Eksistensi Bifurkasi Mundur Dan Kendali Optimal Pada Model Penyakit Vektor-Borne Yang Disebabkan Nyamuk

Kumalasari, Charisma Juni (2017) Eksistensi Bifurkasi Mundur Dan Kendali Optimal Pada Model Penyakit Vektor-Borne Yang Disebabkan Nyamuk. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
1211100032_Undergraduated Thesis.pdf - Published Version
Restricted to Repository staff only

Download (973kB) | Request a copy

Abstract

Penyakit vector-borne merupakan penyakit yang terjadi pada manusia yang penularannya melalui vektor (perantara) seperti serangga. Contoh penyakit vector-borne seperti demam berdarah, virus West Nile, virus encephalitis dan malaria [1]. Model yang digunakan merupakan kombinasi dari dua model non linear dari populasi individu dan vektor [1]. Populasi individu dikelompokkan menjadi susceptible, infected, dan recovered, sedangkan vektor dikelompokkan menjadi susceptible dan infected. Dalam Tugas Akhir ini membahas tentang analisa pada model penyakit vector-borne dengan menyelidiki adanya bifurkasi mundur, menentukan basic reproduction number, kestabilan dari setiap titik kesetimbangan, kendali optimal, dan solusi numerik dari model interaksi dinamis yang disimulasikan dengan menggunakan MATLAB, sehingga didapatkan hasil untuk meminimalkan jumlah host (inang) yang terinfeksi serta jumlah populasi vektor. ============================================================================================= Vector-borne diseases are diseases that occur in humans are transmitted through a vector (intermediaries) such as insects. Examples of vector-borne diseases such as dengue fever, West Nile virus, encephalitis virus and malaria [1]. The model is used a combination of two non-linear models of the individual and vector population [1]. The population of individuals is classified into susceptible, infected, and recovered, while the vectors classified into susceptible and infected. In this final project is about the analysis on the model of vector-borne diseases to investigate the existence of backward bifurcation, determine the basic reproduction number, the stability of each equilibrium point, optimal control, and the numerical solution of the dynamic interaction models are simulated using MATLAB, so we get the results to minimize the number of hosts (host) and the number of infected vector population.

Item Type: Thesis (Undergraduate)
Additional Information: RSMa 515.392 Kum e
Uncontrolled Keywords: Model epidemik, Bifurkasi Mundur, Kendali Optimal, Prinsip Minimum Pontriagyn (PMP)
Subjects: Q Science > QA Mathematics
Q Science > QA Mathematics > QA184 Algebra, Linear
Divisions: Faculty of Mathematics and Science > Mathematics > (S1) Undergraduate Theses
Depositing User: Mr. Tondo Indra Nyata
Date Deposited: 09 Aug 2017 03:34
Last Modified: 18 Dec 2017 03:04
URI: http://repository.its.ac.id/id/eprint/48295

Actions (login required)

View Item View Item