

TESIS-SM 142501

IMPLEMENTASI ALGORITMA FILTER KALMAN PADA MODEL TEREDUKSI DENGAN METODE SINGULAR PERTURBATION APPROXIMATION

Vimala Rachmawati 06111550012002

DOSEN PEMBIMBING Dr. Didik Khusnul Arif, S.Si, M.Si Dr. Dieky Adzkiya, S.Si, M.Si

PROGRAM MAGISTER DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA, KOMPUTASI DAN SAINS DATA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2018

THESIS-SM 142501

IMPLEMENTATION OF KALMAN FILTER ALGORITHM ON REDUCED MODEL USING SINGULAR PERTURBATION APPROXIMATION METHOD

Vimala Rachmawati 06111550012002

PROSPECTIVE SUPERVISOR Dr. Didik Khusnul Arif, S.Si, M.Si Dr. Dieky Adzkiya, S.Si, M.Si

MASTER PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF MATHEMATICS, COMPUTING AND DATA SCIENCES SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 2018

LEMBAR PENGESAHAN

Tesis ini disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Sains (M.Si.) di

> Fakultas Matematika, Komputasi, dan Sains Data Institut Teknologi Sepuluh Nopember

> > oleh: VIMALA RACHMAWATI NRP. 06111550012002

> > > Tanggal Ujian Periode Wisuda

: 16 Januari 2018 : Maret 2018

Disetujui oleh:

Dr. Didik Khushul Arif, S.Si., M.Si. NIP. 19730930 199702 1 001

Dr. Dieky Adzkiya, S.Si., M.Si. NIP. 19830517 200812 1 003

Dr. Hariyanto, M.Si. NIP. 19530414 198203 1 002

Endah RM Putri, S.Si., MT., Ph.D. NIP. 19761213 200212 2 001 (Pembimbing I)

(Pembimbing II)

(Penguji)

(Penguji)

Dekan FMKSD,

KNOLOG

Prof. Dr. Basuki Widodo, M.Sc. MATEMA NIP. 19650605 198903 1 002

ABSTRAK

IMPLEMENTASI ALGORITMA FILTER KALMAN PADA MODEL TEREDUKSI DENGAN METODE SINGULAR PERTURBATION APPROXIMATION

Nama Mahasiswa	: Vimala Rachmawati
NRP	: 06111550012002
Pembimbing	: Dr. Didik Khusnul Arif S.Si., M.Si.
Co-Pembimbing	: Dr. Dieky Adzkiya, S.Si., M.Si.

ABSTRAK

Sungai merupakan fenomena alam yang dapat dipandang sebagai sebuah sistem yang terdiri dari ketinggian sungai dan kecepatan aliran sungai. Sistem dari sungai ini dapat dibentuk dalam model matematika yang memiliki orde besar. Reduksi model dari suatu sistem adalah metode aproksimasi dari suatu sistem dengan orde lebih rendah tanpa kesalahan yang signifikan tetapi memiliki perilaku dinamiknya hampir sama dengan model awal. Metode Singular Perturbation Approximation (SPA) adalah salah satu metode reduksi model dimana semua variabel keadaan dari sistem setimbang yang dipartisi menjadi mode cepat dan lambat. Dalam sistem yang besar, pada umumnya tidak semua variabel diketahui sehingga perlu dilakukan estimasi. Salah satu metode estimasi adalah algoritma Filter Kalman yang merupakan algoritma rekursif untuk mengestimasi variabel keadaan dari sistem dinamik stokastik dimana estimasinya dilakukan dengan cara memprediksi variabel keadaan berdasarkan dinamika sistem dan data pengukuran. Pada penelitian ini akan dikaji mengenai implementasi algoritma Filter Kalman pada model tereduksi menggunakan metode Singular Perturbation Approximation (SPA) yang diaplikasikan pada model aliran air sungai. Simulasi dari model awal dan model tereduksi hingga proses estimasi dilakukan dengan menggunakan software MATLAB. Hasilnya menunjukkan bahwa sifat dari sistem awal dengan sistem tereduksi adalah sama yaitu stabil asimtotis, terkendali dan teramati. Frekuensi respon antara sistem awal dengan sistem tereduksi memiliki performansi yang sama saat frekuensi rendah. Saat estimasi, MSE terkecil adalah

antara sistem awal dengan estimasi sistem awal itu sendiri dan antara sistem awal dengan estimasi sistem tereduksi orde 13. Estimasi pada sistem tereduksi memiliki waktu komputasi lebih cepat dibandingkan dengan sistem awal.

Kata Kunci : Algoritma Filter Kalman, Reduksi Model, Singular Pertubation Approximation

ABSTRACT

IMPLEMENTATION OF KALMAN FILTER ALGORITHM ON REDUCED MODEL USING SINGULAR PERTURBATION APPROXIMATION METHOD

Name	: Vimala Rachmawati
NRP	: 06111550012002
Supervisor	: Dr. Didik Khusnul Arif S.Si., M.Si.
Co-Supervisor	: Dr. Dieky Adzkiya, S.Si., M.Si.

ABSTRACT

River is a natural phenomenon that can be seen as a system consisting of river height and speed. The system from this river can be formed in a mathematical model that has a large order. Model reduction of a system is a method of approximation of a system with a lower-order without a significant error. Its dynamic behavior is almost the same as the original model. Singular Perturbation Approximation Method (SPA) is one of the methods of model reduction where all state variables of the balanced system is partitioned into fast and slow mode. In large systems, in general, not all the variables are measured, thus we need to estimate the unknown variables. One method of estimation is the Kalman Filter algorithm. It is a recursive algorithm for estimating state variables of stochastic dynamic system in which the estimation is done by predicting state variables based on the dynamics of the system and measurement data. In this thesis, we study implementation of Kalman Filter algorithm on a reduced model using Singular Perturbation Approximation (SPA) method and which is applied to the model of river flow. Simulation of the original model and the reduced model for the estimation process is performed by using MATLAB software. The results show that the properties of the original system with a reduced system are the same. Those properties are asymptotically stable, controllable and observable. The frequency response between the original system and the reduced system tends to have the same graph at low frequency. As for estimation, the smallest MSE is between the original

system and the original system estimation and between the original system and the estimation of reduced system of order 13. Computational time of reduced system is faster than original system.

Keywords : Kalman Filter Algorithm, Reduction Model, Singular Perturbation Approximation.

KATA PENGANTAR

KATA PENGANTAR

Assalamu'alaikum Wr. Wb

Alhamdulillahhirobbil'aalamin, segala puji dan syukur penulis panjatkan ke hadirat Allah SWT yang telah memberikan limpahan rahmat, taufik serta hidayah-Nya sehingga penulis dapat menyelesaikan Tesis yang berjudul

"Implementasi Algoritma Filter Kalman Pada Model Tereduksi Dengan Metode Singular Perturbation Approximation"

yang merupakan salah satu persyaratan akademis dalam menyelesaikan Program Studi Strata 2 (S-2) Program Magister Departemen Matematika, Fakultas Matematika, Komputasi dan Sains Data (FMKSD), Institut Teknologi Sepuluh Nopember (ITS) Surabaya.

Tesis ini dapat diselesaikan dengan baik berkat kerja sama, bantuan dan dukungan dari banyak pihak. Sehubungan dengan hal itu, penulis ingin mengucapkan terima kasih dan penghargaan kepada :

- 1. Prof. Dr. Basuki Widodo, M.Sc., selaku Dekan Fakultas Matematika, Komputasi dan Sains Data Institut Teknologi Sepuluh Nopember.
- 2. Dr. Imam Mukhlash, S.Si., M.T., selaku Ketua Departemen Matematika Institut Teknologi Sepuluh Nopember.
- Dr. Machmud Yunus, M.Si., selaku Ketua Program Studi Pascasarjana Matematika Institut Teknologi Sepuluh Nopember yang telah memberikan dukungan dan motivasi selama perkuliahan hingga terselesaikannya Tesis ini.
- 4. Dr. Didik Khusnul Arif, S.Si., M.Si., selaku Dosen Wali sekaligus Dosen Pembimbing yang telah memberikan bimbingan dan motivasi kepada penulis dalam mengerjakan Tesis ini sehingga dapat terselesaikan dengan baik.
- Dr. Dieky Adzkiya, S.Si., M.Si., selaku Dosen Pembimbing yang telah memberikan bimbingan dan motivasi kepada penulis dalam mengerjakan Tesis ini sehingga dapat terselesaikan dengan baik.

- Dr. Hariyanto, M.Si. dan Endah RM Putri S.Si., M.T., Ph.D., selaku Dosen Penguji yang telah memberikan kritik dan saran yang telah diberikan demi perbaikan Tesis ini.
- 7. Seluruh jajaran dosen dan staf Departemen Matematika ITS yang telah memberikan bekal ilmu pengetahuan dan juga atas bantuan, kemudahan dan kelancaran selama penulis mengikuti proses perkuliahan.

Penulis menyadari bahwa Tesis ini masih jauh dari kesempurnaan. Oleh karena itu, penulis mengharapkan saran dan kritik dari pembaca, sehingga penelitian selanjutnya diharapkan bisa lebih baik. Akhir kata, semoga Tesis ini bermanfaat bagi semua pihak yang berkepentingan.

Surabaya, Januari 2018 Penulis

special thanks to

Selama proses mengerjakan Tesis ini, banyak pihak yang telah memberikan bantuan dan dukungan untuk penulis. Penulis sungguh ingin mengucapkan terima kasih dan penghargaan secara khusus kepada :

- Kedua orang tua, Abah Sutrisno dan Umi' Khusnul Khotimah tercinta serta ketiga adik laki-laki, Ardi, Ilham dan Guntur yang senantiasa dengan ikhlas memberikan kasih sayang, semangat, do'a, dan nasihat-nasihat yang sungguh berarti bagi penulis.
- Abang Yuga tercinta yang senantiasa dengan ikhlas menjadi suami siaga dalam hal apapun ketika penulis membutuhkan.
- *My Sweet Heart* Noura yang sudah mewarnai kehidupan penulis baik susah maupun senang selama proses pengerjaan Tesis .
- Kedua mertua, Ayah Rusmanto dan Mama Sunarsih yang senantiasa dengan ikhlas memberikan kasih sayang, semangat, do'a, dan nasihat-nasihat yang sungguh berarti bagi penulis.
- Helisyah, Habib, Nabila, Mey Lista, Rizky dan teman-teman S2 Matematika ITS khususnya angkatan 2015 semester genap atas segala bentuk semangat, dukungan, kritik dan saran yang diberikan kepada penulis selama awal masuk perkuliahan hingga terselesaikannya Tesis ini.

Tentu saja masih banyak pihak lain yang turut andil dalam penyelesaian Tesis ini yang tidak bisa penulis sebutkan satu persatu. Semoga Allah membalas dengan balasan yang lebih baik bagi semua pihak yang telah membantu penulis. *Aamiin ya rabbal 'alamin*.

DAFTAR ISI

DAFTAR ISI

		hal
LEMBAR	PERSETUJUAN	v
ABSTRAK		
ABSTRA	СТ	ix
KATA PENGANTAR		
DAFTAR	ISI	XV
DAFTAR	GAMBAR	xvii
DAFTAR	TABEL	xix
BAB I.	PENDAHULUAN	1
	1.1 Latar Belakang	1
	1.2 Rumusan Masalah	2
	1.3 Batasan Masalah	3
	1.4 Tujuan Penelitian	3
	1.5 Manfaat Penelitian	3
BAB II.	KAJIAN PUSTAKA DAN DASAR TEORI	5
	2.1 Penelitian Terdahulu	5
	2.2 Sistem Linear Waktu Diskrit	6
	2.2.1 Sifat – Sifat Sistem	7
	2.3 Gramian Keterkendalian dan Gramian Keteramatan	9
	2.4 Fungsi Transfer	10
	2.5 Reduksi Model dengan Metode SPA	11
	2.5.1 Sistem Setimbang	12
	2.5.2 Metode Reduksi Model dengan Singular	
	Perturbation Approximation (SPA)	13
	2.6 Filter Kalman	16
	2.7 Pemodelan Aliran Air Sungai	17
BAB III.	METODE PENELITIAN	19
	3.1 Tahapan Penelitian	19
	3.2 Diagram Alir Metode Penelitian	21

		hal
BAB IV	HASIL DAN PEMBAHASAN	23
	4.1 Diskritisai Model	23
	4.2 Simulasi	27
	4.2.1 Kasus 1 (Mengukur Ketinggian Air Sungai)	27
	4.2.2 Kasus 2 (Mengukur Kecepatan Aliran Sungai)	48
BAB V.	PENUTUP	71
	5.1 Kesimpulan	71
	5.2 Saran	72
DAFTAR	PUSTAKA	73
LAMPIRA	AN A	75
LAMPIRA	AN B	85
LAMPIRA	AN C	127
LAMPIRA	AN D	147
BIODATA	A PENULIS	151

DAFTAR GAMBAR

DAFTAR GAMBAR

		Hal
Gambar 2.1.	Model Aliran Air Sungai Dangkal	17
Gambar 3.1.	Diagram Alir Metode Penelitian	21
Gambar 4.1	Nilai Singular Hankel	32
Gambar 4.2.	Frekuensi Respon antara Sistem Awal dan Sistem	
	Setimbang	34
Gambar 4.3.	Frekuensi Respon antara Sistem Awal dan Sistem	
	Tereduksi Orde 13	38
Gambar 4.4.	Frekuensi Respon antara Sistem Awal dan Sistem	
	Tereduksi Orde 19	41
Gambar 4.5.	Akurasi Hasil Estimasi antara y dan y1	44
Gambar 4.6.	Akurasi Hasil Estimasi antara y dan y2 untuk orde 13	44
Gambar 4.7.	Akurasi Hasil Estimasi antara y dan y3 untuk orde 13	45
Gambar 4.8.	Akurasi Hasil Estimasi antara y dan y2 untuk orde 19	46
Gambar 4.9.	Akurasi Hasil Estimasi antara y dan y3 untuk orde 19	46
Gambar 4.10.	Nilai Singular Hankel	52
Gambar 4.11.	Frekuensi Respon antara Sistem Awal dan Sistem	
	Setimbang	54
Gambar 4.12.	Frekuensi Respon antara Sistem Awal dan Sistem	
	Tereduksi Orde 6	58
Gambar 4.13.	Frekuensi Respon antara Sistem Awal dan Sistem	
	Tereduksi Orde 19	61
Gambar 4.14.	Akurasi Hasil Estimasi antara y dan y1	64
Gambar 4.15.	Akurasi Hasil Estimasi antara y dan y2 untuk orde 6	65
Gambar 4.16.	Akurasi Hasil Estimasi antara y dan y3 untuk orde 6	65
Gambar 4.17.	Akurasi Hasil Estimasi antara y dan y2 untuk orde 19	66
Gambar 4.18.	Akurasi Hasil Estimasi antara y dan y3 untuk orde 19	67

DAFTAR TABEL

DAFTAR TABEL

		hal
Tabel 2.1.	Algoritma Filter Kalman	17
Tabel 4.1.	Nilai Eigen dari Sistem Awal (A, B, C1, D)	29
Tabel 4.2.	Nilai Singular Hankel	30
Tabel 4.3.	Nilai Eigen dari Sistem Setimbang $(\tilde{A}, \tilde{B}, \widetilde{C1}, \widetilde{D})$	32
Tabel 4.4	Syarat Orde Tereduksi dengan SPA pada Simulasi 1	34
Tabel 4.5	Nilai Eigen dari Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$	
	Orde 13	36
Tabel 4.6	Nilai Eigen dari Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$	
	Orde 19	40
Tabel 4.7	Hasil Estimasi Filter Kalman pada Sistem Awal dan	
	Sistem Tereduksi	47
Tabel 4.8	Nilai Eigen dari Sistem Awal (A, B, C2, D)	49
Tabel 4.9	Nilai Singular Hankel	51
Tabel 4.10.	Nilai Eigen dari Sistem Setimbang $(\tilde{A}, \tilde{B}, \widetilde{C2}, \widetilde{D})$	53
Tabel 4.11.	Syarat Orde Tereduksi dengan SPA pada Simulasi 2	55
Tabel 4.12.	Nilai Eigen dari Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$	
	Orde 6	57
Tabel 4.13.	Nilai Eigen dari Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$	
	Orde 19	60
Tabel 4.14.	Hasil Estimasi Filter Kalman pada Sistem Awal dan	
	Sistem Tereduksi	68

BAB 1 PENDAHULUAN

BAB 1

PENDAHULUAN

Pada bab ini diuraikan mengenai latar belakang yang mendasari usulan penelitian ini dan berdasarkan latar belakang masalah maka dapat disusun rumusan masalah yang mendasari tujuan penelitian serta manfaat penelitian.

