

#### **TUGAS AKHIR - TE 141599**

# PENYEMPURNAAN FILTER HARMONISA UNTUK MENGURANGI EFEK STRAY CURRENT CORROSION PADA PT.BATUTUA TEMBAGA RAYA, WETAR

Azharia Mahdiya NRP 0711 14 4000 0081

Dosen Pembimbing Dr. Ir. Margo Pujiantara, M.T. Dedet C. Riawan, ST. M.Eng. Ph. D.

DEPARTEMEN TEKNIK ELEKTRO Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya 2018



## **TUGAS AKHIR - TE 141599**

# IMPROVEMENT OF HARMONISA FILTERS TO REDUCE STRAY CURRENT CORROSION EFFECT ON PT.BATUTUA TEMBAGA RAYA, WETAR

Azharia Mahdiya NRP 0711 14 4000 0081

Dosen Pembimbing Dr. Ir. Margo Pujiantara, M.T. Dedet C. Riawan, ST. M.Eng. Ph. D.

DEPARTEMEN TEKNIK ELEKTRO Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya 2017

# PENYEMPURNAAN FILTER HARMONISA UNTUK MENGURANGI EFEK STRAY CURRENT CORROSION PADA PT.BATUTUA TEMBAGA RAYA, WETAR

# **TUGAS AKHIR**

Diajukan Guna Memenuhi Sebagian Persyaratan
Untuk Memperoleh Gelar Sarjana Teknik
Pada
Bidang Studi Teknik Sistem Tenaga
Depatemen Teknik Elektro
Institut Teknologi Sepuluh Nopember

Menyetujui:

Dosen Pembimbing 1

Dr. Ir. Margo Pujiantara, M.T. NIP. 1966 03 18 1990 10 1 001 Dosen Pembimbing 2

Dedet C. Riawan, ST., M.Eng., Ph. D. NIP, 1973 11 19 2000 03 1 001

SURABAYA JANUARI, 2018
DEPARTEMEN
TEKNIK ELEKTRO

# PENYEMPURNAAN FILTER HARMONISA UNTUK MENGURANGI EFEK STRAY CURRENT CORROSION PADA PT. BATUTUA TEMBAGA RAYA, WETAR

Nama : Azharia Mahdiya

Pembimbing I : Dr. Ir. Margo Pujiantara, M.T. Pembimbing II : Dedet C. Riawan ST., M. Eng., Ph. D.

## **ABSTRAK**

Harmonisa menjadi masalah yang patut diperhatikan karena semakin berkembangnya teknologi, peralatan elektronika daya juga makin berkembang, dan permasalahan harmonisa bisa menjadi lebih serius. Salah satu perusahaan yang berlokasi di Pulau Wetar Maluku Utara, PT. Batutua Tembaga Raya, yang bergerak di bidang pertambangan tembaga ini mengalami masalah harmonisa. Dalam proses kerjanya, perusahaan ini terbagi atas beberapa bagian untuk proses pengolahan hasil tambang. Sebagian dari peralatan yang tersebut menggunakan listrik DC (arus searah) sehingga terdapat penyearah 12 pulsa untuk mengubah arus bolak-balik dari pembangkit menjadi arus searah untuk digunakan pada peralatan. Namun, proses penyearahan ini berdampak pada timbulnya harmonisa sehingga kualitas daya listrik menurun, menimbulkan panas lebih, bahkan menyebabkan korosi pada material yang mengandung unsur besi akibat dari arus yang besar. Korosi tersebut dapat menyebabkan kerusakan pada konstruksi peralatan. Stray current atau arus lebih merupakan arus yang tidak diinginkan namun mengalir pada sistem. Arus tersebut salah satunya berasal dari harmonisa. Untuk mengatasi hal tersebut, perusahaan sudah merancang filter harmonisa menggunakan kapasitor, namun ternyata filter tersebut tidak bekerja secara optimal. Oleh karena itu, pada tugas akhir ini akan direncanakan dan disimulasikan sebuah filter untuk mereduksi harmonisa agar efek korosi akibat stray current dan harmonisa dapat dikurangi. Ketika filter harmonisa bekerja dengan baik, arus lebih akibat dari harmonisa tidak akan mengalir lagi pada sistem sehingga efek stray current corrosion dapat dikurangi. Setelah pemasangan *single tuned filter*, nilai THD arus dan tegangan berkurang, nilai arus yang masuk dalam bus juga berkurang. Berkurangna arus yang masuk dapat mengurangi efek dari stray current corrosion.

Kata Kunci: Stray Current Corrosion, Harmonisa, Filter Pasif

Halaman ini sengaja dikosongkan

# IMPROVEMENT OF HARMONIC FILTERS TO REDUCE STRAY CURRENT CORROSION ON PT. BATUTUA TEMBAGA RAYA, WETAR

Nama : Azharia Mahdiya

Advisor I : Dr. Ir. Margo Pujiantara, M.T. Advisor II : Dedet C. Riawan ST., M. Eng., Ph. D.

## **ABSTRACT**

Harmonics are a matter of concern because as technology develops, power electronics equipment is also growing, and harmonics problems can become more serious. One of the companies engaged in Wetar Island North Maluku, PT. Batutua Copper Raya, which is engaged in copper mining is experiencing harmonic problems. In the work process, the company is divided into several parts for the processing of mining products. (Unidirectional) so that there is a rectifier of 12 pulses to convert the alternating current from energy into direct current for use on the equipment. However, this rectification process has an impact on the emergence of harmonics because the quality of power is reduced, the more heat, even causing corrosion in materials containing iron elements due to currents. Such corrosion may cause damage to the construction of the equipment. Stray current is the undesirable current flowing in the system. The current one of them comes from harmonics. To overcome this, the company has compiled a harmonic filter using capacitors, but it turns out the filter is not working optimally. Therefore, in this final project will be planned and simulated a filter to eliminate harmonics so that the corrosion effect due to stray currents and harmonics can be reduced. When filtered harmonics work well, more current from the harmonics will no longer flow to the system because the current stray corrosion effect can be reduced. After installing a single tuned filter, the current and its entry. Reduced incoming currents can reduce the effect of stray current corrosion.

Key Word: Stray Current Corrosion, Harmonisa, Filter Pasif

Halaman ini sengaja dikosongkan

#### KATA PENGANTAR

Pertama-tama, marilah kita panjatkan puji dan syukur kehadirat Allah S.W.T. Tuhan yang Maha Esa karena atas berkat, rahmat dan hidayat-Nya, saya selaku penulis dapat menyelesaikan Tugas Akhir yang berjudul: "Penyempurnaan Filter Harmonisa Untuk Mengurangi Efek Stray Current Corrosion Pada PT. Batutua Tembaga Raya, Wetar" dengan baik. Penulis berharap Tugas Akhir ini dapat bermanfaat bagi orang lain terutama pembaca.

Sehubungan dengan proses penyusunan Tugas Akhir ini, penulis mendapatkan bantuan dari berbagai pihak. Oleh karena itu, penulis ingin menyampaikan terima kasih dan penghargaan yang setinggi-tingginya kepada semua pihak yang membantu dan membimbing dalam proses pengerjaan Tugas Akhir ini.

Secara khusus penulis menyampaikan terima kasih kepada:

- 1. Keluarga tercinta terutama papa Boy Tirta Sumriyadi, M.M. dan mama Ratna Ahsanty, S.Kom. dan tiga adik-adik yang senantiasa memberikan semangat, dukungan dan doa yang sangat berarti.
- 2. Bapak Dr. Ir. Margo Pujiantara, MT. dan Bapak Dedet Candra Riawan, ST., M.Eng., Ph.D. selaku dosen pembimbing, serta dosen jurusan Teknik Elektro yang telah membimbing dengan sabar dan memberikan beberapa saran dan masukan yang sangat penting bagi penulis.
- 3. Bapak Dr. Ir. Margo Pujiantara, MT. selaku kepala laboratorium LIPIST yang telah membina dan memfasilitasi asisten laboratorium.
- 4. Irfano Azmi yang merupakan sahabat dekat dan senantiasa memberikan masukan, dukungan, semangat dan doa.
- 5. Asisten Lab LIPIST yang telah mengisi hari-hari dengan semangat dalam proses penyelesaian Tugas Akhir ini.
- 6. Rekan-rekan E54 yang telah memberikan semangat dan motivasi untuk menyelesaikan Tugas Akhir ini.
- Semua mahasiswa di Departemen Teknik Elektro ITS yang telah memberikan semangat dan motivasi untuk menyelesaikan Tugas Akhir ini.
- 8. Seluruh teman teman CMBBS yang telah memberikan dukungan dan doa untuk menyelesaikan tugas akhir ini

Penulis juga mengucapkan banyak terima kasih terhadap pihakpihak lain yang tidak dapat disebutkan satu persatu. Mohon maaf yang

| sebesar-besarnya | apabila | ada   | kesalahan   | kata   | yang | dapat | menyinggung |
|------------------|---------|-------|-------------|--------|------|-------|-------------|
| pembaca. Saya uc | apkan s | ekiai | n dan terim | a kasi | ih.  |       |             |

Surabaya, Januari 2018

Penulis

# **DAFTAR ISI**

| Lembar Pengesahan         |                           | . i   |
|---------------------------|---------------------------|-------|
| Abstrak                   |                           | . iii |
| Abstract                  |                           | . V   |
| Kata Pengantar            |                           | . vii |
| Daftar Isi                |                           | . ix  |
| Daftar Gambar             |                           | . xi  |
| Daftar Tabel              |                           | . xii |
|                           |                           |       |
| BAB I PENDAHULUAN         |                           |       |
| 1.1 Latar Belakang        |                           |       |
| 1.2 Rumusan Masalah       |                           | . 2   |
| 1.3 Batasan Masalah       |                           | . 2   |
| 1.4 Tujuan                |                           | . 2   |
| 1.5 Metodologi            |                           |       |
| 1.6 Sistematika           |                           |       |
| 1.7 Relevansi             |                           | . 5   |
|                           |                           |       |
| BAB II TEORI PENUNJA      |                           |       |
|                           |                           |       |
|                           |                           |       |
|                           | onisa                     |       |
| 2.2.2 Analisis Harmon     | isa dengan Metode Fourier | . 14  |
|                           | sa                        |       |
|                           |                           |       |
|                           | n berputar                |       |
|                           | r Listrik                 |       |
| 2.2.4 Perhitungan Harr    | nonisa                    | 17    |
| 2.3 Pengaruh Harmonisa    |                           |       |
| 2.3.1 Resonansi           |                           | . 20  |
| 2.3.2 Pengaruh Pada M     | Iesin Induksi             | . 21  |
| 2.3.3 Pengaruh Pada Ti    | ransformator              | . 21  |
| 2.3.4 Pengaruh Pada K     | apasitor Bank             | 22    |
|                           | ele Pengaman              |       |
| 2.4 Desain Filter         |                           | . 22  |
| 2.5 Penerapan Filter Harm | onisa                     | .28   |

| BAB III SISTEM KEI       | LISTRIKAN PT. BATUTUA TEN          | MBAGA |
|--------------------------|------------------------------------|-------|
| RAYA                     |                                    |       |
| 3.1 Sistem Kelistrikan P | Г. Batutua Tembaga Raya            | 29    |
| 3.2 Beban di PT. Batutua | a Tembaga Raya                     | 32    |
| 3.3 Harmonisa pada Siste | em Kelistrikan PT. Batutua Tembag  | ga    |
|                          |                                    |       |
| 3.4 Langkah-Langkah M    | eredam Harmonisa di PT. Batuta     |       |
| Tembaga Raya Weta        | r                                  | 40    |
| BAB IV SIMULASI DA       | N ANALISIS                         |       |
| 4.1 Evaluasi Sistem Keli | strikan PT. Batutua Tembaga Raya   | 41    |
|                          | ng Tegangan                        |       |
|                          | nisa                               |       |
|                          | Capacitor Bank Sebagai Peredam     |       |
|                          |                                    | 50    |
|                          | Peredam Harmonisa                  |       |
|                          | s 36SB001                          |       |
| 4.3.2 Filter Untuk Bu    | s 95 dan Bus 101                   | 57    |
| 4.3.2 Filter Untuk Bu    | s 21 dan Bus 100                   | 62    |
| 4.4 Simulasi Sistem Sete | lah Pemasangan Filter Harmonisa    | 66    |
|                          | telah Pemasangan Filter            |       |
|                          | em Setelah Pemasangan Filter       |       |
|                          |                                    | 68    |
| 4.5 Pengaruh Pemasanga   | ın Filter Harmonisa Terhadap Stray |       |
|                          |                                    |       |
| BAB V PENUTUP            |                                    |       |
| 5.1 Kesimpulan           |                                    | 79    |
| 5.2 Saran                |                                    |       |
| J.2 Saran                | •••••                              | 60    |
| DAFTAR PUSTAKA           |                                    | 81    |

# DAFTAR GAMBAR

| Gambar 2.1 Gelombang sinusoidal murni frekuensi fundamental | 8    |
|-------------------------------------------------------------|------|
| Gambar 2.2 Gelombang harmonisa                              | 9    |
| Gambar 2.3 Gelombang terdistorsi                            |      |
| Gambar 2.4 Rangkaian pengganti Thevenin untuk jaringan      |      |
| sistem tenaga listrik                                       | 9    |
| Gambar 2.5 Rangkaian pengganti untuk n>1                    |      |
| Gambar 2.6 Elemen non linier sebagai sumber arus harmonisa  | . 11 |
| Gambar 2.7 Komponen Urutan Positif                          | . 11 |
| Gambar 2.8 Komponen Urutan Negatif                          | . 12 |
| Gambar 2.9 Komponen Urutan Nol                              | . 12 |
| Gambar 2.10 Resonansi paralel pada sistem tenaga listrik    | . 20 |
| Gambar 2.11 Resonansi seri pada sistem tenaga listrik       | . 21 |
| Gambar 2.12 (a) Rangkaian Filter Penalaan Tungggal          | . 24 |
| (b) Grafik Impedansi Filter Terhadap Frekuensi              | . 24 |
| Gambar 2.13 Rangkaian Filter Penalaan Ganda                 | . 25 |
| (a) Transformasi Dari Dua Filter Penalaan Tunggal.          | 25   |
| (b) Filter Penalaan Ganda                                   | . 25 |
| (c) Filter Penalaan Ganda Ditala Orde Lima dan              |      |
| Tujuh                                                       | . 25 |
| Gambar 2.14 High Pass Damped Filter                         | . 26 |
| (a.) Orde Satu                                              | . 26 |
| (b.) Orde Dua                                               | . 26 |
| (c.) Orde Tiga                                              | . 26 |
| (d.) Tipe C                                                 |      |
| Gambar 3.1 Kelistrikan di PT. Batutua Tembaga               |      |
| Gambar 4.1 Harmonisa tegangan pada bus 36SB001              | . 44 |
| (a) Spektrum harmonisa                                      | . 44 |
| (b) Bentuk gelombang tegangan                               | . 44 |
| Gambar 4.2 Harmonisa arus pada bus 36SB001                  | . 45 |
| (a) Spektrum harmonisa                                      | 45   |
| (b) Bentuk gelombang arus                                   |      |
| Gambar 4.3 Harmonisa tegangan pada bus 95 dan bus 101       |      |
| (a) Spektrum harmonisa                                      |      |
| (b) Bentuk gelombang arus                                   |      |
| Gambar 4.4 Harmonisa arus pada bus 95 dan bus 101           |      |
| (a) Spektrum harmonisa                                      | . 47 |
| (b) Bentuk gelombang tegangan                               | . 47 |

| Gambar 4.5 Harmonisa tegangan pada bus 21 dan bus 100         | 48 |
|---------------------------------------------------------------|----|
| (a) Spektrum harmonisa                                        | 48 |
| (b) Bentuk gelombang tegangan                                 | 48 |
| Gambar 4.6 Harmonisa tegangan pada bus 21 dan bus 100         |    |
| (a) Spektrum harmonisa                                        |    |
| (b) Bentuk gelombang arus                                     | 49 |
| Gambar 4.7 Harmonisa tegangan pada bus 36SB001 setelah        |    |
| Difilter                                                      | 69 |
| (a) Spektrum harmonisa                                        |    |
| (b) Bentuk gelombang tegangan                                 | 70 |
| Gambar 4.8 Harmonisa arus pada bus 36SB001 setelah difilter . |    |
| (a) Spektrum harmonisa                                        | 70 |
| (b) Bentuk gelombang arus                                     | 71 |
| Gambar 4.9 Harmonisa tegangan pada bus 21 dan bus 100         |    |
| setelah difilter                                              | 71 |
| (a) Spektrum harmonisa                                        | 71 |
| (b) Bentuk gelombang tegangan                                 |    |
| Gambar 4.10 Harmonisa arus pada bus 21 dan bus 100 setelah    |    |
| difilter                                                      | 72 |
| (a) Spektrum harmonisa                                        | 72 |
| (b) Bentuk gelombang arus                                     | 73 |
| Gambar 4.11 Harmonisa tegangan pada bus 95 dan bus 101        |    |
| setelah difilter                                              | 73 |
| (a) Spektrum harmonisa                                        | 73 |
| (b) Bentuk gelombang tegangan                                 | 74 |
| Gambar 4.12 Harmonisa tegangan pada bus 95 dan bus 101        |    |
| setelah difilter                                              | 74 |
| (a) Spektrum harmonisa                                        |    |
| (b) Bentuk gelombang arus                                     |    |

# DAFTAR TABEL

| Tabel 2.1 | Urutan fasa harmonisa                                       |
|-----------|-------------------------------------------------------------|
| Tabel 2.2 | Maksimum distorsi arus berdasarkan IEEE                     |
|           | Std 519-1992 untuk sistem 120 V sampai 69 kV 18             |
| Tabel 2.3 | Maksimum distorsi arus berdasarkan IEEE                     |
|           | Std 519-1992 untuk sistem 69 kV sampai 161 kV 18            |
| Tabel 2.4 | Maksimum distorsi arus berdasarkan IEEE                     |
|           | Std 519-1992 untuk sistem diatas 161 kV                     |
| Tabel 2.5 | Maksimum distorsi tegangan berdasarkan IEEE                 |
|           | Std 519-1992                                                |
| Tabel 3.1 | Data Kapasitas Pembangkit di PT. Batutua Tembaga            |
|           | Raya                                                        |
| Tabel 3.2 | Data Bus dan Rating Tegangan                                |
| Tabel 3.3 | Data Transformator PT. Batutua Tembaga Raya 32              |
| Tabel 3.4 | Beban di PT. Batutua Tembaga Raya                           |
| Tabel 3.5 | Data Konverter di PT. Batutua Tembaga Raya 38               |
| Tanel 3.6 | Harmonisa yang dihasilkan oleh converter                    |
| Tabel 4.1 | Perbandingan nilai tegangan bus terhadap nilai standar $41$ |
| Tabel 4.2 | Perbaikan nilai tegangan dengan pengaturan                  |
|           | tap transformator                                           |
| Tabel 4.3 | Ketika Menggunakan Capacitor Sebagai Filter 50              |
| Tabel 4.4 | Faktor daya setelah pemasangan filter                       |
| Tabel 4.5 | Harmonisa Tegangan setelah pemasangan filter                |

| harmonisa                                                      | . 68 |
|----------------------------------------------------------------|------|
| Tabel 4.6 Harmonisa Arus setelah pemasangan filter harmonisa . | . 68 |
| Tabel 4.7 Arus Pada Jaringan                                   | . 76 |

## **BABI**

## **PENDAHULUAN**

## 1.1 Latar Belakang

Sejak berkembangnya peralatan elektronika daya yang dimulai pada tahun 1900, permasalahan harmonisa juga semakin berkembang. Permasalahan harmonisa ini pertama kali ditemukan antara tahun 1920 dan 1930 tepatnya di Negara Jerman. Saat itu terjadi gangguan sistem tenaga listrik akibat *static converter* yang banyak digunakan oleh industri. Setelah itu, berkembang pesat studi mengenai converter yang menyebabkan harmonisa pada tahun 1950-1960. Melihat perkembangan industri dari waktu ke waktu, pembahasan masalah harmonisa menjadi bahan diskusi bahkan sampai ke tingkat internasional.

Salah satu perusahaan yang mengalami permasalahan harmonisa adalah perusahaan pertambangan tembaga di Maluku Utara, PT. Batutua Tembaga Raya Wetar. Baru tiga bulan beroperasi, perusahaan ini memiliki beberapa permasalahan penting. Salah satunya adalah terkorosinya peralatan-peralatan yang mengandung unsur besi di beberapa bagian pada perusahaan ini.

