.443	18.822			
98	END PGE	N			
99	pgen B	-perm 1.0	-LOC 0 0 (0 -DIFTYP	E strip
100	PLANE 0	-CART	0	29.99	
101	PLANE 0.0	75 -CART	0	29.843	\
102	1.384	29.989			
103	PLANE 0.5	-CART	0.347	29.01	\backslash
104	3.493	29.98			
105	PLANE 1	-CART	0.77	28.027	\
106	3.218	29 \			
107	4,912	29.965			
108	PLANE 1.5	-CART	1,179	27.039	\
109	4 622	29 \	1.1.1	27.000	,
110	6 028	29 947			
111	DIANE 2	-CAPT	1 564	26 041	\
112	5 747	29 \	1.304	20.041	1
112	6 000	20 026			
111		29.920	1 0 2 2	25 020	\
114	PLANE 2.J	-CARI	1.925	23.029	1
110	0./41	29 \			
117	7.88	29.904	1 661	00 007	1
110	PLANE 3	-CART	1.331	23.987	1
118	2.263	24			
119	/.651	29 \			
120	8.699	29.88	0 100	~~ ~~~	\ \
121	PLANE 3.5	-CART	2.136	22.888	\
122	2.592	24 \			
123	8.501	29 \			
124	9.473	29.854			
125	PLANE 4	-CART	2.919	21.643	\
126	3.318	24 \			
127	9.306	29 \			
128	10.213	29.827			
129	PLANE 4.5	-CART	2.389	19.808	\
130	3.247	21 \			
131	4.361	24 \			
132	10.077	29 \			
133	10.926	29.799			
134	PLANE 4.6	-CART	2.443	18.822	\
135	3.313	21 \			-
136	4,563	24			
137	10 228	29 \			
138	11 066	29 793			
139	PLANE A 6		0	0 235	\
140			0	0.200	N
14U	0.024	v.J \			

141	0.67	1	\			
142	1 239	1.5	$\langle \rangle$			
144	1.69	2.5	Ň			
145	2.025	2.718	Ň			
146	2.043	4	\			
147	2.073	5	\			
148	2.334	6	\			
149	2.449	11.917	/			
150	2.979	12	\			
151	3.210	18 21	\ \			
153	4 583	24	Ň			
154	10.243	29	Ň			
155	11.08	29.792				
156	PLANE 6	-CAF	RΤ	0	0.037	\backslash
157	1.265	0.5	\			
158	1.876	1	/			
159	1.881	1.5	\			
161	2.30	2 5	\ \			
162	3 089	2.5	Ň			
163	3.184	6	Ň			
164	3.22	11.894	Ň			
165	3.225	12	\			
166	4.131	18	\			
167	4.261	21	/			
168	7.138	24	\			
169	12.245	29	\			
171	PLANE 8	29.700 -CAR	۲. T	0	0 004	\
172	0.259	0.004	\	0	0.001	`
173	0.259	0	Ň			
174	0.684	0	\			
175	0.711	0	\			
176	2.126	0.5	\			
177	2.838	1	\			
170	3.41Z 3.801	1.5	\ \			
180	4 294	2 5	\`			
181	4.449	2.718	Ň			
182	5.014	6	Ň			
183	5.04	11.87	\			
184	5.368	12	\			
185	5.724	18	/			
186	/.568	21	\			
188	10.221	24	\ \			
189	15.38	29.582	1			
190	PLANE 10	-CAF	RΤ	0	0.002	\backslash
191	0.616	0.002	\			
192	0.616	0	\			
193	1.296	0	\			
194	1.308	0	\			
195	3.104	0.5	\			
197	4 651	1 5	Ň			
198	5.209	2	Ň			
199	5.659	2.5	Ň			
200	5.83	2.718	\			
201	7.114	6	\			
202	7.122	11.861	\			
203	1.293	12 10	\			
∠04 205	0.300 10 <i>17</i>	⊥o 21	$\langle \rangle$			
205	12 893	24	ì			
207	17.12	29	Ň			
208	17.5	29.458				
209	PLANE 20	-CAF	T	0	0	\
210	5.036	0	\			

211	8.866	0.5	\			
212	10.165	1	Ň			
213	11.167	1.5	\ \			
214	12.021	2	\			
215	12.726	2.5)			
216	12.985	2./18				
217	15.11/	0 11 056	``			
210	16.709	12.856	``			
220	18 492	18	Ň			
221	19.94	21	Ň			
222	21.538	24	Ň			
223	24.237	28.912				
224	PLANE 30	-CA	RT	0	0	\
225	9.875	0)			
226	14.4/4	0.5	$\langle \rangle$			
227	17 224	1 5	``			
220	18 155	2	Ň			
230	18.899	2.5	Ň			
231	19.18	2.718	Ň			
232	21.614	6	\			
233	23.189	11.833	\ \			
234	23.219	12	\ \			
235	24.375	18	\ \			
230	25.067	24	\ \			
238	27 074	28 412	1			
239	PLANE 40	-CA	RT	0	0	\backslash
240	14.945	0	\			,
241	19.348	0.5	\			
242	20.988	1	\backslash			
243	22.089	1.5	\			
244	22.904	2	$\langle \rangle$			
245	23.526	2.5	``			
240	25.734	2./10	$\hat{\mathbf{x}}$			
248	26.358	11.831	Ň			
249	26.382	12	N			
250	27.139	18	\			
251	27.501	21	<u>\</u>			
252	27.832	24	\			
253	28.193	28.065		0	0	\ \
255	PLANE 50 19 146	-CA	KT \	0	0	\
256	23.113	0.5	ì			
257	24.454	1	Ň			
258	25.293	1.5	\			
259	25.878	2	\			
260	26.294	2.5)			
261	26.439	2./18				
262	27.48	0 11 917	``			
264	28 001	12	Ň			
265	28.32	18	Ň			
266	28.412	21	Ň			
267	28.458	24	\backslash			
268	28.494	27.989				
269	PLANE 52.	.4 -CA	RT	0	0	/
270	19.98/	0	$\langle \rangle$			
271	25.010	1	\`			
273	25.805	1.5	ì			
274	26.332	2	Ň			
275	26.702	2.5	\setminus			
276	26.832	2.718	\			
277	27.77	6	\			
278	28.207	11.789	\			
219	28.218 28 130	⊥∠ 1.8	$\langle \rangle$			
200	20.438	ΤO	`			

282	28.4//	21 \			
	28.493	24 \			
283	28.5	27.923 \			
284	28.5	27.989			
285	PLANE 55	-CART	0	0	\
286	20.841	0 \			
287	24.495	0.5 \			
288	25.597	1			
289	26.284	1.5 \			
290	26.742	2			
291	27 069	2 5 \			
292	27.005	2 718			
202	28 007	6			
293	20.007				
294	20.300	11.742 \			
295	28.3/8	12 \			
296	28.499	18 \			
297	28.5	18.284 \			
298	28.5	21 \			
299	28.5	24 \			
300	28.5	27.989			
301	PLANE 60	-CART	0	0	\
302	22.324	0 \			
303	25.613	0.5 \			
304	26.477	1 \			
305	26.993	1.5 \			
306	27.35	2			
307	27.614	2.5 \			
308	27.704	2.718 \			
309	28 32	6			
310	28.5	10 538 \			
311	20.5	12 \			
210	20.5	10			
31Z 313	20.5	10 \ 21 \			
214	20.5				
214	20.5	24 \			
315	28.5	27.989	0	0	,
316	PLANE 65	-CART	0	0	\
317	23.476				
318	26.321	0.5 \			
319	27.022				
320	27.461	1.5 \			
321	27.774	2			
322	27.994	2.5 \			
323	28.071	2 718 \			
321		2.710 (
JZ4	28.492	6 \			
324 325	28.492 28.5	6 \ 6.241 \			
324 325 326	28.492 28.5 28.5	6 \ 6.241 \ 12 \			
325 326 327	28.492 28.5 28.5 28.5 28.5	6 \ 6.241 \ 12 \ 18 \			
325 326 327 328	28.492 28.5 28.5 28.5 28.5 28.5	6.241 \ 12 \ 18 \ 21 \			
325 326 327 328 329	28.492 28.5 28.5 28.5 28.5 28.5 28.5	6 \ 6.241 \ 12 \ 18 \ 21 \ 24 \			
324 325 326 327 328 329 330	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5	6 \ 6.241 \ 12 \ 18 \ 21 \ 24 \ 27.989			
324 325 326 327 328 329 330 331	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70	6 \ 6.241 \ 12 \ 18 \ 21 \ 27.989 -CART	0	0	\ \
324 325 326 327 328 329 330 331 332	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298	6 \ 6.241 \ 12 \ 18 \ 21 \ 27.989 -CART 0 \	0	0	\
324 325 326 327 328 329 330 331 332 333	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711	6 \ 6 .241 \ 12 \ 18 \ 21 \ 27.989 -CART 0 \ 0.5 \	0	0	\
324 325 326 327 328 329 330 331 332 333 334	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27 371	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \	0	0	١
324 325 326 327 328 329 330 331 332 333 334 335	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1 5 \ 1 5	0	0	١
324 325 326 327 328 329 330 331 332 333 334 335 336	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2	0	0	١
324 325 326 327 328 329 330 331 332 333 334 335 336 237	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.272	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2 5 \ 2	0	0	١
324 325 326 327 328 329 330 331 332 333 334 335 336 337 228	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \	0	0	λ.
324 325 327 328 329 330 331 332 333 334 335 336 337 338	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273 28.331 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \ 4.020 \ 2.5 \ 2.5 \ 2.5 \ 2.718 \ 4.020 \ 2.5 \ 2	0	0	λ.
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273 28.331 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \ 4.089 \ 6	0	0	λ.
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339 340	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273 28.331 28.5 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 13 \ 14 \ 14 \ 14 \ 15 \ 12 \ 12 \ 15 \ 12 \ 1	0	0	λ.
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339 340 340	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273 28.331 28.5 28.5 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 1	0	0	\
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273 28.331 28.5 28.5 28.5 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 2.1 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \	0	0	١
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273 28.331 28.5 28.5 28.5 28.5 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 21 \ 18 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 1	0	0	١
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 21 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 1	0	0	١
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345	$\begin{array}{c} 28.492\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.5\\ 28.711\\ 27.79\\ 28.085\\ 28.273\\ 28.085\\ 28.273\\ 28.331\\ 28.5\\ 28$	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 1.5 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 21 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 21 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 2.7.989 \ 12 \ 2.5 \ 2.7.989 \ 12 \ 2.5 \ 2.7.989 \ 12 \ 18 \ 23 \ 24 \ 27.989 \ 12 \ 27.989 \ 27.981 \ 27	0	0	١
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 2.7.989 -CART	0	0	\
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347	28.492 28.5 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.79 28.085 28.273 28.331 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 2.7.989 \ -CART 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \	0	0	1
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273 28.331 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 2.7.989 \ -CART 0 \ 0.5 \ 1.5 \ 2.7.989 \ 0.5 \ 1.5 \ 2.7.989 \ 0.5 \ 1.5 \ 2.7.989 \ 0.5 \ 1.5 \\ 1.5 \\	0	0	1
324 325 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349	28.492 28.5 28.5 28.5 28.5 28.5 28.5 PLANE 70 24.298 26.711 27.371 27.79 28.085 28.273 28.331 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	6 \ 6 .241 \ 12 \ 18 \ 21 \ 24 \ 27.989 -CART 0 \ 0.5 \ 1 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 18 \ 2.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 12 \ 12 \ 12 \ 1.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 12 \ 12 \ 13 \ 14 \ 15 \ 14 \ 15 \ 12 \ 1.5 \ 12 \ 1.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 12 \ 12 \ 12 \ 1.5 \ 12 \ 1.5 \ 2.718 \ 4.089 \ 6 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 14 \ 12 \ 12 \ 12 \ 12 \ 12 \ 13 \ 12 \ 14 \ 12 \ 15 \ 12 \ 14 \ 12 \ 15 \ 12 \ 18 \ 12 \ 10 \ 12 \ 10 \ 12 \ 10 \ 12 \ 10 \ 10 \ 12 \ 10 \	0	0	ι,