1.1 Latar Belakang

Sungai merupakan salah satu sumber air yang menampung dan mengalirkan aliran air. Sungai dapat dipandang sebagai suatu sistem dimana sistem merupakan suatu kombinasi dari beberapa komponen yang bekerja bersama - sama untuk mendapatkan tujuan tertentu. Dalam hal ini adalah sistem dari kecepatan aliran air sungai dan ketinggian sungai digunakan agar tetap dapat memantau debit air sungai tetap dalam kondisi yang diharapkan. Sistem dari kecepatan aliran dan ketinggian sungai ini dapat direpresentasikan ke dalam model matematika.

Sistem yang terdapat di alam semesta jika direpresentasikan dalam model matematika menghasilkan orde yang besar sehingga memiliki banyak variabel keadaan. Hal ini mempengaruhi waktu komputasi karena semakin besar ukuran sistem, waktu komputasi yang dibutuhkan semakin lama pula. Oleh karena itu, dibutuhkan penyederhanaan sistem yang berorde besar agar sistem tersebut memiliki orde yang lebih kecil tanpa kesalahan yang signifikan. Penyederhanaan sistem inilah yang dimaksud reduksi model (Arif dkk, 2014).

Saat ini telah banyak dikembangkan beberapa metode reduksi model, diantaranya adalah metode *Singular Perturbation Approximation* (SPA). Pada model tereduksi dengan metode SPA, semua variabel keadaan dari sistem setimbang dipartisi menjadi mode cepat dan lambat, variabel keadaan yang bersesuaian dengan nilai singular Hankel kecil didefinisikan sebagai mode cepat, sedangkan variabel keadaan yang bersesuaian dengan nilai singular Hankel yang lebih besar didefinisikan sebagai mode lambat. Selanjutnya, model tereduksi diperoleh dengan mengambil kecepatan dari mode cepat sama dengan nol. Telah dilakukan penelitian tentang reduksi model pada permasalahan aliran air sungai (*shallow water problem*). Persamaan Saint Venant dengan sistem awal tak stabil dapat direduksi dengan metode pemotongan setimbang. Hasil simulasinya menunjukkan bahwa *step response* antara subsistem stabil dan subsistem stabil tereduksi menunjukkan karakteristik yang sama dengan error reduksi kurang dari dua kali jumlah nilai singular hankel yang tereduksi (Mustaqim, 2016)

Dalam sistem yang besar, pada umumnya tidak semua variabel diketahui sehingga perlu dilakukan estimasi. Estimasi ini berguna untuk mengukur besaran pada sistem yang tidak dapat diukur. Salah satu metode estimasi yang telah banyak diaplikasikan adalah algoritma Filter Kalman. Filter Kalman adalah algoritma rekursif untuk mengestimasi variabel keadaan dari sistem dinamik stokastik. Estimasi dengan menggunakan metode ini dilakukan dengan cara memprediksi variabel keadaan berdasarkan dinamika sistem dan data pengukuran (Lewis, 1992).

Ketika algoritma Filter Kalman diaplikasikan pada sistem berskala besar maka dibutuhkan waktu komputasi yang lama. Dalam *Construction Of the Kalman Filter Algorithm On the Model Reduction* (Arif dkk , 2014) telah dikembangkan algoritma Filter Kalman pada model tereduksi yang diterapkan pada masalah distribusi konduksi panas. Estimasi distribusi konduksi panas pada kawat dimensi satu ini merupakan salah satu contoh sistem yang berukuran besar. Hasil simulasi menunjukkan bahwa estimasi filter Kalman pada sistem tereduksi mempunyai hasil yang lebih akurat dan waktu komputasi yang lebih kecil jika dibandingkan dengan Filter Kalman pada sistem semula.

Berdasarkan latar belakang di atas, pada penelitian ini akan dikaji mengenai estimasi pada model aliran air sungai yang telah direduksi menggunakan metode *Singular Perturbation Approximation* (SPA) dengan mengimplementasikan algoritma Filter Kalman. Simulasi dari model awal dan model tereduksi hingga proses estimasi dilakukan dengan menggunakan *software* MATLAB.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, rumusan masalah pada penelitian ini adalah sebagai berikut :

- 1. Bagaimana reduksi model aliran air sungai dengan metode *Singular Perturbation Approximation* (SPA)?
- 2. Bagaimana sifat dan error dari model aliran air sungai yang direduksi dengan metode *Singular Perturbation Approximation* (SPA)?
- 3. Bagaimana hasil estimasi dari implementasi algoritma Filter Kalman pada model aliran air sungai yang direduksi dengan metode *Singular Perturbation Approximation* (SPA)?

1.3 Batasan Masalah

Berdasarkan rumusan masalah di atas, batasan masalah dari penelitian ini adalah sebagai berikut :

- 1. Metode yang digunakan untuk reduksi model adalah *Singular Perturbation Approximation* (SPA)
- 2. Sistem yang digunakan adalah sistem linear waktu invarian
- 3. Pemodelan aliran sungai didekati dengan model aliran dangkal berdimensi satu
- Diasumsikan bahwa panjang sungai (L) jauh lebih besar jika dibandingkan dengan lebar sungai (B)

1.4 Tujuan Penelitian

Adapun tujuan dari penelitian ini adalah sebagai berikut :

- 1. Menganalisa reduksi model aliran air sungai dengan metode *Singular Perturbation Approximation* (SPA)
- 2. Menganalisa sifat dan error dari model aliran air sungai yang direduksi dengan metode *Singular Perturbation Approximation* (SPA)
- 3. Menganalisa hasil estimasi dari implementasi algoritma Filter Kalman pada model aliran air sungai yang direduksi dengan metode *Singular Perturbation Approximation* (SPA)

1.5 Manfaat Penelitian

Manfaat yang diperoleh dari penelitian ini adalah sebagai berikut :

- 1. Menambah wawasan mengenai reduksi model untuk sistem stabil atau tak stabil dan penerapannya pada model matematika yang memiliki orde besar sehingga dapat mempermudah perhitungan dan analisis.
- 2. Memberikan informasi mengenai implementasi Algoritma Filter Kalman pada sistem tereduksi.
- 3. Sebagai referensi bagi pembaca dalam melakukan penelitian selanjutnya.

BAB 2 TINJAUAN PUSTAKA

BAB 2

TINJAUAN PUSTAKA

Pada bab ini diuraikan mengenai penelitian terdahulu dan perbedaan dengan usulan penelitian yang akan dilakukan. Selain itu juga diberikan uraian mengenai teori – teori yang digunakan sebagai bahan penunjang penelitian.

2.1 Penelitian Terdahulu

Penelitian – penelitian terkait yang pernah dilakukan sebelumnya yaitu sebagai berikut

- Reduksi Model Sistem Linear Waktu Diskrit Tak Stabil menggunakan Metode Pemotongan Setimbang (Mustaqim, K., Arif, D.K., dan Apriliani, E., 2016). Dalam penelitian ini telah dilakukan reduksi model pada permasalahan aliran air sungai (shallow water problem). Persamaan Saint Venant dengan sistem awal tak stabil dapat direduksi dengan metode pemotongan setimbang. Hasil simulasinya menunjukkan bahwa step response antara subsistem stabil dan subsistem stabil tereduksi menunjukkan karakteristik yang sama dengan error reduksi kurang dari dua kali jumlah nilai singular hankel yang tereduksi.
- 2. Model Tereduksi Sistem Linier Waktu Diskrit dengan Metode Singular Perturbation Approximation (Rochmah, M., Fatmawati. dan Purwanti, U.D, 2015). Dalam penelitian ini telah dilakukan reduksi model pada permasalahan konduksi panas dengan metode Singular Perturbation Approximation (SPA). Sistem yang direduksi merupakan sistem yang stabil asimtotik, terkendali dan teramati. Hasil penelitian menunjukkan bahwa model tereduksi memiliki sifat stabil asimtotik. Pada frekuensi rendah respon frekuensi sistem awal berorde penuh cenderung sama dengan dengan respon frekuensi sistem yang telah direduksi. Sedangkan pada frekuensi tinggi respon frekuensi sistem awal cenderung berbeda.
- 3. Konstruksi dan Implementasi Algoritma Filter Kalman pada Model Tereduksi (Arif, D.K, 2014). Pada penelitian ini telah dilakukan implementasi algoritma Filter Kalman pada sistem tereduksi yang diterapkan pada masalah

distribusi konduksi panas. Estimasi distribusi konduksi panas pada kawat dimensi satu ini merupakan salah satu contoh sistem yang berukuran besar. Hasil simulasi menunjukkan bahwa estimasi filter Kalman pada sistem tereduksi mempunyai hasil yang lebih akurat dan waktu komputasi yang lebih kecil jika dibandingkan dengan Filter Kalman pada sistem semula.

- 4. Reduction of Unstable Discrete Time Systems by Hankel Norm Approximation (Kumar dkk, 2011). Dalam penelitian ini dibahas mengenai reduksi model pada sistem tak stabil menggunakan pendekatan norm hankel. Pada sistem tak stabil dilakukan pemisahan menjadi subbagian sistem stabil dan tidak stabil dengan menggunakan algoritma dekomposisi. Kemudian, subbagian sistem stabil direduksi menggunakan metode norm hankel. Diperoleh model akhir dengan cara menambahkan subsistem tidak stabil dan sistem stabil tereduksi.
- 5. Balanced Realization and Model Reduction for Unstable Systems (Zhou dkk, 1999). Dalam penelitian ini, diperkenalkan realisasi setimbang dan metode reduksi model untuk sistem tidak stabil, dengan mendefinisikan gramian keterkendalian dan keteramatan yang baru. Diperoleh hasil bahwa metode ini lebih efektif dibanding *existing* metode.

2.2 Sistem Linear Waktu Diskrit

Suatu sistem linear waktu diskrit dinyatakan dalam bentuk persamaan sebagai berikut (Ogata, 1995) :

$$\begin{array}{l} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k + Du_k \end{array}$$
 (2.1)

dengan

 $x_k \in \mathbb{R}^n$: Vektor keadaan pada waktu k

 $u_k \in \mathbb{R}^m$: Vektor kendali pada waktu k

 $y_k \in \mathbb{R}^p$: Vektor keluaran pada waktu k

A, B, C, D masing - masing adalah matriks - matriks konstan dengan ukuran yang bersesuaian. Persamaan (2.1) dapat dinyatakan sebagai sistem (A, B, C, D).

2.2.1 Sifat - Sifat Sistem

A. Kestabilan

Definisi 2.1 (Anton, H., 1981)

Jika A adalah sebuah matriks $n \times n$, maka sebuah vektor tak nol $(x_1, x_2, ..., x_n)'$ di \mathbb{R}^n dinamakan sebuah vektor eigen dari A. Jika Ax adalah kelipatan skalar dari x yaitu

$$Ax = \lambda x$$

untuk suatu skalar λ . Skalar λ disebut nilai eigen dari A dan x dikatakan sebuah vektor eigen yang bersesuaian dengan λ .

Untuk menentukan nilai eigen dari matriks A berukuran $n \times n$ maka $Ax = \lambda x$ dapat ditulis kembali sebagai

$$Ax = \lambda Ix$$

atau secara ekivalen

$$(\lambda I - A)x = 0.$$

Untuk nilai eigen λ , persamaan tersebut mempunyai penyelesaian tak nol jika dan hanya jika *det* $(\lambda I - A)x = 0$ dan disebut persamaan karakteristik matriks *A*.

Teorema berikut memberikan syarat kestabilan sistem berdasarkan nilai karakteristik sebagai berikut.

Teorema 2.1 (Paraskevopoulos, 1996; Ogata, 1997)

Sistem linear diskrit, seperti yang dinyatakan pada Persamaan (2.1), adalah stabil asimtotik jika dan hanya jika $|\lambda_i(A)| < 1$ untuk i = 1, ..., n dengan $\lambda_i(A)$ adalah nilai eigen matriks A. Sedangkan jika $|\lambda_i(A)| \leq 1$, maka sistem diskrit adalah stabil.

B. Keterkendalian

Diberikan suatu sistem diskrit yang dapat dinyatakan dalam bentuk (Ogata, 1995) :

$$x((k+1)T) = Ax(kT) + Bu(kT)$$
(2.2)

dengan

- x(kT) : Vektor keadaan berukuran $n \times 1$ pada saat waktu k sampling
- u(kT) : Vektor masukan pada saat waktu k sampling
 - A : Matriks non singular berukuran $n \times n$

B : Matriks berukuran $n \times 1$

T : Periode sampling

Diasumsikan u(t) = u(kT) adalah konstan untuk $kT \le t < (k + 1)T$. Keadaan awal diambil sebarang, sedangkan keadaan akhirnya adalah titik asal. Pengertian keterkendalian sistem diskrit diberikan oleh definisi berikut :

Definisi 2.2

Sistem diskrit seperti yang diberikan pada Persamaan (2.2) adalah terkendali jika terdapat potongan konstan dari vektor masukan u(kT) yang didefinisikan atas bilangan berhingga dari periode sampling $0 \le kT < nT$, sedemikian sehingga, mulai dari setiap keadaan awal x(kT) dapat ditranfer atau dibuat nol untuk $kT \ge nT$ pada keadaan $x_f = x(nT)$ dalam n periode sampling. Jika setiap keadaan adalah terkendali, maka sistem disebut terkendali.

Berdasarkan Definisi 2.2 tersebut, maka sistem diskrit dapat dikatakan terkendali jika dimulai dari nilai awal sebarang dapat dipindah ke sembarang keadaan yang diinginkan dengan suatu masukan dan dalam waktu berhingga. Selanjutnya untuk syarat - syarat keterkendalian sistem diskrit diberikan pada teorema berikut :

Teorema 2.2.

Diberikan matriks keterkendalian M_c sebagai berikut :

 $M_c = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$

Sistem diskrit yang diberikan pada Persamaan (2.2) terkendali jika dan hanya jika rank dari matriks keterkendalian M_c adalah sama dengan n.

C. Keteramatan

Diberikan suatu sistem diskrit yang dapat dinyatakan dalam bentuk (Ogata, 1995):

$$\begin{cases} x((k+1)T) = Ax(kT), \\ y(kT) = Cx(kT), \end{cases}$$
(2.3)

dengan

- x(kT) : Vektor keadaan berukuran $n \times 1$ pada saat waktu k sampling
- y(kT) : Vektor keluaran berukuran $m \times 1$ pada saat waktu k sampling
- A : Matriks non singular berukuran $n \times n$
C : Matriks berukuran $m \times n$

T : Periode sampling

Pengertian keteramatan sistem diskrit diberikan oleh definisi berikut :

Definisi 2.3

Sistem pada Persamaan (2.3) dikatakan teramati jika setiap keadaan awal x(0) dapat ditentukan dari pengamatan y(kT) selama selang waktu yang terhingga. Oleh karena itu, suatu sistem teramati jika setiap transisi keadaannya mempengaruhi setiap elemen vektor keluaran.