PT. Batutua Tembaga Raya memiliki berbagai macam peralatan untuk menunjang proses pengolahan hasil tambangnya. Sebagian besar dari peralatan pada perusahaan ini merupakan beban non-linier sehingga menimbulkan harmonisa. Peralatan-peralatan tersebut juga menggunakan listrik DC sehingga untuk mengoperasikannya diperlukan penyearah 12 pulsa untuk mengkonversi arus AC dari pembangkit menjadi DC untuk digunakan pada peralatan. Namun, penyearah 12 pulsa ini memiliki dampak negatif berupa harmonisa yang akan berpengaruh pada jaringan sistem. Harmonisa ini dapat menyebabkan beberapa permasalahan pada seluruh sistem kelistrikan dan juga pada peralatan, termasuk terjadinya korosi pada material yang mengandung unsur besi.. Sehingga pada tugas akhir ini akan direncanakan dan disimulasikan sebuah filter untuk menghilangkan harmonisa agar efek korosi harmonisa dapat dikurangi.

#### 1.2 Rumusan Masalah

Perumusan masalah yang akan dibahas dalam Tugas Akhir ini yaitu:

- Bagaimana pola sistem kelistrikan pada PT. Batutua Tembaga Raya Wetar?
- 2. Bagaimana permasalahan harmonisa yang terjadi di PT. Batutua Tembaga Raya Wetar?
- 3. Bagaimana merancang filter harmonisa pada PT. Batutua Tembaga Raya Wetar agar korosi pada konduktor dapat dikurangi?

#### 1.3 Batasan Masalah

Batasan masalah pada tugas akhir ini yaitu:

- Menganalisis aliran daya pada keseluruhan sistem di PT. Batutua Tembaga Raya Wetar.
- 2. Menganalisis harmonisa yang terjadi pada sebagian sistem PT. Batutua Tembaga Raya Wetar.
- 3. Membuat simulasi rancangan filter pasif harmonisa dengan *software* ETAP 12.6.

# 1.4 Tujuan

Tujuan dari Tugas Akhir ini adalah:

- 1. Melakukan studi pada pola kelistrikan PT. Batutua Tembaga Raya Wetar agar dapat mengetahui kesetimbangan antara daya terbangkit dengan daya beban.
- 2. Melakukan studi mengenai harmonisa yang terjadi di PT. Batutua Tembaga Raya Wetar.
- 3. Melakukan perancangan model filter harmonisa untuk mereduksi harmonisa di PT. Batutua Tembaga Raya Wetar.

# 1.5 Metodologi

Metodologi yang digunakan pada Tugas Akhir ini yaitu :

# 1. Pengumpulan Data

Pengumpulan data dilakukan dengan mengumpulkan data-data yang dibutuhkan dalam pengerjaan Tugas Akhir, seperti *single* 

*line diagram* dan data dari peralatan-peralatan listrik pada PT. Batutua Tembaga Raya Wetar yang meliputi: pola operasi keseluruhan, pola kerja kelistrikan per bagian dari perusahaan, generator, rating kabel, transformator, motor listrik, rectiformer, dan peralatan-peralatan lainnya.

#### 2. Pemodelan Sistem

Pemodelan sistem dirancang dalam bentuk Single line diagram dengan software ETAP 12.6 sekaligus memasukkan data-data. Pemodelan sistem dilakukan agar dapat dilakukan analisis aliran daya dan harmonisa.

## 3. Simulasi dan Analisis Aliran Daya

Melakukan simulasi Aliran Daya pada sistem kelistrikan yang ada di PT. Batutua Tembaga Raya Wetar dengan software ETAP 12.6. Hasil simulasi kemudian digunakan untuk mengetahui aliran daya pada sistem kelistrikan di PT. Batutua Tembaga Raya Wetar dan dilakukan analisis mengenai skema operasi yang digunakan. Simulasi tersebut akan dijadikan acuan untuk melakukan studi harmonisa.

#### 4. Pemodelan Filter Harmonisa

Melakukan pemodelan filter harmonisa dengan software ETAP 12.6 dan melakukan pengamatan mengenai respon harmonisa sebelum dan setelah dilakukan pemodelan filter tersebut. Data yang akan dianalisis, yaitu reduksi harmonisa arus dan tegangan.

## 5. Penulisan Buku Tugas Akhir

Penulisan buku dilakukan sebagai penggambaarn kesimpulan dari tugas akhir ini. Kesimpulan tersebut membahas tentang harmonisa di PT. Batutua Tembaga Raya Wetar serta merekomendasikan filter harmonisa sebagai pengganti kapasitor terpasang untuk mereduksi harmonisa.

#### 1.6 Sistematika

Sistematika penulisan dalam tugas akhir ini terdiri dari lima bab yang berisi tentang :

#### BAB I : PENDAHULUAN

Bab ini merupakan bagian awal yang berisi latar belakang, perumusan masalah, tujuan, metodologi, sistematika, dan relevansi atau manfaat penulisan tugas akhir.

#### BAB II: TEORI PENUNJANG

Bagian ini membahas dasar teori tentang harmonisa, pengruh harmonisa, dan desain filter harmonisa, serta tinjauan pustaka berupa penerapan filter harmonisa yang sudah pernah ada.

#### BAB III: SISTEM KELISTRIKAN PT. BATUTUA TEMBAGA RAYA

Bagian ini membahas tentang sistem kelistrikan di PT. Batutua Tembaga Raya secara menyeluruh. Mulai dari detail pembangkit, beban, sampai dengan harmonisa yang terjadi.

#### BAB IV: SIMULASI DAN ANALISIS

Mensimulasikan sistem kelistrikan di PT. Batutua Tembaga Raya Wetar menggunakan software ETAP 12.6 yang meliputi studi aliran daya dan fenomena harmonisa. Akan dipaparkan pula bagaimana kondisi harmonisa ketika hanya menggunakan kapasitor sebagai filter harmonisa, seperti kondisi di PT. Batutua Tembaga Raya Wetar saat ini. Kemudian memberikan detail perhitungan perhitungan komponen dari filter harmonisa pasif yang digunakan sebagai peredam harmonisa.

#### BAB V : PENUTUP

Merupakan bagian akhir yang berisi kesimpulan yang diperoleh dari penelitian yang telah dilakukan, serta saran-saran untuk pengembangan penelitian selanjutnya.

## 1.7 Relevansi

Tugas Akhir ini diharapkan dapat memberikan manfaat sebagai berikut:

- 1. Dapat digunakan sebagai rekomendasi bagi PT. Batutua Tembaga Raya Wetar untuk solusi dari permasalahan *DC stray current corrosion* yang terjadi di beberapa bagian dari pabrik.
- 2. Dapat menjadi referensi terkait analisis arus, tegangan, daya, dan harmonisa pada sistem kelistrikan industri untuk penelitian selanjutnya.

Halaman ini sengaja dikosongkan

## **BAB II**

## TEORI PENUNJANG

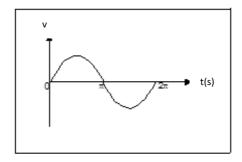
#### 2.1 Interferensi Arus Liar

Interferensi arus liar merupakan sebuah gangguan elektrikal pada suatu struktur material yang disebabkan oleh arus liar atau arus tersasar yang bisa disebut juga sebagai *stray current*. Salah satu penyebab dari munculnya arus liar adalah harmonisa yang terjadi pada jaringan sistem. Harmonisa akan mengakibatkan arus lebih pada jaringan dan menyebabkan terkorosinya konstruksi peralatan yang mengandung unsur besi.

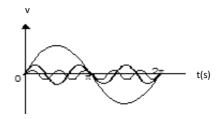
Stray current bisa terjadi pada jaringan listrik AC (Alternating Current) maupun DC (Direct Current). Desain rangkaian DC biasanya merupakan floating null point system atau sistem yang tidak dibumikan. Arus liar bisa saja mengalir dari konduktor ke tanah sehingga mengindikasikan bahwa terdapat suatu jalur tak kasat mata dari konduktor ke bumi dan dapat menyebabkan hubung singkat. Efek yang dapat ditimbulkan dari stray current diantaranya adalah menurunkan efisiensi arus, membuat biaya operasional lebih tinggi, mempercepat korosi pada komponen logam, serta deposisi pertambahan metalik yang tidak diinginkan.

Arus liar yang berasal dari arus searah (DC) dan tidak sengaja memasuki konstruksi dari peralatan yang mengandung unsur besi, kemudian meninggalkannya kembali menuju sumber arus, akan menyebabkan karat pada titik dimana arus meninggalkan konstruksi tersebut. Karat yang terjadi cukup serius dapat merusak konstruksi tersebut dan menyebabkan terjadinya korosi. Indikasi bahwa terjadinya korosi akibat *stray current* dapat dilihat ketika instalasi dilewati oleh arus searah yang besar dan berada di sekitar struktur yang mengalami korosi dan terutama bila terjadi korosi yang sangat cepat meskipun sudah ada perlindungan katodik.

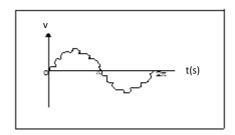
Berdasarkan Hukum Faraday 1 yang menyatakan bahwa massa zat yang dibebaskan pada suatu elektrolisis berbanding lurus dengan jumlah arus listrik yang mengalir, yang dapat dirumuskan dalam persamaan (2.1) berikut [9].


$$m = \left(\frac{Q}{F}\right) \left(\frac{M}{Z}\right) \tag{2.1}$$

Dengan *m* adalah massa zat yang terbebaskan dalam satuan gram (g), Q adalah total muatan yang ditransfer dalam reaksi dengan satuan Coulombs (C), F adalah konstanta Faraday 96,485 Coulomb per mol electron (C/mol), M adalam massa molar zat dalam gram per mol (g/mol), dan Z adalah jumlah mol electron yang ditransfer per jumlah mol substrat. Maka semakin besar arus yang mengalir, peralatan akan cepat mengalami korosi.


Pada PT. Batutua Tembaga Raya, pegangan katup 25mm berubah warna menjadi hitam, serta terjadi perubahan warna pada penopang baja tahan karat sisi positif bus utama dan gagang pintu baja tahan karat pada bulan ketiga pengoperasian pabrik, yang mengindikasikan bahwa hal tersebut diakibatkan oleh *stray current*.

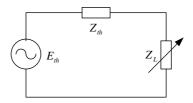
#### 2.2 Harmonisa


Sebenarnya, gelombang arus dan tegangan yang dikirim dari sumber menuju beban merupakan gelombang sinusoidal murni dengan frekuensi tunggal. Namun dalam proses pendistribusiannya, terjadi berbagai gangguan sehingga bentuk gelombang tidak lagi sinusoidal murni. Hal ini dikarenakan terjadinya harmonisa. Harmonisa merupakan suatu gejala pembentukan gelombang sinusoidal dengan frekuensi berbeda dimana nilai frekuensinya berupa perkalian bilangan bulat dengan frekuensi dasarnya sehingga menjadikan gelombang sinusoidal murni mengalami cacat gelombang, atau singkatnya dapat disebut sebagai gangguan yang terjadi pada sistem tenaga listrik akibat dari terjadinya distorsi gelombang arus dan tegangan. Ketika terjadi superposisi antara gelombang frekuensi dasar dengan gelombang harmonik, terbentuklah gelombang terdistorsi yang bentuknya sudah tidak lagi sinusoidal. Bentuk gelombang tersebut digambarkn sebagai berikut, dimana gambar (2.1) merupakan gelombang sinusoidal murni, gambar (2.2) merupakan gelombang sinusoidal dan gelombang harmonisa orde 3 dan orde 5, sedangkan gambar (2.3) merupakan gelombang yang sudah terdistorsi.



Gambar 2.1 Gelombang sinusoidal murni frekuensi fundamental [7]




Gambar 2.2 Gelombang harmonisa [7]



Gambar 2.3 Gelombang terdistorsi [7]

# 2.2.1 Pengertian Harmonisa

Berikut penjelasan dari harmonisa yang timbul pada sistem tenaga pada gambar (2.4) sampai dengan gambar (2.6) berikut.



**Gambar 2.4** Rangkaian pengganti Thevenin untuk jaringan sistem tenaga listrik [3]

Misal suatu sistem tenaga listrik merupakan rangkaian pengganti Thevenin dari suatu jaringan sistem tenaga listrik AC seperti pada gambar (2.4),  $E_{th}$  adalah generator yang dimisalkan menjadi sumber tegangan sebagai penghasil tegangan sinusoidal,  $Z_{th}$  sebagai beban linier, dan  $Z_{L}$  sebagai beban non linier.

Jika:

$$E_{th} = E_m \sin n(\omega t) \tag{2.2}$$

Beban Z<sub>L</sub> akan menyerap arus dengan persamaan sebagai berikut:

$$i(t) = \sum_{n=1}^{\infty} I_n \sin(\omega_n t + \phi_n)$$
 (2.3)

Karena  $E_{th}$  tidak memiliki komponen harmonisa, maka untuk n>1. Harga  $E_{th}$ =0 dan arus:

$$i(t) = \sum_{n=2}^{\infty} I_n Sin (\omega_n t + \phi_n)$$

$$Z_{th}$$

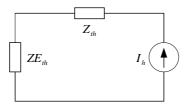
$$Z_{th}$$

$$Z_{th}$$

$$Z_{th}$$

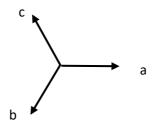
Gambar 2.5 Rangkaian pengganti untuk n>1

Gambar (2.5) menggambarkan kondisi persamaan (2.4), terlihat bahwa nilai i(t) tetap ada meskipun  $E_{th}\!\!=\!\!0$ . Oleh karena itu, elemen  $Z_L$  dapat dipandang sebagai sumber arus dan tegangan (generator) sedangkan  $E_{th}$  sebagai sebuah impedansi  $E_{th}$ .


Karena  $i_n(t) = -i(t)$  maka

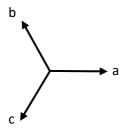
$$i_n(t) = -i(t) = -\sum_{n=2}^{\infty} I_n \operatorname{Sin}(\omega_n t + \phi_n)$$
 (2.5)

Jika  $\theta_n = \phi_n + \pi$  maka :

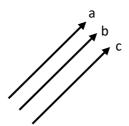

$$i_n(t) = I_n \sin(\omega_n t - \theta_n) \tag{2.6}$$

Dengan rangkaian pengganti tergambar seperti pada gambar (2.6) berikut.




Gambar 2.6 Elemen non linier sebagai sumber arus harmonisa

Dalam analisis harmonisa sistem tiga fasa, harmonisa ditinjau berdasarkan teori komponen simetris. Arus dari sumber harmonisa pada sistem tiga fasa seimbang dapat dikelompokkan menurut arah putaran fasanya. Jika diasumsikan urutan fasanya a-b-c berarti putaran fasornya adalah fasa a akan datang terlebih dahulu, dilanjutkan fasa b, dan fasa c. Urutan tersebut terdiri dari tiga fasor yang sama besarnya namun terpisah sejauh 120°, memiliki arah putaran fasor yang berlawanan dengan arah jarum jam (counterclockwise), dan dikenal sebagai komponen urutan positif (positive sequence components) seperti pada gambar (2.7) berikut.




Gambar 2.7 Komponen Urutan Positif

Komponen urutan negatif (negative sequence components) juga terdiri dari tiga fasor yang sama besar dengan beda sudut antar fasanya sebesar 120°, tetapi mempunyai urutan fasa yang berlawanan dengan komponen urutan positif, yaitu a-c-b yang digambarkan pada gambar (2.8). Sedangkan komponen urutan nol terdiri dari tiga fasa yang sama besarnya, tidak ada perbedaan sdut antar fasa pada fasor a-b-c atau dapat dikatakan saling berimpit seperti pada gambar (2.9).



Gambar 2.8 Komponen Urutan Negatif.



## Gambar 2.9 Komponen Urutan Nol

Komponen harmonisa juga memiliki urutan positif, urutan negatif, dan urutan nol. Urutan-urutan harmonisa tersebut dapat ditentukan dari hubungan fasor arus harmonisa. Sebagai contoh, diambil tiga orde harmonisa, yaitu harmonisa orde ketiga, orde kelima, dan orde ketujuh.

# 1. Harmonisa orde tiga.

$$i_{a3} = I_{a3} \cdot \sin 3\omega t \tag{2.7}$$

$$i_{b3} = I_{b3} \cdot \sin 3(\omega t - 120) = I_{b3} \cdot \sin (3\omega t - 360)$$

$$i_{b3} = I_{b3} \cdot \sin 3\omega t \tag{2.8}$$

$$i_{c3} = I_{c3} \cdot \sin 3(\omega t - 240) = I_{c3} \cdot \sin (3\omega t - 720)$$

$$i_{c3} = I_{c3} \cdot \sin 3\omega t \tag{2.9}$$

Dari Persamaan (2.7), (2.8), dan (2.9) dapat dilihat bahwa untuk harmonisa orde ketiga tidak mempunyai beda sudut antar fasanya, sehingga harmonisa orde ketiga termasuk komponen urutan nol.

#### Harmonisa orde kelima

$$\begin{array}{l} i_{a5} = I_{a5} \cdot \sin 5\omega t & (2.10) \\ i_{b5} = I_{b5} \cdot \sin 5(\omega t - 120) = I_{b3} \cdot \sin (5\omega t - 600) \\ i_{b5} = I_{b5} \cdot \sin (5\omega t - 240) & (2.11) \\ i_{c5} = I_{c5} \cdot \sin 5(\omega t - 240) = I_{c5} \cdot \sin (5\omega t - 1200) \\ i_{c5} = I_{c5} \cdot \sin (5\omega t - 120) & (2.12) \end{array}$$

Dari Persamaan (2.10), (2.11) dan (2.12) dapat dilihat bahwa untuk harmonisa kelima mempunyai urutan fasa yang berlawanan dengan komponen urutan positif. Sehingga harmonisa orde kelima termasuk komponen urutan negatif.

## 3. Harmonisa orde ketujuh

$$i_{a7} = I_{a7} \cdot \sin 7\omega t$$
 (2.13)  
 $i_{b7} = I_{b7} \cdot \sin 7(\omega t - 120) = I_{b7} \cdot \sin (7\omega t - 840)$  (2.14)  
 $i_{b7} = I_{b7} \cdot \sin (7\omega t - 120)$  (2.14)  
 $i_{c7} = I_{c7} \cdot \sin (7\omega t - 240)$  (2.15)

Dari Persamaan (2.13), (2.14), dan (2.15) dapat dilihat bahwa untuk harmonisa orde ketujuh mempunyai urutan fasa a-b-c dengan beda sudut antar fasa 120°, sehingga harmonisa orde ketujuh termasuk komponen urutan positif.

Jadi dapat disimpulkan bahwa harmonisa orde pertama merupakan urutan positif, harmonisa orde kedua merupakan urutan negatif, harmonisa orde ketiga adalah urutan nol.

Tabel 2.1 Urutan fasa harmonisa [3]

| Orde Harmonisa | Frekuensi (Hz) | Urutan  |
|----------------|----------------|---------|
| 1              | 50             | Positif |
| 2              | 100            | Negatif |
| 3              | 150            | Nol     |
| 4              | 200            | Positif |
| 5              | 250            | Negatif |
| 6              | 300            | Nol     |

Urutan tersebut berulang untuk harmonisa orde berikutnya, seperti pada tabel (2.1). Setiap urutan harmonisa memiliki efek yang berbeda-beda terhadap sistem tenaga listrik dan peralatan-peralatan listrik lainnya. Harmonisa urutan nol yang umumnya berupa harmonisa kelipatan orde tiga (*triplen harmonics*) yang dapat menimbulkan efek tambahan kontribusi arus pada kawat netral. Harmonisa urutan negatif umumnya menimbulkan torsi lawan pada motor listrik yang menyebabkan motor berlawanan arah putarannya, hal ini dapat merusak motor. Sedangkan harmonisa urutan positif umumnya menimbulkan panas tambahan pada konduktor.

## 2.2.2 Analisis Harmonisa dengan Metode Fourier

Transformasi Fourier diperkenalkan oleh seorang ahli matematika dan fisika asal Prancis, Jean Baptiste Joseph Fourier. Transformasi Fourier adalah metode yang digunakan untuk mengubah suatu fungsi waktu yang periodik (berulang) menjadi penjumlahan dari fungsi-fungsi sinus dan cosinus dalam berbagai frekuensi. Transformasi Fourier biasanya digunakan untuk menganalisis suatu sistem dalam kondisi tidak ideal, seperti sistem kelistrikan DC yang mengandung riak gelombang, bentuk gelombang yang tidak sinusoidal pada kelistrikan, dan sebagainya.