351	28.268	2	\			
352	28.415	2.5	\			
353	28.453	2.718	\			
354	28.5	3.188	\			
355	28.5	6	\backslash			
356	28.5	12	\			
357	28.5	18	\			
358	28.5	21	\			
359	28.5	24	\			
360	28.5	27.989				
361	PLANE 83	-CA	RT	0	0	\setminus
362	25.222	0	\backslash			
363	27.131	0.5	\backslash			
364	27.775	1	\backslash			
365	28.163	1.5	\backslash			
366	28.395	2	1			
367	28.488	2.5	1			
368	28.5	2.716	Ň			
369	28.5	2.718	Ň			
370	28.5	6	Ň			
371	28 5	12	Ň			
372	28.5	18	Ň			
373	28.5	21	Ň			
374	28.5	24	Ň			
375	20.5	27 989	1			
375	20.J DIANE 100	27.909	DT	0	0	\
270	25 222	.030 -CA		0	0	1
270	23.222	0 5	``			
378	27.131	0.5	``			
379	27.774	1	\ \			
380	28.163	1.5	\ \			
381	28.395	2	\			
382	28.488	2.5	\			
383	28.5	2.716	\			
384	28.5	2.718	\backslash			
385	28.5	6	\			
386	28.5	12	\			
387	28.5	18	\			
388	28.5	21	\			
389	28.5	24	\setminus			
390	28.5	27.989				
391	PLANE 195	-CA	RT	0	0	\setminus
392	24.877	0	\setminus			
393	26.75	0.5	\backslash			
394	27.473	1	\backslash			
395	27.923	1.5	\backslash			
396	28.228	2	\backslash			
397	28.427	2.5	\backslash			
398	28.478	2.718	\backslash			
399	28.5	2.84	1			
400	28.5	6	1			
401	28.5	12	Ň			
402	28.5	18	1			
403	28.5	21	Ň			
404	28 5	24	Ň			
405	28.5	27 989	`			
406	PLANE 200	-CA	рт	0	0	\
407	24 318	0		0	0	`
408	26 325	0 5	ì			
100	20.525	1	\`			
405	27.130	1 5	``			
410	27.000	1.5	``			
411	20.009	2	``			
412	28.272	2.5	``			
413	28.361	2./18	``			
414	28.5	3.19	``			
415	28.5	0 1 0	``			
416	28.5	12	\ \			
41/	28.5	18	\ \			
418	28.5	21	\ \			
419	28.5	24	\			
		77 000				

421	PLANE 210 -CART	0	0		
422	22.711 0				
423	24.899 0.5				
424 425	25.954 I \ 26.655 1.5 \				
426	27.202 2				
427	27.618 2.5 \				
428	27.759 2.718				
429	28.5 4.543				
430 431	28.5 6 \ 28.5 12 \				
432	28.5 18 \				
433	28.5 21 \				
434	28.5 24 \				
435	28.5 27.989	0	0		
430	20.584 0	0	0	X .	
438	22.912 0.5 \				
439	23.987 1 \				
440	24.784 1.5				
441	25.461 2 \				
443	26.214 2.718				
444	28.344 6				
445	28.5 6.633 \				
446	28.5 12 \				
447 448	28.5 18 \ 28.5 21 \				
449	28.5 24				
450	28.5 27.989				
451	PLANE 230 -CART	0	0	\setminus	
452	18.122 0				
453	20.805 0.5 \				
455	22.717 1.5 \				
456	23.439 2				
457	24.068 2.5				
458 459	24.32 2.718 \				
460	28.5 9.77 \				
461	28.5 12 \				
462	28.5 18 \				
463	28.5 21 \				
465	28.5 27.989				
466	PLANE 240 -CART	0	0	\setminus	
467	15.294 0				
468	18.125 0.5 \				
469 470	$19.3/2 \perp $ \ 20.267 1 5 \				
471	21.064 2				
472	21.765 2.5 \				
473	22.041 2.718				
4/4 475	25.U33 6 \ 28.078 12 \				
476	28.5 13.669 \				
477	28.5 18 \				
478	28.5 21 \				
479	$28.5 24 \setminus 28.5 27.000$				
400 481	20.3 27.989 PLANE 250 -CART	0	0		
482	12.18 0	÷	ũ		
483	15.176 0.5 \				
484	16.411 1				
485 486	18 106 2				
487	18.891 2.5 \				
488	19.199 2.718 \				
489	22.44 6				
490	26.35 12 \				

491	27.686	15.152	\ \		
492	28.433	18	\ \		
493	28.5	18.5/6	\ \		
494	28.5	21	\ \		
495	28.5	27 989	1		
497	PLANE 260	-CAR	Τ 0	0	\
498	8.833	0	\	0	1
499	12.031	0.5	Ň		
500	13.248	1	Ň		
501	14.126	1.5	\		
502	14.905	2	\		
503	15.571	2.5	\		
504	15.832	2.718	\ \		
505	19.166	6	\ \		
506	23.816	12	\ \		
507	25.243	14.258	\ \		
508	2/.186	18	\ \		
510	28.134	21	\ \		
511	28.5	24 24 171	\ \		
512	28.5	27.989	`		
513	PLANE 266	.46 -CAR	т 0	0	\backslash
514	6.575	0	\		
515	9.975	0.5	\		
516	11.205	1	\		
517	12.089	1.5	\ \		
518	12.782	2	\ \		
519	13.344	2.5	\ \		
520	13.563	2.718	\ \		
521	16.553	6	\ \		
523	21.932 23.144	13 65			
524	25 991	18	\ \		
525	27.34	21	Ň		
526	28.116	24	Ň		
527	28.5	27.986	Ň		
528	28.5	27.989			
529	PLANE 303	.63 -CAR	т 0	0	\
530	0.007	0.006	\		
531	0.528	0.5	\ \		
532	0.909	1 5			
533	1 100	1.5	\ \		
535	1 741	2 5	\ \		
536	1 843	2 718	\ \		
537	2.341	6	Ň		
538	3.604	9.786	Ν.		
539	6.837	12	\		
540	16.358	18	\		
541	18.871	21	\		
542	20.853	24	\		
543	23.017	27.989	- 0	0 1 1 4	`
544	PLANE 305	-CAR	N 0	0.114	\
545	0.520	1			
547	0.032	1 5	\ \		
548	1.051	1.7	Ň		
549	1.205	2	\ \		
550	1.461	2.5	\		
551	1.566	2.718	\		
552	2.012	6	\		
553	2.795	9.623	<u>\</u>		
554	6.087	12	\		
555	15.849	18 21	\ \		
555 557	10.3/ 20 262	∠⊥ 2.4	\ \		
558	20.303 22 531	∠4 27 989	1		
559	PLANE 307	-CAR	T O	0.523	\
560	0.261	1	\		`

561	0.511	1.5 \			
562	0.773	2 \			
563	1.042	2.5 \			
564	1 1 5 9	2 718 \			
504	1.139	2.710 \			
262	1.556	4.418 \			
566	1.667	6 \			
567	1.772	9.377 \			
568	4,972	12 \			
569	15 07	18 \			
505	17.07				
570	17.605	21 \			
571	19.614	24 \			
572	21.791	27.989			
573	PLANE 309	-CART	0	1.364	\backslash
574	0 067	15 \	-		`
574	0.007	1.0 \			
5/5	0.277	2			
576	0.5	2.5 \			
577	0.608	2.718 \			
578	0.609	6 \			
570	0 69	7 2/13 \			
575	1 1 0	0 10			
580	1.169	9.12			
581	3.835	12 \			
582	14.254	18 \			
583	16.803	21 \			
584	18 833	24			
504	10.000	27 000			
282	21.021	27.989		_	,
586	PLANE 309.	61 -CART	0.135	2	\
587	0.299	2.5 \			
588	0.306	6 \			
580	0 342				
505	0.542	/ 100 \			
590	0.587	8.108 \			
591	0.816	9.04 \			
592	1.047	10 \			
593	3.486	12 \			
594	14	18 \			
EOE	10 550	10 \ 01 \			
595	10.000				
596	18.59	24 \			
597	20.781	27.989			
598	PLANE 310	-CART	0	1.954	\backslash
599	0 03	○ \			
600	0.05	2 5			
600	0.1	2.5 \			
600 601	0.105	2.5 \ 2.718 \			
600 601 602	0.1 0.105 0.108	2 \ 2.5 \ 2.718 \ 4 \			
600 601 602 603	0.1 0.105 0.108 0.246	2 \ 2.5 \ 2.718 \ 4 \ 5 \			
600 601 602 603 604	0.1 0.105 0.108 0.246 0.338	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \			
600 601 602 603 604 605	0.03 0.1 0.105 0.108 0.246 0.338 0.464	2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7			
600 601 602 603 604 605	0.03 0.1 0.105 0.108 0.246 0.338 0.464	2 .5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \			
600 601 602 603 604 605 606	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619	2 .5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \			
600 601 602 603 604 605 606 607	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958	2 .5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \			
600 601 602 603 604 605 606 607 608	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \			
600 601 602 603 604 605 606 607 608 609	$\begin{array}{c} 0.03\\ 0.1\\ 0.105\\ 0.246\\ 0.338\\ 0.464\\ 0.619\\ 0.958\\ 1.03\\ 1.303\\ \end{array}$	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \			
600 601 602 603 604 605 606 607 608 609 610	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \			
600 601 602 603 604 605 606 607 608 609 610	$\begin{array}{c} 0.03\\ 0.1\\ 0.105\\ 0.108\\ 0.246\\ 0.338\\ 0.464\\ 0.619\\ 0.958\\ 1.03\\ 1.303\\ 3.261\\ 13.835\end{array}$	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \			
600 601 602 603 604 605 606 607 608 609 610 611	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 2.718 \ 4 \ 2.718 \ 2			
600 601 602 603 604 605 606 607 608 609 610 611 612	0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 1			
600 601 602 603 604 605 606 607 608 609 610 611 612 613	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \			
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614	$\begin{array}{c} 0.03\\ 0.1\\ 0.105\\ 0.108\\ 0.246\\ 0.338\\ 0.464\\ 0.619\\ 0.958\\ 1.03\\ 1.303\\ 3.261\\ 13.835\\ 16.391\\ 18.433\\ 20.626\end{array}$	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989			
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310.	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 214 -CART	0.907	8,959	
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310.	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 27.989 214 -CART 9 \	0.907	8.959	N
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 617	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.262	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 21 \ 24 \ 27.989 \ 214 -CART \ 9 \ 10 \	0.907	8.959	Υ.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 7	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 24 \ 27.989	0.907	8.959	Υ.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 7 618	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 12 \ 10 \ 12 \ 10 \ 12 \ 10 \ 12	0.907	8.959	Υ.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21	0.907	8.959	Υ.
600 601 602 603 604 605 606 607 608 609 610 612 613 614 615 616 617 618 619 620	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 \ 214 -CART \ 9 \ 10 \ 12 \ 18 \ 21 \ 18 \ 21 \ 18 \ 21 \	0.907	8.959	Υ.
600 601 602 603 604 605 606 607 608 600 611 612 613 614 615 616 613 615 616 612 613 612 613 615 612 613 615 612 612 613 612 613 615 615 612 612 613 612 613 615 612 613 615 616 615 616 615 616 615 616 615 616 615 616 617 618 619 612 612 616 615 616 617 618 619 621 612 621 621 621	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 24 \ 21 \ 24 \ 21 \ 22 \ 24 \ 21 \ 21 \ 21 \ 21 \ 21 \ 21 \ 22 \ 21 \ 22	0.907	8.959	Υ.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 9620 621 622	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 10 \ 12 \ 10 \ 12 \ 10 \ 12 \ 10 \ 12 \ 10 \ 21 \ 24 \ 27.989 \ 214 -CART 9 \ 10 \ 22 \ 10 \ 23 \ 24 \ 27.980 \ 214 \ 214 \ 22 \ 23 \ 23 \ 24 \ 23 \ 24 \ 24 \ 24 \ 27.980 \ 214 \ 27.980 \ 214 \ 22 \ 23 \ 24 \ 24 \ 23 \ 24 \ 24 \ 23 \ 24 \ 24 \ 24 \ 24 \ 27.980 \ 214 \ 27.980 \ 214 \ 27.980 \ 214 \ 21 \ 21 \ 22 \ 23 \ 23 \ 24 \ 24 \ 23 \ 24 \ 24 \ 24 \ 24 \ 27.980 \ 21 \ 21 \ 22 \ 23 \ 24 \ 23 \ 24 \ 24 \ 23 \ 24 \ 24 \ 24 \ 24 \ 27.980 \ 21 \ 23 \ 24 \ 24 \ 27.980 \ 21 \ 23 \ 24 \ 24 \ 23 \ 24 \ 24 \ 24 \ 24 \ 23 \ 24 \ 24 \ 24 \ 27.980 \ 23 \ 24 \ 27.980 \ 27.	0.907	8.959	Υ.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 24 \ 27.989	0.907	8.959	λ.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310.	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 24 \ 27.989 214 \ 27.989 25 -CART	0.907	8.959 9.187	Υ.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310. 1.256	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 224 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 27.989 21 \ 21 \ 21 \ 21 \ 21 \ 21 \ 21 \ 21 \ 22 \ 27.989 25 -CART 10 \ 25 \ 25 -CART 10 \ 26 \ 27 \ 27 \ 27 \ 28 \ 27 \ 28 \ 27 \ 28 \ 27 \ 28 \ 27 \ 28 \ 27 \ 28 \ 21 \ 2	0.907	8.959 9.187	Υ.
600 601 602 603 604 605 606 607 608 607 610 611 612 613 614 615 616 613 615 616 617 618 619 621 622 623 622 623 624 625 624 625 624 625 624 625 624 625 624 625 624 625 622 622 622 622 622 622 622 622 622 622 622 622 625 7555 7555 75555 7555555555555555555555555555555555555	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310. 1.256 3.111	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 25 -CART 10 \ 12	0.907	8.959 9.187	Υ.
600 601 602 603 604 605 606 607 608 607 610 611 612 613 614 615 616 615 616 617 618 620 621 622 623 624 625 624 625 7555 7555 75555 7555555555555555555555555555555555555	0.03 0.1 0.105 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310. 1.256 3.111 13.727	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 25 -CART 10 \ 12 \ 18 \ 24 \ 21	0.907	8.959 9.187	Υ.
600 601 602 603 604 605 606 607 608 609 611 612 613 615 616 617 619 621 622 7 7 7 7 7 7 7 7	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310. 1.256 3.111 13.727 16.207	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 22 \ 23 -CART 10 \ 12 \ 18 \ 21 \ 22 \ 23 \ 23 \ 24 \ 27.989 \ 25 -CART 26 \ 27.989 \ 25 -CART 26 \ 27.989 \ 25 -CART 26 \ 27 \ 21 \ 27.989 \ 25 -CART 26 \ 27 \ 21 \ 21 \ 21 \ 21 \ 22 \ 23 \ 24 \ 27.989 \ 25 -CART 26 \ 21 \ 21 \ 21 \ 22 \ 23 \ 23 \ 24 \ 27.989 \ 25 -CART 26 \ 21 \ 21 \ 21 \ 22 \ 23 \ 23 \ 24 \ 27.989 \ 25 -CART	0.907	8.959 9.187	Υ.
600 601 602 603 604 605 606 607 608 607 609 611 612 613 617 619 621 622 72	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310. 1.256 3.111 13.727 16.287 16.287	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 10 \ 12 \ 18 \ 214 -CART 9 \ 10 \ 12 \ 10 \ 12 \ 10 \ 12 \ 10 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \	0.907	8.959 9.187	Υ.
600 601 602 603 604 605 606 607 608 607 610 611 612 613 614 615 616 617 618 620 621 622 7 622 7 7 7 7 7 7 7 7	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310. 1.256 3.111 13.727 16.287 18.331	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 \ 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 \ 25 -CART 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 \ 25 -CART 10 \ 12 \ 18 \ 24 \ 24 \ 27.989 \ 25 -CART 10 \ 24 \ 21 \ 24 \ 27.989 \ 25 -CART 24 \ 21 \ 24 \ 27.989 \ 25 -CART 24 \ 27 \ 28 \ 21 \ 24 \ 27 \ 28 \ 21 \ 21 \ 21 \ 21 \ 22 \ 23 \ 24 \ 21 \ 24 \ 21 \ 22 \ 23 \ 24 \ 24 \ 27 \ 24 \ 27 \ 28 \ 21 \ 22 \ 21 \ 22 \ 23 \ 24 \ 24 \ 27 \ 24 \ 24 \ 27 \ 28 \ 21 \ 24 \ 21 \ 24 \ 21 \ 24 \ 21 \ 21 \ 22 \ 23 \ 24 \ 24 \ 24 \ 24 \ 24 \ 27 \ 24 \ 24 \ 24 \ 27 \ 28 \ 25 \ 25 \ 26 \ 21 \ 24 \ 24 \ 27 \ 25 \ 26 \ 27 \ 26 \ 27 \ 26 \ 27 \ 28 \ 21 \ 24 \ 25 \ 26 \ 27 \ 27 \ 28 \ 29 \ 29 \ 20	0.907	8.959 9.187	Υ.
600 601 602 603 604 605 607 608 607 612 612 612 612 612 613 612 612 613 615 616 617 618 619 621 622 623 622 623 625 627 622 623 625 627 622 622 625 627 622 7 622 7 7 7 7 7 7 7 7	0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310. 1.256 3.111 13.727 16.287 18.331 20.526	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 \ 214 -CART \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 \ 25 -CART \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 \ 25 -CART \ 10 \ 24 \ 27.989 \ 25 -CART \ 27.989 \ 27.989 \ 27.989 \ 28 \ 27.989 \ 28 \ 28 \ 27.989 \ 28 \	0.907	8.959 9.187	Υ.
600 601 602 603 604 605 607 608 607 610 611 612 613 612 613 614 615 616 615 616 617 618 621 622 623 624 625 627 623 622 623 625 627 623 622 623 625 627 622 623 625 627 622 623 622 623 622 623 622 623 622 623 622 623 622 623 622 623 622 623 622 623 622 623 622 623 622 623 622 623 625 627 623 622 623 625 627 623 625 627 623 625 627 623 625 627 623 625 627 623 625 627 623 625 627 623 625 627 623 625 627 623 625 627 623 625 626 627 623 625 627 623 625 627 630 750	0.03 0.1 0.105 0.108 0.246 0.338 0.464 0.619 0.958 1.03 1.303 3.261 13.835 16.391 18.433 20.626 PLANE 310. 0.964 1.263 3.138 13.744 16.302 18.346 20.541 PLANE 310. 1.256 3.111 13.727 16.287 18.331 20.526 PLANE 310.	2 \ 2.5 \ 2.718 \ 4 \ 5 \ 6 \ 7 \ 8.658 \ 8.987 \ 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 214 -CART 9 \ 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 25 -CART 10 \ 12 \ 18 \ 21 \ 24 \ 27.989 5 -CART	0.907 0.953	8.959 9.187 10.067	