Berdasarkan Definisi 2.3, Keteramatan berarti bahwa untuk pengamatan y(0), y(T), y(2T), ..., y(NT) dengan N = n - 1 harus dapat menentukan $x_1(0), x_2(0), ..., x_n(0)$. Sehingga syarat perlu dan cukup dari keteramatan dapat diberikan pada teorema berikut :

Teorema 2.3

Diberikan matriks keteramatan M_o sebagai berikut :

$$M_o = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

Sistem diskrit yang diberikan pada Persamaan (2.3) teramati jika dan hanya jika rank dari matriks keteramatan M_o adalah sama dengan n.

2.3 Gramian Keterkendalian dan Gramian Keteramatan

Diberikan sistem linier diskrit sebagai sistem (A, B, C, D). Pada sistem (A, B, C, D) juga didefinisikan gramian keterkendalian W dan gramian keteramatan M, yaitu (Skogestad,S., Postlethwaite,I., 2001) :

$$W = \sum_{k=0}^{\infty} A^k B B^T \left(A^T \right)^k \tag{2.4}$$

$$M = \sum_{k=0}^{\infty} \left(A^T \right)^k C^T C A^k$$
(2.5)

Hubungan antara sifat kestabilan, keterkendalian dan keteramatan sistem dengan gramian keterkendalian W dan gramian keteramatan M dapat dinyatakan dalam teorema berikut :

Teorema 2.4

Diberikan sistem (A,B,C,D) yang stabil, terkendali dan teramati. Gramian keterkendalian W dan Gramian keteramatan M, masing - masing merupakan penyelesaian tunggal dan definit positif dari persamaan Lyapunov

$$A W A^T + B B^T - W = 0 (2.6)$$

$$A^T M A + C^T C - M = 0 (2.7)$$

Pada Teorema 2.4 sistem (A, B, C, D) yang stabil dimaksud adalah sistem stabil asimtotik. Sehingga, sistem (A, B, C, D) adalah sistem yang stabil asimtotik, terkendali dan teramati.

2.4 Fungsi Transfer

Fungsi transfer suatu sistem linier didefinisikan sebagai perbandingan transformasi Laplace sinyal keluaran terhadap sinyal masukan dengan asumsi semua kondisi awal sama dengan nol. Pada bagian ini utamanya akan dikaji masukan tunggal keluaran tunggal sistem differensial linear. Dalam kasus ini, matriks transfernya merupakan suatu fungsi skalar yang dinotasikan dengan h(s) sebagai ganti dari matriks transfer H(s) yang digunakan dalam sistem banyak masukan-banyak keluaran. Pada bagian ini, juga diasumsikan derajad pembilang dari h(s) lebih kecil atau sama dengan dari derajad penyebutnya. Tanpa menghilangkan ke generalannya, secara eksplisit ditulis h(s) sebagai berikut :

$$h(s) = \frac{q(s)}{p(s)} = \frac{q_0 s^n + q_1 s^{n-1} + \dots + q_n}{s^n + p_1 s^{n-1} + \dots + p_n}$$
(2.8)

Suatu polinomial derajad n bisa difaktorkan kedalam n suku-suku linear, oleh karena itu diperoleh :

$$h(s) = \frac{q(s)}{p(s)} = \frac{c(s-b_1)(s-b_2)\dots(s-b_k)}{(s-a_1)(s-a_2)\dots(s-a_n)}$$
(2.9)

dengan $a_i, b_i \in \mathbb{C}, c \in \mathbb{R}$ dan $k \neq n$. Diasumsikan q(s) dan p(s) tidak mempunyai faktor persekutuan. Bila punya, faktor-faktor persekutuan tsb. akan terkansel. "Zeros" dari pembilang p(s) yaitu $a_1, a_2, ..., a_n$ dinamakan "pole" dari fungsi transfer dan $b_1, b_2, ..., b_k$ dinamakan "zeros" dari fungsi transfer. Alasan dari terminologi yang dikenalkan adalah sebagai berikut. Misalkan diberikan masukan:

$$u(t) = \begin{cases} e^{s_0 t}, t \ge 0\\ 0, t < 0 \end{cases}$$

maka transformasi Laplace dari keluran diberikan oleh :

$$Y(s) = \frac{c(s-b_1)(s-b_2)\dots(s-b_k)}{(s-a_1)(s-a_2)\dots(s-a_n)} \cdot \frac{1}{s-s_0}$$

Bila $s_0 \neq b_i$, i = 1, 2, ..., k, maka Y(s) bisa difaktorkan sebagai berikut :

$$Y(s) = \frac{A_1}{s - a_1} + \frac{A_2}{s - a_2} + \dots + \frac{A_n}{s - a_n} + \frac{A_{n+1}}{s - s_0}, A_i \in \mathbb{C}$$
(2.10)

dimana untuk alasan penyederhanaan, diasumsikan bahwa semua pole a_i mempunyai "multifisitas satu". Transformasi invers dari (2.10) menghasilkan :

$$y(t) = A_1 e^{a_1 t} + A_2 e^{a_2 t} + \dots + A_n e^{a_n t} + A_{n+1} e^{s_0 t}$$

dalam hal ini *n* suku-suku pertama dinamakan "mode bebas" dari sistem. Suku yang terakhir adalah suatu hasil dari masukan. Selanjutnya, bila $s_0 = b_i$ untuk beberapa *i*, misalnya saja *i* = 1, maka

$$Y(s) = \frac{c(s-b_1)(s-b_2)\dots(s-b_k)}{(s-a_1)(s-a_2)\dots(s-a_n)} \cdot \frac{1}{s-b_1}$$
$$= \frac{c(s-b_1)(s-b_2)\dots(s-b_k)}{(s-a_1)(s-a_2)\dots(s-a_n)}$$
$$= \frac{A_1}{s-a_1} + \frac{A_2}{s-a_2} + \dots + \frac{A_n}{s-a_n}, A_i \in \mathbb{C}$$

Terlihat bahwa frekuensi dari signal masukan s_0 tidak nampak dalam signal keluaran, hanya mode bebas yang nampak. Zeros dari sistem adalah frekuensi-frekuensi yang bukan merupakan bagian bentuk dari signal keluaran.

Definisi 2.4

Bila semua nilai karakteristik λ_i bagian riilnya adalah negatif, waktu-konstan σ yang berkaitan dengan sistem didefinisikan sebagai $\sigma - 1 = \min_i \{Re(\lambda_i)\}$.

Definisi 2.5

Sistem masukan tunggal keluaran tunggal

$$x(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t)$$

adalah suatu sistem bukan phase minimum bila setidaknya satu zeros bagian rill nya positip.

2.5 Reduksi Model dengan Metode SPA

Reduksi model merupakan upaya untuk mengganti model atau sistem yang berukuran besar dengan model yang lebih sederhana tanpa kesalahan yang signifikan. Reduksi model dapat dilakukan dengan beberapa metode salah satunya SPA. Reduksi model dilakukan dengan cara membentuk sistem setimbang terlebih dahulu.

2.5.1 Sistem Setimbang

Sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ adalah sistem baru yang diperoleh dari sistem awal (A, B, C, D) dengan Gramian keterkendalian \tilde{W} dan Gramian keteramatan \tilde{M} yang sama dan merupakan matriks diagonal Σ . Sistem setimbang diperoleh dengan mentransformasikan sistem awal pada persamaan (2.1) terhadap matriks transformasi T yang memenuhi (Skogestad,S., Postlethwaite,I., 2001) :

$$x_k = T\tilde{x}_k \tag{2.11}$$

dengan

 x_k : Variabel keadaan dari sistem (A, B, C, D)

 \tilde{x}_k : Variabel keadaan dari sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$

T : Matriks transformasi yang non singular dan berukuran $n \times n$

Selanjutnya, Persamaan (2.11) dapat dituliskan sebagai berikut :

$$\tilde{x}_k = T^{-1} x_k \tag{2.12}$$

Untuk k = k + 1, maka Persamaan (2.12) menjadi

$$\tilde{x}_{k+1} = T^{-1} x_{k+1} \tag{2.13}$$

Jika sistem awal pada Persamaan (2.1) disubstitusikan pada Persamaan (2.13) maka diperoleh hasil sebagai berikut :

$$\tilde{x}_{k+1} = T^{-1} \left(A x_k + B u_k \right) \tag{2.14}$$

Selanjutnya, mensubstitusi Persamaan (2.11) ke dalam Persamaan (2.14), maka diperoleh hasil sebagai berikut :

$$\begin{aligned} \tilde{x}_{k+1} &= T^{-1}(ATx_k + Bu_k) \\ &= (T^{-1}AT)\tilde{x}_k + (T^{-1}B)\tilde{u}_k \\ &= \tilde{A}\tilde{x}_k + \tilde{B}\tilde{u}_k \end{aligned} \tag{2.15}$$

Sedangkan untuk mendapatkan matriks \tilde{C} dan \tilde{D} , dilakukan dengan mensubstitusikan Persamaan (2.11) ke dalam Persamaan (2.1), maka diperoleh hasil sebagai berikut :

$$\begin{split} \tilde{y}_k &= (CT)\tilde{x}_k + D\tilde{u}_k \\ &= \tilde{C}\tilde{x}_k + \tilde{D}\tilde{u}_k \end{split} \tag{2.16}$$

Sehingga diperoleh

$$\tilde{A} = T^{-1}AT, \tilde{B} = T^{-1}B, \tilde{C} = CT, \operatorname{dan} \tilde{D} = D$$

Sistem setimbang dapat dituliskan dalam bentuk :

$$\begin{aligned} \tilde{x}_{k+1} &= \tilde{A}\tilde{x}_k + \tilde{B}\tilde{u}_k \\ \tilde{y}_k &= \tilde{C}\tilde{x}_k + \tilde{D}\tilde{u}_k \end{aligned}$$

$$(2.17)$$

Hubungan antara sistem setimbang dengan Gramian keterkendalian dan Gramian keteramatan sistem, dapat dilihat pada definisi berikut :

Definisi 2.6

Sistem $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ disebut sistem setimbang dari sistem (A, B, C, D) jika sistem $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ mempunyai Gramian keterkendalian \tilde{W} , dan Gramian keteramatan \tilde{M} , yang merupakan solusi tunggal dari persamaan Lyapunov

$$\tilde{A}\,\tilde{W}\tilde{A}^{T} + \tilde{B}\,\tilde{B}^{T} - \tilde{W} = 0 \tag{2.18}$$

$$\tilde{A}^{T}\tilde{M}\tilde{A} + \tilde{C}^{T}\tilde{C} - \tilde{M} = 0$$
(2.19)

Sedemikian sehingga memenuhi

$$\widetilde{W} = \widetilde{M} = \sum = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_n), \sigma_1 \ge \dots \ge \sigma_r \ge \dots \ge \sigma_n > 0.$$

dengan σ_i merupakan nilai singular Hankel dari sistem (A, B, C, D) yang dapat didefinisikan sebagai

$$\sigma_i = |\sqrt{\lambda_i(WM)}| \quad , i = 1, \dots, n,$$
(2.20)

dengan λ_i adalah nilai-nilai eigen dari WM.

2.5.2 Metode Reduksi Model dengan Singular Perturbation Approximation (SPA)

Pada reduksi model dengan metode *Singular Perturbation Approximation* (SPA), semua variabel keadaan pada sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ dapat dipartisi menjadi mode cepat dan lambat. Variabel keadaan yang bersesuaian dengan nilai singular Hankel kecil didefinisikan sebagai mode lambat, sedangkan variabel keadaan yang bersesuaian dengan nilai singular Hankel yang lebih besar didefinisikan sebagai mode cepat karena variabel keadaan yang berpengaruh besar pada sistem sehingga eror yang dihasilkan tidak dapat diabaikan, dapat diamati dan dikontrol dengan cepat. Sedangkan dikatakan mode lambat karena variabel keadaan yang berpengaruh kecil pada sistem sehingga eror yang dihasilkan tidak dapat diabaikan, dapat diamati dan dikontrol dengan lambat.

Selanjutnya, model tereduksi diperoleh dengan mengambil kecepatan dari mode lambat sama dengan nol dimana kecepatan dari mode lambat ini tidak diabaikan. Hal ini yang menyebabkan metode reduksi disebut dengan *Singular Perturbation Approximation*. Selanjutnya, pada sistem yang telah direduksi dengan metode *Singular Perturbation Approximation* (SPA), sifat kestabilan yang berlaku pada sistem semula juga berlaku pada sistem yang telah direduksi. Adapun teorema kestabilan sistem tereduksi dengan metode SPA diberikan sebagai berikut (Green, M., Limebeer, D.J.N, 1995) :

Teorema 2.5

Jika sistem $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ merupakan sistem yang stabil asimtotis, maka sistem tereduksi dengan metode Singular Perturbation Approximation (SPA) $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ juga merupakan sistem yang stabil asimtotis.

Setelah diperoleh sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ dengan Gramian keterkendalian \tilde{W} dan Gramian keteramatan \tilde{M} yang sama, dan merupakan matriks diagonal Σ . Selanjutnya sistem $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ dipartisi sesuai dengan $\Sigma = diag(\Sigma_1, \Sigma_2)$, dimana $\Sigma_1 = diag(\sigma_1, \sigma_2, \dots, \sigma_n)$ dan $\Sigma_2 = diag(\sigma_{r+1}, \sigma_{r+2}, \dots, \sigma_n)$. Dengan demikian, realisasi sistem $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ dapat ditulis sebagai berikut :

$$\begin{bmatrix} \tilde{x}_{1}(k+1) \\ \tilde{x}_{2}(k+1) \end{bmatrix} = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix} \begin{bmatrix} \tilde{x}_{1}(k) \\ \tilde{x}_{2}(k) \end{bmatrix} + \begin{bmatrix} \tilde{B}_{1} \\ \tilde{B}_{2} \end{bmatrix} u(k)$$

$$\tilde{y}(k) = \begin{bmatrix} \tilde{C}_{1} & \tilde{C}_{2} \end{bmatrix} \begin{bmatrix} \tilde{x}_{1}(k) \\ \tilde{x}_{2}(k) \end{bmatrix} + \tilde{D} u(k)$$

$$(2.21)$$

dengan $\tilde{x}_1(k) \in \mathbb{R}^r$ dan $\tilde{A}_{11} \in \mathbb{R}^{rxr}$ bersesuaian dengan gramian \sum_1 , dan $\tilde{x}_2(k) \in \mathbb{R}^{n-r}$ bersesuaian dengan \sum_2 .

Langkah selanjutnya, mengambil $\tilde{x}_2(k+1) = 0$ sehingga dari Persamaan (2.21) diperoleh

$$\begin{aligned} \tilde{x}_{1}(k+1) &= \tilde{A}_{11}\tilde{x}_{1}(k) + \tilde{A}_{12}\tilde{x}_{2}(k) + \tilde{B}_{1}u(k) \quad (2.22) \\ 0 &= \tilde{A}_{21}\tilde{x}_{1}(k) + \tilde{A}_{22}\tilde{x}_{2}(k) + \tilde{B}_{2}u(k) \quad (2.23) \\ \tilde{y}(k) &= \tilde{C}_{1}\tilde{x}_{1}(k) + \tilde{C}_{2}\tilde{x}_{2}(k) + \tilde{D}u(k) \quad (2.24) \end{aligned}$$

Kemudian, dengan mengansumsikan \tilde{A}_{22} adalah matriks nonsingular, dari Persamaan (2.23) diperoleh

$$\tilde{x}_{2}(k) = -\tilde{A}_{22}^{-1}\tilde{A}_{21}\tilde{x}_{1}(k) - \tilde{A}_{22}^{-1}\tilde{B}_{2}u(k)$$
(2.25)

Selanjutnya, mensubsitusikan Persamaan (2.25) ke dalam Persamaan (2.22) dan Persamaan (2.24). Dengan demikian, diperoleh sistem tereduksi berorde r yang bersesuaian dengan gramian \sum_{1} sebagai berikut :

$$\begin{aligned} \tilde{x}_{1}(k+1) &= \tilde{A}_{11}\tilde{x}_{1}(k) + \tilde{B}_{1}u(k) \\ \tilde{y}(k) &= \tilde{C}_{1}\tilde{x}_{1}(k) + \tilde{D}u(k) \end{aligned}$$
 (2.26)

Untuk $k = 0, 1, 2, \dots$, dengan $\tilde{x}_1(k) \in \mathbb{R}^r$, $u(k) \in \mathbb{R}^s$ dan $\tilde{y}(k) \in \mathbb{R}^t$ maka

$$\tilde{A}_r = \tilde{A}_{11} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}$$
(2.27)

$$\tilde{B}_r = \tilde{B}_1 - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_2$$
(2.28)

$$\tilde{C}_r = \tilde{C}_1 - \tilde{C}_2 \tilde{A}_{22}^{-1} \tilde{A}_{21}$$
(2.29)

$$\widetilde{D}_r = \widetilde{D} - \widetilde{C}_2 \widetilde{A}_{22}^{-1} \widetilde{B}_2 \tag{2.30}$$

Dengan demikian diperoleh sistem tereduksi yang berukuran r yang dapat dinyatakan dalam bentuk :

$$\begin{aligned} \tilde{x}_{r_{k+1}} &= \tilde{A}_r \tilde{x}_{r_k} + \tilde{B}_r \tilde{u}_k \\ \tilde{y}_{r_k} &= \tilde{C}_r \tilde{x}_{r_k} + \tilde{D}_r \tilde{u}_k \end{aligned}$$
 (2.31)

Untuk selanjutnya sistem tereduksi ini disebut sebagai sistem $(\tilde{A}_r, \tilde{B}_r, \tilde{C}_r, \tilde{D}_r)$.