Suatu fungsi x(t) dapat dikatakan fungsi periodik jika memenuhi syarat-syarat berikut [7]:

- 1. x(t) = x(t+T); T adalah periode
- Selama periode tertentu, fungsi harus mempunyai harga ratarata tertentu.
- 3. Jika k adalah bilangan integer, maka x(t + kT) = x(t) untuk semua nilai t.
- 4. Jika dua fungsi  $x_1(t)$  dan  $x_2(t)$  mempunyai periode sama maka  $x_3(t) = ax_1(t) + bx_2(t)$ , a dan b konstanta.
- 5. Dalam satu periode *T*, fungsi harus mempunyai harga maksimum atau minimum yang jumlahnya tertentu.

Suatu fungsi periodik x(t) dapat diuraikan dalam bentuk deret Fourier seperti pada persamaan (2.16) berikut [1]:

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$
 (2.16)

Dengan

$$\omega = \frac{2\pi}{T} \tag{2.17}$$

Maka, untuk kurva x(t) dengan periode dari -T/2 sampai dengan T/2 dapat diperoleh dari persamaan (2.18) sampai (2.20) berikut :

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt$$
 (2.18)

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(nwt) dt$$
 (2.19)

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(nwt) dt$$
 (2.20)

Transformasi Fourier juga dapat disajikan dalam bentuk konstanta dan sudut fasa. Persamaan ini disebut Transformasi Fourier bentuk kedua yang dapat dituliskan seperti persamaan (2.21) berikut:

$$f(t) = \sum_{n=0}^{\infty} c_n \cdot \cos(n\omega t + \theta_n)$$
 (2.21)

dengan:

$$c_0 = a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt, \theta_0 = 0$$
 (2.22)

Untuk n=0, dan

$$c_0 = \sqrt{a_n^2 + b_n^2} (2.23)$$

$$\theta_n = \tan^{-1} \frac{b_n}{a_n} \tag{2.24}$$

Untuk n>0

Terdapat sifat-sifat khusus yang dapat dilakukan untuk melakukan penyederhanaan analisis Fourier, yaitu:

- a. Bila luas siklus positif dan negatif dalam satu periode gelomban sama, maka  $a_0 = 0$ .
- b. Bila f(t) = -f(t + T), atau fungsi mempunyai simetri setengah gelombang maka tidak akan muncul harmonisa orde genap.
- c. Bila fungsi merupakan fungsi genap, biasanya simetri terhadap sumbu y, f(t) = f(-t), maka  $b_n = 0$ .

d. Bila fungsi merupakan fungsi ganjil, biasanya suatu fungsi akan kembali ke posisi semula jika dicerminkan terhadap sumbu x dan dicerminkan lagi terhadap sumbu y, f(t) = -f(t), maka  $a_n = 0$ .

Dengan analisis fourier pada bentuk gelombang arus yang diserap oleh komponen atau beban penyebab harmonisa, maka dapat ditentukan komponen-komponen harmonisa yang dibangkitkan.

#### 2.2.3 Sumber Harmonisa

Penyebab dari timbulnya harmonisa adalah beban non linier. Beban non linier merupakan beban yang mendapat catu tegangan AC sinusoida, namun arus yang masuk berbentuk non sinusoida. Peralatan elektronika daya ialah peralatan yang menggunakan komponen tiristor dan dioda seperti inverter, konverter statis, konverter PWM, pengendali motor listrik, *electronic ballast*, dan sebagainya. Peralatan elektronika daya ini biasa digunakan sebagai penyearah atau digunakan dalam proses peralihan (*switching*). Berikut adalah beberapa contoh peralatan yang merupakan sumber harmonisa [1].

#### 2.2.3.1 Konverter

Penggunaan konverter sebagai sumber daya searah dapat merusak bentuk tegangan dan arus bolak-balik sehingga bentuk gelombangnya tidak lagi sinusoidal murni. Bentuk gelombang arus dan tegangan yang tidak lagi sinusoidal tersebut mengandung gelombang frekuensi dasar dan frekuensi harmonisa yang dapat menyebabkan gangguan sistem tenaga listrik. Dari bentuk gelombang arus di sisi arus AC pada peralatan konverter dapat diperoleh beberapa hal penting berikut:

- 1. Tidak ada harmonisa kelipatan tiga
- 2. Pada penyearah enam pulsa, harmonisa yang terjadi hanya pada orde 6k±1, dimana k merupakan bilangan integer, 6k+1 untuk harmonisa urutan negatif dan 6k-1 untuk harmonisa urutan positif
- 3. Pada penyearah dua belas pulsa, harmonisa yang terjadi berada pada orde 12k±1.

## 2.2.3.2 Mesin-Mesin Berputar

Generator sinkron dan motor induksi menghasilkan sejumlah harmonisa. Pada generator sinkron, harmonisa disebabkan oleh distribusi fluks yang tidak sinusoidal sehingga terbangkit emf tidak sinusoidal sehingga akan menghasilkan harmonisa ketika dibebani.

#### 2. 2.3.3 Tanur Busur Listrik

Tanur busur listrik adalah elemen non linier yang dalam industri logam digunakan untuk melebur biji besi. Busur listrik yang terjadi selama tanur listrik beroperasi hampir selalu tidak dalam keadaan stabil akibat dari pengaruh perubahan elektroda, interaksi gaya elektromagnetik busur, dan pengaruh riak permukaan biji yang telah melebur.

Bentuk gelombang arus tanur busur listrik pada setiap periode gelombang memiliki bentuk yang tidak sama sehingga bentuknya tidak periodik dan dapat menimbulkan gangguan seperti :

- 1. distorsi harmonisa
- 2. Kerlip tegangan (voltage flicker)
- 3. Goncangan frekuensi
- 4. Ketidakseimbangan tegangan

Karena bentuk gelombangnya yang tidak sama pada tiap periode, harmonisa yang dibangkitkan oleh tanur busur listrik tidak dapat diprediksi dan selalu berubah-ubah tergantung pada kondisi tanur busur listrik yang meliputi posisi elektrode, *scrap* baja, busur api antar elektrode, dan elektrode beserta groundingnya. Keunikan karekteristik dari sistem ini adalah munculnya sub-harmonisa, yaitu harmonisa dengan frekuensi di bawah frekuensi fundamental (50 Hz). Untuk mengetahui komponen harmonisa yang dibangkitkan, maka diperlukan pengukuran.

# 2.2.4 Perhitungan Harmonisa

Dalam harmonisa, dikenal istilah *Total Harmonic Distortion* (THD). THD merupakan persentase total komponen harmonisa terhadap komponen fundamentalnya atau berapa persen gelombang yang terdistorsi dari total gelombang seluruhnya. *Total Harmonic Distorsion* (THD) dapat dituliskan dengan persamaan (2.25) berikut:

$$THD = \frac{\left[\sum_{2}^{k} U_{n}\right]^{\frac{1}{2}}}{U_{1}} \times 100\% \tag{2.25}$$

Dengan  $U_n$  merupakan nilai komponen harmonisa baik dalam arus maupun tegangan, dan  $U_1$ merupakan komponen fundamentalnya baik dalam arus maupun tegangan, sedangkan k merupakan komponen harmonisa maksimum yang diamati. Untuk gelombang sinusoidal sempurna pada frekuensi dasar, THD-nya adalah nol. Sama dengan pengukuran distorsi harmonisa pada orde ke-1 untuk tegangan dan arus orde ke-h bahwa  $V_h / V_I$  dan  $I_h / I_I$ . Nilai THD dapat mencapai lebih dari 100%.

Berdasarkan standar dari IEEE Std. 519-1992, terdapat dua kriteria limitasi (batas maksimum) yang digunakan dalam analisis distorsi harmonisa yaitu limitasi untuk distorsi arus yang dijabarkan pada tabel (2.2) sampai dengan tabel (2.4) dan limitasi untuk distorsi tegangan dijabarkan pada tabel (2.5). maksimum distorsi arus dan tegangan memiliki standar nilai yang berbeda berdasarkan pada nilai tegangan sistem. Tabel (2.2) akan memaparkan maksimum distorsi arus berdasarkan IEEE Std 519-1992 untuk sistem 120 V sampai 69 kV, tabel (2.3) akan memaparkan maksimum distorsi arus berdasarkan IEEE Std 519-1992 untuk sistem 69 kV sampai 161 kV, dan tabel (2.4) Maksimum distorsi arus berdasarkan IEEE Std 519-1992 untuk sistem diatas 161 kV.

**Tabel 2.2** Maksimum distorsi arus berdasarkan IEEE Std 519-1992 untuk sistem 120 V sampai 69 kV [5].

| Mak            | Maksimum Distorsi Arus Harmonik dalam Persentase I <sub>L</sub> |              |             |          |      |      |
|----------------|-----------------------------------------------------------------|--------------|-------------|----------|------|------|
|                | I                                                               | ndividual Ha | armonic Ord | er (ODD) |      |      |
| $I_{SC}/I_{L}$ | <11                                                             | 11≤h<17      | 17≤h<23     | 23≤h<35  | 35≤h | TDD  |
| <20*           | 4.0                                                             | 2.0          | 1.5         | 0.6      | 0.3  | 5.0  |
| 20<50          | 7.0                                                             | 3.5          | 2.5         | 1.0      | 0.5  | 8.0  |
| 50<100         | 10.0                                                            | 4.5          | 4.0         | 1.5      | 0.7  | 12.0 |
| 100<1000       | 12.0                                                            | 5.5          | 5.0         | 2.0      | 1.0  | 15.0 |
| >1000          | 15.0                                                            | 7.0          | 6.0         | 2.5      | 1.4  | 20.0 |

**Tabel 2.3** Maksimum distorsi arus berdasarkan IEEE Std 519-1992 untuk sistem 69 kV sampai 161 kV[5].

| Mak            | Maksimum Distorsi Arus Harmonik dalam Persentase I <sub>L</sub> |             |             |           |      |      |
|----------------|-----------------------------------------------------------------|-------------|-------------|-----------|------|------|
|                | I                                                               | ndividual H | armonic Ord | ler (ODD) |      |      |
| $I_{SC}/I_{L}$ | <11                                                             | 11≤h<17     | 17≤h<23     | 23≤h<35   | 35≤h | TDD  |
| <20*           | 2.0                                                             | 1.0         | 0.75        | 0.3       | 0.15 | 2.5  |
| 20<50          | 3.5                                                             | 1.75        | 1.25        | 0.5       | 0.25 | 4.0  |
| 50<100         | 5.0                                                             | 2.25        | 2.0         | 0.75      | 0.35 | 6.0  |
| 100<1000       | 6.0                                                             | 2.75        | 2.5         | 1.0       | 0.5  | 7.5  |
| >1000          | 7.5                                                             | 3.5         | 3.0         | 1.25      | 0.7  | 10.0 |

**Tabel 2.4** Maksimum distorsi arus berdasarkan IEEE Std 519-1992 untuk sistem diatas 161 kV[5].

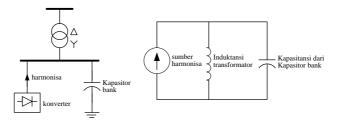
| Maksimum Distorsi Arus Harmonik dalam Persentase I <sub>L</sub> |                                 |         |         |         |      |      |  |  |
|-----------------------------------------------------------------|---------------------------------|---------|---------|---------|------|------|--|--|
|                                                                 | Individual Harmonic Order (ODD) |         |         |         |      |      |  |  |
| $I_{SC}/I_{L}$                                                  | <11                             | 11≤h<17 | 17≤h<23 | 23≤h<35 | 35≤h | TDD  |  |  |
| <50                                                             | 2.0                             | 1.0     | 0.75    | 0.3     | 0.15 | 2.5  |  |  |
| ≥50                                                             | 3.0                             | 1.5     | 1.15    | 0.45    | 0.22 | 3.75 |  |  |

Dengan keterangan bahwa  $I_L$  merupakan arus maksimum beban,  $I_{SC}$  merupakan arus maksimum ketika terjadi hubung singkat,  $I_{SC}$  /  $I_L$  merupakan arus hubung singkat pada *point of common coupling* terhadap arus beban nominal pada frekuensi fundamental, dan TDD merupakan distorsi arus total. Berikut merupakan batas distorsi tegangan berdasarkan IEEE Std 519-1992.

**Tabel 2.5** Batas distorsi tegangan berdasarkan IEEE Std 519-1992 [3].

| Bus Voltage at PCC       | Individual Voltage Distortion (%) | THD (%) |  |
|--------------------------|-----------------------------------|---------|--|
| 69 kV and below          | 3,0                               | 5,0     |  |
| 69,001 kV through 161 kV | 1,5                               | 2,5     |  |
| 161,001 kV and above     | 1,0                               | 1,5     |  |

# 2.3 Pengaruh Harmonisa

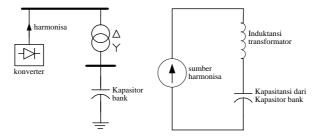

Pengaruh harmonisa pada suatu sistem kelistrikan tergantung pada karakteristik sumber harmonisa, letak sumber harmonisa, dan karakteristik jaringannya. Berikut merupakan beberapa pengaruh dari harmonisa.

#### 2.3.1 Resonansi

Dalam perbaikan faktor daya, kapasitor bank sering digunakan. Namun, ternyata kapasitor bank dapat menimbulkan resonansi yang diikuti dengan kenaikan arus yang sangat besar dan dapat merusak kapasitor itu sendiri. Resonansi terbagi atas dua jenis yaitu resonansi paralel dan resonansi seri. Resonansi paralel dapat terjadi pada beberapa kondisi, salah satunya yaitu ketika sebuah kapasitor duhubungkan dengan busbar yang sama dengan sumber harmonisa (gambar 2.10). Resonansi ini dapat menaikkan tegangan harmonisa dan menghasilkan impedansi yang tinggi pada frekuensi resonansi. Asumsikan sumber harmonisa bersifat induktif, maka frekuensi resonansinya adalah:

$$f_p = f \sqrt{\frac{S_s}{S_c}} \tag{2.26}$$

Dengan  $f_p$  merupakan frekuensi resonansi paralel dan f merupakan frekuensi fundamental dengan satuan Hertz,  $S_s$  merupakan rating hubung singkat sumber dan  $S_c$  adalah rating kapasitor dalam satuan VAR.




Gambar 2.10 Resonansi paralel pada sistem tenaga listrik

Sedangkan resonansi seri dapat terjadi saat sebuah sumber harmonisa terletak pada busbar yang sama dengan sumber impedansi seperti transformator, dan pada *downfeeder* busbar tersebut diletakkan kapasitor bank (gambar 2.11). Akibat dari resonansi seri ini adalah impedansi menjadi sangat kecil sehingga arus kapasitor yang tinggi dapat mengalir untuk tegangan yang relatif kecil. Resonansi seri akan terjadi ketika frekuensi resonansinya seperti berikut:

$$f_p = f \sqrt{\frac{S_t}{S_c Z_t} - \frac{{S_1}^2}{{S_c}^2}}$$
 (2.27)

Dengan  $f_s$  merupakan frekuensi resonansi seri dan f merupakan frekuensi fundamental dengan satuan Hertz,  $S_t$  merupakan rating transformator,  $S_1$ merupakan rating beban, dan  $S_c$  merupakan rating dari kapasitor bank dimana rating-rating tersebut dalam satuan VAR, dan  $Z_t$  adalah impedansi transformator (pu).



Gambar 2.11 Resonansi seri pada sistem tenaga listrik

## 2.3.2 Pengaruh Pada Mesin Induksi

Konduktor pada stator dan rotor mengalami rugi-rugi yang disebabkan oleh resistansi akibat dari arus eddy dan *skin effect*. Adanya harmonisa akan menambah rugi-rugi pada stator dan rotor. Arus harmonisa timbul pada stator mesin AC menghasilkan aksi motor (slip harmonisa positif,  $S_n$ ). Aksi ini menghasilkan torsi shaft pada arah yang sama dengan kecepatan medan harmonisa sehingga semua harmonisa urutan positif membantu putaran torsi shaft sedangkann harmonisa urutan negatif berlaku sebaliknya

## 2.3.3 Pengaruh Pada Transformator

Adanya harmonisa cukup berpengaruh terhadap kondisi transformator. Arus harmonisa meningkatkan arus eddy, rugi-rugi histerisis, dan tekanan isolasi. Pada transformator daya, muncul arus sirkulasi *triplen* urutan nol pada belitan delta, dan arus sirkulasi ini dapat melebihi batas kemampuan belitan. Selain itu, arus beban yang mengandung komponen DC pada transformator yang men*supply* beban tidak seimbang dapat mengakibatkan kejenuhan pada rangkaian magnetic transformator dan meningkatkan level komponen harmonisa dari arus penguatan ac.

Pada transformator converter, rugi-rugi tembaga akibat arus harmonisa lebih nyata. Hal ini terjadi karena transformator tersebut tidak terpengaruh oleh adanya filter yang biasanya dihubungakn pada sisi sistem ac. Transformator converter juga sering menimbulkan titik panas pada tangkinya.

# 2.3.4 Pengaruh Pada Kapasitor Bank

Besarnya rugi daya pada kapasitor bank akibat adanya distorsi tegangan dapat dirumuskan pada persamaan (2.28) berikut :

$$P_{loss} = \sum_{n=1}^{\infty} C(tan\delta)\omega_n V_n^2$$
 (2.28)

Dimana  $tan\delta = \frac{R}{1/\omega c}$  marupakan faktor rugi,  $\omega_n = 2\pi f_n$  dimana  $f_n$  adalah frekuensi harmonisa pada orde ke-n, dan  $V_n$  adalah tegangan harmonisa pada orde ke-n. sedangkan total daya reaktifnya adalah

$$O = \sum_{n=1}^{\infty} O_n \tag{2.29}$$

Terjadinya resonansi seri dan paralel antara kapasitor dengan sistem dapat menyebabkan tegangan lebih dan dapat meningkatkan rugirugi serta panas lebih pada kapasitor sehingga mengakibatkan kerusakan pada kapasitor tersebut.

#### 2.3.5 Pengaruh Pada Rele Pengaman

Harmonisa dapat mempengaruhi rele pengaman dengan karakteristik operasi tertentu. Rele digital *zero crossing* cenderung mengalami error ketika ada distorsi harmonisa. Sedangkan efek frekuensi harmonisa terdapat pada pengukuran impedansi yang menyebabkan kesalahan pengukuran dari rele jarak, karena rele jarak di*setting* berdasarkan impedansi fumdamental dari saluran transmisi.

#### 2.4 Desain Filter

Filter harmonisa hadir sebagai pereduksi amplitudo frekuensi tertentu dari sebuah tegangan atau arus agar penyebaran arus harmonisa ke seluruh jaringan dapat diminimalisir. Selain itu filter harmonisa juga digunakan untuk menyediakan sebagian daya reaktif yang dikonsumsi oleh sumber harmonic atau beban-beban lainnya. Terdapat dua macam filter harmonisa yaitu filter aktif dan filter pasif [4].

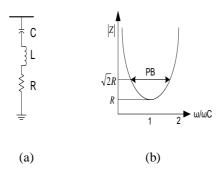
Untuk mereduksi harmonisa, filter aktif memiliki prinsip kerja membangkitkan arus atau tegangan yang sesuai dengan bentuk sinyal harmonisa pada sistem namun berbeda fasa 180° sehingga penjumlahan total sama dengan nol. Peralatan *switching* yang digunakan pada filter aktif dapat berupa mosfet, IGBT (*Insulated Gate Bipolar Transistor*), transistor daya, trafo GTO, dan PWM (*Pulse Width Modulaton*).

Filter pasif tersusun dari komponen pasif seperti induktor, kapasitor, dan resistor. Secara sederhana, filter pasif dapat dikatakan sebagai "jalan" yang akan dilewati harmonisa agar harmonisa tidak lewat pada sistem atau beban lain yang dapat menyebabkan terganggunya sesitem. Filter pasif banyak digunakan pada industri. Filter pasif bekerja untuk mengurangi amplitudo dari satu atau lebih frekuensi tertentu pada sebuah tegangan atau arus dengan cara menyediakan jalur dengan impedansi rendah pada frekuensi harmonisa. Namun terdapat beberapa kelemahan pada filter ini yaitu ketergantungannya terhadap impedansi sumber sistem tenaga, frekuensi sistem, dan toleransi komponen. Secara umum, filter pasif dapat dibedakan dalam beberapa jenis, diantaranya

yaitu filter dengan penalaan tunggal (Single Tuned Filter), filter dengan penalaan ganda (Double Tuned Filter), dan High Pass Damp Filter.