631 632 633 634 635	2.921 12 \ 13.61 18 \ 16.179 21 \ 18.226 24 \ 20.423 27.989			
636 637 638 639 640 641	PLANE 310.716 -CART 2.743 12 \ 13.508 18 \ 16.086 21 \ 18.136 24 \ 20.334 27.989	1.168	10.492	\
642 643 644 645 646 647	PLANE 311 -CART 2.488 12 \ 13.373 18 \ 15.964 21 \ 18.017 24 \ 20.217 27.989	1.113	10.874	\
648 649 650 651 652 653	PLANE 311.216 -CART 2.275 12 \ 13.27 18 \ 15.872 21 \ 17.926 24 \ 20 127 27 989	1.07	11.09	\
654 655 656 657 658 659	PLANE 311.5 -CART 1.971 12 \ 13.135 18 \ 15.75 21 \ 17.807 24 \ 20.01 27.989	1.013	11.313	\
660 661 662 663 664 665	PLANE 311.731 -CART 1.706 12 \ 13.025 18 \ 15.65 21 \ 17.71 24 \ 19.913 27.989	0.965	11.458	\
666 667 668 669 670 671	PLANE 312 -CART 1.383 12 \ 12.896 18 \ 15.535 21 \ 17.597 24 \ 19.801 27.989	0.907	11.6	\
672 673 674 675 676 677	PLANE 312.163 -CART 1.183 12 \ 12.818 18 \ 15.465 21 \ 17.528 24 \ 19.732 27.989	0.87	11.674	\
678 679 680 681 682 683	PLANE 312.35 -CART 0.95 12 \ 12.729 18 \ 15.385 21 \ 17.449 24 \ 19.653 27.989	0.824	11.752	\
684 685 686 687 688 689	PLANE 312.36 -CART 0.937 12 \ 12.725 18 \ 15.381 21 \ 17.445 24 \ 19.649 27.989	0.822	11.756	\
690 691 692 693 694	PLANE 315 -CART 11.491 18 \ 14.248 21 \ 16.309 24 \ 18.487 27.989	0	12.549	\
695 696 697 698 699	PLANE 322 −CART 7.851 18 \ 10.83 21 \ 12.88 24 \ 15.067 27.989	0	14.455	\
700	PLANE 330 -CART	0	16.491	\