Dari reduksi orde model dengan metode *Singular Perturbation* Approximation (SPA) pada sistem $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ yang stabil asimtotis, terkendali dan teramati berorde *n* dihasilkan sistem tereduksi $(\tilde{A}_r, \tilde{B}_r, \tilde{C}_r, \tilde{D}_r)$ berorde r < n yang stabil asimtotis.

Teorema 2.6

Diberikan suatu sistem $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ yang bersifat stabil, terkendali, teramati dan setimbang dengan Gramian $\tilde{W} = \tilde{M} = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_n), \sigma_1 \ge \cdots \ge \sigma_r \ge \cdots \ge \sigma_n > 0$, dengan $\sigma_r \ge \sigma_{r+1}$ maka sistem tereduksi dengan order r juga akan stabil, terkendali dan teramati, serta memenuhi $||G_s - G_r||_{\infty} \le 2(\sigma_{r+1} + \cdots + \sigma_n),$ dengan G_s dan G_r masing - masing adalah fungsi transfer sistem (A, B, C, D) dan sistem tereduksinya.

2.6 Filter Kalman

Filter Kalman merupakan salah satu metode untuk mengestimasi variabel *state* dari sistem dinamik stokastik yang pertama kali diperkenalkan oleh Rudolf E. Kalman pada tahun 1960. Estimasi dengan menggunakan metode ini dilakukan dengan cara memprediksi variabel *state* berdasarkan dinamika sistem dan data pengukuran (Lewis, 1992). Pada pemodelan sistem, tidak ada model matematika dari suatu sistem yang sempurna. Hal ini dapat disebabkan karena adanya faktor *noise* yang mempengaruhi sistem. Oleh sebab itu, perlu ditambahkan faktor stokastik pada sistem deterministik persamaan (2.1) yang berupa *noise* sistem dan *noise* pengukuran, sehingga menjadi sistem dinamik stokastik sebagai berikut :

$$x_{k+1} = A_k x_k + B_k u_k + G_k w_k \tag{2.33}$$

$$z_k = H_k x_k + v_k \tag{2.34}$$

Dengan x_k merupakan variabel *state* pada waktu k, u_k adalah vektor masukan deterministik pada waktu k, z_k adalah vektor pengukuran, w_k dan v_k masing - masing adalah *noise* sistem dan *noise* pengukuran pada waktu k yang merupakan besaran stokastik. A_k , B_k , G_k , H_k adalah matriks - matriks dengan ukuran yang bersesuaian. *Noise* pada sistem dan pengukuran diasumsikan berdistribusi Normal - Gauss dengan *mean* nol dan variansinya masing - masing adalah matriks semi - definit positif Q_k dan matriks definit positif R_k .

Algoritma Filter Kalman terdiri dari 4 bagian. Bagian pertama dan kedua memberikan model sistem dan model pengukuran serta nilai awal (inisialisasi), sedangkan bagian ketiga dan keempat adalah tahap prediksi dan tahap koreksi. Pada tahap prediksi didefinisikan suatu estimasi keadaan $\hat{x}_{k+1}^- \in \mathbb{R}^n$ pada waktu k + 1(*priori state estimate*), kemudian dihubungkan dengan kovariansi kesalahan P_{k+1}^- (*priori error covariance*). Sedangkan pada tahap koreksi memberikan koreksi berdasarkan pengukuran z_{k+1} pada waktu k + 1 untuk menghasilkan estimasi $\hat{x}_{k+1} \in \mathbb{R}^n$ dan kovariansi kesalahan P_{k+1} , masing - masing disebut *posteriori state estimate* dan *posteriori error covariance*. Berikut ini akan diberikan tabel dari algoritma Filter Kalman (Lewis, 1986)

 Tabel 2.1 Algoritma Filter Kalman

Moo	lel Sistem dan Model Pengukuran				
	$x_{k+1} = A_k x_k + B_k U_k + G_k w_k$				
	$z_k = H_k x_k + v_k$				
$x_0 \sim (\overline{x_0})$	$(\bar{q}_{k}, P_{x_0}), w_k = (0, Q_k), v_k = (0, R_k)$				
Asumsi :					
$\{w_k\}$ dan $\{v_k\}$ merupak	kan white noise , tidak berkorelasi dengan x_0 dan nilai				
yang lainnya, $R_k > 0$					
	Inisialisasi				
	$\widehat{x_0} = \overline{x_0}, \qquad P_0 = P_{x_0}$				
	Tahap Prediksi				
Kovariansi Error	$P_{k+1}^- = A_k P_k A^T + G_k Q_k G_k^T$				
Estimasi	$\hat{x}_{k+1}^- = A_k \hat{x}_k + B_k U_k$				
Tahap Koreksi					
Kalman Gain	$K_{k+1} = P_{k+1}^{-} H_{k+1}^{T} (H_{k+1} P_{k+1}^{-} H_{k+1}^{T} R_{k+1})^{-1}$				
Kovariansi Error	$P_{k+1} = (I - K_{k+1}H_{k+1})P_{k+1}^{-}$				
Estimasi	$\hat{x}_{k+1} = \hat{x}_{k+1}^- + K_{k+1}(z_{k+1} - H_{k+1}\hat{x}_{k+1})$				

2.7 Pemodelan Aliran Air Sungai

Pada penelitian ini akan digunakan masalah aliran sungai yang diasumsikan memiliki kondisi ideal dengan panjang L dan lebar B. Dalam pembahasan ini diasumsikan bahwa panjang sungai jauh lebih besar jika dibandingkan dengan lebar sungainya. Sehingga dalam masalah ini dapat didekati dengan model aliran dangkal berdimensi satu yang ditunjukkan oleh gambar di bawah ini :

Gambar 2.1 Model Aliran Sungai Dangkal

Masalah aliran air sungai yang digunakan dalam penelitian ini merupakan masalah aliran sungai dangkal (*shallow water problem*). Masalah ini dapat dimodelkan sebagai persamaan Saint Venant sebagai berikut (Verlaan, 1998) :

$$\frac{\partial h}{\partial t} + D \frac{\partial u}{\partial x} = 0$$

$$\frac{\partial u}{\partial t} + g \frac{\partial h}{\partial x} + C_f u = 0$$
(2.35)

dengan syarat awal :

$$h(x, 0) = 2 + \sin(2\pi x), \qquad u(x, 0) = 0$$

dan syarat batas :

$$h(0,t) = h(x - 1,t), \qquad h(L,t) = h(2,t)$$
$$u(0,t) = u(x - 1,t), \qquad u(L,t) = u(2,t)$$

Syarat batas tersebut merupakan syarat batas periodik dimana batas kanan dan batas kiri diikutsertakan (Burkardt, 2010) dimana

h(x,t)	: Ketinggian air terhadap titik acuan
D	: Kedalaman sungai terhadap titik acuan
t	: Waktu
x	: Posisi sepanjang sungai
g	: Gaya gravitasi
C_f	: Koefisien Gesekan
ψ_b	: Ketinggian air pada posisi x_0
u(x,t)	: Kecepatan aliran

BAB 3 METODE PENELITIAN

BAB 3

METODE PENELITIAN

Pada bagian ini diuraikan beberapa tahapan – tahapan penelitian yang akan digunakan untuk mencapai tujuan penelitian.

3.1 Tahapan Penelitian

Pada penelitian ini digunakan langkah – langkah sebagai berikut :

1. Studi Literatur

Pada tahap ini dilakukan identifikasi permasalahan dan studi literatur yang diperoleh dari buku, jurnal, penelitian, paper, maupun atrikel terkait yang berhubungan dengan permasalahan pada penelitian ini.

2. Pendiskritan pada Sistem Awal

Pada tahap ini model aliran air sungai Saint Venant akan dilakukan pendiskritan terlebih dahulu dengan skema Lax – Wendroff agar dapat dilakukan analisis sifat sistemnya.

3. Analisis Sifat Sistem Awal

Pada tahap ini dilakukan analisis sistem awal pada model aliran air sungai. Analisis yang dilakukan meliputi analisis sifat dan perilaku sistem. Analisis sifat terdiri dari analisis kestabilan, keterkendalian dan keteramatan pada sistem tersebut. Sedangkan analisa perilaku sistem meliputi sistem pada aliran air sungai tersebut apakah stabil atau tak stabil.

Jika sistem stabil maka akan langsung dibentuk sistem setimbang kemudian dilakukan reduksi dengan metode SPA. Namun, jika sistem tak stabil maka akan dilakukan dekomposisi sistem terlebih dahulu.

Jika sistem tidak teramati dan tidak terkendali maka akan dilakukan realisasi minimal pada sistem agar sistem tersebut bersifat teramati dan terkendali. Hal ini dilakukan agar sistem tersebut dapat direduksi dan dapat diestimasi.

4. Dekomposisi Sistem Tak Stabil

Pada tahap ini dilakukan pemisahan dari sistem awal yang tak stabil sehingga diperoleh subsistem stabil dan subsistem tak stabil.

5. Reduksi Model pada Subsistem Stabil

Pada tahap ini dilakukan reduksi model pada subsistem stabil dengan menggunakan metode Singular Perturbation Approximation (SPA) untuk menghasilkan model dengan *steady* - *state* yang jumlahnya lebih sedikit. Sifat kestabilan yang berlaku pada sistem semula juga berlaku pada sistem yang telah direduksi.

6. Sistem Tereduksi Total

Pada tahap ini dilakukan penggabungan antara subsistem stabil yang sudah direduksi dan subsistem tak stabil.

7. Analisis Sifat Sistem Tereduksi

Pada tahap ini dilakukan analisis sifat model yang telah direduksi. Analisis yang dilakukan berupa analisis kestabilan, keterkendalian dan keteramatan. Analisis model tereduksi dilakukan untuk melihat apakah sifat - sifat model tereduksi sama dengan sifat - sifat model awal atau tidak.

8. Implementasi Algoritma Filter Kalman

Pada tahap ini akan dilakukan estimasi menggunakan algoritma Filter Kalman pada sistem awal dan sistem tereduksi.

9. Simulasi menggunakan MATLAB

Pada tahap ini dilakukan simulasi pada model aliran air sungai yang telah diestimasi dengan *software* Matlab.

10. Analisis Hasil dan Kesimpulan

Pada tahap ini dilakukan analisis dari hasil simulasi pada model aliran air sungai pada sistem awal dan sistem tereduksi yang diestimasi menggunakan Filter Kalman. Selanjutkan akan ditarik kesimpulan berdasarkan hasil simulasi dan analisis pada tahap sebelumnya.

3.2 Diagram Alir Metode Penelitian

Secara umum tahapan - tahapan yang dilakukan dalam menyelesaikan penelitian ini ditampilkan dalam diagram alir penelitian sebagai berikut :

Gambar 3.1 Diagram Alir Metode Penelitian

BAB 4 HASIL DAN PEMBAHASAN

BAB 4

HASIL DAN PEMBAHASAN

Pada bagian ini diuraikan secara detail mengenai diskritisasi model pada aliran air sungai (*shallow water problem*), analisis sifat pada sistem, proses reduksi dan implementasi algoritma filter kalman.

4.1 Diskritisasi Model

Sebelum melakukan proses reduksi pada model aliran air sungai pada persamaan Saint Venant (2.33), terlebih dahulu dilakukan pendiskritan sistem terhadap ruang x dan waktu t.

$$\frac{\partial h}{\partial t} + D \frac{\partial u}{\partial x} = 0$$
$$\frac{\partial u}{\partial t} + g \frac{\partial h}{\partial x} + C_f u = 0$$

Pada kasus ini metode yang digunakan untuk pendiskritan yaitu skema Lax Wendroff dengan tahapan sebagai berikut :

a. Pendiskritan dengan skema FTCS (Forward Time Centered Space)

$$\frac{\partial h}{\partial t} + D \frac{\partial u}{\partial x} = 0$$

$$\frac{h_i^{k+1} - h_i^k}{\Delta t} + D \frac{u_{i+1}^k - u_{i-1}^k}{2\Delta x} = 0$$

$$h_i^{k+1} = h_i^k - \frac{D\Delta t}{2\Delta x} (u_{i+1}^k - u_{i-1}^k)$$
(4.1)

Sedangkan untuk,

$$\frac{\partial u}{\partial t} + g \frac{\partial h}{\partial x} + C_{f} u = 0$$

$$\frac{u_{i}^{k+1} - u_{i}^{k}}{\Delta t} + g \frac{h_{i+1}^{k} - h_{i-1}^{k}}{2\Delta x} + C_{f} u_{i}^{k} = 0$$

$$u_{i}^{k+1} = (1 - C_{f} \Delta t) u_{i}^{k} - \frac{g \Delta t}{2\Delta x} (h_{i+1}^{k} - h_{i-1}^{k})$$
(4.2)

b. Pendiskritan dengan skema Lax Friedrichs sebagai setengah tahapan pertama. Ubah h_i^k pada persamaan (4.1) dengan $\frac{1}{2}(h_{i+1}^k + h_{i-1}^k)$ dan u_i^k pada persamaan (4.2) dengan $\frac{1}{2}(u_{i+1}^k + u_{i-1}^k)$. Sehingga diperoleh

$$h_{i}^{k+1} = \frac{1}{2} \left(h_{i+1}^{k} + h_{i-1}^{k} \right) - \frac{D\Delta t}{2\Delta x} \left(u_{i+1}^{k} - u_{i-1}^{k} \right)$$
(4.3)

$$u_i^{k+1} = \left(\frac{1-C_f \Delta t}{2}\right) \left(u_{i+1}^k + u_{i-1}^k\right) - \frac{g \Delta t}{2\Delta x} \left(h_{i+1}^k - h_{i-1}^k\right)$$
(4.4)

c. Pendiskritan dengan skema Leapfrog sebagai setengah tahapan kedua. Ubah Δt dengan $2\Delta t$ pada persamaan (4.1) dan (4.2) dengan tujuan $g\Delta t$ atau $D\Delta t$ memiliki nilai lebih kecil dibanding Δx untuk mencapai akurasi yang diinginkan. Sehingga diperoleh

$$h_i^{k+1} = h_i^k - \frac{\Delta t}{\Delta x} \left(u_{i+1}^k - u_{i-1}^k \right)$$
(4.5)

$$u_i^{k+1} = \left(1 - 2C_f \Delta t\right) u_i^k - \frac{g \Delta t}{\Delta x} (h_{i+1}^k - h_{i-1}^k)$$
(4.6)

d. Skema Lax Wendroff.