**Filter dengan penalaan tunggal** adalah filter yang menala salah satu orde harmonik. Filter ini terdiri dari rangkaian seri kapasitor, reaktor dan resistor (RLC). Impedansi dari rangkaian Gambar 2.17.a. dinyatakan dalam persamaan,

$$Z_F = R + j(\omega_r L - \frac{1}{\omega_r C}) \tag{2.30}$$


Jika frekuensi sudut saat resonansi adalah

$$\omega_r = 2\pi f_0 h_r \tag{2.31}$$

Dimana  $h_r$ merupakan orde harmonisa, maka saat resonansi terjadi dimana nilai reaktansi induktif dan reaktansi kapasitif sama besar, maka dapat diperoleh impedansi dari *single tuned filter* seperti pada persamaan (2.32) berikut

$$Z_F = R \tag{2.32}$$

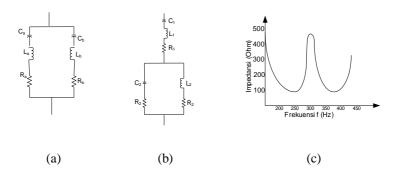
Rangkaian filter ini mempunyai impedansi yang rendah pada frekuensi resonansinya. *Single tuned filter* yang diletakkan secara paralel akan men-*short circuit*-kan arus harmonisa yang berada dekat dengan sumber distorsi. Kualitas atau *Quality Factor* (Q) sebuah filter ditentukan dari ketajaman pada penalaannya. Filter dengan Q yang tinggi ditala secara tajam pada satu frekuensi harmonik yang rendah (contohnya ke-5) dan nilai yang umum diantara 30 sampai 60. Filter dengan Q yang rendah biasanya bernilai antara 0,5 sampai 5 memiliki impedansi yang rendah pada jangkauan frekuensi yang lebar.



**Gambar 2.12** (a) Rangkaian Filter Penalaan Tungggal, (b) Grafik Impedansi Filter Terhadap Frekuensi

Faktor kualitas (Q) filter didefenisikan sebagai perbandingan antara induktansi (atau kapasitansi) pada saat resonansi dengan besarnya resistansi.

$$Q = \frac{X_0}{R} \tag{2.33}$$


dengan  $X_L = X_C = X_O$  pada keadaan resonansi.

Seperti yang telah ditunjukkan dalam Gambar (2.17.b) Pass Band (PB) dari filter didefeniskan sebagai batas frekuensi filter sama dengan resistansinya yaitu sudut impedansinya  $45^{\circ}$  dan besarnya impedansi sama dengan  $\sqrt{2R}$ . Sedangkan hubungan faktor kualitas dan Pass Band (PB) dinyatakan sebagai :

$$Q = \frac{\omega_0}{p_R} \tag{2.34}$$

dengan  $\omega_0$  adalah frekuensi sudut panalaan dalam rad/sec. *Single tuned filter* yang merupakan hubungan seri dari komponen R, L, dan C memberikan keuntungan bagi sistem tenaga listrik, yaitu mampu mereduksi harmonisa, memperbaiki faktor daya, serta induktornya yang berfungsi sebagai filter dapat melindungi kapasitor dari *over capacitance* akibat adanya resonansi.

**Filter Dengan Penalaan Ganda** memiliki nilai impedansi ekivalen dari dua buah filter penalaan tunggal dengan frekuensi resonansi yang berdekatan seperti pada gambar (2.18.a). Dalam prakteknya, filter tersebut sama dengan konfigurasi sebuah filter penalaan ganda yang ditunjukkan pada Gambar (2.18.b.)



Gambar 2.13 Rangkaian Filter Penalaan Ganda. (a) Transformasi Dari Dua Filter Penalaan Tunggal, (b) Filter Penalaan Ganda, (c) Filter Penalaan Ganda Ditala Orde Lima dan Tujuh

Bila dibandingkan dengan filter penalaan tunggal, penggunaan filter penalaan ganda memiliki kelebihan dapat meredam lebih dari satu orde frekuensi, namun kelemahannya adalah bila salah satu komponennya rusak entah komponen L atau komponen C maka filter tersebut menjadi tidak dapat digunakan sama sekali. Sehingga bisa dikatakan bahwa filter penalan tunggal masih lebih andal bila dibandingkan dengan filter penalaan ganda.

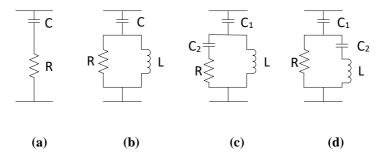
Adapun untuk perhitungan hubungan antara komponen dalam rangkaian filter penalaan ganda ini adalah sebagai berikut:

$$C_1 = C_a + C_b \tag{2.35}$$

$$C_2 = \frac{c_a c_b (c_a + c_b)(L_a + L_b)^2}{(L_a c_a - L_b c_b)^2}$$

$$L_1 = \frac{L_a L_b}{L_a + L_b}$$
(2.36)
(2.37)

$$L_1 = \frac{L_a L_b}{L_a + L_b} \tag{2.37}$$


$$L_2 = \frac{(L_a C_a - L_b C_b)^2}{(C_a + C_b)^2 (L_a + L_b)^2}$$
 (2.38)

$$\begin{split} R_2 &= R_a \left[ \frac{a^2 (1 - X^2)}{(1 + a X^2)^2 (1 + X^2)} \right] + R_b \left[ \frac{1 - X^2}{(1 + a X^2)^2 (1 + X^2)} \right] + R_1 \left[ \frac{(1 - X^2) (1 - a X^2)}{(1 + a X^2)^2 (1 + X^2)} \right] \\ &\qquad (2.39) \end{split}$$

dimana 
$$a = \frac{C_a}{C_b} \operatorname{dan} X = \sqrt{\frac{L_b C_b}{L_a C_a}}$$
 (2.40)

*High pass damped filter* memilki beberapa sifat, yaitu kurang peka terhadap perubahan suhu, perubahan frekuensi, toleansi komponen dari pabrik dan rugi-rugi dari kapasitor. Selain itu, high pass damped filter memebuat impedansi yang rendah untuk spektrum frekuensi harmonik yang lebar tanpa memerlukan pembagian cabang-cabang paralel yang meningkatkan permasalahan switching dan perawatan.

Terdapat empat jenis damped filter seperti yang ditunjukkan pada Gambar (2.14) vaitu damped filter orde satu, orde dua, orde tiga dan jenis damped filter tipe C. Berikut merupakan gambar dan keterangan dari masing-masing jenis high pass damped filter.



**Gambar 2.14** *High Pass Damped Filter*. (a.) Orde Satu; (b.) Orde Dua; (c.) Orde Tiga; (d.) Tipe C

- a) Filter orde satu tidak biasa digunakan, jenis ini akan memerlukan kapasitor yang besar dan akan terjadi kerugian daya yang berlebihan pada frekuensi dasarnya.
- b) Filter orde dua memberi unjuk kerja yang baik tetapi memiliki rugi-rugi yang lebih besar pada frekuensi fundamental dibandingkan dengan filter damped orde tiga.
- c) Filter orde tiga mempunyai keunggulan dibanding filter damped orde dua yaitu mampu mengurangi rugi-rugi pada frekuensi fundamental yang disebabkan oleh naiknya impedansi pada frekuensi tersebutkarena kehadiran C<sub>2</sub>. Apalagi rating dari C<sub>2</sub> adalah sangat kecil dibandingkan dengan kapasitor C<sub>1</sub>.

Keandalan dari filter jenis C berada diantara filter orde dua dan filter orde tiga. Kelebihan filter damped jenis C adalah mampu mengurangi rugi-rugi yang besar pada frekuensi fundamental ketika C2 dan L ditala secara seri pada frekuensi tersebut. Filter ini lebih mudah terpengaruh penyimpangan (deviasi) frekuensi fundamental dan pergeseran nilai komponen.

Kelemahan dari damped filter diantaranya adalah untuk mendapatkan level keandalan filter yang sama damped filter memerlukan perencanaan VA rating fundamental yang lebih tinggi. Meskipun dalam kebanyakan kasus keandalan filter yang bagus didapat pada batas yang dibutuhkan untuk perbaikan faktor daya. Pada damped filter rugi-rugi resistor dan reaktansi umumnya bernilai lebih besar.

Komponen-komponen pada filter pasif memiliki perannya masingmasing. Untuk mencegah kerusakan komponen R, L, dan C pada filter pasif, rating dari komponen harus didasarkan pada beberapa kondisi, yaitu tegangan *fundamental* tertinggi, keberadaan frekuensi tertinggi, arus harmonisa dari sumber-sumber lain, serta dari resonansi yang mungkin terjadi antara filter dan sistem AC.

Kapasitor tersusun dari unit standar yang dihubungkan seri dan/atau paralel untuk memperoleh rating tegangan dan KVA yang diinginkan. Hal-hal pokok dari kapasitor adalah :

- a. Koefisien suhu dari komponen kapasitor.
- b. Daya reaktif per unit volume.
- c. Rugi-rugi daya.
- d. Reliability.
- e. Harga.

Kapasitor mendapatkan daya reaktif yang besar per unit volume dengan cara memiliki losses yang rendah dan dengan dioperasikan pada tegangan tinggi. Untuk alasan ini maka operasi yang lama pada tegangan lebih harus dihindari untuk mencegah terjadinya kerusakan dielektrik akibat panas. Rating daya reaktif kapasitor adalah penjumlahan daya reaktif pada masing-masing frekuensi yang diinginkan.

Induktor yang digunakan dalam rangkaian filter dirancang mampu menahan selubung frekuensi tinggi di antara efek kulit dan rugirugi histerisis harus dimasukkan dalam perhitungan rugi-rugi daya. Begitu juga efek dari level fluks dari inti besi, yaitu penalaan ulang yang disebabkan oleh magnetisasi yang tidak linier sehingga harus dipertimbangkan. Komponen induktor pada filter lebih baik dirancang dengan inti nonmagnetic. Rating induktor tergantung pada arus rms maksimum dan pada level isolasi yang dibutuhkan agar tahan terhadap surja hubung. Umumnya R dan L ditempatkan di bagian bawah dari filter.

# 2.5 Penerapan Filter Harmonisa

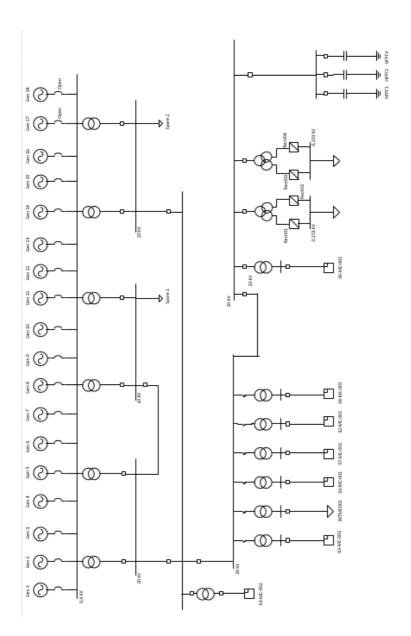
Pernah diusulkan perancangan filter pasif untuk mengatasi harmonisa pada gardu penyearahan pusat listrik aliran atas pada PT.KAI Commuter Jabodetabek Indonesia yang mengatasi harmonisa akibat penyearah 6 pulsa dan 12 pulsa dengan menala frekuensi harmonisa ke-11 dan dapat menurunkan nilai distorsi arus dari 25,36% menjadi 0,91% untuk penyearah 6 pulsa dan dari 11,64% menjadi 0,43% untuk penyearah 12 pulsa. Perancangan filter pasif tersebut menggunakan simulasi

Simulink Matlab dengan perhitungan bank kapasitor sebagai perbaikan faktor daya dan pemilihan filter jenis reaktor yang kemudian dipasang seri dengan kapasitor untuk menala frekuensi harmonisa.

Ada pula usulan filter aktif untuk mereduksi harmonisa pada penyearah jembatan tiga fasa tak terkonrol menggunakan filter aktif yang dikontrol dengan PI (*proportional integral*) *controller*. Filter ini berhasil menurunkan tingkat THD (*toral harmonic distortion*) arus dari 22,9% menjadi 3,1% dan untuk tegangan dari 4,4% menjadi 0,84%.

Halaman ini sengaja dikosongkan

#### **BAB III**


# SISTEM KELISTRIKAN PT. BATUTUA TEMBAGA RAYA

### 3.1 Sistem Kelistrikan PT. Batutua Tembaga Raya

PT. Batutua Tembaga Raya mulai mengoperasikan pabrik 25 KT pada bulan Juli 2016. Sumber listrik pada perusahaan ini didapat dari 16 buah generator dan kini sedang dalam perencanaan penambahan dua buah generator dengan kapasitas masing-masing 0,97 MW seperti pada gambar (3.1) dan selengkapnya dilampirkan pada Lampiran 1. Berdasarkan pengumpulan data yang dilakukan pada *plant* PT. Batutua Tembaga Raya, Wetar, Maluku, maka dapat disampaikan bahwa sistem kelistrikan yang meliputi pembangkit dan bus dalam seluruh *plant* seperti pada table (3.1) dan (3.2) berikut.

Tabel 3.1 Data Kapasitas Pembangkit di PT. Batutua Tembaga Raya

| ID     | Rati | ing | Mode Operesi    | %PF |
|--------|------|-----|-----------------|-----|
| ID     | kV   | MW  | Mode Operasi    | %FF |
| Gen 1  | 0,4  | 1,2 | Swing           | 90  |
| Gen 2  | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 3  | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 4  | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 5  | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 6  | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 7  | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 8  | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 9  | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 10 | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 11 | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 12 | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 13 | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 14 | 0,4  | 1,2 | Voltage Control | 90  |
| Gen 15 | 0,4  | 1,2 | Swing           | 90  |
| Gen 16 | 0,4  | 1,2 | Swing           | 90  |
| Gen 17 | 0,4  | 1,2 | (Future)        | 90  |
| Gen 18 | 0,4  | 1,2 | (Future)        | 90  |



Gambar 3.1 Kelistrikan di PT. Batutua Tembaga Raya

Tabel 3.2 Data Bus dan Rating Tegangan

| No | ID Bus        | Tegangan (kV) |  |
|----|---------------|---------------|--|
| 1  | 32-MC-001     | 0,4           |  |
| 2  | 32KTMC001     | 0,4           |  |
| 3  | 32MC002       | 1             |  |
| 4  | 33MC001       | 0,4           |  |
| 5  | 34-MC-001     | 0,4           |  |
| 6  | 36MC001 BUS A | 0,4           |  |
| 7  | 36MC001 BUS B | 0,4           |  |
| 8  | 36MC001 BUS C | 0,4           |  |
| 9  | 36SB001       | 20            |  |
| 10 | 37-MC-001     | 0,4           |  |
| 11 | 63MC002       | 0,4           |  |
| 12 | Bus4          | 0,4           |  |
| 13 | Bus5          | 0,4           |  |
| 14 | Bus8          | 20            |  |
| 15 | Bus10         | 0,4           |  |
| 16 | Bus18         | 20            |  |
| 17 | Bus21         | 0,153         |  |
| 18 | Bus34         | 0,4           |  |
| 19 | Bus76         | 0,4           |  |
| 20 | Bus90         | 20            |  |
| 21 | Bus91         | 0,4           |  |
| 22 | Bus95         | 0,153         |  |
| 23 | Bus96         | 20            |  |
| 24 | Bus97         | 0,4           |  |
| 25 | Bus99         | 20            |  |
| 26 | Bus100        | 0,153         |  |
| 27 | Bus101        | 0,153         |  |
| 28 | Bus102        | 20            |  |
| 29 | Bus103        | 0,4           |  |
| 30 | Bus104        | 20            |  |
| 31 | POLE 37B      | 20            |  |
| 32 | PS HV SWGR    | 20            |  |

Terdapat dua jenis transformator yang digunakan di PT. Batutua Tembaga Raya, yaitu transformator daya dan transformator konverter. Transformator daya yang digunakan untuk menyalurkan daya listrik dari tegangan tinggi ke tegangan rendah dan sebaliknya menggunakan jenis transformator dua belitan. Sedangkan transformator konverter yang digunakan untuk mengalirkan daya sekaligus mengubah listrik AC menjadi DC menggunakan transformator jenis tiga belitan. Data dari transformator tersebut dijabarkan dalam tabel (3.3) berikut.

Tabel 3.3 Data Transformator PT. Batutua Tembaga Raya

| ID        | Rating Daya (MVA) | Rating Tegangan (kV) |
|-----------|-------------------|----------------------|
| PS-TX-001 | 3,15              | 0,4/20               |
| PS-TX-002 | 3,15              | 0,4/20               |
| PS-TX-003 | 3,15              | 0,4/20               |
| PS-TX-004 | 3,15              | 0,4/20               |
| PS-TX-005 | 3,15              | 0,4/20               |
| PS-TX-006 | 3,15              | 0,4/20               |
| T1        | 1,25              | 20/0,4               |
| 63TX001   | 0,5               | 20/0,4               |
| 3KTTX01   | 1,6               | 20/0,4               |
| 33TX01    | 1                 | 20/0,4               |
| 37TX001   | 2,5               | 20/0,4               |
| 32TX001   | 1,6               | 20/0,4               |
| 34TX001   | 1,25              | 20/0,4               |
| 36TX01    | 1,6               | 20/0,4               |
| 32TX002   | 0,63              | 0,4/1                |
| 36TXRE001 | 5,2               | 20/1,53/1,53         |
| 36TXRE002 | 5,2               | 20/1,53/1,53         |

# 3.2 Beban di PT. Batutua Tembaga Raya

Ada beberapa tahapan yang dilakukan pada PT. Batutua Tembaga Raya dalam mengolah bijih tembaga menjadi logam tembaga. Tahapan tersebut terdiri dari tahap kominisi berupa penggerusan untuk membebaskan mineral tembaga, tahap konsentrasi flotasi berupa pemisahan mineral dan konsentrasi, proses matte smelting berupa peleburan konsentrat tembaga menjadi lelehan, tahap fire refining berupa

proses pemurnian tembaga, tahap *cathode stripping* untuk pelapisan tembaga, dan tahap electrowinning berupa pelarutan tembaga yang akan menghasilkan logam tembaga. Berdasarkan gambar (3.1), dapat dilihat bahwa beb berupa motor listrik dan peralatan lainnya dikelompokkan dalam *network* sesuai dengan lokasi dan fungsinya.

Untuk menunjang proses pengolahan tembaga tersebut, perusahaan ini memiliki berbagai macam peralatan yang bekerja terusmenerus dengan fungsinya masing-masing. Peralatan-peralatan tersebut berada pada tegangan rendah 0,4 kV dan 1 kV. Tabel (3.4) berikut merupakan data beban di PT. Batutua Tembaga Raya.