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	701	3.065	18 \				
703 8.357 24 $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	702	6.294	21 \				
10.596 27.989 705 END PGEN 706 pgen C -perm 1.0 -LOC 0 0 0 -DIFTYPE strip 707 PLANE 310.214 -CART 0 2.104 \ 708 0 2.5 \ 2.104 \ 709 0 2.718 \ . . 711 0.191 5 \ . . 712 0.283 6 \ . . 714 0.511 8.958 . . . 717 0 2.718 \ . . . 718 0.182 4 \ 719 0.274 5 \ .	703	8.357	24 \				
TOS END PCEN PIANE $310.214 - CART$ 0 0 2.104 N09 0 2.5 0 N09 0 2.718 0 N10 0.009 4 10.283 6 N11 0.191 5 10.283 6 N12 0.283 6 10.25 10.25 N13 0.397 7 0 2.13 10.274 N11 0.1824 10.274 5 10.274 5 N12 0.4667 10 2.323 10.274 5 N22 0.898 8.547 2.323 10.274 5 10.274 5 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.274 10.2737 10.2737 10.2737 10.2323 10.2737 10.2737 10.2718 10.2737 $10.$	704	10.596	27.989				
706 pgen C -perm 1.0 -LOC 0 0 0 -DIFTYPE strip 707 PLARE 310.214 -CART 0 2.104 \ 708 0 2.5 \ 709 0 2.718 \ 710 0.009 4 \ 711 0.191 5 \ 712 0.283 6 \ 713 0.39 7 \ 714 0.511 8.958 715 PLANE 310.25 -CART 0 2.13 \ 716 0 2.5 \ 717 0 2.718 \ 718 0.182 4 \ 719 0.274 5 \ 720 0.377 6 \ 721 0.466 7 \ 722 0.898 8.547 723 PLANE 310.5 -CART 0 2.323 \ 724 0 2.5 \ 725 0 2.718 \ 726 0.2718 \ 727 0.206 5 \ 728 0.28 6 \ 729 0.28 6 \ 731 PLANE 311.76 -CART 0 2.504 \ 733 0 4 \ 734 0.136 5 \ 735 0.183 6 \ 741 0.021 6 \	705	END PGE	N				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	706	pgen C	-perm 1.0	-LOC	0 0 0	-DIFTYP	E strip
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	707	PLANE 310	.214 -CART	0		2.104	\
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	708	0	2.5 \				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	709	0	2.718 \				
711 0.191 5 712 0.283 6 713 0.39 7 714 0.511 8.958 715 PLANE 310.25 $-CART$ 0 2.13 \ 716 0 2.5 \ 7 \ \ 718 0.182 4 \ 7 \ \ 719 0.274 5 \ \ 7 \ 720 0.377 6 \ \ \ \ 721 0.466 \ \ \ \ \ 722 0.898 8.547 \ \ \ \ 723 PLANE 310.5 -CART 0 2.323 \ 726 0.206 \ \ \ \ \ \ \ 733 0.416 \ - 2.504 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ <td< td=""><td>710</td><td>0.009</td><td>4</td><td></td><td></td><td></td><td></td></td<>	710	0.009	4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	711	0.191	5 \				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	712	0 283	6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	713	0.200					
715 PLANE 310.25 CART 0 2.13 \ 716 0 2.5 \	714	0.55	, 8 928				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	715		0.9J0 25 CND	0		2 1 2	\ \
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	710	PLANE SIU	.25 -CARI	0		2.13	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	710	0	2.5 \				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/1/	0	2./18 \				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	718	0.182	4				
720 0.377 6 721 0.466 7 722 0.898 8.547 723 PLANE 310.5 -CART 0 2.323 \ 724 0 2.5 \ 0 2.57 \ 725 0 2.718 \ - 7.728 \ - 727 0.206 5 \ - 7.729 0.837 7 \ 730 0.874 7.743 - - 2.504 \ 733 0 4 \ - - 2.504 \ 733 0 4 \ - - 2.504 \ 734 0.136 5 \ - - 7.67 \ 741 0.605 7.381 - - - 7.677 \ 742 0.701 7.033 - - 2.988 \ - 742 0.651 6.814 - - 2.988 \ -	719	0.274	5 \				
721 0.466 7 722 0.898 8.547 723 PLANE 310.5 $-CART$ 0 724 0 2.5 1 725 0 2.718 726 726 0.106 4 1 727 0.206 5 1 728 0.28 6 1 729 0.837 7 1 730 0.874 7.743 0 2.504 731 PLANE 310.716 $-CART$ 0 2.504 733 0.4 1 0 2.504 1 733 0.4 1 0 2.504 1 737 0.805 7.381 7.777 0.805 7.771 740 0.52 1 0.711 7.033 7.44 $9.2.988$ $1.410.021$ 744 0.651 6.814 7.44 0.651 6.814 7.47 0.635 5.125 5.125 5.1	720	0.377	6 \				
722 0.898 8.547 723 PLANE 310.5 -CART 0 2.323 \) 724 0 2.5 \)	721	0.466	7 \				
723 PLANE 310.5 -CART 0 2.323 \ 724 0 2.5 \	722	0.898	8.547				
724 0 2.5 725 0 2.718 726 0.106 4 727 0.206 5 728 0.28 6 729 0.837 7 730 0.837 7.743 731 PLANE 310.716 -CART 0 2.504 733 0 4 \ \ 733 0 2.718 \ \ 733 0 4 \ \ 734 0.136 5 \ \ 736 0.782 7 \ \ 737 0.805 7.381 \ \ 740 0 5 \ \ 741 0.021 6 \ \ 742 0.709 7 \ \ 744 0.635 6 \ \ 745 0 4 \ \ 747 0.635 6 \ \ 747 0.635	723	PLANE 310	.5 -CART	0		2.323	\
725 0 2.718 726 0.106 4 727 0.206 5 728 0.28 6 729 0.837 7 730 0.874 7.743 731 PLANE 310.716 -CART 0 2.504 \ 732 0 2.718 \ - - - 733 0 4 \ - - - - 733 0 4 \ -	724	0	2.5 \				
726 0.106 4 727 0.206 5 728 0.28 6 729 0.837 7 730 0.874 7.743 731 PLANE 310.716 -CART 0 2.504 \ 732 0 2.718 \ - - - 733 0 4 \ - - - - 733 0 4 \ - <	725	0	2.718 \				
727 0.206 5 728 0.28 6 729 0.837 7 730 0.874 7.743 731 PLANE 310.716 -CART 0 2.504 \ 732 0 2.718 \ 733 0 4 \ 733 0 4 \ 734 0.136 5 \ 733 0 4 \ 735 0.183 6 \ 736 0.782 7 \ 737 0.805 7.381 738 PLANE 311 -CART 0 2.767 \ 740 0 5 \ - - - 741 0.021 6 \ - - - 742 0.709 7 \ - - - - - 744 0.635 6 \ - - - - - - - - - - - - -	726	0.106	4 \				
728 0.28 6 729 0.837 7 730 0.874 7.743 731 PLANE 310.716 -CART 0 2.504 \ 732 0 2.718 \ - <td>727</td> <td>0.206</td> <td>5 \</td> <td></td> <td></td> <td></td> <td></td>	727	0.206	5 \				
729 0.837 7 730 0.874 7.743 731 PLANE 310.716 $-CART$ 0 2.504 1 732 0 2.718 1 733 0 4 1 733 0 4 1 734 0.136 5 1 733 0.183 6 1 737 0.805 7.381 738 PLANE 311 $-CART$ 0 2.767 1 740 0.5 1 $-CART$ 0 2.767 1 740 0.625 1 1 7.033 744 10.021 6 1 744 0.711 7.033 744 0.635 6 1 747 0.635 1 744 0.651 6.814 749 0.525 0.525 0.568 6.562 754 0.568 6.562 754 0.488 6.379 755 0.488 6.379 755 0	728	0.28	6 \				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	720	0.20					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	720	0.037	7 7/2				
731 PLANE 310.116 CART 0 2.504 (733 0 4 (<	730	0.0/4	7.743	0		2 504	\ \
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	731	PLANE 310	./16 -CART	0		2.504	\
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132	0	2./18 \				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/33	0	4				
735 0.183 6 \backslash 736 0.782 7 \backslash 737 0.805 7.381 738PLANE 311 $-CART$ 0 739 0 4 \backslash 740 0 5 \backslash 741 0.021 6 \backslash 742 0.709 7 \backslash 743 0.711 7.033 744PLANE 311.216 $-CART$ 0 745 0 4 \backslash 746 0 5 \backslash 747 0.635 6 \backslash 748 0.651 6.814 \vee 759 0 4 \backslash 751 0 4 \backslash 752 0.525 6 \land 753 0.568 6.562 $.514$ 754PLANE 311.731 $-CART$ 0 755 0 4 \land 756 0 5 \land 757 0.418 6 \land 758 0.488 6.379 $.5913$ 759PLANE 312.163 $-CART$ 0 760 0 4 \land 761 0 5 \land 762 0.162 6 \land 763 0.351 6.176 $-CART$ 0 764PLANE 312.35 $-CART$ 0 4.187 766 0 5 \checkmark $.666$ $.666$ 767 0.185 6.054 $.6472$ $.7672$ <t< td=""><td>734</td><td>0.136</td><td>5 \</td><td></td><td></td><td></td><td></td></t<>	734	0.136	5 \				
736 0.782 7 \backslash 737 0.805 7.381 738 738 PLANE 311 $-CART$ 0 2.767 \backslash 740 0 5 \backslash 741 0.021 6 \backslash 741 0.021 6 \backslash 742 0.709 7 \backslash 743 0.711 7.033 744 PLANE 311.216 $-CART$ 0 2.988 \backslash 745 0 4 \backslash 746 0 5.5 \land 746 0 5.5 \land 747 0.635 6 \land 746 0 4 \land 750 4 $, 131.731$ $, 501$ $, 13591$ $, 13591$ $, 155$ $, 168$ $, 158$ $, 158$ $, 1585$ $, 1585$ $, 1585$ $, 1585$ $, 1585$ $, 1585$ $, 1585$ $, 1585$ $, 1585$ $, 1585$ $, 162$ $, 185$ $, 185$ $, 185$ $, 1285$ $, 1285$ $, 1285$	735	0.183	6 \				
737 0.805 7.381 738 PLANE 311 -CART 0 2.767 \land 739 0 4 \land 740 0 5 \land 741 0.021 6 \land 742 0.709 7 \land 743 0.711 7.033 744 PLANE 311.216 -CART 0 2.988 \land 745 0 4 \land 746 0 5 \land 747 0.635 6 \land 748 0.651 6.814 749 PLANE 311.5 -CART 0 3.306 \land 750 0 4 \land 751 0 5 \land 752 0.525 6 \land 753 0.568 6.562 754 PLANE 311.731 -CART 0 3.591 \land 755 0 4 \land 756 0 5 \land 757 0.418 6 \land 758 0.488 6.379 759 PLANE 312 -CART 0 3.952 \land 760 0 4 \land 761 0 5 \land 762 0.162 6 \land 763 0.351 6.176 764 PLANE 312.163 -CART 0 4.187 \land 765 0 5 \land 766 0 5 \land 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \land 769 0 5 \land 770 0 5.913	736	0.782	7 \				
738 PLANE 311 -CART 0 2.767 \ 739 0 4 \land	737	0.805	7.381				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	738	PLANE 311	-CART	0		2.767	\
740 0 5 \backslash 741 0.021 6 \backslash 742 0.709 7 \backslash 743 0.711 7.033 \land 744 PLANE 311.216 -CART 0 2.988 \backslash 745 0 4 \land \land \land $, , , , , , , , , , , , , , , , , , , $	739	0	4				
741 0.021 6 742 0.709 7 743 0.711 7.033 744 PLANE 311.216 $-CART$ 0 2.988 \backslash 745 0 4 \backslash 745 0 4 \backslash 746 0 5 \backslash 747 0.635 6 \vee 747 0.635 6 \vee 3.306 \vee 747 0.635 6.814 \rightarrow 3.306 \vee 750 0.55 \wedge 752 0.525 6 \vee 755 0.568 6.562 757 0.418 6 3.952 \vee 766 0 4 \wedge 761 0.5 \wedge 6.054 6.054 6.054 <td>740</td> <td>0</td> <td>5 \</td> <td></td> <td></td> <td></td> <td></td>	740	0	5 \				
742 0.709 7 743 0.711 7.033 744 PLANE 311.216 $-CART$ 0 2.988 745 0 4 $$ 746 0 5 $$ 747 0.635 6 $$ 748 0.651 6.814 749 749 PLANE 311.5 $-CART$ 0 3.306 750 0 4 $$ 751 0 5 751 0 5 $$ 752 0.525 6 751 0 5 $$ 752 0.525 6 $$ 752 0.525 6 $$ 753 0.568 6.562 754 PLANE 311.731 $-CART$ 0 3.591 $$ 755 0 4 $$ 756 0.488 6.379 759 PLANE 312.163 $-CART$ 0 4.187 $$	741	0.021	6				
743 0.711 7.033 744 PLANE 311.216 $-CART$ 0 2.988 745 0 4 11.216 $-CART$ 0 2.988 746 0 5 11.5 $-CART$ 0 3.306 747 0.635 6 11.5 $-CART$ 0 3.306 748 0.651 6.814 750 0 4 11.731 750 0 4 11.731 $-CART$ 0 3.591 11.755 752 0.525 6 11.731 $-CART$ 0 3.591 11.755 754 PLANE 311.731 $-CART$ 0 3.952 11.756 755 0 4 11.731 $-CART$ 0 3.952 11.756 757 0.418 6.379 11.63 11.63 11.63 11.63 760 0.351 6.176 11.62 11.763 11.63 11.63 11.63 11.63	742	0 709	7 \				
744 PLANE 311.216 -CART 0 2.988 \ 745 0 4 \	743	0 711	7 033				
745 0 4 \checkmark 746 0 5 \land 747 0.635 6 \land 748 0.651 6.814 \land 749 PLANE 311.5 -CART 0 3.306 \land 750 0 4 \land 752 0.525 6 \land 751 0 5 \land 752 0.525 6 \land 752 0.525 6 \land 753 0.568 6.562 754 PLANE 311.731 -CART 0 3.591 \land 755 0 4 \land 756 0.5 \land 757 0.418 6 \land 757 0.418 6.379 759 PLANE 312 $-CART$ 0 3.952 \land 760 0 4 \land 6 \land 766 \land 764 PLANE 312.163 $-CART$ 0 4.187 \land	710	DIANE 311	216 -CAPT	0		2 988	\
746 0 5 $\)$ 747 0.635 6 $\)$ 748 0.651 6.814 749 PLANE 311.5 -CART 0 3.306 $\)$ 750 0 4 $\)$ 751 0 5 $\)$ 752 0.525 6 $\)$ 753 0.568 6.562 754 PLANE 311.731 -CART 0 3.591 $\)$ 755 0 4 $\)$ 756 0 5 $\)$ 757 0.418 6 $\)$ 758 0.488 6.379 759 PLANE 312 -CART 0 3.952 $\)$ 760 0 4 $\)$ 761 0 5 $\)$ 762 0.162 6 $\)$ 763 0.351 6.176 764 PLANE 312.163 -CART 0 4.187 $\)$ 765 0 5 $\)$ 766 0 6 $\)$ 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 $\)$ 769 0 5 $\)$ 770 0 5.913	745		.210 CANI	0		2.900	1
740 0 5 $($ 747 0.635 6 $)$ 748 0.651 6.814 749 PLANE 311.5 -CART 0 3.306 $)$ 750 0 4 $)$ 751 0 5 $)$ 752 0.525 6 $)$ 753 0.568 6.562 754 PLANE 311.731 -CART 0 3.591 $)$ 755 0 4 $)$ 756 0 5 $)$ 757 0.418 6 $)$ 758 0.488 6.379 759 PLANE 312 -CART 0 3.952 $)$ 760 0 4 $)$ 761 0 5 $)$ 762 0.162 6 $)$ 763 0.351 6.176 764 PLANE 312.163 -CART 0 4.187 $)$ 765 0 5 $)$ 766 0 6 $)$ 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 $)$ 769 0 5 $)$ 770 0 5.913	745	0	4 \ E \				
747 0.633 6 \backslash 748 0.651 6.814 749 PLANE 311.5 $-CART$ 0 3.306 \backslash 750 0 4 \backslash \backslash \backslash \land 750 0 4 \backslash \land \land \land 751 0 5 \backslash $,$ $,$ $,$ 752 0.525 6 \land $,$ $,$ $,$ 752 0.525 6 \land $,$ $,$ $,$ 753 0.568 6.562 $,$ $,$ $,$ $,$ 755 0 4 \land $,$ $,$ $,$ 756 0 5 $,$ $,$ $,$ $,$ 759 PLANE 312.163 $,$ $,$ $,$ $,$ 761 0 $,$ $,$ $,$ $,$ $,$ $,$ 764 PLANE $,$ $,$ $,$ $,$ $,$	740	0 (25					
748 0.651 6.814 749 PLANE 311.5 $-CART$ 0 3.306 750 0 4 \backslash 751 0 5 \backslash 752 0.525 6 \backslash 753 0.568 6.562 754 PLANE 311.731 $-CART$ 0 3.591 755 0 4 \backslash 756 0 5.5 755 0 4 \backslash 757 0.418 6 \land 758 0.488 6.379 759 $PLANE$ 312 $-CART$ 0 3.952 \land 760 0 4 \land 762 0.162 \land 762 0.162 6 \land 764 PLANE 312.163 $-CART$ 0 4.187 \land 765 0 5 \land 6.054 \land $766 \land 767 0.185 6.054 768 PLANE 312.35 -CART 0$	747	0.033	0 \				
749 PLANE 311.5 -CART 0 3.306 \ 750 0 4 \ \ \ \ 751 0 5 \ \ \ \ 752 0.525 6 \ \ \ \ 753 0.568 6.562 \ \ \ \ 754 PLANE 311.731 -CART 0 3.591 \ 755 0 4 \ \ \ \ 756 0 5 \ \ \ \ 757 0.418 6 \ \ \ \ 759 PLANE 312 -CART 0 3.952 \ 761 0 5 \ \ \ \ \ 762 0.162 6 \ \ \ \ \ \ 766 0 5 \ \ \ \ \ \ \ \ \ <	748	0.651	6.814	0		0 000	`
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	749	PLANE 311	.5 -CART	0		3.306	\
751 0 5 \backslash 752 0.525 6 \backslash 753 0.568 6.562 754 PLANE 311.731 -CART 0 3.591 \backslash 755 0 4 \backslash \land \land $, , , , , , , , , , , , , , , , , , , $	750	0	4				
752 0.525 6 \backslash 753 0.568 6.562 754 PLANE 311.731 $-CART$ 0 3.591 755 0 4 \backslash 756 0 5 \backslash 757 0.418 6 \backslash 758 0.488 6.379 759 PLANE 312 $-CART$ 0 760 4 \backslash 762 0.162 6 761 0 5 \backslash 763 0.3511 6.176 764 PLANE 312.163 $-CART$ 0 4.187 \backslash 765 0 5 \backslash 766 0 6 \land 766 0 6 \land 767 0.185 6.054 6.054 769 0 5 \land 770 0 5.913 7.4472 $\land 7.4472 7.4472 7.4472 7.4472 7.4472 7.4472 7.4472 $	/51	0	5 \				
753 0.568 6.562 754 PLANE 311.731 $-CART$ 0 3.591 755 0 4 \setminus 756 0 5 \setminus 757 0.418 6 \setminus 758 0.488 6.379 759 $PLANE$ 312 $-CART$ 0 3.952 \setminus 760 0 4 \setminus 761 0 5 \setminus 761 0 5 \setminus 763 0.351 6.176 764 PLANE 312.163 $-CART$ 0 4.187 \setminus 765 0 5 \setminus 766 0 6 \setminus 766 0 6 \vee 767 0.185 6.054 6.054 769 0 5 \vee 770 0 5.913	752	0.525	6 \				
754 PLANE $311.731 - CART$ 0 3.591 755 0 4 \backslash 756 0 5 \backslash 757 0.418 6 \backslash 758 0.488 6.379 759 PLANE 312 $-CART$ 0 760 0 4 \backslash \land 761 0 5 \backslash 762 0.162 6 \land 764 PLANE $312.163 - CART$ 0 4.187 765 0 5 \land 766 0 6 \land 767 0.185 6.054 6.054 768 PLANE $312.35 - CART$ 0 4.472 769 0 5 \land 770 0	753	0.568	6.562				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	754	PLANE 311	.731 -CART	0		3.591	\
756 0 5 \ 757 0.418 6 \ 758 0.488 6.379 759 PLANE 312 -CART 0 3.952 \ 760 0 4 \ \ \ \ 761 0 5 \ \ \ \ 762 0.162 6 \ \ \ \ 763 0.351 6.176 \ \ \ \ 764 PLANE 312.163 -CART 0 4.187 \ 765 0 5 \ \ \ \ 766 0 6 \ \ \ \ \ 766 0 6 \ \ \ \ \ \ 768 PLANE 312.35 -CART 0 4.472 \ \ 769 0 5 \ \ \ \ \ \ \ \ \<	755	0	4 \				
757 0.418 6 \backslash 758 0.488 6.379 759 PLANE 312 $-CART$ 0 760 0 4 \backslash 761 0 5 \backslash 762 0.162 6 \backslash 763 0.351 6.176 764 PLANE 312.163 $-CART$ 0 4.187 \backslash 765 0 5 \backslash 766 0 6 \backslash 767 0.185 6.054 6.054 768 PLANE 312.35 $-CART$ 0 4.472 \backslash 769 0 5 \backslash 770 0 5.913 4.472	756	0	5 \				
758 0.488 6.379 759 PLANE 312 $-CART$ 0 3.952 760 0 4 \backslash 761 0 5 \backslash 762 0.162 6 \backslash 763 0.351 6.176 0 764 PLANE 312.163 $-CART$ 0 765 0 5 \backslash 766 0 6.054 $-CART$ 0 767 0.185 6.054 6.054 768 PLANE 312.35 $-CART$ 0 4.472 769 0 5 \backslash 770 0 5.913 $-CART$ 0	757	0.418	6 \				
759 PLANE 312 -CART 0 3.952 760 0 4 \backslash 761 0 5 \backslash 762 0.162 6 \backslash 763 0.351 6.176 764 PLANE 312.163 -CART 0 4.187 \backslash 765 0 5 \backslash 766 6 \backslash 766 0 6 \backslash 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \backslash 769 0 5 \backslash 770 0 5.913	758	0.488	6.379				
760 0 4 \backslash 761 0 5 \backslash 762 0.162 6 \backslash 763 0.351 6.176 764 PLANE 312.163 -CART 0 4.187 765 0 5 \backslash 766 0 6 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \backslash 769 0 5 \backslash 770 0 5.913 \land	759	PLANE 312	-CART	0		3 952	\
761 0 5 \backslash 762 0.162 6 \backslash 763 0.351 6.176 764 PLANE 312.163 -CART 0 4.187 \backslash 765 0 5 \backslash 766 0 6 \backslash 766 0 6 \backslash 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \backslash 769 0 5 \backslash 770 0 5.913	760	0	4	0		0.902	,
762 0.162 6 \backslash 763 0.351 6.176 764 PLANE 312.163 -CART 0 4.187 \backslash 765 0 5 \backslash 766 0 6 \backslash 766 0 6 \backslash 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \backslash 769 0 5 \backslash 770 0 5.913	761	0	- \				
762 0.162 0 $()$ 763 0.351 6.176 764 PLANE 312.163 $-CART$ 0 765 0 5 $()$ 766 0 6 $()$ 767 0.185 6.054 $()$ 768 PLANE 312.35 $-CART$ 0 769 0 5 $()$ 770 0 5.913 $()$	760	0 160	5 \ 6 \				
763 0.351 0.176 764 PLANE 312.163 -CART 0 4.187 \ 765 0 5 \ 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \ 769 0 5 \ 770 0 5.913	762	0.102	0 \ 6 17C				
764 PLANE 312.163 -CART 0 4.187 \ 765 0 5 \ 766 0 6 \ 766 0 6 \ 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \ 769 0 5 \ 770 0 5.913	103	U.351	0.1/0	~		4 107	\ \
765 0 5 \ 766 0 6 \ 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \ 769 0 5 \ \ 770 0 5.913	/04	PLANE 312	.103 -CART	U		4.18/	\
766 0 6 \ 767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \ 769 0 5 \ \ 770 0 5.913	/65	U	5 \				
767 0.185 6.054 768 PLANE 312.35 -CART 0 4.472 \ 769 0 5 \ \ \ \ 770 0 5.913	766	0	6 \				
768 PLANE 312.35 -CART 0 4.472 \ 769 0 5 \	767	0.185	6.054				
769 0 5 \ 770 0 5.913 \	768	PLANE 312	.35 -CART	0		4.472	\
770 0 5.913	769	0	5 \				
	770	0	5.913				