Skema ini merupakan kombinasi dari skema Lax Friedrichs dan Leapfrog. Pada persamaan (4.5) dapat ditulis sebagai berikut :

$$h_{i}^{k+1} = h_{i}^{k} - \frac{D\Delta t}{\Delta x} \left[u_{i+\frac{1}{2}}^{k+\frac{1}{2}} - u_{i-\frac{1}{2}}^{k+\frac{1}{2}} \right]$$
(4.7)

dengan persamaan (4.4) yang dapat ditulis sebagai berikut :

$$u_{i\pm\frac{1}{2}}^{k+\frac{1}{2}} = \left(\frac{1-C_f\Delta t}{2}\right) (u_i^k + u_{i\pm1}^k) + \frac{g\Delta t}{2\Delta x} (h_{i\pm1}^k - h_i^k)$$
(4.8)

Substitusi persamaan (4.8) ke persamaan (4.7) sehingga diperoleh

$$\begin{split} h_{i}^{k+1} &= h_{i}^{k} - \frac{D\Delta t}{\Delta x} \left[\left(\left(\frac{1 - C_{f} \Delta t}{2} \right) \left(u_{i}^{k} + u_{i+1}^{k} \right) - \frac{g\Delta t}{2\Delta x} \left(h_{i+1}^{k} - h_{i}^{k} \right) \right) - \\ & \left(\left(\frac{1 - C_{f} \Delta t}{2} \right) \left(u_{i}^{k} + u_{i-1}^{k} \right) + \frac{g\Delta t}{2\Delta x} \left(h_{i-1}^{k} - h_{i}^{k} \right) \right) \right] \\ &= h_{i}^{k} - \frac{D\Delta t}{\Delta x} \left(\frac{1 - C_{f} \Delta t}{2} \right) u_{i}^{k} - \frac{D\Delta t}{\Delta x} \left(\frac{1 - C_{f} \Delta t}{2} \right) u_{i+1}^{k} + \frac{D\Delta t}{\Delta x} \left(\frac{g\Delta t}{2\Delta x} \right) h_{i+1}^{k} \\ & - \frac{D\Delta t}{\Delta x} \left(\frac{g\Delta t}{2\Delta x} \right) h_{i}^{k} + \frac{D\Delta t}{\Delta x} \left(\frac{1 - C_{f} \Delta t}{2} \right) u_{i}^{k} + \frac{D\Delta t}{\Delta x} \left(\frac{1 - C_{f} \Delta t}{2} \right) u_{i-1}^{k} \\ & + \frac{D\Delta t}{\Delta x} \left(\frac{g\Delta t}{2\Delta x} \right) h_{i-1}^{k} - \frac{D\Delta t}{\Delta x} \left(\frac{g\Delta t}{2\Delta x} \right) h_{i}^{k} \end{split}$$

$$= h_{i}^{k} - \frac{D\Delta t}{2\Delta x} \left(1 - C_{f}\Delta t\right) \left(u_{i+1}^{k} - u_{i-1}^{k}\right) + \frac{Dg\Delta t^{2}}{2\Delta x^{2}} \left(h_{i+1}^{k} - 2h_{i}^{k} + h_{i-1}^{k}\right)$$

$$(4.9)$$

Sedangkan pada persamaan (4.6) dapat ditulis sebagai berikut :

$$u_i^{k+1} = \left(1 - 2C_f \Delta t\right) u_i^k - \frac{g \Delta t}{\Delta x} \left[h_{i+\frac{1}{2}}^{k+\frac{1}{2}} - h_{i-\frac{1}{2}}^{k+\frac{1}{2}} \right]$$
(4.10)

dengan persamaan (4.3) yang dapat ditulis sebagai berikut :

$$h_{i+\frac{1}{2}}^{k+\frac{1}{2}} = \frac{1}{2} \left(h_i^k + h_{i\pm 1}^k \right) \mp \frac{D\Delta t}{2\Delta x} \left(u_{i\pm 1}^k - u_i^k \right)$$
(4.11)

Substitusi persamaan (4.11) ke persamaan (4.10) sehingga diperoleh

$$\begin{aligned} u_{i}^{k+1} &= \left(1 - 2C_{f}\Delta t\right)u_{i}^{k} - \frac{g\Delta t}{\Delta x} \left[\left(\frac{1}{2} \left(h_{i}^{k} + h_{i+1}^{k}\right) - \frac{D\Delta t}{2\Delta x} \left(u_{i+1}^{k} - u_{i}^{k}\right) \right) \right] \\ &= \left(\frac{1}{2} \left(h_{i}^{k} + h_{i-1}^{k}\right) + \frac{D\Delta t}{2\Delta x} \left(u_{i-1}^{k} - u_{i}^{k}\right) \right) \right] \\ &= \left(1 - 2C_{f}\Delta t\right)u_{i}^{k} - \left(\frac{g\Delta t}{\Delta x}\right)\frac{1}{2}h_{i}^{k} - \left(\frac{g\Delta t}{\Delta x}\right)\frac{1}{2}h_{i+1}^{k} + \frac{D\Delta t}{2\Delta x} \left(\frac{g\Delta t}{\Delta x}\right)u_{i+1}^{k} \right. \\ &\left. - \frac{D\Delta t}{2\Delta x} \left(\frac{g\Delta t}{\Delta x}\right)u_{i}^{k} + \left(\frac{g\Delta t}{\Delta x}\right)\frac{1}{2}h_{i}^{k} + \left(\frac{g\Delta t}{\Delta x}\right)\frac{1}{2}h_{i-1}^{k} + \frac{D\Delta t}{2\Delta x} \left(\frac{g\Delta t}{\Delta x}\right)u_{i-1}^{k} \right. \\ &\left. - \frac{D\Delta t}{2\Delta x} \left(\frac{g\Delta t}{\Delta x}\right)u_{i}^{k} \right] \\ &= \left(1 - 2C_{f}\Delta t\right)u_{i}^{k} - \frac{g\Delta t}{2\Delta x} \left(h_{i+1}^{k} - h_{i-1}^{k}\right) + \frac{Dg\Delta t^{2}}{2\Delta x^{2}} \left(u_{i+1}^{k} - 2u_{i}^{k} + u_{i-1}^{k}\right) \right. \end{aligned}$$

$$(4.12)$$

Misalkan,

$$a = \frac{D\Delta t}{\Delta x} (1 - C_f \Delta t), b = \frac{g\Delta t}{\Delta x}, c = \frac{Dg\Delta t^2}{2\Delta x^2}, d = (1 - 2C_f \Delta t)$$

maka persamaan (4.9) dan (4.12) menjadi

$$\begin{cases} h_i^{k+1} = h_i^k - a(u_{i+1}^k - u_{i-1}^k) + c(h_{i+1}^k - 2h_i^k + h_{i-1}^k) \\ u_i^{k+1} = du_i^k - b(h_{i+1}^k - h_{i-1}^k) + c(u_{i+1}^k - 2u_i^k + u_{i-1}^k) \end{cases}$$
(4.13)

Persamaan (4.13) dapat ditulis untuk i = 0, 1, 2, ..., N - 1, N sebagai berikut : Untuk i = 0,

$$h_0^{k+1} = h_0^k - au_1^k + au_{-1}^k + ch_1^k - 2ch_0^k + ch_{-1}^k$$
$$u_0^{k+1} = du_0^k - bh_1^k + bh_{-1}^k + cu_1^k - 2cu_0^k + cu_{-1}^k$$
Intuk $i = 1$

Untuk i = 1,

$$h_1^{k+1} = h_1^k - au_2^k + au_0^k + ch_2^k - 2ch_1^k + ch_0^k$$

$$\begin{split} u_{1}^{k+1} &= du_{1}^{k} - bh_{2}^{k} + bh_{0}^{k} + cu_{2}^{k} - 2cu_{1}^{k} + cu_{0}^{k} \\ \text{Untuk } i &= 2, \\ h_{2}^{k+1} &= h_{2}^{k} - au_{3}^{k} + au_{1}^{k} + ch_{3}^{k} - 2ch_{2}^{k} + ch_{1}^{k} \\ u_{2}^{k+1} &= du_{2}^{k} - bh_{3}^{k} + bh_{1}^{k} + cu_{3}^{k} - 2cu_{2}^{k} + cu_{1}^{k} \\ \vdots \\ \vdots \\ \text{Untuk } i &= N - 1, \\ h_{N-1}^{k+1} &= h_{N-1}^{k} - au_{N}^{k} + au_{N-2}^{k} + ch_{N}^{k} - 2ch_{N-1}^{k} + ch_{N-2}^{k} \\ u_{N-1}^{k+1} &= du_{N-1}^{k} - bh_{N}^{k} + bh_{N-2}^{k} + cu_{N}^{k} - 2cu_{N-1}^{k} + cu_{N-2}^{k} \\ \text{Untuk } i &= N, \\ h_{N}^{k+1} &= h_{N}^{k} - au_{N+1}^{k} + au_{N-1}^{k} + ch_{N+1}^{k} - 2ch_{N}^{k} + ch_{N-1}^{k} \\ u_{N-1}^{k+1} &= du_{N}^{k} - bh_{N+1}^{k} + bh_{N-1}^{k} + cu_{N+1}^{k} - 2cu_{N}^{k} + ch_{N-1}^{k} \\ u_{N-1}^{k+1} &= du_{N}^{k} - bh_{N+1}^{k} + bh_{N-1}^{k} + cu_{N+1}^{k} - 2cu_{N}^{k} + cu_{N-1}^{k} \\ \end{split}$$

Sehingga jika ditulis dalam bentuk sistem ruang keadaan (*state space system*) yang invarian terhadap waktu yaitu

$$x(k+1) = Ax(k) + Bu(k)$$

sebagai berikut :

Selanjutnya dibentuk model pengukuran untuk menentukkan ketinggian air sungai dan kecepatan aliran air sungai pada posisi ke i = 0 sebagai variabel pengukurannya. Sehingga dapat ditulis model pengukurannya sebagai berikut :

$$y(k) = Cx(k) + Du(k)$$

dengan

dimana

*C*1 : matriks pengukuran untuk mengukur ketinggian air sungai

C2 : matriks pengukuran untuk mengukur kecepatan aliran sungai

Sehingga diperoleh persamaan awal sistem linear waktu diskrit sebagai berikut :

$$x(k+1) = Ax(k) + Bu(k) y(k) = Cx(k) + Du(k)$$
(4.14)

4.2 Simulasi

4.2.1 Kasus 1 (Mengukur Ketinggian Air Sungai)

Selanjutnya dilakukan simulasi kasus 1 untuk menentukan ketinggian air sungai pada semua titik dengan menggunakan nilai parameter sebagai berikut :

D = 10 m	(kedalaman sungai terhadap acuan)
$g = 9,8 m/s^2$	(percepatan gravitasi)
$C_f = 0,0002$	(koefisien gesekan)
x = 1	(posisi sepanjang sungai)

t = 0,2	(waktu)
nx = 20	(jumlah pendiskritan terhadap posisi x)
nt = 40	(jumlah pendiskritan terhadap waktu t)

Schingga diperoleh matriks untuk sistem awal (A, B, C1, D) yang berorde n = 20

sebagai berikut :

	[^{0,02}	2	0	0,49	-	0,5		0	0		0	()	0		0		0	0)	()	0		0	0		0	0	0	0]
	0 40	, U, A C	,02) E	-0,4:	0	0		10	0	5	0		י א	0		0		0	0	י א		, ו	0		0	0		0	0	0	
	0,45	, t	1,5 1.0	0,02	0	02	0	49	-0,	ა ე	0		י ר	0		0		0	0	י ר) I	0		0	0		0	0	0	
	0,45	, 0,	,49 0	0.49	0	,02 15	-0	02	0,4	,	0 4 0	_() 5	0		0		0	0	י ר) I	0		0	0		0	0	0	
		0		0,49	0	49	0,	02	0.0	, .	-0.49	0.	19 19	0		0		0	0	,)	Č	, 1	0		0	0		0	0	0	
			0	0,49	0	0	0	49	0,0	_	0,17	0,	ì	0.40)	-05		0	0	, ì	Č	, i	0		0	0		0	0	0	0 I
			0	0		0	0,	49	0.4	à	0,02	0	, 12	-0.4	, .9	0 4 9		0	0))	Č))	0		0	0		0	0	0	0 I
			0	0		õ	,	0	0,1		0 4 9	0	5	0.02	Ś	0	0) 49	-0) 5	Č))	Ő		0	0		0	0	Ő	ŏ
	0		Õ	0		õ	(õ	0		0.49	0.	49	0		0.02	_	0.49	0.4	49	Ċ	ĵ	Ő		Õ	0		õ	Ő	õ	ő
A =	0		Õ	0		õ	(õ	0		0	()	0.49)	0.5	0	0.02	0,)	0.4	49	-0.5		Õ	0		õ	Ő	õ	ő
	Ō		Õ	Õ		Õ	(Õ	Õ		Ō	()	0.49)	0.49		0	0.0	02	-0	.49	0.49		Õ	Õ		0	Õ	Õ	0
	0		0	0		0	(0	0		0	()	0		0	0),49	0,	5	0,	02	0	0	,49	-0,5		0	0	0	0
	0		0	0		0	(0	0		0	()	0		0	0	,49	0,4	49	()	0,02	_	,49	0,49		0	0	0	0
	0		0	0		0	(0	0		0	()	0		0		0	C)	0,	49	0,5	0	,02	0	0	,49	-0,5	0	0
	0		0	0		0	(0	0		0	()	0		0		0	0)	0,	49	0,49		0	0,02	-(0,49	0,49	0	0
	0		0	0		0	(0	0		0	()	0		0		0	C)	()	0	0	,49	0,5	0	,02	0	0,49	-0,5
	0		0	0		0	(0	0		0	()	0		0		0	0)	()	0	0	,49	0,49		0	0,02	-0,49	0,49
	0		0	0		0	(0	0		0	()	0		0		0	C)	()	0		0	0	0	,49	0,5	0,02	-0,49
	L 0		0	0		0	(0	0		0	()	0		0		0	C)	()	0		0	0	0	,49	0,49	0	0,02 J
	ΓΟ),49)	0,49	0) (0	0	0	0	0	0	() ()	0	0	0	0	(0	0	0	0	0	0	0	()	0	1^T
		0 5		n 10	0	•	n	Δ	Δ	٥	Δ	Δ	(n (۱	Δ	Λ	Δ	۵		Λ	Δ	Δ	Λ	Ο	Δ	Ο	()	0	
B =	= '	0,5		0,49	U		0	0	0	0	0	0			,	0	0	0	0		0	0	0	0	0	0	0	~	,	0	
		0		0	U) (U	0	0	0	0	0	() ()	0	0	0	0		0	0	0	0	0	0	0	0,4	49	-0,49	1
	L	0		0	0) (0	0	0	0	0	0	() ()	0	0	0	0	(0	0	0	0	0	0	0	-(),5	0,49	J
	_	.1	Δ	Δ	0	٥	0		. .	•	0	^	0	0	0	0		• •	、	0	0	0	0	_							
	ſ	T	0	0	0	0	0		0 (J	0	0	0	0	0	0	C) ()	0	0	0	0								
		0	0	1	0	0	0	(0 ()	0	0	0	0	0	0	() ()	0	0	0	0								
		0	0	0	0	1	0	(0 ()	0	0	0	0	0	0	() ()	0	0	0	0								
		0	0	0	0	0	0		1 ()	0	0	0	0	0	0	()	0	0	0	0								
		0	0	0	0	0	0		n i	ń	1	0	0	0	0	0	Ċ		ý	0	0	0	0								
С1	=	0	0	0	0	0	0			,	1	0	1	0	0	0			, `	0	0	0	0								
		0	0	0	0	0	0	(0 (J	0	0	T	0	0	0	C) ()	0	0	0	0								
		0	0	0	0	0	0	(0 ()	0	0	0	0	1	0	() ()	0	0	0	0								
		0	0	0	0	0	0	(0 ()	0	0	0	0	0	0	1	1 ()	0	0	0	0								
		0	0	0	0	0	0	(0 ()	0	0	0	0	0	0	() ()	1	0	0	0								
		0	0	Ō	0	0	0	(0 0)	0	0	0	0	0	0	() ()	0	0	1	Ô.								
		0	U	U	0	U	0			,	0	0	0	U	0	0	,	, (,	0	0	T	0								
D	=	[0]																													

Selanjutnya untuk melakukan reduksi model pada sistem di atas, akan dilakukan langkah – langkah sebagai berikut :

a. Analisis Sifat Sistem Awal

Sebelum dilakukan reduksi dan estimasi terhadap sistem awal (A, B, C1, D)di atas, terlebih dahulu dilakukan pengecekan sifat sistem untuk kestabilan, keterkendalian dan keteramatan. Kestabilan sistem dapat ditentukan berdasarkan nilai $|\lambda|$ dari matriks *A* yang ditampilkan pada Tabel 4.1.

i	$ \lambda_i $
1	0,2334
2	0,2358
3	0,2358
4	0,2418
5	0,2418
6	0,1934
7	0,1985
8	0,1985
9	0,2116
10	0,2116
11	0,2275
12	0,2275
13	0,2483
14	0,2483
15	0,2414
16	0,2414
17	0,2518
18	0,2518
19	0,2498
20	0,2498

Tabel 4.1. Nilai Eigen dari Sistem Awal (A, B, C1, D)

Berdasarkan Tabel 4.1, terlihat bahwa nilai $|\lambda|$ dari matrik *A* yang bernilai kurang dari 1 berjumlah 20. Sehingga berdasarkan Teorema 2.1, sistem awal (*A*, *B*, *C*1, *D*) adalah stabil asimtotik.

