Penggalian Opini Pada Ulasan Buku Menggunakan Algoritma CNN - L2-SVM

Rozi, Muhammad Fakhrur (2017) Penggalian Opini Pada Ulasan Buku Menggunakan Algoritma CNN - L2-SVM. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 1213100100-Undergraduate-Theses.pdf]
Preview
Text
1213100100-Undergraduate-Theses.pdf - Published Version

Download (1MB) | Preview

Abstract

Ulasan suatu produk dapat merepresentasikan kualitas
dari produk tersebut. Suatu ekstraksi terhadap ulasan tersebut dapat digunakan untuk mengetahui sentimen dari opini yang diutarakan. Proses untuk mengekstraki informasi yang berguna dari ulasan pengguna disebut Opinion mining. Model ekstraksi ulasan yang berkembang sekarang yaitu model Deep Learning. Model tersebut telah banyak digunakan untuk mendapatkan pencapaian performansi pada Natural Language Processing. Pada Tugas Akhir ini digunakan salah satu metode deep learning yaituConvolutional Neural Network (CNN) sebagai ekstraksi fitur ulasan dan dilakukan klasifikasi dengan menggunakan L2 Support Vector Machine (SVM). Metode diimplementasikan
untuk dapat mengetahui sentimen dari data ulasan buku. Hasil dari metode tersebut menunjukkan performansi pembelajaran sekitar 83.23% dan performansi pengujian sekitar 64.6 %.
=================================================================
Review of a product can represent quality of a product
itself. An extraction to that review can be used to know sentiment of that opinion. Process to extract usefull information of user review is called Opinion Mining. Review extraction model that is enhacing nowadays is Deep Learning model. This Model has been used by many researchers to obtain excelent performation on Natural Language Processing. In this final project, one of
deep learning model, Convolutional Neural Network (CNN) is used for feature extraction and L2 Support Vector Machine (SVM) as classifier. These methods are implemented to know the sentiment of book review data. The result of this method shows state-of-the art performance in 83.23% for training phase and
64.6% for testing phase.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Ulasan, Opinion Mining, Natural Language Processing, Deep Learning, Review, Opinion Mining, Natural Language Processing, Deep Learning
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science. EDP
Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science)
Divisions: Faculty of Mathematics and Science > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Muhammad Fakhrur Rozi
Date Deposited: 20 Oct 2017 01:45
Last Modified: 05 Mar 2019 08:44
URI: http://repository.its.ac.id/id/eprint/47699

Actions (login required)

View Item View Item