771	PLANE	312.36	-CART	0	4.487	\backslash
772	0	5	Δ.			
773	0	5.9	05			
774	END	PGEN				

C:\Users\arihi\OneDrive\Documents\MODELLING & MOTION ANALYSIS\MOSES SBM HEXAGONAL\1.0 MODEL & MOTION ANALYSIS\SBM.cif

\$_____\$ 1 2 \$ -PROJECT : TUGAS AKHIR 2017 Ś З ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR Ś Ś CHAIN STOPPER PADA HEXAGONAL SINGLE BUOY MOORING \$ 4 Ś TERHADAP FSO SAAT SISTEM OFFLOADING 5 Ś Ś \$ -AUTHOR : JAMHARI H.B.M. (4313100149) 6 Ś 7 \$ -SUPERVISORS: -Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D. Ś 8 Ś -Suntoyo, S.T., M.Eng., Ph.D. Ś 9 \$============== _____\$ 10 Ľ V 11 &DIMEN -REMEMBER -DIMEN METERS M-TONS &DEVICE -OECHO NO -PRIMARY DEVICE -AUXIN SBM 408MT DWT.dat 12 13 &TITLE MODELLING & RAO ANALYSIS OF HEXAGONAL SBM 408MT DWT 14 **&SUBTITLE** OCEAN ENGINEERING DEPARTMENT - TUGAS AKHIR 2017 Ľ 15 INMODEL 16 17 &INSTATE SBM 408MT DWT -CONDITION 2.6 18 &PLTMODEL 19 PIC ISO 20 PIC SIDE PIC TOP 21 22 PIC BOW 23 PIC STERN 24 END Ľ 25 26 &WEIGHT -COMPUTE SBM 408MT DWT 1.75 3.61 3.61 3.61 27 &EQUI -iter 50 28 &STATUS B W 29 30 HYDRODYNAMICS 31 32 &PARAMETER -M DISTANCE 2 V 33 G PRESSURE -HEADING 0 45 90 135 180 \ -PERIOD 62.83 31.42 20.94 15.71 12.57 10.47 \ 34 35 8.98 7.85 6.98 6.29 5.71 5.24 4.83 \ 36 4.49 4.19 3.93 3.70 3.49 3.31 3.14 37 &ENV SEA 38 **&STATUS** FORCE HYDR SUM 39 V MDRIFT 40 41 REPORT 42 END Ľ 43 END 44 HSTATIC CFORM 0 0 0 -DRAFT 0.1 49 45 46 REPORT 47 END 48 END 49 V 50 FREQ_RESP V RAO -SPEED 0 51 52 FP STD & BODY (CG SBM 408MT DWT) EQU SUM 53 MATRICES -FILE YES 54 55 REPORT END 56 Ľ &FINISH 57 V

C:\Users\arihi\OneDrive\Documents\MODEL & MOTION ANALYSIS\MOSES SBM HEXAGONAL\1.0 MODEL & MOTION ANALYSIS\SBM_408MT_DWT.dat

```
$_____$
1
2
   $ -PROJECT : TUGAS AKHIR 2017
                                                          Ś
3
               ANALISIS TEGANGAN LOKAL MAKSIMUM STRUKTUR
   Ś
                                                         Ś
               CHAIN STOPPER PADA HEXAGONAL SINGLE BUOY MOORING $
TERHADAP FSO SAAT SISTEM OFFLOADING $
4
   Ś
5
   $
   $ -AUTHOR : JAMHARI H.B.M. (4313100149)
 6
                                                         Ś
7
   $ -SUPERVISORS: -Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D.
                                                         $
8
   Ś
      -Suntoyo, S.T., M.Eng., Ph.D.
                                                         Ś
   9
                                       ----$
&DIMEN -DIMEN METERS M-TONS -SAVE
11
   $BODIES & PARTS------$
12
   &DESCRIBE BODY SBM 408MT DWT
13
14
  pgen A -perm 1.0 -LOC 0 0 0 0 -90 0 -DIFTYPE 3ddiff
plane 0.731 1.014 -circ 0 0 8.944 0 10 18
15
16
   END PGEN
17
      pgen B -perm 1.0 -LOC 0 0 0 -DIFTYPE strip
18
19
   PLANE -6.02 -CART 3.4755 0
                                     \backslash
                       3.4755 5.514
20
21
   PLANE 0 -CART 6.951 0
                                    \setminus
22
                      6.951 5.5
3.4755 0
                             5.514
23
   PLANE 6.02 -CART
                                    \setminus
                      3.4755 5.514
24
25
     END PGEN
```


