Ko-Optimasi Source dan Pola Mask Berdasarkan Algoritma Multi-Objektif Particle Swarm Optimization

Arthananda, Zendhiastara (2018) Ko-Optimasi Source dan Pola Mask Berdasarkan Algoritma Multi-Objektif Particle Swarm Optimization. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 1214201040-Master_Thesis.pdf]
Preview
Text
1214201040-Master_Thesis.pdf - Accepted Version

Download (3MB) | Preview

Abstract

Studi ini mengintegrasikan algoritma multi-objektif particle swarm optimization (MOPSO) kedalam proses ko-optimasi source dan mask (SMO) untuk meningkatkan performa lithografi pada sinar ekstrim ultraviolet (EUV). Sebuah metode proses secara simultan dari source dan pola reticle dikembangkan pada riset ini. Untuk konstruksi source berbentuk bebas (freeform) , sebuah optimasi berbasis pixel digunakan pada platform PC. Algoritma MOPSO digunakan untuk menghasilkan source berbentuk bebas (Source Freform). Model berbasis pendekatan koreksi optik (Optical Proximity Correction or OPC) digunakan untuk mengoreksi pola dari mask layout. Dengan mempertimbangkan karakteristik dari sistem lithografi EUV, metode SMO dikembangkan dengan algoritma MOPSO menggunakan dua fungsi tujuan: error (EPE) dan bias horizontal/vertikal. Sebuah pola satu-dimensi line/space (L/S) digunakan sebagai informasi dasar untuk menguji Pareto dari algoritma SMO. Kemudian, pola 2D dengan half-pitch 22-nm diuji menggunakan algoritma yang sama. Algoritma MOPSO berhasil untuk mengkonstruksi solusi non-dominan (non-dominated) dari source Freeform dan Pareto. Indikator performa menunjukkan kondisi process windows (PW) seperti aerial image, exposure latitutde (EL), depth of focus (DOF) dan bias. Algoritma menunjukan bahwa PW meningkat untuk EL namun DOF menunjukkan penurunan. EL meningkat sebesar 5.26% dan DOF menurun sebesar 11.34% untuk 1D L/S. EL dan DOF meningkat 43.6% dan 18.11% untuk pola 2D.
=========================================================================================================
This thesis integrates multi-objective particle swarm optimization
(MOPSO) algorithm into the source and
mask
co
-
optimization (SMO) process to
enhance the extreme ultraviolet (EUV) lithography imaging performance. A
simultaneous source and reticle pattern process method
is
developed in this
research. For the freeform source construction, a pixelated
-
based optimiz
ation
process was performed on PC platform. The MOPSO algorithm was applied to
generate
freeform
source. Model
-
based optical proximity correction (OPC) was
applied to correct the mask layout patterns. Considering the characteristics of the
EUV lithography
system, the developed SMO with the MOPSO algorithm is
constrained by two cost functions: the edge placement error (EPE) and
horizontal/vertical bias. A
one
-
dimensional
line/space (L/S) pattern is used as the
baseline information to test the Pareto behavior
of the developed SMO algorithm.
Then,
the 2D
pattern with half
-
pitch 22
-
nm was assessed using the developed
algorithm. The proposed MOPSO algorithm succeeded to construct non
-
dominated solutions of freeform sources and Pareto front which four of those
sol
utions are presented. The performance indicators include process
windows
(PW) condition such as the aerial image contrast, exposure latitude (EL), depth of
focus (DOF), and bias errors. The proposed algorithm shows that the common PW
conditions improved on
EL while the DOF is slightly suffering. The EL increased
for 5.26% and DOF suffers for 11.34% in 1D L/S and both EL and DOF increased
for 43.6% and 18.11%, respectively for the
2D
pattern.

Item Type: Thesis (Masters)
Additional Information: RTMa 686.231 5 Art k-1 3100018075143
Uncontrolled Keywords: lithografi ekstrim ultraviolet (EUV), multi-objektif particle swarm optimization (MOPSO), process window (PW), optimasi source dan mask (SMO), extreme ultraviolet (EUV) lithography, source mask optimization
Subjects: Q Science > Q Science (General) > Q337.3 Swarm intelligence
Q Science > QA Mathematics
Q Science > QA Mathematics > QA76.9 Computer algorithms. Virtual Reality. Computer simulation.
Divisions: Faculty of Mathematics and Science > Mathematics > 44101-(S2) Master Thesis
Depositing User: Zendhiastara Arthananda
Date Deposited: 22 Feb 2018 01:46
Last Modified: 10 Apr 2020 23:06
URI: http://repository.its.ac.id/id/eprint/50891

Actions (login required)

View Item View Item