Tabel 3.4 Beban di PT. Batutua Tembaga Raya

| No   | ID            | Kapasitas | kV    | Keterangan  |
|------|---------------|-----------|-------|-------------|
| 1    | CAMP Feeder   | 750 kVA   | 20    | Tidak Aktif |
| 2    | 3KTMC001      | 1440 kW   | 20    | Aktif       |
| 3    | Charger01     | 1900 kVA  | 0,153 | Aktif       |
| 4    | Charger02     | 1900 kVA  | 0,153 | Aktif       |
| 5    | Charger03     | 1900 kVA  | 0,153 | Aktif       |
| 6    | Charger04     | 1900 kVA  | 0,153 | Aktif       |
| Netw | ork 63-MC-001 |           |       |             |
| No   | ID            | Kapasitas | kV    | Keterangan  |
| 1    | 63PP003       | 185 kW    | 0,4   | Aktif       |
| 2    | 63-PP-002     | 185 kW    | 0,4   | Tidak Aktif |
| 3    | 63DB001       | 31 kVA    | 0,4   | Aktif       |
| Netw | ork 33-MC-001 |           |       |             |
| No   | ID            | Kapasitas | kV    | Keterangan  |
| 1    | 33AB008       | 11 kW     | 0,4   | Aktif       |
| 2    | 33AB009       | 11 kW     | 0,4   | Aktif       |
| 3    | 33AB010       | 11 kW     | 0,4   | Aktif       |
| 4    | 33AB011       | 11 kW     | 0,4   | Aktif       |
| 5    | 33AB012       | 11 kW     | 0,4   | Aktif       |
| 6    | 33PP001       | 185 kW    | 0,4   | Aktif       |
| 7    | 33PP002       | 90 kW     | 0,4   | Aktif       |
| 8    | 33PP003       | 185 kW    | 0,4   | Aktif       |
| 9    | 33PP004       | 90 kW     | 0,4   | Aktif       |
| 10   | 33PP012       | 45 kW     | 0,4   | Aktif       |
| 11   | 33PP013       | 90 kW     | 0,4   | Tidak Aktif |

Tabel 3.4 (Lanjutan) Beban di PT. Batutua Tembaga Raya

| No   | ID            | Kapasitas | kV  | Keterangan  |
|------|---------------|-----------|-----|-------------|
| 12   | 33PP014       | 75 kW     | 0,4 | Aktif       |
| 13   | 33DB001       | 50 kVA    | 0,4 | Aktif       |
| 14   | 33DB002       | 25 kVA    | 0,4 | Aktif       |
| 15   | CAP2          | 100 kVAR  | 0,4 | Aktif       |
| Netw | ork 37-MC-001 |           |     |             |
| No   | ID            | Kapasitas | kV  | Keterangan  |
| 1    | 34PP005       | 30 kW     | 0,4 | Aktif       |
| 2    | 34PP006       | 30 kW     | 0,4 | Tidak Aktif |
| 3    | 37AB001       | 122 kVA   | 0,4 | Aktif       |
| 4    | 37AB002       | 122 kVA   | 0,4 | Tidak Aktif |
| 5    | 37AC001       | 61 kVA    | 0,4 | Aktif       |
| 6    | 37AC002       | 61 kVA    | 0,4 | Tidak Aktif |
| 7    | 37AG01        | 22 kW     | 0,4 | Aktif       |
| 8    | 37AG02        | 22 kW     | 0,4 | Aktif       |
| 9    | 37AG03        | 55 kW     | 0,4 | Aktif       |
| 10   | 37AG04        | 55 kW     | 0,4 | Aktif       |
| 11   | 37AG05        | 55 kW     | 0,4 | Aktif       |
| 12   | 37AG06        | 55 kW     | 0,4 | Aktif       |
| 13   | 37AG07        | 22 kW     | 0,4 | Aktif       |
| 14   | 37FL001       | 26 kVA    | 0,4 | Aktif       |
| 15   | 37HT001       | 31,8 kVA  | 0,4 | Aktif       |
| 16   | 37PP003       | 22 kW     | 0,4 | Aktif       |
| 17   | 37PP004       | 22 kW     | 0,4 | Aktif       |
| 18   | 37PP005       | 11 kW     | 0,4 | Aktif       |
| 19   | 37PP006       | 11 kW     | 0,4 | Aktif       |
| 20   | 37PP007       | 30 kW     | 0,4 | Aktif       |
| 21   | 37PP008       | 30 kW     | 0,4 | Tidak Aktif |
| 22   | 37PP009       | 11 kW     | 0,4 | Aktif       |
| 23   | 37PP010       | 15 kW     | 0,4 | Aktif       |
| 24   | 37PP011       | 15 kW     | 0,4 | Aktif       |
| 25   | 37PP012       | 200 kW    | 0,4 | Aktif       |
| 26   | 37PP013       | 200 kW    | 0,4 | Tidak Aktif |
| 27   | 37PP014       | 7,5 kW    | 0,4 | Aktif       |
| 28   | 37PP015       | 200 kW    | 0,4 | Aktif       |
| 29   | 37PP016       | 200 kW    | 0,4 | Tidak Aktif |

Tabel 3.4 (Lanjutan) Beban di PT. Batutua Tembaga Raya

| No   | ID           |          | Kapasita         | S     | kV   |      | Keterangan  |
|------|--------------|----------|------------------|-------|------|------|-------------|
| 30   | 37PP017      |          | 7,5 kW           |       | 0,4  |      | Aktif       |
| 31   | 37PP018      | 37PP018  |                  |       | 0,4  |      | Aktif       |
| 32   | 37PP023      |          | 7,5 kW<br>5,5 kW |       | 0,4  |      | Aktif       |
| 33   | 37PP024      |          | 5,5 kW           |       | 0,4  |      | Tidak Aktif |
| 34   | 37PP025      |          | 15 kW            |       | 0,4  |      | Aktif       |
| 35   | 37PP026      |          | 15 kW            |       | 0,4  |      | Aktif       |
| 36   | 37PP027      |          | 55 kW            |       | 0,4  |      | Aktif       |
| 37   | 37PP028      |          | 18,5 kW          |       | 0,4  |      | Aktif       |
| 38   | 37TH001      |          | 7,5 kW           |       | 0,4  |      | Aktif       |
| 39   | 37XM001      |          | 55 kVA           |       | 0,4  |      | Aktif       |
| 40   | 37DB001      |          | 50 kVA           |       | 0,4  |      | Aktif       |
| 41   | 37DB002      |          | 20 kVA           |       | 0,4  |      | Aktif       |
| 42   | 37DB003      |          | 10 kVA           |       | 0,4  |      | Aktif       |
| 43   | 42CP005      |          |                  |       | 0,4  |      | Aktif       |
| 44   | 42CP006      |          | 30 kVA           |       | 0,4  |      | Aktif       |
| 45   | 42CP007      |          | 0,24 kVA         |       | 0,4  |      | Aktif       |
| 46   | 42PP015      | 42PP015  |                  | 22 kW |      |      | Aktif       |
| 47   | 42PP016      |          |                  | 22 kW |      |      | Aktif       |
| 48   | 37ML001/1    |          | 6x55 kW          |       | 0,4  |      | Aktif       |
| 49   | 48CP001      |          |                  |       | 0,4  |      | Aktif       |
| 50   | 63PP001      |          | 30 kW            |       | 0,4  |      | Aktif       |
| 51   | 63PP002      |          | 30 kW            |       | 0,4  |      | Tidak Aktif |
| 52   | 37PF001      |          | 300 kVA          | R     | 0,4  |      | Aktif       |
| 53   | 37UP001      |          | 4 kW             |       | 0,4/ | 0,23 | Aktif       |
| Netv | vork 32MC001 |          |                  |       |      |      |             |
| No   | ID           | K        | apasitas         | kV    |      | Kete | erangan     |
| 1    | JW1150       | 11       | 10 kW            | 0,4   |      | Akt  | if          |
| 2    | CQ400EA      | 220 kW   |                  | 0,4   |      | Akt  | if          |
| 3    | CQ400EB      | 220 kW   |                  | 0,4   |      | Akt  | if          |
| 4    | SM2072E-A    | 90 kW    |                  | 0,4   |      | Akt  | if          |
| 5    | SM2072E-B    | 90 kW    |                  | 0,4   |      | Akt  | if          |
| 6    | 32PF001      | 300 kVAR |                  | 0,4   |      | Akt  | if          |
| 7    | 32AGG01      | 45       | 5 kW             | 0,4   |      | Akt  | if          |
| 8    | 32GH001      | 18       | 30 kVA           | 1     |      | Akt  | if          |
| 9    | 32GH002      | 18       | 30 kVA           | 1     |      | Akt  | if          |

Tabel 3.4 (Lanjutan) Beban di PT. Batutua Tembaga Raya

| Netw | ork 34MCOO1 |           |        |             |
|------|-------------|-----------|--------|-------------|
| No   | ID          | Kapasitas | kV     | Keterangan  |
| 1    | 34AB001     | 45 kW     | 0,4    | Aktif       |
| 2    | 34AB002     | 45 kW     | 0,4    | Aktif       |
| 3    | 34AB003     | 45 kW     | 0,4    | Aktif       |
| 4    | 34AB004     | 45 kW     | 0,4    | Aktif       |
| 5    | 34AB005     | 45 kW     | 0,4    | Aktif       |
| 6    | 34AB006     | 45 kW     | 0,4    | Aktif       |
| 7    | 34AB007     | 45 kW     | 0,4    | Aktif       |
| 8    | 34PP002     | 132 kW    | 0,4    | Aktif       |
| 9    | 34PP003     | 132 kW    | 0,4    | Tidak Aktif |
| 10   | 34PP007     | 37 kW     | 0,4    | Aktif       |
| 11   | 34PP008     | 37 kW     | 0,4    | Tidak Aktif |
| 12   | 34PP010     | 185 kW    | 0,4    | Aktif       |
| 13   | 34PP011     | 185 kW    | 0,4    | Tidak Aktif |
| 14   | 42PP001     | 22 kW     | 0,4    | Aktif       |
| 15   | 42PP002     | 22 kW     | 0,4    | Tidak Aktif |
| 16   | 42CP002     | 95 kVA    | 0,4    | Aktif       |
| 17   | 42CP003     | 0,7 kVA   | 0,4    | Aktif       |
| 18   | OTI1        | 1,3 kVA   | 0,4    | Aktif       |
| 19   | 34DB001     | 50 kVA    | 0,4    | Aktif       |
| 20   | 34DB002     | 25 kVA    | 0,40,4 | Aktif       |
| 21   | 34PF001     | 300 kVAR  | 0,40,4 | Aktif       |
| Netw | ork 36MC001 |           |        |             |
| No   | ID          | Kapasitas | kV     | Keterangan  |
| 1    | 35AB001     | 15 kW     | 0,4    | Aktif       |
| 2    | 35AG001     | 22 kW     | 0,4    | Aktif       |
| 3    | 35AG002     | 4 kW      | 0,4    | Aktif       |
| 4    | 35AG003     | 22 kW     | 0,4    | Aktif       |
| 5    | 35AG004     | 4 kW      | 0,4    | Aktif       |
| 6    | 35AG005     | 22 kW     | 0,4    | Aktif       |
| 7    | 35AG006     | 4 kW      | 0,4    | Aktif       |
| 8    | 35AG007     | 22 kW     | 0,4    | Aktif       |
| 9    | 35AG008     | 4 kW      | 0,4    | Aktif       |
| 10   | 35AG009     | 22 kW     | 0,4    | Aktif       |
| 11   | 35AG010     | 4 kW      | 0,4    | Aktif       |

Tabel 3.4 (Lanjutan) Beban di PT. Batutua Tembaga Raya

| No | ID      | Kapasitas | kV  | Keterangan  |
|----|---------|-----------|-----|-------------|
| 12 | 35AG011 | 2,2 kW    | 0,4 | Aktif       |
| 13 | 35AG012 | 3 kW      | 0,4 | Aktif       |
| 14 | 35CP002 | 30 kVA    | 0,4 | Aktif       |
| 15 | 35PP001 | 7,5 kW    | 0,4 | Aktif       |
| 16 | 35PP002 | 7,5 kW    | 0,4 | Tidak Aktif |
| 17 | 35PP003 | 1,1 kW    | 0,4 | Aktif       |
| 18 | 35PP004 | 1,1 kW    | 0,4 | Tidak Aktif |
| 19 | 35PP005 | 55 kW     | 0,4 | Aktif       |
| 20 | 35PP006 | 55 kW     | 0,4 | Tidak Aktif |
| 21 | 35PP008 | 2,2 kW    | 0,4 | Aktif       |
| 22 | 35PP009 | 5,5 kW    | 0,4 | Aktif       |
| 23 | 35PP010 | 5,5 kW    | 0,4 | Aktif       |
| 24 | 35PP011 | 5,5 kW    | 0,4 | Aktif       |
| 25 | 35PP012 | 5,5 kW    | 0,4 | Aktif       |
| 26 | 35PP013 | 1,1 kW    | 0,4 | Aktif       |
| 27 | 35PP014 | 10 kW     | 0,4 | Aktif       |
| 28 | 35PP015 | 0,75 kW   | 0,4 | Aktif       |
| 29 | 35CP001 | 10 kVA    | 0,4 | Aktif       |
| 30 | 35PP016 | 1,1 kW    | 0,4 | Aktif       |
| 31 | 35PP017 | 1,1 kW    | 0,4 | Aktif       |
| 32 | 35PP018 | 5,5 kW    | 0,4 | Aktif       |
| 33 | 36HT001 | 12 kVA    | 0,4 | Aktif       |
| 34 | 36HT002 | 12 kVA    | 0,4 | Aktif       |
| 35 | 36PF001 | 250 kVAR  | 0,4 | Aktif       |
| 36 | 36PP007 | 10 kW     | 0,4 | Aktif       |
| 37 | 36PP008 | 30 kW     | 0,4 | Aktif       |
| 38 | 36PP011 | 5,5 kW    | 0,4 | Aktif       |
| 39 | 36PP012 | 5,5 kW    | 0,4 | Aktif       |
| 40 | 36PP013 | 5,5 kW    | 0,4 | Aktif       |
| 41 | 36CP003 | 7 kVA     | 0,4 | Aktif       |
| 42 | 36CP002 | 67 kVA    | 0,4 | Aktif       |
| 43 | 36DB001 | 62,5 kVA  | 0,4 | Aktif       |
| 44 | 36DB002 | 25 kVA    | 0,4 | Aktif       |
| 45 | 36DB003 | 12,5 kVA  | 0,4 | Aktif       |
| 46 | 36DB005 | 25 kVA    | 0,4 | Aktif       |

Tabel 3.4 (Lanjutan) Beban di PT. Batutua Tembaga Raya

| No | ID      | Kapasitas | kV  | Keterangan  |
|----|---------|-----------|-----|-------------|
| 47 | 36RE001 | 37,5 kVA  | 0,4 | Aktif       |
| 48 | 36RE002 | 37,2 kVA  | 0,4 | Aktif       |
| 49 | 36BC001 | 2,5 kVA   | 0,4 | Aktif       |
| 50 | 42AC001 | 55,6 kVA  | 0,4 | Aktif       |
| 51 | 42AC002 | 55,6 kVA  | 0,4 | Tidak Aktif |
| 52 | 36UP001 | 5 kVA     | 0,4 | Aktif       |
| 53 | 36PP001 | 45 kW     | 0,4 | Aktif       |
| 54 | 36PP002 | 45 kW     | 0,4 | Aktif       |
| 55 | 36RE003 | 100 kVA   | 0,4 | Aktif       |
| 56 | 36RE004 | 100 kVA   | 0,4 | Aktif       |

# 3.3 Harmonisa pada Sistem Kelistrikan PT. Batutua Tembaga Raya

Konverter 12 pulsa memiliki kontribusi besar pada distorsi harmonisa yang terjadi di PT. Batutua Tembaga Raya sehingga *Total Harmonic Distortion* (THD) arus dan tegangan melebihi standar IEEE 519-1992. Konverter 12 pulsa digunakan untuk menyearahkan listrik AC menjadi DC. Selanjutnya listrik DC tersebut digunakan untuk mencatu alat pelebur tembaga serta beberapa proses lainnya seperti ekstraksi untuk mengubah ion hidrogen pada tembaga, *electrowinning* untuk pembentukan solid metal, dan netralisasi. Adanya proses *switching* dalam proses penyearahan listrik ini menyebabkan terjadinya gangguan harmonisa. Tabel (3.5) berikut menyajikan data converter pada PT. Batutua Tembaga Raya

Tabel 3.5 Data Konverter di PT. Batutua Tembaga Raya

| ID      | Rat  | Votorongon |            |
|---------|------|------------|------------|
| ID      | kV   | kVA        | Keterangan |
| Recti01 | 1,35 | 3500       | Aktif      |
| Recti02 | 1,35 | 3500       | Aktif      |
| Recti03 | 1,35 | 3500       | Aktif      |
| Recti04 | 1,35 | 3500       | Aktif      |

Keempat converter tersebut menjadi sumber distorsi dengan harmonisa yang dihasilkan dari masing-masingnya identik seperti pada tabel (3.6). Berdasarkan data tersebut, , *library* nilai IHD tiap orde harmonisa untuk rectifier pada simulasi di ETAP dibuat sama dengan hasil pengukuran.

**Tanel 3.6** Harmonisa yang dihasilkan oleh konverter

|      | Ia (%) | Ib (%) | Ic (%) |
|------|--------|--------|--------|
| THD  | 7,02   | 6,76   | 7,28   |
| Orde |        |        |        |
| 2    | 0      | 0      | 0      |
| 3 4  | 0.15   | 0.5    | 0.38   |
| 4    | 0      | 0      | 0      |
| 5    | 3.4    | 3.18   | 3.29   |
| 6    | 0      | 0      | 0      |
| 7    | 1.52   | 1.29   | 1.66   |
| 8    | 0      | 0      | 0      |
| 9    | 0.21   | 0.17   | 0.35   |
| 10   | 0      | 0      | 0      |
| 11   | 1.94   | 1.75   | 1.96   |
| 12   | 0      | 0      | 0      |
| 13   | 1.66   | 1.58   | 1.86   |
| 14   | 0.1    | 0      | 0      |
| 15   | 0.57   | 0.24   | 0.54   |
| 16   | 0.13   | 0      | 0.1    |
| 17   | 3.5    | 3.21   | 3.22   |
| 18   | 0      | 0      | 0.17   |
| 19   | 3.16   | 3.54   | 3.22   |
| 20   | 0.14   | 0      | 0.11   |
| 21   | 0.51   | 0.47   | 0.27   |
| 22   | 0.15   | 0.13   | 0.1    |
| 23   | 1.89   | 1.85   | 2      |
| 24   | 0      | 0      | 0.15   |
| 25   | 1.69   | 1.23   | 1.3    |
| 26   | 0      | 0      | 0      |
| 27   | 0      | 0.12   | 0.17   |
| 28   | 0      | 0      | 0      |
| 29   | 0.11   | 0.13   | 0      |

Tanel 3.6 (Lanjutan) Harmonisa yang dihasilkan oleh konverter

|    | Ia (%) | Ib (%) | Ic (%) |
|----|--------|--------|--------|
| 30 | 0      | 0      | 0      |
| 31 | 0      | 0      | 0.21   |

## 3.4 Langkah-Langkah Meredam Harmonisa dan Analisisnya

Tujuan dari pengerjaan tugas akhir ini adalah melaksanakan studi mengenai penentuan peralatan peredam harmonisa pada sistem kelistrikan di PT. Batutua Tembaga Raya, Wetar dengan melakukan identifikasi dari karakteristik harmonisa terlebih dahulu. Metodologi yang digunakan dalam tugas akhir ini diawali dengan pengumpulan data berupa gambaran dari *Single Line Diagram* (SLD), *datasheet* peralatan, serta referensi ilmiah tentang teori yang berhubungan dengan harmonisa. Dari data-data yang terkumpul, dapat dibuat pemodelan sistem menggunakan *software* ETAP 12.6. Pada pemodelan ini, akan dilakukan analisis aliran daya dan harmonisa yang terjadi di PT. Batutua Tembaga Raya, Wetar.

Dari pemodelan dan aliran daya, dapat dilihat kondisi tegangan, arus, dan faktor daya pada bagian bus. Sementara dari pemodelan dan analisis harmonisa, dapat dilihat besarnya harmonisa yang terjadi pada tiap-tiap bus, khususnya pada tugas akhir ini yaitu pada tegangan menengah 20 kV yang berdekatan dengan sumber harmonisa berupa rectifier. Dari analisis tersebut, akan didapatkan karakteristik harmonisa dari segi orde yang dominan dan magnitude tiap orde harmonisa, baik harmonisa tegangan maupun harmonisa arus. Selanjutnya, dapat ditentukan jenis peralatan yang paling tepat untuk meredam harmonisa yang terjadi.

Sebelumnya, PT. Batutua Tembaga Raya Wetar menggunakan capacitor bank sebagai peredam harmonisa. Namun yang terjadi adalah harmonisa arus meningkat meskipun harmonisa tegangan sudah turun. Setelah penentuan peralatan peredam harmonisa (filter harmonisa), filter tersebut ditempatkan di lokasi dengan harmonisa paling tinggi. Selanjutnya akan dilakukan perbandingan indeks harmonisa pada tiga keadaan, yaitu ketika tidak ada filter, ketika filter hanya berupa kapasitor, dan ketika menggunakan filter yang ditentukan dalam tugas akhir ini.