INPUT ORCAFLEX 9.2 FROM OUTPUT SEAKEEPING ANALYSIS - FULL LOAD

	b	а	L							
L _{OA}	L _{BP}	B _M	D _M			wind				
(m)	(m)	(m)	(m)			SOUNDING				
330.00	319.00	57.00	30.00		Tinggi Freeboard	9.33	4.67			
			COG			СОВ		Ma	ss MOMENT of INE	RTIA
DRAFT	MASS	x	Y	Z	х	Y	Z	I _{xx}	l _{yy}	l _{zz}
(m)	(Te)	(m)	(m)	(m)	(m)	(m)	(m)	(T.m ²)	(T.m ²)	(T.m ²)
20.67	312552	-163.91	0.00	17.61	-152.02	0.00	10.81	163047627	2757597819	2757597819
Yaw F	Rate C _d	Н	DRODYNAMIC DR	AG		DRAG ORIGIN		DI	RAG Due to YAW R	ate
	5	Surge Area	Sway Area	Yaw Moment	х	Y	Z	Surge Force	Sway Force	Yaw Moment
		(m ²)	(m²)	(m ³)	(m)	(m)	(m)	(m ⁴)	(m ⁴)	(m ⁵)
		1178.190	6593.7300	2103400	-152.02	0.00	10.81	0.00	0.00	33444386589.2
			WIND DRAG			DRAG ORIGIN		DI	RAG Due to YAW R	ate
		Surge Area A _T	Sway Area A _L	Yaw Moment A _L .L _{BI}	х	Y	Z	Surge Force	Sway Force	Yaw Moment
		(m ²)	(m²)	(m ³)	(m)	(m)	(m)	(m²)	(m²)	(m ³)
		531.81	2976.27	949430	-152.02	0.00	14.00			
		SURGE	Cen	Z						
	a1	48.00	6.49	6.49						
	a2	0.00	0.00							
		48.00								
		SWAY	Cen	x			SV	VAY	Cen	z
	a1	480.00	60.00		Average Z	48000000.00	al	415.10	6.49	
	a2	101.00	105.75	51.54	6.49	101003251.96	a2	0.00	0.00	6.49
	a3	522.11	41.63			522112500.00	a3	0.00	0.00	
	a4	102.60	9.00			102600000.00		415.10		
		1205.72								
	Di	istance From Bow to	o Frame 0	40.07						

OCEAN ENGINEERING DEPARTMENT - ITS SURABAYA Sheet: Full Load

INPUT ORCAFLEX 9.2 FROM OUTPUT SEAKEEPING ANALYSIS - BALLAST

	b	а	L							
L _{OA}	L _{BP}	B _M	D _M			wind				
(m)	(m)	(m)	(m)			SOUNDING				
330.00	319.00	57.00	30.00		Tinggi Freeboard	11.68	5.84			
			COG			СОВ		Ma	ss MOMENT of INE	RTIA
DRAFT	MASS	x	Y	Z	х	Y	Z	l _{xx}	l _{yy}	I _{zz}
(m)	(Te)	(m)	(m)	(m)	(m)	(m)	(m)	(T.m ²)	(T.m ²)	(T.m ²)
18.32	272911	-174.58	0.00	14.09	-150.45	0.00	9.44	115475440	2407851425	2407851425
Yaw F	Rate C _d	HY	YDRODYNAMIC DR	AG		DRAG ORIGIN		DI	RAG Due to YAW R	ate
	5	Surge Area	Sway Area	Yaw Moment	х	Y	Z	Surge Force	Sway Force	Yaw Moment
		(m ²)	(m²)	(m ³)	(m)	(m)	(m)	(m ⁴)	(m ⁴)	(m⁵)
		1044.240	5844.0800	1864262	-150.45	0.00	9.44	0.00	0.00	29642049458.9
			WIND DRAG			DRAG ORIGIN		DI	RAG Due to YAW R	ate
		Surge Area A _T	Sway Area A _L	Yaw Moment A _L .L _B	х	Y	Z	Surge Force	Sway Force	Yaw Moment
		(m ²)	(m²)	(m ³)	(m)	(m)	(m)	(m²)	(m ²)	(m ³)
		665.76	3725.92	1188568	-150.45	0.00	17.52			
		SURGE	Cen	Z						
	a1	48.00	6.49	6.49						
	a2	0.00	0.00							
		48.00								
		SWAY	Cen	x			SV	VAY	Cen	z
	al	480.00	60.00		Average Z	48000000.00	a1	415.10	6.49	
	a2	101.00	105.75	51.54	6.49	101003251.96	a2	0.00	0.00	6.49
	a3	522.11	41.63			522112500.00	a3	0.00	0.00	
	a4	102.60	9.00			102600000.00		415.10		
		1205.72								
	Di	istance From Bow to	o Frame 0	40.07						

Areas and area moment :

Surge area	Sway area	Yaw area
(m ²)	(m²)	moment (m ³)
1178.19	6593.73	2103399.87

Direction	Surge	Sway	Yaw
0	0.03973	0.00000	0.00000
10	0.03665	0.13966	-0.05143
20	0.03390	0.29906	-0.09260
30	0.02189	0.46433	-0.11889
40	0.00000	0.61328	-0.13117
50	-0.01121	0.73936	-0.13040
60	-0.01121	0.84011	-0.11581
70	-0.00585	0.92232	-0.09261
80	0.00646	0.97174	-0.06109
90	0.03359	0.99757	-0.02574
100	0.05458	0.96661	0.01311
110	0.05678	0.89844	0.04379
120	0.04285	0.79677	0.06968
130	0.01800	0.67132	0.08527
140	-0.00645	0.52949	0.08868
150	-0.02287	0.38798	0.07922
160	-0.02985	0.25632	0.05913
170	-0.03178	0.12411	0.03313
180	-0.03234	0.00000	0.00000

OCEAN ENGINEERING DEPARTMENT - ITS SURABAYA Sheet: hydro. drag Full

Areas and area moment :

Surge area	Sway area	Yaw area
(m ²)	(m²)	moment (m ³)
1044.24	5844.08	1864261.52

Direction	Surge	Sway	Yaw
0	0.03973	0.00000	0.00000
10	0.03665	0.13966	-0.05143
20	0.03390	0.29906	-0.09260
30	0.02189	0.46433	-0.11889
40	0.00000	0.61328	-0.13117
50	-0.01121	0.73936	-0.13040
60	-0.01121	0.84011	-0.11581
70	-0.00585	0.92232	-0.09261
80	0.00646	0.97174	-0.06109
90	0.03359	0.99757	-0.02574
100	0.05458	0.96661	0.01311
110	0.05678	0.89844	0.04379
120	0.04285	0.79677	0.06968
130	0.01800	0.67132	0.08527
140	-0.00645	0.52949	0.08868
150	-0.02287	0.38798	0.07922
160	-0.02985	0.25632	0.05913
170	-0.03178	0.12411	0.03313
180	-0.03234	0.00000	0.00000

OCEAN ENGINEERING DEPARTMENT - ITS SURABAYA Sheet: hydro. drag Ballast

WIND DRAG - FULL LOAD

Areas and area moment :

Surge area	Sway area	Yaw area
(m²)	(m ²)	moment (m ³)
532	2976	949430.13

Direction	Surge	Sway	Yaw
0	0.75000	0.00000	0.00000
10	0.77000	0.12500	-0.05300
20	0.74000	0.28000	-0.10600
30	0.65000	0.43000	-0.14400
40	0.51000	0.55000	-0.16200
50	0.39000	0.63000	-0.16700
60	0.28000	0.68000	-0.16300
70	0.21000	0.71000	-0.14800
80	0.14500	0.72000	-0.12700
90	0.04000	0.72000	-0.11300
100	-0.07000	0.71000	-0.10400
110	-0.19000	0.68000	-0.09300
120	-0.34000	0.64000	-0.08000
130	-0.48000	0.56000	-0.06600
140	-0.61000	0.43000	-0.05000
150	-0.73000	0.31500	-0.03300
160	-0.82300	0.20000	-0.01800
170	-0.90000	0.09000	-0.00800
180	-0.95000	0.00000	0.00000
WIND DRAG - FULL LOAD

Freeboard

L

=

=

9.33

319.00

m

m

(tinggi tidak tercelup)

Hydrodynamic drag origin (m) :

х	у	z
159.5	0	14.00

WIND DRAG - BALLAST

Areas and area moment :

Surge area	Sway area	Yaw area
(m²)	(m ²)	moment (m ³)
666	3726	1188568.48

Direction	Surge	Sway	Yaw	
0	0.75000	0.00000	0.00000	
10	0.77000	0.12500	-0.05300	
20	0.74000	0.28000	-0.10600	
30	30 0.65000		-0.14400	
40	0.51000	0.55000	-0.16200	
50	0.39000	0.63000	-0.16700	
60	0.28000	0.68000	-0.16300	
70	0.21000	0.71000	-0.14800	
80	0.14500	0.72000	-0.12700	
90	0.04000	0.72000	-0.11300	
100	-0.07000	0.71000	-0.10400	
110	-0.19000	0.68000	-0.09300	
120	-0.34000	0.64000	-0.08000	
130	-0.48000	0.56000	-0.06600	
140	-0.61000	0.43000	-0.05000	
150	-0.73000	0.31500	-0.03300	
160	-0.82300	0.20000	-0.01800	
170	-0.90000	0.09000	-0.00800	
180	-0.95000	0.00000	0.00000	

WIND DRAG - BALLAST

Freeboard

L

=

=

11.68

319.00

m

m

(tinggi tidak tercelup)

х	у	z
159.5	0	17.52

WAVE DRIFT FORCE - FULL LOAD

translation = 3207.625

=

rotation

1023232

Input wave drift orcaflex

$QTF_{translation} = rac{wave\ drift\ force}{ ho\ gl} QTF_{rotation} = rac{wave\ drift\ force}{ ho\ gl} QTF_{rotation} = rac{wave\ drift\ force}{ ho\ gl^2}$

Heading	0						
Period	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	-0.001	0.000	-0.008	0.000	0.004	0.000
20.944	20.944	-0.004	0.000	-0.014	0.000	0.007	0.000
15.708	15.708	-0.007	0.000	-0.017	0.000	0.009	0.000
12.566	12.566	-0.008	0.000	-0.016	0.000	0.009	0.000
10.472	10.472	-0.008	0.000	-0.011	0.000	0.007	0.000
8.976	8.976	-0.008	0.000	-0.006	0.000	0.005	0.000
7.854	7.854	-0.007	0.000	-0.003	0.000	0.003	0.000
6.981	6.981	-0.008	0.000	-0.001	0.000	0.002	0.000
6.283	6.283	-0.008	0.000	-0.001	0.000	0.002	0.000
5.712	5.712	-0.008	0.000	-0.002	0.000	0.002	0.000
5.236	5.236	-0.007	0.000	-0.004	0.000	0.003	0.000
4.833	4.833	-0.007	0.000	-0.005	0.000	0.003	0.000
4.488	4.488	-0.007	0.000	-0.005	0.000	0.003	0.000
4.189	4.189	-0.007	0.000	-0.005	0.000	0.003	0.000
3.927	3.927	-0.006	0.000	-0.006	0.000	0.004	0.000
3.696	3.696	-0.007	0.000	-0.005	0.000	0.003	0.000
3.491	3.491	-0.007	0.000	-0.005	0.000	0.002	0.000
3.307	3.307	-0.007	0.000	-0.005	0.000	0.003	0.000
3.142	3.142	-0.007	0.000	-0.005	0.000	0.003	0.000

Heading	45						
Period	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	-0.001	-0.001	-0.008	0.000	0.004	-0.001
20.944	20.944	-0.004	-0.004	-0.012	0.000	0.006	-0.002
15.708	15.708	-0.009	-0.009	-0.013	0.000	0.007	-0.005
12.566	12.566	-0.015	-0.015	-0.012	0.001	0.007	-0.007
10.472	10.472	-0.019	-0.019	-0.009	0.001	0.006	-0.010
8.976	8.976	-0.021	-0.021	-0.006	0.001	0.004	-0.011
7.854	7.854	-0.022	-0.022	-0.004	0.001	0.003	-0.012
6.981	6.981	-0.022	-0.022	-0.003	0.001	0.002	-0.013
6.283	6.283	-0.022	-0.022	-0.003	0.001	0.001	-0.013
5.712	5.712	-0.021	-0.021	-0.002	0.001	0.001	-0.013
5.236	5.236	-0.021	-0.021	-0.003	0.001	0.001	-0.013
4.833	4.833	-0.021	-0.021	-0.003	0.001	0.001	-0.013
4.488	4.488	-0.020	-0.020	-0.003	0.001	0.001	-0.013
4.189	4.189	-0.020	-0.020	-0.003	0.001	0.001	-0.014
3.927	3.927	-0.019	-0.019	-0.004	0.001	0.002	-0.013
3.696	3.696	-0.019	-0.019	-0.002	0.001	0.000	-0.013
3.491	3.491	-0.011	-0.011	-0.003	0.001	0.001	-0.009
3.307	3.307	-0.018	-0.018	-0.003	0.001	0.001	-0.012
3.142	3.142	-0.019	-0.019	-0.002	0.001	0.001	-0.013