Keterkendalian sistem awal (A, B, C1, D) dapat ditentukan berdasarkan *rank* dari matriks keterkendalian M_c . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keterkendalian M_c pada sistem awal (A, B, C1, D) adalah 20. Sehingga berdasarkan Teorema 2.2, sistem awal (A, B, C1, D) adalah terkendali.

Sedangkan untuk keteramatan sistem awal (A, B, C1, D) dapat ditentukan berdasarkan *rank* dari matriks keteramatan M_o . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keteramatan M_o pada sistem awal (A, B, C1, D) adalah 20. Sehingga berdasarkan Teorema 2.3, sistem awal (A, B, C1, D) adalah teramati.

Berdasarkan Teorema 2.4, jika sistem yang diberikan adalah stabil (dalam hal ini stabil asimtotik), terkendali, dan teramati maka dapat ditentukan gramian keterkendalian W dan gramian keteramatan M yang disajikan pada **Lampiran A.**

Sehingga dari gramian tersebut dapat dibentuk sebuah sistem setimbang dimana sistem setimbang merupakan salah satu tahapan dari sistem awal sebelum dapat direduksi menggunakan metode SPA.

b. Sistem Setimbang

Dengan menggunakan *software* MATLAB, dibentuk sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ sehingga diperoleh bentuk matriks untuk sistem setimbang yang ditampilkan pada **Lampiran A**.

Selanjutnya akan ditentukan gramian keterkendalian \widetilde{W} dan gramian keteramatan \widetilde{M} dari sistem setimbang $(\widetilde{A}, \widetilde{B}, \widetilde{C1}, \widetilde{D})$ yang ditampilkan pada **Lampiran A**.

Terlihat bahwa nilai dari $\widetilde{W} = \widetilde{M}$ yang sama artinya dengan $\widetilde{W} = \widetilde{M} = \Sigma$, dengan $\Sigma = diag(\sigma_1, \sigma_2, ..., \sigma_n), \quad \sigma_1 \ge \cdots \ge \sigma_r \ge \cdots \ge \sigma_n > 0$. Dimana σ merupakan nilai singular hankel dari sistem (A, B, C1, D) yang dapat didefinisikan sebagai $\sigma_i = |\sqrt{\lambda_i(WM)}|, i = 1, ..., n$, dengan λ_i adalah nilai-nilai eigen dari WM. Nilai singular hankel ditampilkan pada Tabel 4.2.

i	$ \sigma_i $
1	2,3980
2	2,1357
3	2,0312
4	2,0061

Tabel 4.2. Nilai Singular Hankel

i	$ \sigma_i $
5	1,8864
6	1,8760
7	1,7235
8	1,7202
9	1,5419
10	1,5392
11	1,3386
12	1,3239
13	1,1746
14	1,1245
15	0,9971
16	0,9372
17	0,8205
18	0,7872
19	0,5556
20	0,5448

Berdasarkan Tabel 4.2, terlihat bahwa semua nilai dari singular hankel adalah positif dan determinannya tidak sama dengan 0. Hal ini menunjukkan bahwa gramian kesetimbangan Σ adalah definit positif yang mana menjamin bahwa sistem (*A*, *B*, *C*1, *D*) adalah sistem yang terkendali dan teramati. Nilai dari singular hankel akan ditampilkan melalui grafik pada Gambar 4.1 berikut :

Gambar 4.1. Nilai Singular Hankel

Kestabilan dari sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ dapat ditentukan berdasarkan nilai $|\lambda|$ dari matriks \tilde{A} yang ditampilkan pada Tabel 4.3.

i	$ \lambda_i $
1	0,1934
2	0,2116
3	0,2116
4	0,2414
5	0,2414
6	0,2518
7	0,2518
8	0,1985
9	0,1985
10	0,2275
11	0,2275
12	0,2418
13	0,2418

Tabel 4.3. Nilai Eigen dari Sistem Setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$

i	$ \lambda_i $
14	0,2498
15	0,2498
16	0,2483
17	0,2483
18	0,2334
19	0,2358
20	0,2358

Berdasarkan Tabel 4.3, terlihat bahwa nilai $|\lambda|$ dari matrik \tilde{A} yang bernilai kurang dari 1 berjumlah 20. Sehingga berdasarkan Teorema 2.1, sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ adalah stabil asimtotik.

Keterkendalian sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ dapat ditentukan berdasarkan rank dari matriks keterkendalian M_c . Dengan menggunakan software MATLAB, diketahui bahwa rank dari matriks keterkendalian M_c pada sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ adalah 20. Sehingga berdasarkan Teorema 2.2, sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ adalah terkendali.

Sedangkan untuk keteramatan sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ dapat ditentukan berdasarkan *rank* dari matriks keteramatan M_o . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keteramatan M_o pada sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ adalah 20. Sehingga berdasarkan Teorema 2.3, sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ adalah teramati.

Gambar 4.2 berikut akan menampilkan grafik fungsi transfer yang bertujuan untuk melihat bagaimana performansi antara sistem awal (A, B, C1, D) dan sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$.

Gambar 4.2. Frekuensi Respon antara Sistem Awal dan Sistem Setimbang

Berdasarkan Gambar 4.2, terlihat bahwa frekuensi respon antara sistem awal (A, B, C1, D) dan sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ memiliki performansi yang sama dimana sistem awal (A, B, C1, D) dan sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ memiliki kesamaan nilai pada fase baik dalam frekuensi rendah maupun frekuensi tinggi.

Sebelum memasuki tahap reduksi sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ menggunakan metode SPA, akan dilakukan pengecekan kembali syarat dimana sistem tersebut dapat direduksi yang sesuai dengan Teorema 2.6. Diperoleh hasil dari syarat orde berapa saja agar dapat dilakukan reduksi dengan metode SPA yang ditampilkan pada Tabel 4.4 berikut :

Orde Reduksi	$\parallel G - G_r \parallel_{\infty}$	$2\sigma_{r+1}$	Keterangan	Waktu
1	52,1284	2,8780	М	5,24939
2	47,8569	4,6511	М	3,04659
3	43,7945	4,6511	М	3,33586
4	39,7823	4,1303	М	3,11053
5	36,0094	4,1303	М	2,74244
6	32,2575	3,1179	М	4,18731
7	28,8104	3,5396	М	3,01120
8	25,3700	3,5396	М	2,68307
9	22,2862	2,9499	М	2,94005
10	19,2078	2,9499	М	3,20772

Tabel 4.4. Syarat Orde Tereduksi dengan SPA pada Simulasi 1

Orde Reduksi	$\parallel G - G_r \parallel_{\infty}$	$2\sigma_{r+1}$	Keterangan	Waktu
11	16,5306	2,4318	М	2,93041
12	13,8828	2,1631	М	2,88560
13	11,5336	1,9200	М	2,64201
14	9,2845	1,7913	М	2,95739
15	7,2904	1,6249	М	3,21840
16	5,4160	1,4836	М	3,04648
17	3,7750	1,4720	М	3,94882
18	2,2006	1,1111	М	3,00561
19	1,0895	1,0895	М	3,01993

Berdasarkan Tabel 4.4, dapat disimpulkan bahwa sistem dapat direduksi dengan metode SPA ke dalam bentuk orde 1 sampai 19. Selanjutkan akan dijelaskan mengenai beberapa sistem tereduksi yang dilihat berdasarkan waktu komputasi tercepat dan nilai norm $|| G - G_r ||_{\infty}$ terkecil. Untuk penjelasan lebih detail sistem tereduksi orde 1 sampai sistem tereduksi orde 19 dapat dilihat pada **Lampiran B.**

c. Sistem Tereduksi dengan Metode SPA

Selanjutkan akan dijelaskan mengenai beberapa sistem tereduksi dengan metode SPA yaitu sistem tereduksi orde 13 yang dilihat berdasarkan waktu komputasi tercepat dan sistem tereduksi orde 19 berdasarkan nilai norm $\| G - G_r \|_{\infty}$ terkecil sebagai berikut :

Reduksi Orde 13

Dengan orde 13 maka dari sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ dapat dibentuk menjadi sistem tereduksi $(\tilde{A_r}, \tilde{B_r}, \tilde{C1_r}, \tilde{D_r})$ sebagai berikut :

ArS =

-0.1349	0.3575	-0.0277	0.0173	0.1778	0.1142	0.8066	0.1340	-0.1736	-0.1703	0.0025	-0.0180	-0.0037
0.1312	0.5375	0.0327	0.1190	-0.2206	0.0574	-0.1599	0.4033	0.3311	-0.0630	-0.2106	-0.0108	0.0791
-0.1262	0.1792	0.3458	0.1095	-0.1475	0.2517	-0.0315	-0.2155	0.1892	-0.1689	-0.4054	-0.0044	0.2608
-0.2844	0.2977	-0.0481	0.2759	0.4803	-0.2405	-0.2098	-0.3741	-0.0881	-0.2848	0.0538	0.1404	0.0346
-0.0045	-0.1432	0.1656	-0.1446	0.0112	0.2020	0.1246	0.0294	-0.1968	0.1970	-0.1952	0.7077	-0.0569
-0.1845	-0.1815	-0.7170	0.0201	0.1074	0.3571	-0.1186	0.2482	-0.0227	-0.2110	-0.1819	0.0012	0.0931
0.1172	-0.0279	0.2574	-0.1391	0.1883	0.0115	-0.0327	0.3095	-0.3450	-0.0819	0.0782	-0.4594	-0.0140
-0.6134	-0.3636	0.2005	0.3271	-0.3662	-0.0419	0.1115	0.1874	0.0591	-0.1436	0.0767	-0.0808	-0.0988
-0.1091	-0.1076	0.2066	0.0575	0.2485	0.3114	-0.1506	-0.1021	-0.2881	0.1657	-0.4747	-0.2741	-0.0487
-0.2773	0.0867	0.1548	0.2531	0.3517	0.0188	-0.2221	0.4616	0.0673	0.3650	0.1995	0.1945	0.0487
-0.0036	-0.3231	0.1736	-0.3148	0.4484	-0.1762	0.1366	0.1346	0.5810	-0.2199	-0.1848	-0.0000	-0.0424
0.5381	-0.2626	0.0409	0.6971	0.1611	0.1141	0.1549	0.0521	0.0596	-0.0661	-0.0000	0.0583	-0.0000
-0.0023	0.0693	0.2223	-0.1172	0.0696	0.7125	-0.1076	-0.1744	0.2135	-0.1900	0.6382	0.0000	-0.0800

BrS =

0.1229	0.1251	-0.1470	0.1495
-0.5205	-0.5260	-0.1809	0.1823
0.3996	0.4041	0.4582	-0.4634
-0.3064	-0.3093	0.0337	-0.0343
-0.2891	-0.2930	0.1949	-0.1969
0.0078	0.0084	0.1738	-0.1761
-0.2913	-0.2946	0.6239	-0.6306
-0.2691	-0.2723	0.0126	-0.0125
-0.0702	-0.0712	-0.4986	0.5049
0.4333	0.4384	-0.0391	0.0396
-0.0616	-0.0622	-0.0616	0.0622
0.0055	0.0058	-0.0055	0.0058
-0.0767	-0.0778	-0.0767	0.0778

ClrS =

0.0391	-0.2300	0.1515	-0.1210	-0.1062	0.0256	-0.0340	-0.2514	0.0605	0.4356	0.0162	-0.0784	0.2527
-0.3346	-0.1223	-0.0501	-0.1510	0.2063	-0.1735	0.1423	-0.0984	0.2330	0.1802	0.0435	-0.1760	0.3256
-0.0114	-0.1003	-0.0974	0.1305	-0.0051	0.0652	0.1394	0.0509	0.0875	0.2408	0.3593	-0.3619	0.2975
-0.0772	0.0161	-0.1982	-0.2072	-0.0800	0.1286	0.1863	0.1980	-0.0153	0.3130	-0.0339	0.0776	0.2974
0.0560	0.0160	0.0004	-0.3341	0.2678	0.4571	-0.2211	0.2210	-0.0403	-0.0750	0.0127	0.0010	-0.0105
-0.0554	-0.2298	-0.1243	0.0468	-0.0846	0.4058	0.1600	-0.3043	0.3013	-0.2152	0.0127	-0.0010	-0.0105
0.0788	-0.2882	-0.1419	0.1273	0.0305	-0.0382	-0.1250	-0.1459	-0.2207	-0.2644	-0.0339	-0.0776	0.3974
0.0107	-0.0557	-0.0068	-0.1565	-0.0390	-0.1202	-0.0796	-0.0260	-0.2592	-0.2625	0.3593	0.3619	0.2975
0.3312	-0.2208	0.1246	-0.0683	0.0869	-0.1825	0.0268	0.2456	0.0523	-0.2414	0.0435	0.1760	0.3256
-0.0519	-0.1185	0.3208	-0.0071	0.0467	0.0451	0.2072	0.1131	-0.3672	-0.2173	0.0162	0.0784	0.2527

DrS =

-0.0906	-0.0870	0.0164	-0.0166
-0.0567	-0.0571	0.0098	-0.0100
-0.0264	-0.0266	0.0063	-0.0064
0.0061	0.0062	-0.0054	0.0054
-0.0093	-0.0094	0.0032	-0.0032
0.0032	0.0032	-0.0093	0.0094
-0.0054	-0.0054	0.0061	-0.0062
0.0063	0.0064	-0.0264	0.0266
0.0098	0.0100	-0.0567	0.0571
0.0164	0.0166	-0.0906	0.0870

Kestabilan dari sistem terduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ dapat ditentukan berdasarkan nilai $|\lambda|$ dari matriks $\widetilde{A_r}$ yang ditampilkan pada Tabel 4.5.

Tabel 4.5. Nilai Eigen dari Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 13

i	$ \lambda_i $
1	0,8659
2	0,8053

i	$ \lambda_i $
3	0,8053
4	0,8625
5	0,8625
6	0,8251
7	0,8251
8	0,8189
9	0,8189
10	0,7695
11	0,7695
12	0,6708
13	0,7158

Berdasarkan Tabel 4.5, terlihat bahwa nilai $|\lambda|$ dari matrik $\widetilde{A_r}$ yang bernilai kurang dari 1 berjumlah 13. Sehingga berdasarkan Teorema 2.1, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 adalah stabil asimtotik.