#### **BAB IV**

#### SIMULASI DAN ANALISIS

Simulasi dan analisis pada sistem kelistrikan PT. Batutua Tembaga Raya, Wetar meliputi perbaikan profil tegangan dan peredaman gangguan harmonisa. Tahap-tahap yang akan dilakukan dalam pembahasan bab ini adalah:

- 1. Simulasi *load flow* sistem kelistrikan pada kondisi *normal load*.
- 2. Simulasi *harmonic load flow* sistem kelistrikan pada kondisi *normal load*.
- 3. Perhitungan nilai komponen R, L, dan C untuk pemasangan filter harmonisa pasif.
- 4. Perbandingan tingkat distorsi harmonisa sebelum dan sesudah pemasangan filter harmonisa pasif.
- 5. Perhitungan stray current corrosion yang dapat dikurangi.

# 4.1. Evaluasi Sistem Kelistrikan PT. Batutua Tembaga Raya

Dalam bab ini akan disimulasikan sistem kelistrikan PT. Batutua Tembaga Raya, Wetar yang berkaitan dengan permasalahan nilai profil tegangan sekaligus permasalahan harmonisa. Simulasi ini menggunakan *software* ETAP 12.6, karena worksheet untuk analisis harmonik sudah cukup memadai dan sesuai untuk simulasi analisis harmonisa.

# 4.1.1. Kondisi Eksisting Tegangan

Setelah dilakukan simulasi loadflow, didapatkan hasil dari profil tegangan tiap bus pada sistem kelistrikan di PT. Batutua Tembaga Raya, Wetar yang dirangkum dalam tabel (4.1) berikut.

**Tabel 4.1** Perbandingan nilai tegangan bus terhadap nilai standar

| No | ID Bus    | Nominal kV | %V      |         |
|----|-----------|------------|---------|---------|
|    |           |            | Operasi | Standar |
| 1  | 32-MC-001 | 0,4        | 98,04   | 98-102  |
| 2  | 32KTMC001 | 0,4        | 98,75   | 98-102  |
| 3  | 32MC002   | 1          | 100,22  | 98-102  |
| 4  | 33MC001   | 0,4        | 98,23   | 98-102  |
| 5  | 34-MC-001 | 0,4        | 98,52   | 98-102  |

**Tabel 4.1** (Lanjutan) Perbandingan nilai tegangan bus terhadap nilai standar

| N.T. | ID Bus        | Nominal kV | %V      |         |
|------|---------------|------------|---------|---------|
| No   |               |            | Operasi | Standar |
| 6    | 36MC001 BUS A | 0,4        | 97,09   | 98-102  |
| 7    | 36MC001 BUS C | 0,4        | 97,09   | 98-102  |
| 8    | S6MC002 BUS B | 0,4        | 97,09   | 98-102  |
| 9    | 36SB001       | 20         | 98,88   | 98-102  |
| 10   | 37-MC-001     | 0,4        | 97,73   | 98-102  |
| 11   | 63MC002       | 0,4        | 99,15   | 98-102  |
| 12   | Bus4          | 0,4        | 99,32   | 98-102  |
| 13   | Bus5          | 0,4        | 98,63   | 98-102  |
| 14   | Bus8          | 20         | 98,88   | 98-102  |
| 15   | Bus10         | 0,4        | 98,36   | 98-102  |
| 16   | Bus18         | 20         | 100,75  | 98-102  |
| 17   | Bus21         | 0,153      | 97,53   | 98-102  |
| 18   | Bus34         | 0,4        | 97,92   | 98-102  |
| 19   | Bus76         | 0,4        | 97,47   | 98-102  |
| 20   | Bus90         | 20         | 98,87   | 98-102  |
| 21   | Bus91         | 0,4        | 98,11   | 98-102  |
| 22   | Bus95         | 0,153      | 96,86   | 98-102  |
| 23   | Bus96         | 20         | 100,75  | 98-102  |
| 24   | Bus97         | 0,4        | 97,28   | 98-102  |
| 25   | Bus99         | 20         | 100,75  | 98-102  |
| 26   | Bus100        | 0,153      | 97,52   | 98-102  |
| 27   | Bus101        | 0,153      | 96,87   | 98-102  |
| 28   | Bus102        | 20         | 100,68  | 98-102  |
| 29   | Bus103        | 0,4        | 98,96   | 98-102  |
| 30   | Bus104        | 20         | 98,86   | 98-102  |
| 31   | POLE 37B      | 20         | 98,93   | 98-102  |
| 32   | PS HV SWGR    | 20         | 100,75  | 98-102  |

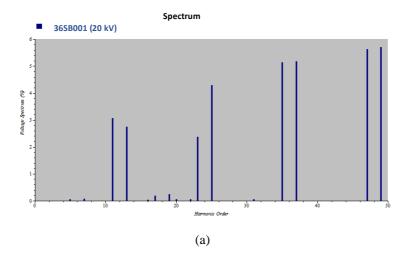
Terdapat perbedaan standar tegangan, menurut PLN (+5%) dan (+10%) sehingga tegangan operasi yang diizinkan adalah 90% sampai 105%, menurut ANSI (+10%) dan (+4%) sehingga tegangan operasi yang diizinkan adalah 90% sampai 104%, dan dari ETAP sendiri terdapat batas marginal  $\pm 2\%$  (98-102%), sehingga lebih baik apabila kita menggunakan batas  $\pm 2\%$ . Dari tabel (4.1) dapat dilihat bahwa ada beberapa bus

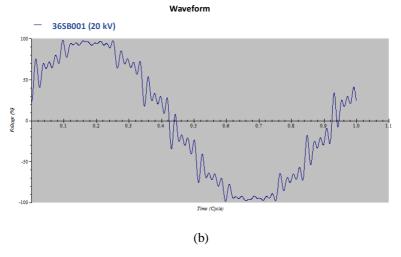
tegangan rendah yang nilai tegangannya belum memenuhi standar. Ketidak sesuaian nilai tegangan dengan standarnya dapat menyebabkan ketidaksesuaian pada operasi peralatan di bus tersebut. Oleh sebab itu, agar tegangan bus memenuhi standar, maka perlu dilakukan pengaturan tap transformator.

Tabel (4.2) akan menunjukkan pengaturan tap transformator beserta letaknya apakah di sisi primer atau sekunder, serta perbandingan nilai persentase tegangan sebelum dan setelah adanya perubahan tap transformator.

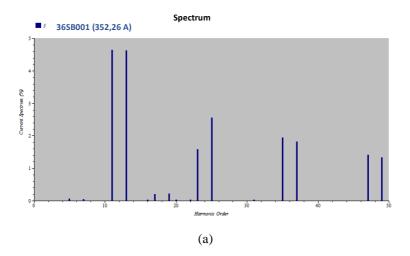
**Tabel 4.2** Perbaikan nilai tegangan dengan pengaturan tap transformator

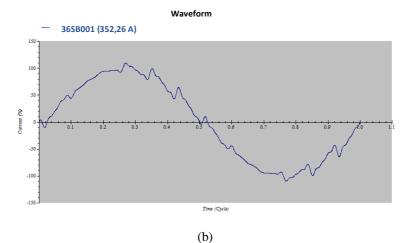
| Trafo ID | Tap            | Bus ID  | %V      | %V      | %V      |
|----------|----------------|---------|---------|---------|---------|
|          | Trafo          |         | Sebelum | Setelah | Standar |
|          | Diama          | 36MC001 | 97,09   | 100,02  | 98-102  |
|          |                | Bus A   |         |         |         |
|          |                | 36MC001 | 97,09   | 100,02  | 98-102  |
| 36TX01   | Primer         | Bus B   |         |         |         |
|          | (-2,5%)        | 36MC001 | 97,09   | 100,02  | 98-102  |
|          |                | BusC    |         |         |         |
|          |                | Bus97   | 97,28   | 100,2   | 98-102  |
|          | Primer (-2,5%) | 37MC001 | 97,73   | 100,63  | 98-102  |
| 37TX01   |                | Bus34   | 97,92   | 100,82  | 98-102  |
|          |                | Bus76   | 97,47   | 100,39  | 98-102  |
| 36TXRE   | Primer         | Bus21   | 97,53   | 100,42  | 98-102  |
| 001      | (-2,5%)        | Bus101  | 96,87   | 99,71   | 98-102  |
| 36TXRE   | Primer         | Bus 95  | 96,86   | 99,77   | 98-102  |
| 002      | (-2,5%)        | Bus 100 | 97,52   | 100,41  | 98-102  |


#### 4.1.2 Kondisi Harmonisa

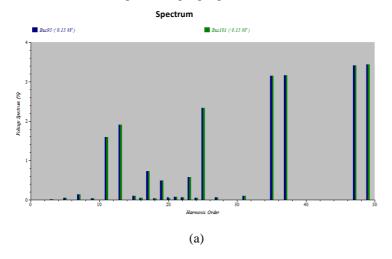

Pengukuran harmonnisa dilakukan pada bus 36SB001 sebagai bus yang paling dekat dengan sumber harmonisa dan mengalami distorsi yang cukup besar, dan juga bus dengan arus yang sangat besar yaitu bus 21, bus 95, bus 100, dan bus 101. Mengacu pada pola operasinya, bus 95 identik dengan bus 101, dan bus 21 identik dengan bus 100 sehingga distorsi yang terjadi pada bus tersebut adalah sama. 36SB001 merupakan bus yang beroperasi pada tegangan menengah 20 kV sehingga pemasangan filter pada bus tersebut akan berdampak pada keseluruhan

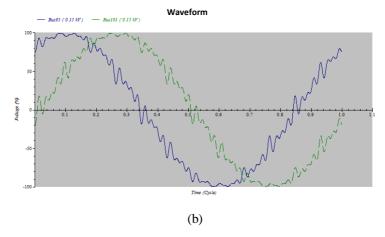
sistem, mulai dari sistem tegangan menengah sampai dengan sistem pembangit. Sedangkan bus 21, bus 95, bus 100, dan bus 101 merupakan bus tegangan rendah 153 V yang merupakan tempat peralatan dalam proses *electrowinning* terjadi. Pemasangan filter pada bus tegangan rendah ini dapat mengurangi arus yang masuk sehingga dapat mengurangi efek dari *stray current corrosion*.


Gambar (4.1) dan gambar (4.2) akan menggambarkan harmonisa tegangan dan harmonisa arus yang dialami oleh bus 36SB001. Sedangkan gambar (4.3) dan (4.4) akan menggambarkan harmonisa yang dialami oleh bus 95 dan bus 101, sedangkan gambar (4.5) dan (4.6) akan menggambarkan harmonisa yang dialami oleh bus 21 dan bus 100. Dapat dilihat bentuk gelombang terdistorsi dan persentase distorsi harmonisa dari tiap-tiap ordenya, sehingga dapat menjadi acuan untuk perancanaan filter harmonisa.

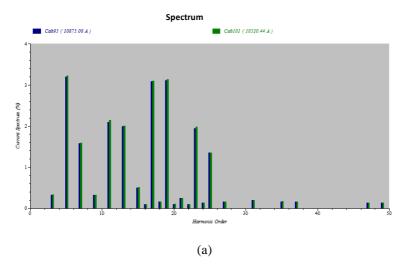

Pada gambar, akan diperlihatkan bahwa harmonisa terbesar dihasilkan oleh orde 11, 13, dan 25 sehingga dibutuhkan filter harmonisa untuk meredam harmonisa yang terjadi pada bus 36SB001 dengan tiga buah *single tuned filter* untuk menala frekuensi pada orde 11, 13, dan 25. Hal ini akan menjadi acuan untuk perencanaan filter pasif untuk orde 11, 13, dan 25.

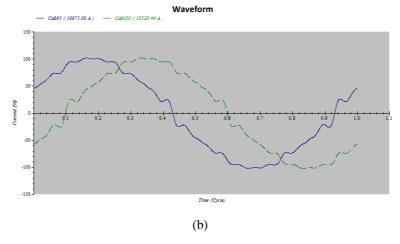






**Gambar 4.1** Harmonisa tegangan pada bus 36SB001. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan

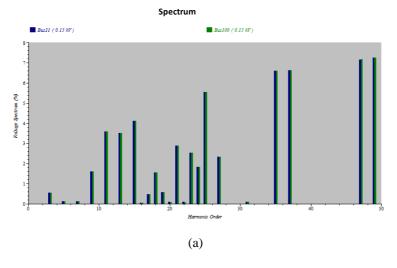




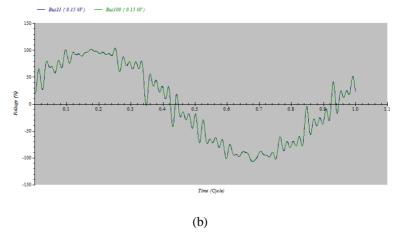


**Gambar 4.2** Harmonisa arus pada bus 36SB001. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan





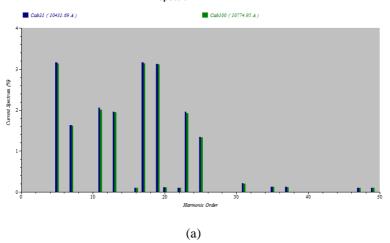

**Gambar 4.3** Harmonisa tegangan pada bus 95 dan bus 101, (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan

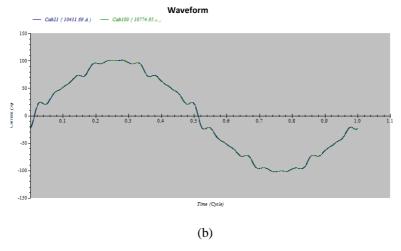





**Gambar 4.4** Harmonisa arus pada bus 95 dan bus 101, (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan

Dari hasil tersebut, dapat dilihat bahwa harmonisa orde 11, 13, dan 25 cukup besar sehingga dibutuhkan filter harmonisa untuk meredam harmonisa yang terjadi pada bus 95 dan bus 101 dengan tiga buah *single tuned filter* untuk menala frekuensi pada orde 11, 13, dan 25.






**Gambar 4.5** Harmonisa tegangan pada bus 21 dan bus 100. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan

### Spectrum





**Gambar 4.6** Harmonisa arus pada bus 21 dan bus 100. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan

Dapat dilihat bahwa harmonisa terbesar dihasilkan oleh orde 15, 21, dan 27 sehingga dibutuhkan filter harmonisa untuk meredam harmonisa yang terjadi pada bus 21 dan bus 101 dengan tiga buah *single tuned filter* untuk menala frekuensi pada orde 15, 21, dan 27.

# 4.2 Ketika Menggunakan *Capacitor Bank* Sebagai Peredam Harmonisa

Selama ini, PT. Batutua Tembaga Raya Wetar hanya menggunakan kapasitor dengan kapasitas 4200 kVAR untuk mengkompensasi daya reaktif sekaligus sebagai filter harmonisa. Namun, harmonisa setelah dilakukan pemasangan kapasitor tersebut adalah seperti pada tabel (4.3) berikut.

Tabel 4.3 Ketika Menggunakan Capacitor Sebagai Filter

| TH    | $D_{V}$    | $THD_{I}$ |            |  |
|-------|------------|-----------|------------|--|
| 4,9 % |            | 7,42 %    |            |  |
| Orde  | %Magnitude | Orde      | %Magnitude |  |
| 2     | 0          | 2         | 0,33       |  |
| 3     | 0,11       | 3         | 0,14       |  |

Tabel 4.3 (Lanjutan) Ketika Menggunakan Capacitor Sebagai Filter

| Orde   | %Magnitude | Orde | %Magnitude |
|--------|------------|------|------------|
| 4      | 0,16       | 4    | 0          |
| 5<br>6 | 0,45       | 5    | 6,76       |
| 6      | 0          | 6    | 0          |
| 7      | 0,98       | 7    | 1,55       |
| 8      | 0          | 8    | 9          |
| 9      | 0          | 9    | 0,2        |
| 10     | 0          | 10   | 0          |
| 11     | 1,08       | 11   | 0,96       |
| 12     | 0          | 12   | 0          |
| 13     | 0,62       | 13   | 0,21       |
| 14     | 0          | 14   | 0          |
| 15     | 0,17       | 15   | 0          |
| 16     | 0          | 16   | 0          |
| 17     | 1,37       | 17   | 0,6        |
| 18     | 0          | 18   | 0,11       |
| 19     | 1,39       | 19   | 0,92       |
| 20     | 0          | 20   | 0,15       |
| 21     | 0,26       | 21   | 0          |
| 22     | 0,12       | 22   | 0,11       |
| 23     | 2,48       | 23   | 1,02       |
| 24     | 0,14       | 24   | 0,14       |
| 25     | 3,42       | 25   | 1,84       |
| 26     | 0,16       | 26   | 0          |
| 27     | 0          | 27   | 0          |
| 28     | 0          | 28   | 0,11       |
| 29     | 0,37       | 29   | 0,18       |
| 30     | 0          | 30   | 0          |
| 31     | 0          | 31   | 0          |

Dari data pada tabel (4.3) dapat dilihat bahwa nilai dari harmonisa arus berada diatas standar dari IEEE Std. 519-1992, sedangkan pada harmonisa tegangan, terdapat nilai orde yang juga diatas standar. Hal ini berarti bahwa kapasitor yang digunakan sebagai filter harmonisa tidaklah

efektif, karena fungsi dari kapasitor bank adalah sebagai kompensasi daya reaktif dan untuk memperbaiki faktor daya.

#### 4.3.Penetuan Peralatan Peredam Harmonisa

Dengan mengetahui data aliran daya dan karakteristik harmonisa berdasarkan pengukuran maupun simulasi, maka dapat ditentukan jenis alat peredam harmonisa yang paling efektif. Peralatan yang dibahas dalam tugas akhir ini adalah filter harmonisa pasif dengan jenis *single tuned filter* atau filter penala tunggal.

Pada bab 2.3 mengenai jenis-jenis filter, dapat dilihat bahwa single tuned filter memiliki impedansi minimum. Oleh karena itu, filter ini akan menyerap semua arus harmonisa yang dekat dengan frekuensi orde yang diinjeksikan. Sebelum menentukan nilai R, L, dan C, ada dua hal yang perlu dipertimbangkan, yaitu faktor kualitas (quality factor, Q) dan penyimpangan frekuensi relative (relative frequency deviation,  $\delta$ ). Setelah itu, nilai THD dan IHD tengangan pada bus yang akan dipasang filter harus diketahui. Selanjutnya yaitu menentukan orde harmonisa yang paling dominan, karena nilai frekuensi dari orde tersebut akan digunakan sebagai frekuensi tuning. Setelah itu, penentuan daya reaktif yang dibutuhkan untuk memperbaiki faktor daya. Dengan perencanaan filter dipasang dalam hubungan wye-connection, maka perhitungan komponen filter adalah seperti persamaan (4.1) sampai (4.12) berikut.

1) Menentukan daya reaktif untuk perbaikan faktor daya

$$\Delta Q = P\left[\tan(\cos^{-1}\varphi_{awal}) - \tan(\cos^{-1}\varphi_{taraet})\right] \tag{4.1}$$

Dengan  $\Delta Q$  merupakan nilai kompensasi daya reaktif yang dibutuhkan (kVAR), P adalah daya satu fasa (kW),  $\varphi_{awal}$  adalah sudut dari faktor daya awal, dan  $\varphi_{taraet}$  adalah sudut dari faktor daya yang diinginkan.

2) Menentukan nilai kapasitor (C)

$$kVAR = \frac{V_{l-n}^2}{X_C} \tag{4.2}$$

$$kVAR = V_{l-n}^2 \times \omega_0 C \tag{4.3}$$

$$C = \frac{kVAR}{V_{l-n}^2 \times \omega_0} \tag{4.4}$$

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)} \tag{4.5}$$

Dengan kVAR adalah nilai dari  $\Delta Q$  atau kompensasi daya reaktif yang sudah dihitung pada persamaan (4.1),  $V_{l-n}$  adalah nilai tegangan *line to netral* atau tegangan satu fasa, C adalah nilai kapasitansi kapasitor dalam satuan  $\mu F$ , dan  $f_0$  merupakan frekuensi fundamental 50 Hz.

3) Menentukan nilai induktor (L)

$$X_L = X_C \tag{4.6}$$

$$\omega_n L = \frac{1}{\omega_n \times c} \tag{4.7}$$

$$L = \frac{1}{\omega_{\rm p}^2 \times C} \tag{4.8}$$

$$L = \frac{1}{(2\pi f_n)^2 \times C} \tag{4.9}$$

Dengan L merupakan nilai induktansi dari induktor (H), C merupakan hasil yang didapat dari perhitungan dalam persamaan (4.5), dan  $f_n$  merupakan frekuensi pada orde harmonisa ke-n.