Heading	90						
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.000	-0.002	-0.007	0.000	0.004	-0.001
20.944	20.944	0.000	-0.007	-0.010	0.000	0.005	-0.003
15.708	15.708	0.000	-0.019	-0.009	0.001	0.005	-0.009
12.566	12.566	0.000	-0.033	-0.008	0.001	0.005	-0.016
10.472	10.472	0.000	-0.043	-0.007	0.002	0.005	-0.022
8.976	8.976	0.000	-0.049	-0.005	0.002	0.004	-0.025
7.854	7.854	0.000	-0.051	-0.003	0.002	0.002	-0.026
6.981	6.981	0.000	-0.052	-0.001	0.002	0.001	-0.027
6.283	6.283	0.000	-0.052	-0.001	0.003	0.001	-0.027
5.712	5.712	0.000	-0.051	0.001	0.003	0.000	-0.027
5.236	5.236	0.000	-0.051	0.000	0.003	0.000	-0.027
4.833	4.833	0.000	-0.051	0.001	0.003	-0.001	-0.027
4.488	4.488	0.000	-0.050	0.000	0.003	0.000	-0.026
4.189	4.189	0.000	-0.050	0.003	0.003	-0.001	-0.026
3.927	3.927	0.000	-0.049	-0.002	0.003	0.001	-0.026
3.696	3.696	0.000	-0.048	0.001	0.003	-0.001	-0.025
3.491	3.491	0.000	-0.021	-0.001	0.001	0.001	-0.013
3.307	3.307	0.000	-0.045	-0.001	0.003	0.000	-0.024
3.142	3.142	0.000	-0.045	0.002	0.003	-0.001	-0.024

Heading	135						
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.001	-0.001	-0.008	0.000	0.004	-0.001
20.944	20.944	0.004	-0.004	-0.012	0.000	0.006	-0.002
15.708	15.708	0.009	-0.009	-0.013	0.000	0.007	-0.005
12.566	12.566	0.015	-0.015	-0.012	0.001	0.007	-0.008
10.472	10.472	0.019	-0.019	-0.009	0.001	0.007	-0.010
8.976	8.976	0.021	-0.021	-0.006	0.001	0.006	-0.011
7.854	7.854	0.022	-0.022	-0.004	0.001	0.005	-0.011
6.981	6.981	0.022	-0.022	-0.003	0.001	0.004	-0.012
6.283	6.283	0.022	-0.022	-0.003	0.001	0.003	-0.011
5.712	5.712	0.021	-0.021	-0.002	0.001	0.003	-0.011
5.236	5.236	0.021	-0.021	-0.003	0.001	0.003	-0.011
4.833	4.833	0.021	-0.021	-0.003	0.001	0.003	-0.010
4.488	4.488	0.020	-0.020	-0.003	0.001	0.003	-0.010
4.189	4.189	0.020	-0.020	-0.003	0.001	0.003	-0.010
3.927	3.927	0.019	-0.019	-0.004	0.001	0.004	-0.009
3.696	3.696	0.019	-0.019	-0.002	0.001	0.002	-0.009
3.491	3.491	0.011	-0.011	-0.003	0.001	0.003	-0.006
3.307	3.307	0.018	-0.018	-0.003	0.001	0.003	-0.009
3.142	3.142	0.019	-0.019	-0.002	0.001	0.003	-0.009

Heading	180						
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.001	0.000	-0.008	0.000	0.004	0.000
20.944	20.944	0.004	0.000	-0.014	0.000	0.007	0.000
15.708	15.708	0.007	0.000	-0.017	0.000	0.009	0.000
12.566	12.566	0.008	0.000	-0.016	0.000	0.009	0.000
10.472	10.472	0.008	0.000	-0.011	0.000	0.008	0.000
8.976	8.976	0.008	0.000	-0.006	0.000	0.005	0.000
7.854	7.854	0.007	0.000	-0.003	0.000	0.004	0.000
6.981	6.981	0.008	0.000	-0.001	0.000	0.003	0.000
6.283	6.283	0.008	0.000	-0.001	0.000	0.003	0.000
5.712	5.712	0.008	0.000	-0.002	0.000	0.003	0.000
5.236	5.236	0.007	0.000	-0.004	0.000	0.004	0.000
4.833	4.833	0.007	0.000	-0.005	0.000	0.004	0.000
4.488	4.488	0.007	0.000	-0.005	0.000	0.004	0.000
4.189	4.189	0.007	0.000	-0.005	0.000	0.003	0.000
3.927	3.927	0.006	0.000	-0.006	0.000	0.005	0.000
3.696	3.696	0.007	0.000	-0.005	0.000	0.003	0.000
3.491	3.491	0.007	0.000	-0.005	0.000	0.003	0.000
3.307	3.307	0.007	0.000	-0.005	0.000	0.003	0.000
3.142	3.142	0.007	0.000	-0.005	0.000	0.004	0.000

Heading	225						
Period	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.001	0.001	-0.008	0.000	0.004	0.001
20.944	20.944	0.004	0.004	-0.012	0.000	0.006	0.002
15.708	15.708	0.009	0.009	-0.013	0.000	0.007	0.005
12.566	12.566	0.015	0.015	-0.012	-0.001	0.007	0.008
10.472	10.472	0.019	0.019	-0.009	-0.001	0.007	0.010
8.976	8.976	0.021	0.021	-0.006	-0.001	0.006	0.011
7.854	7.854	0.022	0.022	-0.004	-0.001	0.005	0.011
6.981	6.981	0.022	0.022	-0.003	-0.001	0.004	0.012
6.283	6.283	0.022	0.022	-0.003	-0.001	0.003	0.011
5.712	5.712	0.021	0.021	-0.002	-0.001	0.003	0.011
5.236	5.236	0.021	0.021	-0.003	-0.001	0.003	0.011
4.833	4.833	0.021	0.021	-0.003	-0.001	0.003	0.010
4.488	4.488	0.020	0.020	-0.003	-0.001	0.003	0.010
4.189	4.189	0.020	0.020	-0.003	-0.001	0.003	0.010
3.927	3.927	0.019	0.019	-0.004	-0.001	0.004	0.009
3.696	3.696	0.019	0.019	-0.002	-0.001	0.002	0.009
3.491	3.491	0.011	0.011	-0.003	-0.001	0.003	0.006
3.307	3.307	0.018	0.018	-0.003	-0.001	0.003	0.009
3.142	3.142	0.019	0.019	-0.002	-0.001	0.003	0.009

Heading	270						
Period	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.000	0.002	-0.007	0.000	0.004	0.001
20.944	20.944	0.000	0.007	-0.010	0.000	0.005	0.003
15.708	15.708	0.000	0.019	-0.009	-0.001	0.005	0.009
12.566	12.566	0.000	0.033	-0.008	-0.001	0.005	0.016
10.472	10.472	0.000	0.043	-0.007	-0.002	0.005	0.022
8.976	8.976	0.000	0.049	-0.005	-0.002	0.004	0.025
7.854	7.854	0.000	0.051	-0.003	-0.002	0.002	0.026
6.981	6.981	0.000	0.052	-0.001	-0.002	0.001	0.027
6.283	6.283	0.000	0.052	-0.001	-0.003	0.001	0.027
5.712	5.712	0.000	0.051	0.001	-0.003	0.000	0.027
5.236	5.236	0.000	0.051	0.000	-0.003	0.000	0.027
4.833	4.833	0.000	0.051	0.001	-0.003	-0.001	0.027
4.488	4.488	0.000	0.050	0.000	-0.003	0.000	0.026
4.189	4.189	0.000	0.050	0.003	-0.003	-0.001	0.026
3.927	3.927	0.000	0.049	-0.002	-0.003	0.001	0.026
3.696	3.696	0.000	0.048	0.001	-0.003	-0.001	0.025
3.491	3.491	0.000	0.021	-0.001	-0.001	0.001	0.013
3.307	3.307	0.000	0.045	-0.001	-0.003	0.000	0.024
3.142	3.142	0.000	0.045	0.002	-0.003	-0.001	0.024

Heading	315						
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	-0.001	0.001	-0.008	0.000	0.004	0.001
20.944	20.944	-0.004	0.004	-0.012	0.000	0.006	0.002
15.708	15.708	-0.009	0.009	-0.013	0.000	0.007	0.005
12.566	12.566	-0.015	0.015	-0.012	-0.001	0.007	0.007
10.472	10.472	-0.019	0.019	-0.009	-0.001	0.006	0.010
8.976	8.976	-0.021	0.021	-0.006	-0.001	0.004	0.011
7.854	7.854	-0.022	0.022	-0.004	-0.001	0.003	0.012
6.981	6.981	-0.022	0.022	-0.003	-0.001	0.002	0.013
6.283	6.283	-0.022	0.022	-0.003	-0.001	0.001	0.013
5.712	5.712	-0.021	0.021	-0.002	-0.001	0.001	0.013
5.236	5.236	-0.021	0.021	-0.003	-0.001	0.001	0.013
4.833	4.833	-0.021	0.021	-0.003	-0.001	0.001	0.013
4.488	4.488	-0.020	0.020	-0.003	-0.001	0.001	0.013
4.189	4.189	-0.020	0.020	-0.003	-0.001	0.001	0.014
3.927	3.927	-0.019	0.019	-0.004	-0.001	0.002	0.013
3.696	3.696	-0.019	0.019	-0.002	-0.001	0.000	0.013
3.491	3.491	-0.011	0.011	-0.003	-0.001	0.001	0.009
3.307	3.307	-0.018	0.018	-0.003	-0.001	0.001	0.012
3.142	3.142	-0.019	0.019	-0.002	-0.001	0.001	0.013

WAVE DRIFT FORCE - BALLAST

translation = 3207.625

=

rotation

1023232

-

Input wave drift orcaflex

$$QTF_{translation} = rac{wave\ drift\ force}{
hogl} \ QTF_{rotation} = rac{wave\ drift\ force}{
hogl} \ QTF_{rotation} = rac{wave\ drift\ force}{
hogl^2}$$

Heading	0						
Period	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	-0.001	0.000	-0.008	0.000	0.004	0.000
20.944	20.944	-0.004	0.000	-0.014	0.000	0.007	0.000
15.708	15.708	-0.008	0.000	-0.018	0.000	0.009	0.000
12.566	12.566	-0.010	0.000	-0.017	0.000	0.010	0.000
10.472	10.472	-0.010	0.000	-0.013	0.000	0.008	0.000
8.976	8.976	-0.009	0.000	-0.007	0.000	0.005	0.000
7.854	7.854	-0.009	0.000	-0.002	0.000	0.003	0.000
6.981	6.981	-0.008	0.000	0.001	0.000	0.002	0.000
6.283	6.283	-0.009	0.000	0.001	0.000	0.001	0.000
5.712	5.712	-0.009	0.000	0.000	0.000	0.002	0.000
5.236	5.236	-0.010	0.000	-0.002	0.000	0.002	0.000
4.833	4.833	-0.010	0.000	-0.003	0.000	0.002	0.000
4.488	4.488	-0.009	0.000	-0.006	0.000	0.004	0.000
4.189	4.189	-0.010	0.000	-0.004	0.000	0.002	0.000
3.927	3.927	-0.010	0.000	-0.003	0.000	0.002	0.000
3.696	3.696	-0.011	0.000	-0.003	0.000	0.001	0.000
3.491	3.491	-0.010	0.000	-0.002	0.000	0.000	0.000
3.307	3.307	-0.012	0.000	-0.005	0.000	0.003	0.000
3.142	3.142	-0.009	0.000	-0.003	0.000	0.001	0.000