Keterkendalian sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 dapat ditentukan berdasarkan *rank* dari matriks keterkendalian M_c . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keterkendalian M_c pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 adalah 13. Sehingga berdasarkan Teorema 2.2, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 adalah terkendali.

Sedangkan untuk keteramatan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 dapat ditentukan berdasarkan *rank* dari matriks keteramatan M_o . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keteramatan M_o pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 adalah 13. Sehingga berdasarkan Teorema 2.3, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 adalah teramati.

Dalam kasus ini, orde dari sistem awal (A, B, C1, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 berbeda sehingga untuk melihat bagaimana performansi dari kedua sistem tersebut dapat dilihat melalui grafik fungsi transfernya yang memenuhi Teorema 2.6 dan ditampilkan oleh Gambar 4.3 berikut

Gambar 4.3. Frekuensi Respon antara Sistem Awal dan Sistem Tereduksi Orde 13

Gambar 4.3 merupakan grafik fungsi transfer antara sistem awal (A, B, C1, D)dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13. Terlihat bahwa frekuensi respon antara sistem awal (A, B, C1, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13 memiliki performansi yang sama saat frekuensi rendah dan memiliki performansi yang berbeda saat frekuensi tinggi. Sehingga metode SPA ini bekerja dengan baik saat frekuensi rendah yaitu saat frekuensi < $10^0 rad/s$.

Reduksi Orde 19

Dengan orde 19 maka dari sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C1}, \tilde{D})$ dapat dibentuk menjadi sistem tereduksi $(\tilde{A_r}, \tilde{B_r}, \tilde{C1_r}, \tilde{D_r})$ sebagai berikut :

ArS

Columns 1 through 12

0.1080	-0.0469	0.5020	-0.3250	-0.2468	0.0737	0.2492	-0.0718	0.0620	-0.2874	-0.0291	-0.1231
0.3337	-0.0715	-0.3704	-0.0742	-0.0191	0.3196	-0.0663	0.0120	-0.0743	-0.3795	0.2701	-0.0627
-0.0779	0.0474	-0.0481	0.1372	0.2967	0.2706	0.2624	0.0049	0.2269	0.0256	-0.1443	-0.1545
0.1937	0.3630	0.2448	0.0890	0.0231	-0.0047	0.0332	-0.0518	0.0715	0.1087	0.2775	-0.5850
-0.0876	-0.1254	-0.2874	-0.1241	0.0126	-0.2149	-0.0613	-0.0199	-0.4458	-0.0282	0.0007	-0.5248
-0.2766	0.1375	0.0007	0.2494	-0.0837	0.1745	0.0497	-0.0549	0.1819	-0.5086	0.1453	-0.0717
0.2124	-0.1880	0.1620	0.1371	0.4378	-0.1050	-0.1825	-0.2977	-0.0103	-0.1367	0.1976	0.0374
-0.0133	0.0226	-0.0387	-0.0364	-0.0358	0.0385	0.0623	0.7907	-0.0415	-0.0397	-0.0063	-0.0037
-0.0590	-0.2327	0.1185	-0.3707	0.2132	0.1036	0.3418	0.0229	-0.1169	0.0428	0.0803	0.0910
0.2819	-0.0322	0.1972	-0.1216	-0.1915	0.1660	-0.1129	0.1828	0.0934	0.1076	0.2479	0.1825
0.0702	-0.6253	0.0808	0.1162	-0.0647	0.2868	-0.0687	0.0105	0.2031	0.1620	-0.1557	-0.3091
0.0793	-0.3018	-0.0183	0.0886	-0.2062	-0.1635	-0.2141	-0.0461	0.0381	-0.3141	-0.0574	0.1288
0.1669	-0.0137	0.0926	0.1927	-0.1159	-0.2928	-0.3086	0.2768	0.1665	-0.1237	-0.1215	-0.0958
-0.1709	-0.0595	-0.1166	0.0366	-0.2429	-0.0906	0.1628	-0.1519	0.2741	0.1719	-0.2428	-0.0896
-0.1271	-0.0123	-0.0794	0.1281	-0.3084	-0.0230	0.0464	-0.1161	-0.0181	0.1950	0.5372	0.0861
0.2459	0.0429	0.0390	0.4766	-0.2239	0.2159	0.0959	-0.0794	-0.4568	0.1711	-0.2331	0.0634
0.1011	0.0862	-0.0364	0.2138	0.3322	0.2473	-0.0805	0.1691	0.0841	0.0406	0.0583	0.0002
-0.2079	-0.0075	0.2981	-0.0796	0.1868	-0.0700	-0.4043	-0.0053	-0.1351	0.1714	0.0793	0.0847
-0.5690	-0.1230	0.1299	0.1628	-0.0433	0.1833	-0.1227	0.1350	-0.1509	-0.0538	0.1999	-0.1148

Columns 13 through 19

0.0173	-0.2567	0.3025	-0.0223	0.2265	-0.1950	0.2897
0.3546	0.1140	-0.0724	0.0032	-0.0511	-0.3269	0.0188
-0.2071	0.3864	-0.1156	-0.1424	0.2824	-0.0116	0.2022
0.0959	0.2528	-0.0617	0.1764	-0.0541	0.0456	-0.2629
-0.1400	-0.0370	0.0553	-0.2030	-0.0037	0.2003	0.3288
0.0263	-0.0823	0.0438	0.0168	-0.3438	0.4232	0.1243
-0.3192	-0.0151	0.1028	-0.3033	-0.1641	-0.1008	-0.0389
-0.0664	0.0440	0.0255	0.0135	-0.0122	0.0558	-0.0271
-0.2614	0.2932	0.0682	0.3472	-0.4047	-0.0039	-0.0190
-0.0132	0.1943	-0.0795	-0.5569	-0.1248	0.2500	0.1289
0.1116	-0.2476	-0.1149	0.0704	-0.0437	0.1951	-0.1263
-0.1133	0.4785	-0.0029	0.1736	0.3696	0.1438	0.0408
-0.2481	0.0300	0.0498	0.1379	-0.3071	-0.2531	0.1104
0.1602	0.2065	-0.1958	-0.1979	-0.3475	-0.2990	0.3329
-0.2525	-0.0713	-0.1946	0.1923	0.2080	-0.1022	0.1898
-0.0314	0.0989	0.3731	0.0850	-0.1270	0.0432	0.1075
-0.0813	-0.2719	-0.0566	0.2125	0.1221	-0.1305	0.4326
0.5058	0.2032	0.0292	0.1738	-0.0289	0.1136	0.3137
-0.0202	0.1173	0.2491	-0.2290	0.0115	-0.4324	-0.1656

BrS =

0.0492	0.0495	0.1096	-0.1109
-0.0634	-0.0642	0.0517	-0.0516
-0.3081	-0.3097	0.2581	-0.2591
0.2123	0.2152	-0.1175	0.1185
0.0069	0.0067	-0.0236	0.0238
-0.0094	-0.0100	0.0501	-0.0493
0.2986	0.3032	0.2986	-0.3032
0.4615	0.4663	0.4615	-0.4663
-0.0960	-0.0994	-0.0822	0.0816
-0.1704	-0.1737	-0.1996	0.2009
-0.0371	-0.0379	0.0719	-0.0742
0.2571	0.2598	-0.2066	0.2089
-0.5306	-0.5356	0.0017	-0.0028
0.3140	0.3172	0.0579	-0.0589
-0.1069	-0.1112	0.3523	-0.3590
0.0448	0.0448	0.0500	-0.0504
0.2422	0.2449	-0.5110	0.5157
-0.1282	-0.1294	0.2622	-0.2659
-0.0033	-0.0036	-0.2617	0.2641

C1rS =

Columns 1 through 12

0.0270	-0.1218	0.1059	0.3066	0.0614	-0.1880	0.4073	0.2207	-0.3106	-0.2561	-0.0372	0.1404
-0.0003	0.0721	0.2203	0.0851	0.3016	-0.3041	0.0063	0.2019	0.1794	-0.1184	-0.2986	0.0278
0.3040	0.0596	-0.1173	-0.3596	-0.0845	-0.2936	-0.0861	0.1567	-0.0754	0.0231	-0.0368	-0.3427
0.0858	0.0342	-0.2412	-0.1376	0.1280	0.0678	0.0225	0.1309	-0.2789	0.2651	0.0523	0.1812
-0.3433	-0.0010	-0.0952	-0.0216	-0.0089	-0.2766	-0.1190	0.1212	0.1333	-0.1069	0.0598	-0.0462
-0.1790	-0.4115	-0.0803	-0.1972	0.3455	0.1637	-0.1190	0.1212	-0.1282	-0.1158	0.0007	-0.1169
-0.0385	0.2213	0.1381	0.0592	0.2324	0.0820	0.0225	0.1309	-0.0666	0.1240	0.0399	0.1341
-0.0681	-0.0009	0.2928	0.1006	-0.1365	0.1397	-0.0861	0.1567	0.0009	0.2701	0.0689	-0.2655
0.1502	-0.3237	0.1095	0.2541	-0.0043	-0.0335	0.0063	0.2019	0.1522	0.2873	0.2955	-0.0707
0.0976	-0.1431	-0.0542	0.0989	0.0497	-0.2813	0.4073	0.2207	0.1390	0.0057	0.2953	-0.0627

Columns 13 through 19

-0.0347	0.1208	-0.4378	-0.0693	0.1218	-0.0612	-0.0344
0.2228	-0.0255	0.1097	-0.0923	0.1453	-0.2870	-0.0323
-0.0443	0.0281	-0.1065	-0.0537	0.0514	-0.0969	0.2292
0.1164	-0.2082	-0.0075	-0.3382	-0.0577	-0.1068	-0.2323
-0.2068	-0.3629	-0.1040	-0.0960	0.0150	0.2227	-0.1572
0.1168	0.0567	-0.0063	0.1476	0.1207	0.1179	0.0664
-0.0471	-0.0593	0.0303	-0.1391	0.0013	0.2819	0.5016
-0.0673	0.1397	0.0537	-0.2238	0.3801	0.0775	-0.1568
0.0232	-0.1689	-0.2205	0.1439	-0.1570	-0.1535	0.0786
0.2123	0.0344	0.4901	0.0149	-0.1464	0.1734	-0.0457

DrS =

-0.0174	-0.0162	-0.0174	0.0162
0.0029	0.0027	0.0029	-0.0027
-0.0018	-0.0017	-0.0018	0.0017
0.0001	0.0001	0.0001	-0.0001
-0.0005	-0.0005	-0.0005	0.0005
-0.0005	-0.0005	-0.0005	0.0005
0.0001	0.0001	0.0001	-0.0001
-0.0018	-0.0017	-0.0018	0.0017
0.0029	0.0027	0.0029	-0.0027
-0.0174	-0.0162	-0.0174	0.0162

Kestabilan dari sistem terduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ dapat ditentukan berdasarkan nilai $|\lambda|$ dari matriks $\widetilde{A_r}$ yang ditampilkan pada Tabel 4.23.

<i>1</i> _i
0,8442
0,8442
0,8073
0,8073
0,7729
0,7729
0,7234
0,7234
0,2358
0,2358
0,2483
0,2483
0,2498
0,2498
0,2275
0,2275
0,1985
0,1985
0,6762

Tabel 4.6. Nilai Eigen dari Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 19

Berdasarkan Tabel 4.6, terlihat bahwa nilai $|\lambda|$ dari matrik $\widetilde{A_r}$ yang bernilai kurang dari 1 berjumlah 19. Sehingga berdasarkan Teorema 2.1, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 adalah stabil asimtotik.

Keterkendalian sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 dapat ditentukan berdasarkan *rank* dari matriks keterkendalian M_c . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keterkendalian M_c pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 adalah 19. Sehingga berdasarkan Teorema 2.2, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 adalah terkendali.

Sedangkan untuk keteramatan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 dapat ditentukan berdasarkan *rank* dari matriks keteramatan M_o . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keteramatan M_o pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 adalah 19. Sehingga berdasarkan Teorema 2.3, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 adalah teramati.

Dalam kasus ini, orde dari sistem awal (A, B, C1, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 berbeda sehingga untuk melihat bagaimana performansi dari kedua sistem tersebut dapat dilihat melalui grafik fungsi transfernya yang memenuhi Teorema 2.6 dan ditampilkan oleh Gambar 4.3 berikut

Gambar 4.4. Frekuensi Respon antara Sistem Awal dan Sistem Tereduksi Orde 19

Gambar 4.4 merupakan grafik fungsi transfer antara sistem awal (A, B, C1, D)dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19. Terlihat bahwa frekuensi respon antara sistem awal (A, B, C1, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19 memiliki performansi yang sama saat frekuensi rendah dan memiliki performansi yang berbeda saat frekuensi tinggi. Sehingga metode SPA ini bekerja dengan baik saat frekuensi rendah yaitu saat frekuensi < $10^0 rad/s$.

d. Estimasi

Setelah dilakukan proses reduksi model, selanjutnya akan dilakukan estimasi dengan mengimplementasikan algoritma filter kalman. Proses estimasi ini dilakukan pada sistem awal (A, B, C1, D) dan sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$).

Pada sistem awal (A, B, C1, D) diberikan estimasi awal \hat{x}_0 adalah sama dengan syarat awal yaitu $h(x, 0) = 2 + \sin(2\pi x)$ dan u(x, 0) = 0. Kovariansi kesalahan estimasi awal $P_0 = 10^{-5}I$ dimana I adalah matriks identitas. Derau sistem w dibangkitkan dari nilai random dengan mengambil mean nol dan kovariansi $Q = 10^{-5}I$. Sedangkan untuk derau pengukuran v juga dibangkitkan dari nilai random dengan mengambil mean nol dan kovariansi $R = 10^{-3}$.

Sedangkan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ diberikan estimasi awal $\widehat{x_0}$ adalah perkalian antara matriks transformasi *T* dengan syarat awal yang berlaku pada sistem awal (A, B, C1, D). Kovariansi kesalahan estimasi awal $P_0 = 10^{-5}I$ dimana *I* adalah matriks identitas. Derau sistem *w* dibangkitkan dari nilai random dengan mengambil mean nol dan kovariansi $Q = 10^{-5}I$. Sedangkan untuk derau pengukuran *v* juga dibangkitkan dari nilai random dengan mengambil mean nol dan kovariansi $R = 10^{-3}$.

Simulasi pada sistem tereduksi dimulai dari orde 4. Hal ini dikarenakan jumlah inputan pada algoritma filter kalman berjumlah 4 sehingga untuk sistem tereduksi orde 1 sampai 3 tidak dapat dijalankan. Pada simulasi ini yang dibandingkan adalah output dari :

- Sistem awal (A, B, C1, D) yang dimisalkan y
- Estimasi sistem awal (A, B, C1, D) yang dimisalkan y1.
- Estimasi sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ yang dimisalkan y2.
- Sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ yang dimisalkan y3.

Hal ini dilakukan karena jumlah variabel x pada sistem awal (A, B, C1, D)berbeda dengan jumlah variabel \tilde{x}_r pada sistem tereduksi $(\widetilde{A}_r, \widetilde{B}_r, \widetilde{C1}_r, \widetilde{D}_r)$. Sehingga yang dapat dibandingkan adalah variabel pada sistem pengukurannya yaitu y. Selain itu, variabel \tilde{x}_r pada sistem tereduksi $(\widetilde{A}_r, \widetilde{B}_r, \widetilde{C1}_r, \widetilde{D}_r)$ merupakan
penjumlahan linier dari variabel $x = x_1 \quad x_2 \quad x_3 \quad \dots \quad x_{18} \quad x_{19} \quad x_{20}$ pada sistem awal (A, B, C1, D).