4) Setelah menentukan nilai L, tentukan nilai reaktansi  $(X_L)$ 

$$X_L = 2\pi f_0 \times L \tag{4.10}$$

Dimana L merupakan hasil dari perhitungan pada persamaan (4.9) dan  $f_0$  merupakan frekuensi fundamental 50 Hz.

5) Menentukan nilai Resistor (R)

$$R = \rho \frac{l}{A} \tag{4.11}$$

6) Menentukan faktor kualitas (Q)

$$Q = \frac{x_L}{R} \tag{4.12}$$

Dengan  $X_L$  didapat dari perhitungan pada persamaan (4.10) dan R merupakan hasil dari perhitungan pada persamaan (4.11).

#### **4.3.1. Filter Untuk Bus 36SB001**

Bus 36SB001 memiliki faktor daya 86% *lagging*. Perbaikan faktor daya pada bus ini diencanakan mencapai 95%. Besarnya daya reaktif yang dibutuhkan adalah

$$\Delta Q = P \left[ \tan(\cos^{-1} \varphi_{awal}) - \tan(\cos^{-1} \varphi_{target}) \right]$$

$$\Delta Q = 8970 \ kW \left[ \tan(\cos^{-1} 0.86) - \tan(\cos^{-1} 0.9) \right]$$

$$\Delta Q = 2374.189 \ kVAR$$

Nilai  $\Delta Q$  diatas adalah nilai untuk 3 fasa. Karena untuk mengatur parameter dari komponen filter pada ETAP 12.6 menggunakan pemodelan 1 fasa, maka besarnya daya reaktif yang akan diinjeksikan ke bus 36SB001 bernilai

$$\Delta Q_{1 phase} = \frac{2374.189 \, kVAR}{3} = 791.3963 \, kVAR$$

Sehingga besarnya daya yang akan diinjeksikan ke bus 36SB001 sebesar 791,3963 kVAR. Filter yang akan dipasang pada bus 36SB001 ini direncanakan lebih dari satu filter, sehingga dilakukan pembagian kompensator daya reaktif untuk masing-masing filter melalui pendekatan nilai distorsi harmonisa dari masing-masing orde.

#### a. Filter untuk harmonisa orde 11

1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^{2} \times (2\pi f_{0})}$$

$$C = \frac{264 \, kVAR}{\left(\frac{20 \, kV}{\sqrt{3}}\right)^{2} \times (2\pi 50)}$$

$$C = 6.30574 \, \mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 550)^2 \times 6,30574 \,\mu F}$$

$$L = 0.013293 \,H$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$
 
$$X_L = 2\pi 50 \times 0.013293 H$$
 
$$X_L = 4.17397 \Omega$$

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{A}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I <sub>fundamental</sub>, maka

$$I = 3.5 \% \times 302 A$$
  
 $I = 10.57 A$ 

Sehingga dipilih AWG 11 dengan rating arus 12 A, dengan  $R=4,1328\Omega/km$  . dengan l=5m, maka

$$R = 4,1328 \frac{\Omega}{km} \times 0,005 \ km = 0,020664 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{x_L}{R}$$

$$Q = \frac{4,17397 \,\Omega}{0,0206664 \,\Omega}$$

$$Q = 201.9$$

#### Filter untuk harmonisa orde 13

1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)}$$
$$C = \frac{264 \, kVAR}{\left(\frac{20 \, kV}{\pi}\right)^2 \times (2\pi 50)}$$

$$C = 6,30574 \, \mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 650)^2 \times 6,30574 \,\mu\text{F}}$$

$$L = 0.0095173941 \,H$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$
 
$$X_L = 2\pi 50 \times 0.0095173941 H$$
 
$$X_L = 2.98846 \Omega$$

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{A}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I <sub>fundamental</sub>, maka

$$I = 3 \% \times 302 A$$
$$I = 9.06 A$$

Sehingga dipilih AWG 12 dengan rating arus 9,3 A, dengan  $R=5,20864~\Omega/km$ . dengan l=5m, maka

$$R = 5,20864 \frac{\Omega}{km} \times 0,005 \ km = 0,0260432 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{X_L}{R}$$

$$Q = \frac{2.98846 \,\Omega}{0.0260432 \,\Omega}$$

$$Q = 114,75$$

- c. Filter untuk harmonisa ke 25
- 1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)}$$

$$C = \frac{264 \, kVAR}{\left(\frac{20 \, kV}{\sqrt{3}}\right)^2 \times (2\pi 50)}$$

$$C = 6,30574 \, \mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 1250)^2 \times 6,30574 \,\mu F}$$

$$L = 0.0025735034 H$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$

$$X_L = 2\pi 50 \times 0.0025735034 H$$

$$X_L = 0.80808 \,\Omega$$

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{4}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I <sub>fundamental</sub>, maka

$$I = 4.37 \% \times 302 A$$

$$I = 913,1974 A$$

Sehingga dipilih AWG 10 dengan rating arus 15 A, dengan  $R = 3,27639 \,\Omega/km$ . dengan l = 5m, maka

$$R = 3,27639 \frac{\Omega}{km} \times 0,005 \ km = 0,01638195 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{x_L}{R}$$

$$Q = \frac{0.80808 \,\Omega}{0.01638195 \,\Omega}$$

$$Q = 49.3275$$

#### 4.3.2. Filter Untuk Bus 95 dan Bus 101

Bus 95 dan bus 101 memiliki karakteristik yang identik, sehingga nilai dari komponen filter yang ajan dipasang adalah sama. Bus 95 dan bus 101 memiliki faktor daya 80% *lagging*. Perbaikan faktor daya pada bus ini diencanakan mencapai 98%. Besarnya daya reaktif yang dibutuhkan adalah

$$\Delta Q = P \left[ \tan(\cos^{-1} \varphi_{awal}) - \tan(\cos^{-1} \varphi_{target}) \right]$$

$$\Delta Q = 2030 \ kW \left[ \tan(\cos^{-1} 0.86) - \tan(\cos^{-1} 0.94) \right]$$

$$\Delta Q = 467.74 \ kVAR$$

Nilai  $\Delta Q$  diatas adalah nilai untuk 3 fasa. Karena untuk mengatur parameter dari komponen filter pada ETAP 12.6 menggunakan pemodelan 1 fasa, maka besarnya daya reaktif yang akan diinjeksikan ke bus 95 dan bus 101 bernilai

$$\Delta Q_{1 phase} = \frac{467,74 \text{ kVAR}}{3} = 155,9132 \text{ kVAR}$$

Sehingga besarnya daya yang akan diinjeksikan ke bus 95 dan bus 101 sebesar **155**, **9132** kVAR. Filter yang akan dipasang pada bus 95 dan bus 101 ini direncanakan lebih dari satu filter, sehingga dilakukan pembagian kompensator daya reaktif untuk masing-masing filter melalui pendekatan nilai distorsi harmonisa dari masing-masing orde.

# a. Filter untuk harmonisa orde 11

1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)}$$

$$C = \frac{55.9 \, kVAR}{\left(\frac{0.153 \, kV}{\sqrt{3}}\right)^2 \times (2\pi 50)}$$

$$C = 22988,82718 \,\mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 550)^2 \times 22988.82718 \,\mu\text{F}}$$

$$L = 3.6462 \,\mu\text{H}$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$
 
$$X_L = 2\pi 50 \times 3,6462 \,\mu H$$
 
$$X_L = 0,00114 \,\Omega$$

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{A}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I <sub>fundamental</sub>, maka

$$I = 3.9 \% \times 7223 A$$
  
 $I = 281.697 A$ 

Sehingga dipilih AWG 000 dengan rating arus 302 A, dengan  $R=0.16072\,\Omega/km$ . dengan  $l=1\,m$ , maka

$$R = 0.16072 \frac{\alpha}{km} \times 0.001 \ km = 0.00016072 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{x_L}{R}$$

$$Q = \frac{0,00114 \ \Omega}{0,00016072 \ \Omega}$$

$$Q = 7,0931$$

## b. Filter untuk harmonisa orde 13

1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)}$$

$$C = \frac{50 \, kVAR}{\left(\frac{0.153 \, kV}{\sqrt{3}}\right)^2 \times (2\pi 50)}$$

$$C = 20562.45723 \, \mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 650)^2 \times 20562,45723 \ \mu F}$$

$$L = 2.9186 \ \mu H$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$
 
$$X_L = 2\pi 50 \times 2,9186 \,\mu\text{H}$$
 
$$X_L = 0,00092 \,\Omega$$

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{A}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I <sub>fundamental</sub>, maka

$$I = 2,73 \% \times 7223 A$$

$$I = 197,19 A$$

Sehingga dipilih AWG 000 dengan rating arus 239 A, dengan  $R=0.202704~\Omega/km$ . dengan l=1m, maka

$$R = 0.202704 \frac{\Omega}{km} \times 0.001 \ km = 0.000202704 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{X_L}{R}$$

$$Q = \frac{0,00092 \Omega}{0.000202704 \Omega}$$

$$Q = 4,5386$$

#### c. Filter untuk harmonisa ke 25

1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)}$$

$$C = \frac{50 \, kVAR}{\left(\frac{0.153 \, kV}{\sqrt{5}}\right)^2 \times (2\pi 50)}$$

$$C = 20562,45723 \, \mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 1250)^2 \times 20562,45723 \ \mu F}$$

$$L = 0,7892 \, \mu H$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$

$$X_L = 2\pi 50 \times 0.3182 \,\mu H$$

$$X_L = 0.00025 \,\Omega$$

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{A}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I fundamental, maka

$$I = 42.21 \% \times 7223 A$$
  
 $I = 159.628 A$ 

Sehingga dipilih AWG 00 dengan rating arus 190 A, dengan  $R=0.255512~\Omega/km$ . dengan l=1m, maka

$$R = 0.255512 \frac{\Omega}{km} \times 0.001 \ km = 0.000255512 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{x_L}{R}$$

$$Q = \frac{0.00025 \,\Omega}{0.000255512 \,\Omega}$$

$$Q = 1,9784$$

# 4.3.3 Filter Untuk Bus 21 dan Bus 100

Bus 21 dan bus 100 memiliki karakteristik yang identik, sehingga nilai dari komponen filter yang ajan dipasang adalah sama. Bus 21 dan bus 100 memiliki faktor daya 80% *lagging*. Perbaikan faktor daya pada bus ini diencanakan mencapai 98%. Besarnya daya reaktif yang dibutuhkan adalah

$$\Delta Q = P[tan(cos^{-1}\varphi_{awal}) - tan(cos^{-1}\varphi_{target})]$$

$$\Delta Q = 2030 \ kW \ [tan(cos^{-1} \ 0.86) - tan(cos^{-1} \ 0.94)]$$

$$\Delta Q = 467.74 \ kVAR$$

Nilai  $\Delta Q$  diatas adalah nilai untuk 3 fasa. Karena untuk mengatur parameter dari komponen filter pada ETAP 12.6 menggunakan pemodelan 1 fasa, maka besarnya daya reaktif yang akan diinjeksikan ke bus 95 dan bus 101 bernilai

$$\Delta Q_{1 \text{ phase}} = \frac{467,74 \text{ kVAR}}{3} = 155,9132 \text{ kVAR}$$

Sehingga besarnya daya yang akan diinjeksikan ke bus 21 dan bus 100 sebesar **155**, **9132** kVAR. Filter yang akan dipasang pada bus 21 dan bus 100 ini direncanakan lebih dari satu filter, sehingga dilakukan pembagian kompensator daya reaktif untuk masing-masing filter melalui pendekatan nilai distorsi harmonisa dari masing-masing orde.

## a. Filter untuk harmonisa orde 15

1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)}$$

$$C = \frac{55.9 \, kVAR}{\left(\frac{0.153 \, kV}{\sqrt{3}}\right)^2 \times (2\pi 50)}$$

$$C = 22988,82718 \,\mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 750)^2 \times 22988,82718 \ \mu F}$$

$$L = 1.9608 \ \mu H$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$

$$X_L = 2\pi 50 \times 1,9608 \ \mu H$$
  
 $X_L = 0,00062 \ \Omega$ 

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{A}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I <sub>fundamental</sub>, maka

$$I = 3.9 \% \times 7223 A$$

$$I = 281,697 A$$

Sehingga dipilih AWG 000 dengan rating arus 302 A, dengan  $R = 0.16072 \,\Omega/km$ . dengan  $l = 1 \,m$ , maka

$$R = 0.16072 \frac{\Omega}{km} \times 0.001 \ km = 0.00016072 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{X_L}{R}$$

$$Q = \frac{0,00062 \,\Omega}{0,00016072 \,\Omega}$$

$$Q = 3.8576$$

## b. Filter untuk harmonisa orde 21

1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)}$$

$$C = \frac{50 \, kVAR}{\left(\frac{0.153 \, kV}{\sqrt{3}}\right)^2 \times (2\pi 50)}$$

$$C = 20562,45723 \,\mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 1050)^2 \times 20562,45723 \ \mu F}$$

$$L = 1,1185 \ \mu H$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$

$$X_L = 2\pi 50 \times 1,1185 \,\mu H$$

$$X_L = 0.00035 \,\Omega$$

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{A}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I <sub>fundamental</sub>, maka

$$I = 2,73 \% \times 7223 A$$
  
 $I = 197.19 A$ 

Sehingga dipilih AWG 000 dengan ratingarus 239 A, dengan  $R=0.202704\,\Omega/km$ . dengan l=1m, maka

$$R = 0.202704 \frac{\Omega}{km} \times 0.001 \ km = 0.000202704 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{x_L}{R}$$

$$Q = \frac{0,00035 \,\Omega}{0,000202704 \,\Omega}$$

$$Q = 1,72665$$

# c. Filter untuk harmonisa ke 27

1) Menentukan nilai kapasitor (C)

$$C = \frac{kVAR}{V_{l-n}^2 \times (2\pi f_0)}$$

$$C = \frac{50 \, kVAR}{\left(\frac{0.153 \, kV}{\sqrt{3}}\right)^2 \times (2\pi 50)}$$

$$C = 20562,45723 \, \mu F$$

2) Menentukan nilai induktor (L)

$$L = \frac{1}{(2\pi f_n)^2 \times C}$$

$$L = \frac{1}{(2\pi 1250)^2 \times 20562,45723 \ \mu F}$$

$$L = 0,6766 \ \mu H$$

3) Menentukan nilai reaktansi (X<sub>L</sub>)

$$X_L = 2\pi f_0 \times L$$
 
$$X_L = 2\pi 50 \times 0,27283 \,\mu H$$
 
$$X_L = 0.00021 \,\Omega$$

4) Menentukan nilai resistor (R)

$$R = \rho \frac{l}{A}$$

Berdasarkan *American Wire Gauge* (AWG), dengan mempertimbangkan *rating* arus, dengan nilai arus adalah %IHD x I <sub>fundamental</sub>, maka

$$I = 42.21 \% \times 7223 A$$

$$I = 159,628 A$$

Sehingga dipilih AWG 00 dengan rating arus 190 A, dengan  $R=0.255512~\Omega/km$ . dengan l=1m, maka

$$R = 0.255512 \frac{\Omega}{km} \times 0,001 \ km = 0.000255512 \ \Omega$$

5) Menentukan faktor kualitas (Q)

$$Q = \frac{X_L}{R}$$

$$Q = \frac{0.00021 \,\Omega}{0.000255512 \,\Omega}$$

$$Q = 0.82314$$

# 4.4 Simulasi Sistem Setelah Pemasangan Filter Harmonisa

Setelah filter harmonisa dipasang, dilakukan *running* simulasi sistem untuk melihat efek dari pemasangan filter. Berikut merupakan pengaruh pemasangan filter harmonisa pada sistem kelistrikan PT. Batutua Tembaga Raya

# 4.4.1 Faktor Daya Setelah Pemasangan Filter

Faktor daya dapat dilihat dengan simulasi aliran daya. Tabel (4.4) menunjukkan faktor daya pada bus setelah pemasangan filter harmonisa.

Tabel 4.4 Faktor daya setelah pemasangan filter

| ID Bus        | kV  | Faktor Daya<br>Sebelum (%) | Faktor Daya<br>Setelah (%) |
|---------------|-----|----------------------------|----------------------------|
| 32-MC-001     | 0,4 | 98,9                       | 99,1                       |
| 32KTMC001     | 0,4 | 90                         | 90                         |
| 32MC002       | 1   | 85                         | 85                         |
| 33MC001       | 0,4 | 96,5                       | 96,7                       |
| 34-MC-001     | 0,4 | -100                       | -99,9                      |
| 36MC001 BUS A | 0,4 | 93,3                       | 94,7                       |
| 36MC001 BUS B | 0,4 | 87                         | 87                         |
| 36MC001 BUS C | 0,4 | 82,7                       | 82,7                       |
| 36SB001       | 20  | 86,2                       | 99,4                       |
| 37-MC-001     | 0,4 | 97                         | 97,2                       |
| 63MC002       | 0,4 | 90,4                       | 90,4                       |
| Bus4          | 0,4 | 90,4                       | 90,4                       |

Tabel 4.4 (Lanjutan) Faktor daya setelah pemasangan filter

| ID Bus     | kV    | Faktor Daya<br>Sebelum (%) | Faktor Daya<br>Setelah (%) |
|------------|-------|----------------------------|----------------------------|
| Bus5       | 0,4   | -100                       | -99,9                      |
| Bus10      | 0,4   | 96,5                       | 96,7                       |
| Bus18      | 20    | 86.5                       | 96,8                       |
| Bus21      | 0,153 | 86,6                       | 94,5                       |
| Bus34      | 0,4   | 97                         | 97,2                       |
| Bus76      | 0,4   | 91,5                       | 91,5                       |
| Bus90      | 20    | 85,4                       | 93,7                       |
| Bus91      | 0,4   | 98,9                       | 99,1                       |
| Bus95      | 0,153 | 86,6                       | 94,5                       |
| Bus96      | 20    | 86,5                       | 96,8                       |
| Bus97      | 0,4   | 93,3                       | 93,8                       |
| Bus99      | 20    | 86,5                       | 96,8                       |
| Bus100     | 0,153 | 86,6                       | 94,5                       |
| Bus101     | 0,153 | 86,6                       | 94,5                       |
| Bus102     | 20    | 79                         | 79,1                       |
| Bus103     | 0,4   | 79                         | 79,1                       |
| Bus104     | 20    | 85,4                       | 93,1                       |
| POLE 37B   | 20    | 89                         | 98,2                       |
| PS HV SWGR | 20    | 88,7                       | 97,9                       |

Dari tabel (4.4) tersebut dapat dilihat bahwa setelah pemasangan filter harmonisa, faktor daya pada bus lebih baik dari sebelumnya. Hal ini menunjukkan bahwa komponen C (kapasitor) dengan fungsi sebagai kompensasi daya bekerja dengan baik.

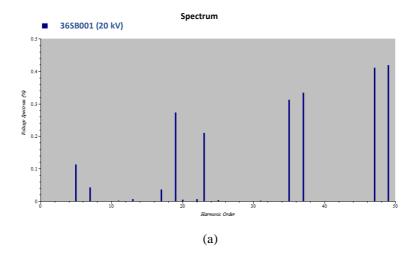
# 4.4.2 Harmonisa Sistem Setelah Pemasangan Filter Harmonisa

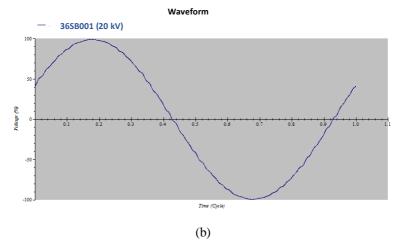
Hasil perbandingan harmonisa sebelum dan setelah pemasangan filter harmonisa dapat dilihat pada tabel (4.5) untuk harmonisa tegangan, dan tabel (4.6) untuk harmonisa arus. Hasil tersebut meliputi bus tegangan rendah dan bus tegangan menengah sampai dengan area sistem pembangkitan.