Heading	45						
Period	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	-0.001	-0.001	-0.008	0.000	0.004	-0.001
20.944	20.944	-0.004	-0.004	-0.012	0.000	0.006	-0.002
15.708	15.708	-0.009	-0.009	-0.014	0.000	0.008	-0.004
12.566	12.566	-0.015	-0.015	-0.013	0.001	0.007	-0.007
10.472	10.472	-0.019	-0.019	-0.011	0.001	0.006	-0.010
8.976	8.976	-0.021	-0.021	-0.007	0.001	0.005	-0.011
7.854	7.854	-0.022	-0.022	-0.004	0.001	0.003	-0.012
6.981	6.981	-0.022	-0.022	-0.003	0.001	0.002	-0.013
6.283	6.283	-0.022	-0.022	-0.002	0.001	0.002	-0.013
5.712	5.712	-0.022	-0.022	-0.002	0.001	0.001	-0.014
5.236	5.236	-0.022	-0.022	-0.002	0.001	0.001	-0.014
4.833	4.833	-0.022	-0.022	-0.002	0.001	0.001	-0.014
4.488	4.488	-0.021	-0.021	-0.004	0.001	0.002	-0.014
4.189	4.189	-0.021	-0.021	-0.002	0.001	0.000	-0.014
3.927	3.927	-0.020	-0.020	-0.002	0.001	0.000	-0.013
3.696	3.696	-0.020	-0.020	-0.001	0.001	0.000	-0.014
3.491	3.491	-0.012	-0.012	-0.003	0.001	0.001	-0.010
3.307	3.307	-0.020	-0.020	-0.005	0.001	0.002	-0.014
3.142	3.142	-0.019	-0.019	0.000	0.001	-0.001	-0.013

Heading	90						
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.000	-0.002	-0.007	0.000	0.004	-0.001
20.944	20.944	0.000	-0.007	-0.011	0.000	0.006	-0.003
15.708	15.708	0.000	-0.017	-0.011	0.001	0.006	-0.008
12.566	12.566	0.000	-0.031	-0.010	0.001	0.006	-0.015
10.472	10.472	0.000	-0.042	-0.008	0.001	0.006	-0.021
8.976	8.976	0.000	-0.048	-0.006	0.002	0.004	-0.024
7.854	7.854	0.000	-0.051	-0.003	0.002	0.003	-0.026
6.981	6.981	0.000	-0.051	-0.002	0.002	0.002	-0.026
6.283	6.283	0.000	-0.052	-0.001	0.002	0.001	-0.027
5.712	5.712	0.000	-0.051	0.000	0.002	0.001	-0.027
5.236	5.236	0.000	-0.051	0.000	0.002	0.000	-0.027
4.833	4.833	0.000	-0.050	0.002	0.002	-0.001	-0.027
4.488	4.488	0.000	-0.049	-0.002	0.002	0.002	-0.026
4.189	4.189	0.000	-0.050	0.002	0.002	-0.001	-0.026
3.927	3.927	0.000	-0.049	-0.001	0.002	0.001	-0.026
3.696	3.696	0.000	-0.048	0.002	0.002	-0.001	-0.025
3.491	3.491	0.000	-0.023	-0.003	0.001	0.001	-0.014
3.307	3.307	0.000	-0.045	-0.001	0.002	0.000	-0.024
3.142	3.142	0.000	-0.045	0.003	0.002	-0.001	-0.024

Heading	135						
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.001	-0.001	-0.008	0.000	0.004	-0.001
20.944	20.944	0.004	-0.004	-0.012	0.000	0.007	-0.002
15.708	15.708	0.009	-0.009	-0.014	0.000	0.008	-0.005
12.566	12.566	0.015	-0.015	-0.013	0.001	0.008	-0.008
10.472	10.472	0.019	-0.019	-0.011	0.001	0.007	-0.010
8.976	8.976	0.021	-0.021	-0.007	0.001	0.006	-0.011
7.854	7.854	0.022	-0.022	-0.004	0.001	0.005	-0.012
6.981	6.981	0.022	-0.022	-0.003	0.001	0.004	-0.012
6.283	6.283	0.022	-0.022	-0.002	0.001	0.004	-0.012
5.712	5.712	0.022	-0.022	-0.002	0.001	0.003	-0.012
5.236	5.236	0.022	-0.022	-0.002	0.001	0.003	-0.012
4.833	4.833	0.022	-0.022	-0.002	0.001	0.003	-0.011
4.488	4.488	0.021	-0.021	-0.004	0.001	0.004	-0.011
4.189	4.189	0.021	-0.021	-0.002	0.001	0.002	-0.011
3.927	3.927	0.020	-0.020	-0.002	0.001	0.002	-0.010
3.696	3.696	0.020	-0.020	-0.001	0.001	0.002	-0.010
3.491	3.491	0.012	-0.012	-0.003	0.001	0.002	-0.006
3.307	3.307	0.020	-0.020	-0.005	0.001	0.004	-0.010
3.142	3.142	0.019	-0.019	0.000	0.001	0.001	-0.010

Heading	180						
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.001	0.000	-0.008	0.000	0.004	0.000
20.944	20.944	0.004	0.000	-0.014	0.000	0.007	0.000
15.708	15.708	0.008	0.000	-0.018	0.000	0.009	0.000
12.566	12.566	0.010	0.000	-0.017	0.000	0.010	0.000
10.472	10.472	0.010	0.000	-0.013	0.000	0.008	0.000
8.976	8.976	0.009	0.000	-0.007	0.000	0.006	0.000
7.854	7.854	0.009	0.000	-0.002	0.000	0.004	0.000
6.981	6.981	0.008	0.000	0.001	0.000	0.002	0.000
6.283	6.283	0.009	0.000	0.001	0.000	0.002	0.000
5.712	5.712	0.009	0.000	0.000	0.000	0.003	0.000
5.236	5.236	0.010	0.000	-0.002	0.000	0.003	0.000
4.833	4.833	0.010	0.000	-0.003	0.000	0.003	0.000
4.488	4.488	0.009	0.000	-0.006	0.000	0.005	0.000
4.189	4.189	0.010	0.000	-0.004	0.000	0.003	0.000
3.927	3.927	0.010	0.000	-0.003	0.000	0.003	0.000
3.696	3.696	0.011	0.000	-0.003	0.000	0.002	0.000
3.491	3.491	0.010	0.000	-0.002	0.000	0.001	0.000
3.307	3.307	0.012	0.000	-0.005	0.000	0.004	0.000
3.142	3.142	0.009	0.000	-0.003	0.000	0.002	0.000

Heading	225						
Period	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.001	0.001	-0.008	0.000	0.004	0.001
20.944	20.944	0.004	0.004	-0.012	0.000	0.007	0.002
15.708	15.708	0.009	0.009	-0.014	0.000	0.008	0.005
12.566	12.566	0.015	0.015	-0.013	-0.001	0.008	0.008
10.472	10.472	0.019	0.019	-0.011	-0.001	0.007	0.010
8.976	8.976	0.021	0.021	-0.007	-0.001	0.006	0.011
7.854	7.854	0.022	0.022	-0.004	-0.001	0.005	0.012
6.981	6.981	0.022	0.022	-0.003	-0.001	0.004	0.012
6.283	6.283	0.022	0.022	-0.002	-0.001	0.004	0.012
5.712	5.712	0.022	0.022	-0.002	-0.001	0.003	0.012
5.236	5.236	0.022	0.022	-0.002	-0.001	0.003	0.012
4.833	4.833	0.022	0.022	-0.002	-0.001	0.003	0.011
4.488	4.488	0.021	0.021	-0.004	-0.001	0.004	0.011
4.189	4.189	0.021	0.021	-0.002	-0.001	0.002	0.011
3.927	3.927	0.020	0.020	-0.002	-0.001	0.002	0.010
3.696	3.696	0.020	0.020	-0.001	-0.001	0.002	0.010
3.491	3.491	0.012	0.012	-0.003	-0.001	0.002	0.006
3.307	3.307	0.020	0.020	-0.005	-0.001	0.004	0.010
3.142	3.142	0.019	0.019	0.000	-0.001	0.001	0.010

Heading	270						
Period	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	0.000	0.002	-0.007	0.000	0.004	0.001
20.944	20.944	0.000	0.007	-0.011	0.000	0.006	0.003
15.708	15.708	0.000	0.017	-0.011	-0.001	0.006	0.008
12.566	12.566	0.000	0.031	-0.010	-0.001	0.006	0.015
10.472	10.472	0.000	0.042	-0.008	-0.001	0.006	0.021
8.976	8.976	0.000	0.048	-0.006	-0.002	0.004	0.024
7.854	7.854	0.000	0.051	-0.003	-0.002	0.003	0.026
6.981	6.981	0.000	0.051	-0.002	-0.002	0.002	0.026
6.283	6.283	0.000	0.052	-0.001	-0.002	0.001	0.027
5.712	5.712	0.000	0.051	0.000	-0.002	0.001	0.027
5.236	5.236	0.000	0.051	0.000	-0.002	0.000	0.027
4.833	4.833	0.000	0.051	0.002	-0.002	-0.001	0.027
4.488	4.488	0.000	0.050	-0.002	-0.002	0.002	0.026
4.189	4.189	0.000	0.050	0.002	-0.002	-0.001	0.026
3.927	3.927	0.000	0.049	-0.001	-0.002	0.001	0.026
3.696	3.696	0.000	0.048	0.002	-0.002	-0.001	0.025
3.491	3.491	0.000	0.023	-0.003	-0.001	0.001	0.014
3.307	3.307	0.000	0.045	-0.001	-0.002	0.000	0.024
3.142	3.142	0.000	0.045	0.003	-0.002	-0.001	0.024

Heading	315						
Frequency	Period	Surge	Sway	Heave	Roll	Pitch	Yaw
62.832	62.832	0.000	0.000	-0.002	0.000	0.001	0.000
31.416	31.416	-0.001	0.001	-0.008	0.000	0.004	0.001
20.944	20.944	-0.004	0.004	-0.012	0.000	0.006	0.002
15.708	15.708	-0.009	0.009	-0.014	0.000	0.008	0.004
12.566	12.566	-0.015	0.015	-0.013	-0.001	0.007	0.007
10.472	10.472	-0.019	0.019	-0.011	-0.001	0.006	0.010
8.976	8.976	-0.021	0.021	-0.007	-0.001	0.005	0.011
7.854	7.854	-0.022	0.022	-0.004	-0.001	0.003	0.012
6.981	6.981	-0.022	0.022	-0.003	-0.001	0.002	0.013
6.283	6.283	-0.022	0.022	-0.002	-0.001	0.002	0.013
5.712	5.712	-0.022	0.022	-0.002	-0.001	0.001	0.014
5.236	5.236	-0.022	0.022	-0.002	-0.001	0.001	0.014
4.833	4.833	-0.022	0.022	-0.002	-0.001	0.001	0.014
4.488	4.488	-0.021	0.021	-0.004	-0.001	0.002	0.014
4.189	4.189	-0.021	0.021	-0.002	-0.001	0.000	0.014
3.927	3.927	-0.020	0.020	-0.002	-0.001	0.000	0.013
3.696	3.696	-0.020	0.020	-0.001	-0.001	0.000	0.014
3.491	3.491	-0.012	0.012	-0.003	-0.001	0.001	0.010
3.307	3.307	-0.020	0.020	-0.005	-0.001	0.002	0.014
3.142	3.142	-0.019	0.019	0.000	-0.001	-0.001	0.013

BIODATA PENULIS

Jamhari Hidayat Bin Mustofa lahir di Kota Palopo, Sulawesi Selatan pada 6 November 1994 yang merupakan anak pertama dari dua bersaudara. Pendidikan di Gilles Street Primary School (Australia), SDN 2 Inpres Tondo Palu, Richmond Primary School (Australia), SMPN 117 Jakarta, dan SMAN 9 Jakarta. Penulis kemudian diterima di Departemen Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya pada tahun 2013. Selama kuliah, penulis pernah menjadi

staf FSLDJ JMMI 2014/2015 dan ketua umum LDJ Bahrul 'Ilmi 2015/2016. Penulis beberapa kali aktif menjadi panitia kegiatan kampus dan juga pernah meraih beberapa prestasi seperti terpilih menjadi peserta untuk 'Delightful Istanbul Summer School 2015'. Penulis sempat mengikuti kerja praktik di PT. Marine CadCam Indonesia dan mendapatkan berbagai dokumen bermanfaat seputar teknologi kelautan yang telah di *share* (bit.ly/referensi_ftk). Penulis memiliki minat yang dalam untuk bidang hidrodinamika dan struktur sehingga pernah menjadi anggota Lab. 'Design and Construction of Offshore Structure (DCOS)' dan memiliki keahlian dasar dalam mengoperasikan *software* MOSES, MAXSURF, ANSYS *Aqwa & Mechanical*, Orcaflex, dan SACS yang didapatkan baik dari pelatihan maupun belajar secara otodidak. Karena minat tersebut, penulis mengambil topik tugas akhir yang berhubungan dengan mata kuliah Hidrodinamika, Olah Gerak Bangunan Apung, Mekanika Teknik dan Dinamika Struktur. (Halaman ini sengaja dikosongkan)