Rancang Bangun Mekanisme Stabilisasi Double-Gyroscope Pada Kendaraan Roda Dua

Ksamawati, Wayan Eka Putri (2017) Rancang Bangun Mekanisme Stabilisasi Double-Gyroscope Pada Kendaraan Roda Dua. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2113100018-Undergraduate_Thesis.pdf]
Preview
Text
2113100018-Undergraduate_Thesis.pdf - Published Version

Download (4MB) | Preview

Abstract

Di seluruh dunia, jumlah kasus kematian kecelakaan lalu lintas yang disebabkan oleh pengguna kendaraan bermotor menyumbang 23% kasus dari 1.25 juta kasus. Indonesia termasuk negara pengguna kendaraan bermotor roda dua nomor tiga terbesar di dunia setelah India dan China. Beragam kasus kecelakaan lalu lintas yang dialami khususnya kendaraan roda dua, yakni tabrakan dari depan, tabrakan dari belakang, dan tabrakan di belokan jalan raya.Pada kondisi tabrakan, posisi kendaraan roda dua tersebut mengalami perubahan yang membuat adanya simpangan berupa sudut terhadap posisi tegak/stabil awal. Tugas akhir ini bertujuan untuk mengevaluasi adanya fenomena perubahan posisi kendaraan tersebut dari segi kinematika dan dinamika sehingga dapat dibuat sebuah sistem stabilisasi kendaraan yang memungkinkan kendaraan kembali ke posisi awal karena adanya pengaruh putaran dari benda rigid lainnya yang akan ditambahkan pada kendaraan. Sistem stabilisasi ini dinamakan stabilisasi giroskopik.
Pada tugas akhir ini, sistem stabilisasi yang digunakan yakni stabilisasi double giroskop yang menggunakan dua buah benda rigid yang berputar pada suatu sistem kendaraan tidak stabil. Pengujian dilakukan pada model kendaraan skala kecil dan dievaluasi secara teoritis, simulasi 3D menggunakan Autodesk Inventor 2016, dan eksperimen. Ketiga cara evaluasi tersebut diberi input berupa variasi sudut kemiringan kendaraan (θ), dan posisi awal gimbal (α) dengan output berupa putaran giroskop (Ω) yang dapat menstabilkan kendaraan. Pada simulasi 3D, putaran giroskop diperoleh melalui trial and error yakni dengan menginputkan besar putaran giroskop sampai diperoleh keadaan stabil yang diinginkan. Output lainnya yang akan didapatkan yakni waktu yang diperlukan agar sistem stabil. Output yang didapat tersebut akan dibandingkan satu sama lain. Sudut awal kemiringan kendaraan yang divariasikan mulai dari 0 derajat sampai 5 derajat untuk tiap jenis evaluasi yang dilakukan.
Hasil yang diperoleh secara teoritis yakni kecepatan putar flywheel tertinggi sebesar 7544 rpm pada sudut kemiringan awal kendaraan 4 derajat dan terendah sebesar 5600 rpm pada sudut awal kemiringan kendaraan 0 derajat. Sedangkan berdasarkan simulasi diperoleh kecepatan putar flywheel tertinggi 7700 rpm pada sudut awal kemiringan kendaraan 4 derajat dan terendah 5700 rpm pada kemiringan awal kendaraan 1 derajat. Berdasarkan eksperimen, kecepatan putar flywheel tertinggi yakni 3353 rpm pada sudut awal kemiringan kendaraan 4 derajat dan terendah yakni 2207 rpm pada sudut kemiringan kendaraan 0 derajat. Perbandingan yang dilakukan yakni antara kecepatan putar flywheel yang digunakan, waktu stabilisasi, dan osilasi sudut kendaraan dengan variasi sudut awal kemiringan kendaraan. Berdasarkan trendline dari ketiga jenis evaluasi tersebut, semakin besar sudut awal kendaraan, semakin besar pula nilai putaran flywheel yang digunakan.
=================================================================
Across the world, the number of cases of traffic accident deaths caused by motor vehicle users contributed 23% of cases of 1.25 million cases. Indonesia is among countries using the two-wheeled motor vehicle third-largest in the world after India and China. Various cases of traffic accidents suffered especially two-wheeled, which collision from the front, rear-end collisions, and collisions on motorway curves.On the condition of a collision, the position of two-wheeled vehicles undergo changes that make the deviation in the form of an angle to an upright position early. This thesis aims to evaluate the phenomenon of change in the position of the vehicle in terms of kinematics and dynamics so that it can be made a vehicle stabilization system that allows the vehicle back to its original position due to the influence of the rotation of the other rigid body that will be added to the vehicle. This stabilization system called gyroscopic stabilization.
In this thesis, the stabilization system used double gyroscope stabilization that uses two rigid body that rotate on an unstable vehicle systems. Tests performed on a small scale vehicle models and evaluated theoretically using Matlab Simulink, 3D simulation using Autodesk Inventor Software, and experimental. All three method of the evaluation is given control input such as vehicle inclination angle (θ), and the initial position gimbal (α) with the output of the gyroscope rotation (Ω) to stabilize the vehicle. In 3D simulation, the rotation of gyroscope obtained through trial and error by input the value of gyroscope rotation that obtain the desired steady state. In experiment, tilt angle of vehicle is obtained by adding a stick to the front wheel where the protactor is placed in front of the vehicle. As for measuring the gyro angular velocity is obtained by using an infrared tachometer directed to flywheel that have a white spot to measurement already. The other output that will be got is the time it takes for the system to stabilize. The output obtained will be compared with each other. Vehicle inclination angle variation that used is 0 degree up to 5 degree for each evaluation test performed.
The results obtained by the theoretical are highest flywheel rotation speed is 7544 rpm on the vehicle initial angle of 4 degree and the lowest is 5600 rpm on the vehicle starting angle of 0 degree. While based on the simulation obtained the highest flywheel rotation speed is 7700 rpm on the vehicle initial angle of 4 degree and the lowest is 5700 rpm on the vehicle initial angle of 1 degree. At the same time, based on experimental, the highest flywheel rotation speed is 3353 rpm on the vehicle initial angle of 4 degree and the lowest is 2207 rpm on the vehicle starting angle 0 degree. The comparison that run to the system are between flywheel rotation speed, stabilization period, and vehicle angle oscillation to vehicle initial angle variation. Based on trendline of the three evaluation test performed, the greater the starting angle of the vehicle, the greater the value of the flywheel rotation used.

Item Type: Thesis (Undergraduate)
Additional Information: RSM 621.816 Ksa r
Uncontrolled Keywords: double-giroskop, gimbal, girooskop, kendaraan, roda dua, stabilisasi, double-gyroscope, gyroscope, stabilization, two -wheeled, vehicle
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TJ Mechanical engineering and machinery > TJ230 Machine design
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Wayan Eka Putri Ksamawati
Date Deposited: 06 Dec 2017 02:38
Last Modified: 08 Mar 2019 06:15
URI: http://repository.its.ac.id/id/eprint/45912

Actions (login required)

View Item View Item