Tabel 4.5 Harmonisa Tegangan setelah pemasangan filter harmonisa

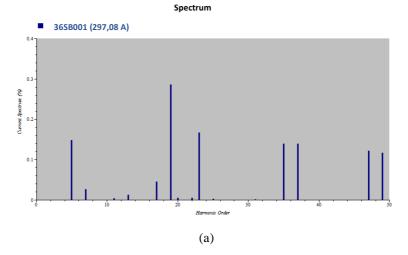
| ID Bus     | kV    | THD <sub>V</sub> (%) |         |
|------------|-------|----------------------|---------|
|            |       | Sebelum              | Setelah |
| LVPS001    | 0,4   | 7,54                 | 0,5     |
| PS HV SWGR | 20    | 11,01                | 0,71    |
| POLE 37B   | 20    | 12,96                | 0,83    |
| 36SB001    | 20    | 13,06                | 0,84    |
| Bus18      | 20    | 11,01                | 0,71    |
| Bus21      | 0,153 | 17,69                | 3,09    |
| Bus90      | 20    | 13,06                | 0,84    |
| Bus95      | 0,153 | 18,58                | 2,66    |
| Bus96      | 20    | 11,01                | 0,71    |
| Bus99      | 20    | 11.01                | 0,71    |
| Bus100     | 0,153 | 17,69                | 3,09    |
| Bus101     | 0,153 | 18,58                | 2,66    |
| Bus104     | 20    | 13,07                | 0,84    |

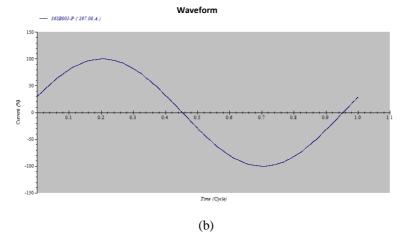
Dapat dilihat bahwa tingkat distorsi harmonisa menurun setelah pemasangan *single tuned filter*. Nilai distorsi pada seluruh bus yang sebelumnya diatas standar IEEE Std 519-1992, kini seluruhnya sudah memenuhi standar harmonisa yan diizinkan.


Tabel 4.6 Harmonisa Arus setelah pemasangan filter harmonisa

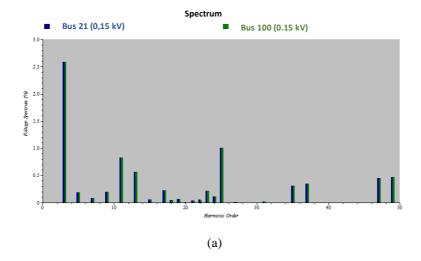

| Bus Cable | I (A)    |         | $THD_{I}\left(\% ight)$ |         |
|-----------|----------|---------|-------------------------|---------|
|           | Sebelum  | Setelah | Sebelum                 | Setelah |
| 36SB001-P | 352,26   | 297,08  | 7,93                    | 0,45    |
| Cab21     | 10431,69 | 9681,61 | 7,21                    | 6,89    |
| Cab95     | 10875    | 9963,79 | 7,21                    | 6,89    |
| Cab100    | 10774,95 | 9950,01 | 7,19                    | 6,71    |
| Cab101    | 10520,44 | 9693    | 7,19                    | 6,71    |

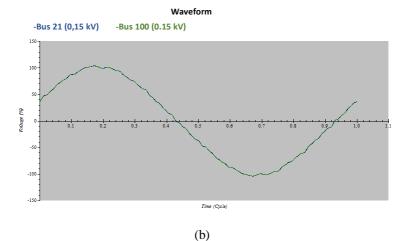
Dapat dilihat bahwa jumlah arus yang mengalir pada tiap-tiap kabel sudah menurun. Hal ini membuktikan bahwa arus harmonisa sudah dialirkan ke *single tuned filter* yang terpasang. Dilihat dari nilai THDnya, nilai distorsi harmonisa sudah menurun jauh pada kabel bus 36SB001-P. Namun masih ada yang belum memenuhi standar. Meskipun belum memenuhi standar,


menurunnya arus yang mengalir akan mengurangi efek dari *stray current corrosion*.

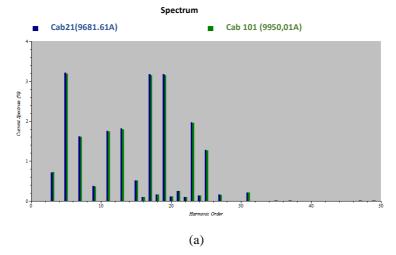

Gambar (4.7) dan gambar (4.8) akan menggambarkan harmonisa tegangan dan harmonisa arus pada bus 36SB001 setelah dipasang filter. Begitu pula dengan gambar (4.9) dan (4.10) yang akan menunjukkan spektrum dan bentuk gelombang dari arus dan tegangan setelah dipasang filter pada bus 95 dan bus 101. Gambar (4.5) dan (4.6) juga akan menggambarkan harmonisa pada bus 21 dan bus 100. Dapat dilihat bentuk gelombang terdistorsi dan persentase distorsi harmonisa dari tiaptiap ordenya yang sudah mengalami penurunan sehingga dapat dikatakan bahwa filter yang dipasang berhasil mereduksi harmonisa sesuai dengan yang diharapkan.

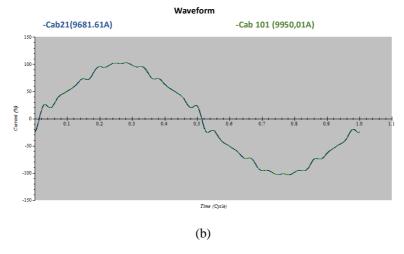




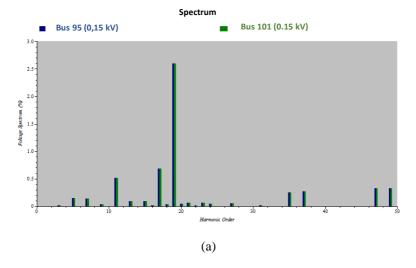


**Gambar 4.7** Harmonisa tegangan pada bus 36SB001 setelah difilter. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan



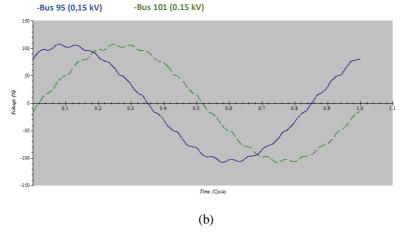




**Gambar 4.8** Harmonisa arus pada bus 36SB001 setelah difilter. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan

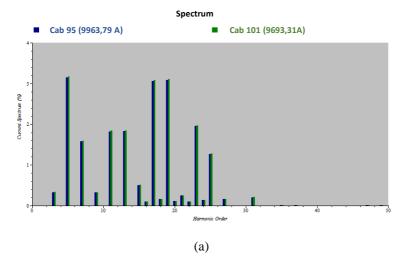


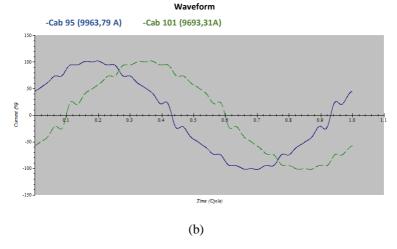



**Gambar 4.9** Harmonisa tegangan pada bus 21 dan bus 100 setelah difilter. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan







**Gambar 4.10** Harmonisa arus pada bus 21 dan bus 100 setelah difilter. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan








**Gambar 4.11** Harmonisa tegangan pada bus 95 dan bus 101 setelah difilter. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan





**Gambar 4.12** Harmonisa arus pada bus 95 dan bus 101 setelah difilter. (a) Spektrum harmonisa, (b) Bentuk gelombang tegangan

# 4.5 Pengaruh Pemasangan Filter Harmonisa Terhadap Stray Current Corrosion

Dengan dipasangnya *single tuned filter*, tabel (4.6) menunjukkan bahwa arus yang melewati jaringan sudah berkurang nilainya. Hal ini berarti bahwa efek *stray current corrosion* dapat dikurangi. Berikut perhitungan dekomposisi besi akibat arus listrik.

Untuk keadaan ionisasi pertama besi dari atom netral Fe ke ion ferrous Fe<sup>+2</sup>, berat ekivalen diperoleh dari massa molar M sebesar 55,845 gram per mol, dan z adalah jumlah moil yang ditransfer dalam reaksi.

$$\frac{M}{Z} = \frac{55,845 \ g/mol}{2 \ mol} = 27,923 \ g$$

Sekarang, akan dihitung massa besi yang diubah, dengan aliran satu ampere arus liar selama setahun ampere setara dengan arus 1 Coulomb muatan per detik.

$$I = \frac{Q}{t} = \frac{1}{1} \frac{C}{s} = 1A$$

satu tahun sama dengan 31.536.000 detik. Berarti, jika *stray current* dalam suatu kandungan unsur besi bernilai 1 A, maka dalam satu tahun satu tahun akan menjadi:

$$Q = It = 1\frac{C}{s} \times 31.536.000s = 31.536.000 C$$

Jumlah mol elektron yang ditransfer dalam reaksi dapat diperoleh dari total muatan yang ditransfer dan juga dari konstanta Faraday.

$$\frac{Q}{F} = \frac{31.536.000}{96485} = 327 \ mol$$

Sehingga massa besi yang dikonsumsi oleh 327 mol elektron dan berat setara 27.923 gram per mol elektron adalah

$$m = \left(\frac{Q}{F}\right)\left(\frac{M}{Z}\right) = 327 \times 27,923 = 9131 g$$

Berarti tiap 1 ampere arus liar dapat mengakibatkan korosi sebesar 9131g per tahunnya.

Tabel (4.7) berikut akan menunjukkan penurunan arus yang mengalir pada jaringan dari tiap-tiap bus. Pada tabel tersebut, I\* merupakan selisih arus sebelum dan setelah pemasangan filter harmonisa, atau nilai dari penurunan arus.

Tabel 4.7 Arus Pada Jaringan

| Bus Cable | I (A)    |         | I* (A) |
|-----------|----------|---------|--------|
|           | Sebelum  | Setelah |        |
| 36SB001-P | 352,26   | 297,08  | 55,18  |
| Cab21     | 10431,69 | 9681,61 | 750,08 |
| Cab95     | 10875    | 9963,79 | 991,21 |
| Cab100    | 10774,95 | 9950,01 | 824,94 |
| Cab101    | 10520,44 | 9693    | 827.44 |

Selanjutnya akan dilakukan perhitungan terhadap stray current corrosion.

a. Stray Current Corrosion yang dapat dikurangi pada 36SB001-P 
$$\frac{M}{z} = \frac{55,845 \text{ g/mol}}{2 \text{ mol}} = 27,923 \text{ g}$$

$$Q = It = 55,18 \frac{c}{s} \times 31.536.000s = 1.740.156.480 \text{ C}$$

$$\frac{Q}{F} = \frac{1.740.156.480}{96485} = 18.035,51308 \text{ mol}$$

$$m = \left(\frac{Q}{F}\right) \left(\frac{M}{z}\right) = 18.035,51308 \times 27,923 = 503.605,63 \text{ g}$$

Sehingga dengan turunnya arus sebesar 55,18 A, dalam satu tahun akan ada 503.605,63 g atau sama dengan 503,606 kg besi yang terhindar dari korosi.

b. Stray Current Corrosion yang dapat dikurangi pada Cab21 
$$\frac{M}{z} = \frac{55,845 \ g/mol}{2 \ mol} = 27,923 \ g$$
 
$$Q = It = 750,08 \frac{c}{s} \times 31.536.000s = 2,366 \times 10^{10} \ C$$
 
$$\frac{Q}{F} = \frac{2,366 \times 10^{10}}{96485} = 245.219,464 \ mol$$
 
$$m = \left(\frac{Q}{F}\right) \left(\frac{M}{z}\right) = 245.219,464 \times 27,923 = 6.847.263,1 \ g$$

Sehingga dengan turunnya arus sebesar 750,08A, dalam satu tahun akan ada 6.847.263,1 g atau sama dengan 6.847 kg besi yang terhindar dari korosi.

c. Stray Current Corrosion yang dapat dikurangi pada Cab95
$$\frac{M}{z} = \frac{55,845 \ g/mol}{2 \ mol} = 27,923 \ g$$

$$Q = It = 991,21 \frac{c}{s} \times 31.536.000s = 3,126 \times 10^{10} \ C$$

$$\frac{Q}{F} = \frac{3,126 \times 10^{10}}{96485} = 323.975,7326 \ mol$$

$$m = \left(\frac{Q}{F}\right) \left(\frac{M}{z}\right) = 323.975,7326 \times 27,923 = 9.046.374,381 \ g$$

Sehingga dengan turunnya arus sebesar 991,21A, dalam satu tahun akan ada 9.046.374,381 g atau sama dengan 9.046 besi yang terhindar dari korosi.

d. Stray Current Corrosion yang dapat dikurangi pada Cab100

$$\frac{M}{z} = \frac{55,845 \text{ g/mol}}{2 \text{ mol}} = 27,923 \text{ g}$$

$$Q = It = 824,94 \frac{c}{s} \times 31.536.000s = 2,602 \times 10^{10} \text{ C}$$

$$\frac{Q}{F} = \frac{2,602 \times 10^{10}}{96485} = 269.630,594 \text{ mol}$$

$$m = \left(\frac{Q}{F}\right) \left(\frac{M}{z}\right) = 269.630,594 \times 27,923 = 7.528.895,07 \text{ g}$$

Sehingga dengan turunnya arus sebesar 824,94 A, dalam satu tahun akan ada 7.528.895,07 g atau sama dengan 7.528 kg besi yang terhindar dari korosi.

e. Stray Current Corrosion yang dapat dikurangi pada Cab101 
$$\frac{M}{z} = \frac{55,845 \text{ g/mol}}{2 \text{ mol}} = 27,923 \text{ g}$$

$$Q = It = 827.44 \frac{c}{s} \times 31.536.000s = 2,609 \times 10^{10} \text{ C}$$

$$\frac{Q}{F} = \frac{2,609 \times 10^{10}}{96485} = 270.404,7261 \text{ mol}$$

$$m = \left(\frac{Q}{F}\right) \left(\frac{M}{z}\right) = 270.404,7261 \times 27,923 = 7.550.511,166 \text{ g}$$

Sehingga dengan turunnya arus sebesar 55,18 A, dalam satu tahun akan ada 7.550.511,166 g atau sama dengan 7.550 kg besi yang terhindar dari korosi.

Halaman ini sengaja dikosongkan

# **BAB 5**

## **PENUTUP**

# 5.1 Kesimpulan

Sistem kelistrikan di PT. Batutua Tembaga Raya, Wetar belum memiliki kualitas daya yang baik. Hingga ketika baru tiga bulan beroperasi, sudah terjadi korosi pada peralatan yang mengandung unsur besi di beberapa bagian pada pabrik tambang tersebut. Hal ini terjadi akibat adanya arus liar atau arus yang seharusnya tidak berada pada elemen tersebut, atau bisa disebut sebagai arus lebih yang salah satunya adalah akibat dari harmonisa yang tinggi. Pada pabrik sudah digunakan kapasitor bank sebagai peredam harmonisa, namun hasilnya, harmonisa arus semakin tinggi. Oleh karena itu, untuk meredam harmonisa tersebut perlu direncanakan filter pasif di beberapa bagian. Hasil simulasi dan analisis pemasangan filter pasif pada PT. Batutua Tembaga Raya didapat sebagai berikut:

- 1. Sudah dilakukan perbaikan profil tegangan dengan cara tap suatu sisi di transformator.
- 2. Bus tegangan menengah dengan ID 36SB001 dipasang tiga buah *single tuned filter* orde 11,13, dan 25 karena bus 36SB001 memiliki THD sampai dengan 14,8% dengan orde harmonisa dominan berada di orde 11, 13, dan 25.
- 3. Bus 21, bus 95, bus 100, dan bus 101 merupakan bus tegangan rendah yang dipasang filter karena pada area tersebut, arus sangat besar dan paling banyak terjadi fenomena *stray current corrosion* sehingga dengan diberi filter dan arus berkurang, diharapkan akan mampu mengurangi korosi kedepannya.
- 4. Harmonisa tegangan dan harmonisa arus berhasil diturunkan.
- 5. Faktor daya berhasil diperbaiki.
- 6. Dengan menurunnya distorsi harmonisa, arus yang mengalir dalam jaringan semakin turun, maka efek dari *stray current corrosion* dapat dikurangi.

#### 5.2 Saran

Dalam penyelesaiain tugas akhir ini, saran yang dapat diberikan untuk kedepannya antara lain:

- 1. Perlu adanya studi mengenai interferensi arus liar yang dapat menyebabkan korosi (*stray current corrosion*) karena penyebabnya bukan hanya dari harmonisa saja.
- 2. Perlu adanya studi harmonisa pada sistem kelistrikan karena semakin berkembangnya teknologi, semakin banyak peralatan elektronika daya seperti *converter* yang digunakan. S hal tersebut memungkinkan permasalahan harmonisa yang lebih luas seiring dengan penggunaan *converter* yang akan semakin banyak.

#### DAFTAR PUSTAKA

- [1] Ashari, Mochamad, "Konverter AC", ITS Press, Surabaya, Bab.1, 2006
- [2] Ashari, Mochamad, "Konverter DC", ITS Press, Surabaya, Bab.1 dan Bab 4, 2006
- [3] Awadalla, M, Omer, M, & Mohamed, A, "Single Tuned Filter Design for Harmonic Mitigation and Optimization with Capacitor Banks", *International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering*, 2015
- [4] Badrzadeh, B, Smith, K, & Wilson, R, "Designing Passive Harmonic Filters for an Alumunium Smelting Plant", *IEEE Transactions On Industry Applications, Vol. 47, No. 2*, 2011
- [5] Chang, G.W, S.Y. Chu, and H.L. Wang, "A New Approach for Placement of Single-Tuned Passive Harmonic Filter in a Power System" IEEE, pp. 814-817, 2002
- [6] Grady, Mack, "Understanding Power System Harmonics" Sept. of Electrical & Computer Engineering University of Texas at Austin, Chapter 1, 2006
- [7] Heydar, R, Soeprijanto, A & Penangsang O, "Studi Harmonik Filter Pasif pada Sisi Tegangan Rendah pada Sistem Kelistrikan PT. Semen Tonasa V Sulawesi Selatan", *ITS Paper*.
- [8] Hoevenaars, T, LeDoux, K & Colosino, M, 'Interpreting IEEE Std 519 and Meeting its Harmonic Limits in VFD Applications' IEEE Paper, Paper No. PCIC-2003-15, 2003
- [9] Pete, G, McGrath, M, "AC Versus DC Stray Current Corrosion, Analysis and Measurement", July 2010
- [10] Pramnanto, A "Analisis Penggunaan Single Tuned Filter Pada Saluran Distribusi". *Skripsi Universitas Indonesia*. 2008

- [11] Pujiantara, Margo. Diktat Kuliah Desain dan Instalasi Tenaga Listrik: Harmonisa, Departemen Teknik Elektro ITS
- [12] Ruben, J, Wibowo, R & Penangsang, O 2012, "Analisis Unjuk Kerja Filter Pasif dan Filter Aktif pada Sisi Tegangan Rendah di Perusahaan Semen Tuban, Jawa Timur", *ITS Paper*, 2012
- [13] Sabri, Y, Kurniawa, E, "Perancangan Filter Pasif Untuk Mengatasi Harmonisa pada Gardu Penyearahan Pusat Listrik Aliran Atas-PT KAI Commuter Jabodetabek Indonesia", ITB Paper, 2013
- [14] Utomo, B, "Interferensi Arus Liar", dilihat 16 April 2017, <URL: <a href="http://www.corrosioncop.com/mengenal-interference-arus-liar-stray-current-interference/">http://www.corrosioncop.com/mengenal-interference-arus-liar-stray-current-interference/</a>>, 2016

## **BIOGRAFI PENULIS**



Azharia Mahdiya dengan nama panggilan rumah 'Ary' dan selain di rumah dipanggil 'Aza' adalah anak pertama dari empat bersaudara yang lahir di Jakarta pada tanggal 6 Maret 1996. Memiliki ayah super bernama Drs. Boy Tirta Sumriyadi, MM. dan seorang ibu tangguh bernama Ratna Ahsanty, S.Kom., serta memiliki tiga orang adik perempuan, Alyfia Maitsaa yang saat ini menempuh semester 3 di UIN **Syarif** Hidayatullah Jakarta, Aqyla Muqsitha yang saat

ini kelas 9 di SMPIT Tunas Harapan Ilahi, dan Aghnia Muthya yang saat ini bersekolah di SDIT Tunas Harapan Ilahi kelas 6. Bertempat tinggal di Kota Tangerang dengan sebagian besar keluarga berada disekitar JABODETABEK namun memilih menghabiskan beberapa semester tinggal di Surabaya untuk kuliah di ITS.

Halaman ini sengaja dikosongkan