Eksistensi Bifurkasi Mundur Dan Kendali Optimal Pada Model Penyakit Vektor-Borne Yang Disebabkan Nyamuk

Kumalasari, Charisma Juni (2017) Eksistensi Bifurkasi Mundur Dan Kendali Optimal Pada Model Penyakit Vektor-Borne Yang Disebabkan Nyamuk. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 1211100032_Undergraduated Thesis.pdf] Text
1211100032_Undergraduated Thesis.pdf - Published Version
Restricted to Repository staff only

Download (973kB) | Request a copy

Abstract

Penyakit vector-borne merupakan penyakit yang terjadi
pada manusia yang penularannya melalui vektor (perantara)
seperti serangga. Contoh penyakit vector-borne seperti
demam berdarah, virus West Nile, virus encephalitis dan
malaria [1]. Model yang digunakan merupakan kombinasi
dari dua model non linear dari populasi individu dan
vektor [1]. Populasi individu dikelompokkan menjadi
susceptible, infected, dan recovered, sedangkan vektor
dikelompokkan menjadi susceptible dan infected. Dalam Tugas
Akhir ini membahas tentang analisa pada model penyakit
vector-borne dengan menyelidiki adanya bifurkasi mundur,
menentukan basic reproduction number, kestabilan dari setiap
titik kesetimbangan, kendali optimal, dan solusi numerik
dari model interaksi dinamis yang disimulasikan dengan
menggunakan MATLAB, sehingga didapatkan hasil untuk
meminimalkan jumlah host (inang) yang terinfeksi serta
jumlah populasi vektor.
=============================================================================================
Vector-borne diseases are diseases that occur in humans
are transmitted through a vector (intermediaries) such as
insects. Examples of vector-borne diseases such as dengue
fever, West Nile virus, encephalitis virus and malaria [1].
The model is used a combination of two non-linear models
of the individual and vector population [1]. The population
of individuals is classified into susceptible, infected, and
recovered, while the vectors classified into susceptible and
infected. In this final project is about the analysis on the
model of vector-borne diseases to investigate the existence
of backward bifurcation, determine the basic reproduction
number, the stability of each equilibrium point, optimal
control, and the numerical solution of the dynamic interaction
models are simulated using MATLAB, so we get the results
to minimize the number of hosts (host) and the number of
infected vector population.

Item Type: Thesis (Undergraduate)
Additional Information: RSMa 515.392 Kum e
Uncontrolled Keywords: Model epidemik, Bifurkasi Mundur, Kendali Optimal, Prinsip Minimum Pontriagyn (PMP)
Subjects: Q Science > QA Mathematics
Q Science > QA Mathematics > QA184 Algebra, Linear
Divisions: Faculty of Mathematics and Science > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Mr. Tondo Indra Nyata
Date Deposited: 09 Aug 2017 03:34
Last Modified: 18 Dec 2017 03:04
URI: http://repository.its.ac.id/id/eprint/48295

Actions (login required)

View Item View Item