Akan ditampilkan kembali bentuk sistem linear waktu diskrit sistem tereduksi pada persamaan (2.29)

$$\begin{aligned} \tilde{x}_{r_{k+1}} &= \tilde{A}_r \tilde{x}_{r_k} + \tilde{B}_r \tilde{u}_k \\ \tilde{y}_{r_k} &= \tilde{C}_r \tilde{x}_{r_k} + \tilde{D}_r \tilde{u}_k \end{aligned}$$

dengan

$$\tilde{A}_{r} = \tilde{A}_{11} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}$$
$$\tilde{B}_{r} = \tilde{B}_{1} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_{2}$$
$$\tilde{C}_{r} = \tilde{C}_{1} - \tilde{C}_{2}\tilde{A}_{22}^{-1}\tilde{A}_{21}$$
$$\tilde{D}_{r} = \tilde{D} - \tilde{C}_{2}\tilde{A}_{22}^{-1}\tilde{B}_{2}$$

Jika $\tilde{x}_{r_{k+1}}$ dijabarkan akan diperoleh

$$\begin{split} \tilde{x}_{r_{k+1}} &= \left(\tilde{A}_{11} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}\right)\tilde{x}_{r_{k}} + \left(\tilde{B}_{1} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_{2}\right)\tilde{u}_{k} \\ &= \tilde{A}_{11}\tilde{x}_{r_{k}} - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}\right)\tilde{x}_{r_{k}} + \tilde{B}_{1}\tilde{u}_{k} - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_{2}\right)\tilde{u}_{k} \\ &\text{dengan } \tilde{x}_{r_{k}} = \begin{bmatrix}\tilde{x}_{1_{k}}\\\tilde{x}_{2_{k}}\end{bmatrix} \text{dimana } \tilde{x}_{2_{k}} = 0 \text{ maka } \tilde{x}_{r_{k}} = \tilde{x}_{1_{k}}, \text{ sehingga} \\ &= \tilde{A}_{11}\tilde{x}_{1_{k}} - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}\right)\tilde{x}_{1_{k}} + \tilde{B}_{1}\tilde{u}_{k} - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_{2}\right)\tilde{u}_{k} \\ &\tilde{x}_{1_{k}} \text{ merupakan nilai } x_{k} \text{ pada saat sistem setimbang yang diperoleh} \\ &\text{dengan mengkonstruksi matriks transformasi } T \text{ seperti pada} \\ &\text{persamaan (2.10). Hanya saja matriks transformasi } T \text{ didekomposisi} \end{split}$$

bersesuaian dengan orde dari sistem tereduksi dan diperoleh $T_1^{-1}x_k$, sehingga

$$= \tilde{A}_{11}T_1^{-1}x_k - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}\right)T_1^{-1}x_k + \tilde{B}_1\tilde{u}_k - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_2\right)\tilde{u}_k$$

dengan $x_k = [x_1 \quad x_2 \quad \cdots \quad \cdots \quad x_{19} \quad x_{20}]^T$

Berikut grafik hasil estimasi algoritma filter kalman pada sistem awal (A, B, C1, D) yang akan ditampilkan pada Gambar 4.5.

Gambar 4.5. Akurasi Hasil Estimasi antara y dan y1

Gambar 4.5 menunjukkan grafik nilai sebenarnya (y) dan grafik nilai hasil estimasi (y1) untuk sistem awal (A, B, C1, D). Terlihat bahwa grafik nilai sebenarnya dan grafik nilai hasil estimasi memiliki performansi yang sama dimana menunjukkan ketinggian sungai pada masing-masing titik. Meskipun grafik memiliki performansi yang mirip, terdapat perbedaan yang tidak terlalu signifikan pada tiap titik sehingga eror yang dihasilkan kecil.

Berikutnya akan ditampilkan beberapa grafik hasil estimasi algoritma filter kalman pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ yaitu orde 13 dan orde 19. Untuk lebih detail mengenai hasil estimasi algoritma filter kalman pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 4 sampai orde 19 dapat dilihat pada **Lampiran C.**

Gambar 4.6. Akurasi Hasil Estimasi antara y dan y2 untuk orde 13

Gambar 4.6 menunjukkan grafik nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan grafik nilai hasil estimasi (y2) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13. Terlihat bahwa grafik (y) dan (y2) memiliki performansi yang berbeda, hal ini telah dijelaskan sebelumnya bahwa nilai dari $\widetilde{x_r}$ pada sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$) merupakan penjumlahan linier dari nilai x pada sistem awal (A, B, C1, D). Sehingga grafik yang dihasilkan antara (y) dan (y2) jelas berbeda. Eror yang dihasilkanpun lebih besar dibandingkan eror yang dihasilkan antara (y) dan (y1). Namun secara waktu komputasi, estimasi pada sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$) memiliki waktu yang lebih cepat.

Gambar 4.7. Akurasi Hasil Estimasi antara y dan y3 untuk orde 13

Gambar 4.7 menunjukkan grafik nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan grafik nilai sebenarnya (y3) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 13. Terlihat bahwa grafik (y) dan (y3) memiliki performansi yang berbeda, hal ini telah dijelaskan sebelumnya bahwa nilai dari $\widetilde{x_r}$ pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ merupakan penjumlahan linier dari nilai x pada sistem awal (A, B, C1, D). Sehingga grafik yang dihasilkan antara (y) dan (y3) jelas berbeda. Eror yang dihasilkanpun lebih besar dibandingkan eror yang dihasilkan antara (y) dan (y1), namun secara waktu komputasi estimasi pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ memiliki waktu yang lebih cepat.

Gambar 4.8. Akurasi Hasil Estimasi antara y dan y2 untuk orde 19

Gambar 4.8 menunjukkan grafik nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan grafik nilai hasil estimasi (y2) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19. Terlihat bahwa grafik (y) dan (y2) memiliki performansi yang berbeda, hal ini telah dijelaskan sebelumnya bahwa nilai dari $\widetilde{x_r}$ pada sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$) merupakan penjumlahan linier dari nilai x pada sistem awal (A, B, C1, D). Sehingga grafik yang dihasilkan antara (y) dan (y2) jelas berbeda. Eror yang dihasilkanpun lebih besar dibandingkan eror yang dihasilkan antara (y) dan (y1). Namun secara waktu komputasi, estimasi pada sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$) memiliki waktu yang lebih cepat.

Gambar 4.9. Akurasi Hasil Estimasi antara y dan y3 untuk orde 19

Gambar 4.9 menunjukkan grafik nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan grafik nilai sebenarnya (y3) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ orde 19. Terlihat bahwa grafik (y) dan (y3) memiliki performansi yang berbeda, hal ini telah dijelaskan sebelumnya bahwa nilai dari $\widetilde{x_r}$ pada sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$) merupakan penjumlahan linier dari nilai x pada sistem awal (A, B, C1, D). Sehingga grafik yang dihasilkan antara (y) dan (y3) jelas berbeda. Eror yang dihasilkanpun lebih besar dibandingkan eror yang dihasilkan antara (y) dan (y1), namun secara waktu komputasi estimasi pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ memiliki waktu yang lebih cepat.

Berikut akan disajikan Tabel 4.7 yang menjelaskan secara singkat mengenai rata - rata nilai eror (*MSE*) dan waktu komputasi pada masing - masing sistem dimana nilai eror dihitung dengan persamaan sebagai berikut

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\widehat{x}_i - x_i)^2$$

dengan x adalah nilai sebenarnya dan \hat{x} adalah nilai estimasi yang terdapat pada data pengukuran y. Sedangkan untuk detail lebih rinci mengenai rata-rata nilai eror (*MSE*) akan disajikan dalam **Lampiran D**.

Sistem	M	Waktu		
Sistem	$y - y^2$	<i>y</i> – <i>y</i> 3	Komputasi	
Awal	y - y1 =	0,00021	0,00707	
Orde 4	0,10672	0,40740	0,00718	
Orde 5	0,22952	0,05922	0,00498	
Orde 6	0,98426	0,20358	0,00512	
Orde 7	0,05418	0,22394	0,00506	
Orde 8	1,00640	0,20006	0,00508	
Orde 9	0,32658	0,08526	0,00395	
Orde 10	2,09446	0,09772	0,00411	
Orde 11	0,00704	0,03100	0,00374	

Tabel 4.7. Hasil Estimasi Filter Kalman pada Sistem Awal dan Sistem Tereduksi

Sistem	M	Waktu		
Sistem	<i>y</i> – <i>y</i> 2	<i>y</i> – <i>y</i> 3	Komputasi	
Orde 12	0,18350	0,25600	0,00401	
Orde 13	0,56174	0,07822	0,00409	
Orde 14	0,30552	0,58298	0,00379	
Orde 15	0,36522	0,19780	0,00365	
Orde 16	0,09036	0,09166	0,00410	
Orde 17	0,87650	0,23016	0,00407	
Orde 18	2,78706	0,01156	0,00412	
Orde 19	0,05638	0,29844	0,00387	

Berdasarkan Tabel 4.7, menunjukkan bahwa *MSE* dari nilai sebenarnya (y) dan nilai hasil estimasi (y1) untuk sistem awal (A, B, C1, D) adalah 0,00021 dengan waktu komputasi 0,000707. Untuk *MSE* terkecil antara nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan nilai hasil estimasi (y2) untuk sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$) adalah orde 7 dengan nilai 0,05418 serta waktu komputasinya adalah 0,00506. Untuk *MSE* terkecil antara nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan nilai sebenarnya (y3) untuk sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$) adalah orde 18 dengan nilai 0,01156 serta waktu komputasinya adalah 0,00412. Sedangkan secara keseluruhan, waktu komputasi sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}$) lebih cepat dibandingkan dengan sistem awal (A, B, C1, D) yaitu orde 15 dengan waktu 0,00365.

4.2.2 Kasus 2

Selanjutnya dilakukan simulasi kasus 2 untuk menentukan kecepatan aliran sungai pada semua titik dengan menggunakan nilai parameter seperti pada Kasus 1. Sehingga diperoleh matriks untuk sistem awal (A, B, C2, D) yang berorde n = 20 sebagai berikut :

	г0,0	2	0	0,49	-	0,5	0		0	0		0		0	C)	0		0		0	0		0	0		0	0	0	ך 0
	0	0	,02	-0,49) 0,	,49	0		0	0		0		0	C)	0		0		0	0		0	0		0	0	0	0
	0,49	9 (),5	0,02		0	0,49	_	-0,5	0		0		0	C)	0		0		0	0		0	0		0	0	0	0
	0,49	9 0	,49	0	0,	,02	-0,4	90	,49	0		0		0	C)	0		0		0	0		0	0		0	0	0	0
	0		0	0,49	0),5	0,02		0	0,4	9	-0,5		0	C)	0		0		0	0		0	0		0	0	0	0
	0		0	0,49	0,	,49	0	0	,02	-0,4	19	0,49		0	C)	0		0		0	0		0	0		0	0	0	0
	0		0	0		0	0,49	(0,5	0,0	2	0	(),49	-0),5	0		0		0	0		0	0		0	0	0	0
	0		0	0		0	0,49	0	,49	0	_	0,02	-	0,49	0,4	49	0	-	0		0	0		0	0		0	0	0	0
	0		0	0		0	0		0	0,4	9	0,5	(0,02	0)	0,4	.9	-0,5		0	0		0	0		0	0	0	0
A =	0		0	0		0	0		0	0,4	9	0,49		0	0,0)2	-0,	49	0,49		0	0		0	0		0	0	0	0
			0	0		0	0		0	0		0),49	0,	5	0,0	2	0	(),49	-0,5	2	0	0		0	0	0	0
			0	0		0	0		0	0		0	(J,49	0,4	1 9	0	~	0,02	_	0,49	0,49		0	0		0	0	0	0
			0	0		0	0		0	0		0		0	()	0,4	.9	0,5	(),02	0	. '	0,49	-0,5		0	0	0	0
			0	0		0	0		0	0		0		0	L L)	0,4	9	0,49		0	0,02	-	-0,49	0,49	0	0	0	0	0
			0	0		0	0		0	0		0		0	L L)	0		0	(),49	0,5	. '	0,02	0	0	,49	-0,5	0	0
			0	0		0	0		0	0		0		0))	0		0	(0,49	0,49	· .	0 40	0,02	-(0,49	0,49	0 40	0 5
			0	0		0	0		0	0		0		0		,)	0		0		0	0		0,49	0,5	0	,02	0 02	0,49	0.40
			0	0		0	0		0	0		0		0		,)	0		0		0	0		0,49	0,49	0	49	0,02	0.02	_0.49
			0	0		0	0		0	0		0		0	0	,)	0		0		0	0		0	0	0	49	0.49	0,02	0.02
	- 0		0	Ũ		0	Ũ		Ū	0		Ū		Ũ	, c		0		0		Ũ	Ū		0	Ũ	0	,.,	0,15	Ū	0,0 2 -
	- F(),49)	0,49	0	0	0	0) () (0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	1'
		0.5		0 4 9	0	0	0	0) () (0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	
<i>B</i> =	=	0		0	Ň	0 0	0 0	0		n i	n	Ň	Ň	ñ	0 0		ñ	ñ	Ň	ñ	Õ	Ň	ñ	Ô	Ô	Ô	Ο	<i>1</i> .0		
		0		0	0	0	0	0			0	0	0	0	0	, i	0	0	0	0	0	0	0	0	0	0	0,		-0,47	
	L	0		0	0	0	0	0) () (0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	-0	0,5	0,49	l
	г	-0	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	() ()	Г							
		0	0	0	1	0	0	0	0	0	0	0		0	0	0	0	0	0	Ì		0								
		0	0	0	1	0	0	0	0	0	0	0		0	0	0	0	0	0	() ()								
		0	0	0	0	0	1	0	0	0	0	0		U	0	0	0	0	0	() () ()								
		0	0	0	0	0	0	0	1	0	0	0		0	0	0	0	0	0	() () 0								
<i>a</i> 2		0	0	0	0	0	0	0	0	0	1	0		0	0	0	0	0	0	() () ()								
ίZ	=	0	0	0	0	0	0	0	0	0	0	0		1	0	0	0	0	0	(0								
		0	0	0	0	0	0	0	0	0	0	0		ĥ	0	1	0	0	0	Ì) 0								
		0	0	0	0	0	0	0	0	0	0	0		0	0	1	0	0	0	() ()								
		0	0	0	0	0	0	0	0	0	0	0		U	0	0	0	1	0	() () ()								
		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	-	1 () 0								
		-0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	() () 1]							
~		-	-	-	-	-	-	-	-	-	5	Ŭ		-	-	-	-	5	5			-								
D	=	[0]																												

a. Analisis Sifat Sistem Awal

Sebelum dilakukan reduksi dan estimasi terhadap sistem awal (A, B, C2, D)di atas, terlebih dahulu dilakukan pengecekan sifat sistem untuk kestabilan, keterkendalian dan keteramatan. Kestabilan sistem dapat ditentukan berdasarkan nilai

 $|\lambda|$ dari matriks *A* yang ditampilkan pada Tabel 4.8.

i	$ \lambda_i $
1	0,2334
2	0,2358
3	0,2358
4	0,2418

Tabel 4.8.Nilai Eigen dari Sistem Awal (A, B, C2, D)

i	$ \lambda_i $
5	0,2418
6	0,1934
7	0,1985
8	0,1985
9	0,2116
10	0,2116
11	0,2275
12	0,2275
13	0,2483
14	0,2483
15	0,2414
16	0,2414
17	0,2518
18	0,2518
19	0,2498
20	0,2498

Berdasarkan Tabel 4.8, terlihat bahwa nilai $|\lambda|$ dari matrik *A* yang bernilai kurang dari 1 berjumlah 20. Sehingga berdasarkan Teorema 2.1, sistem awal (*A*, *B*, *C*2, *D*) adalah stabil asimtotik.

Keterkendalian sistem awal (A, B, C2, D) dapat ditentukan berdasarkan *rank* dari matriks keterkendalian M_c . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keterkendalian M_c pada sistem awal (A, B, C2, D) adalah 20. Sehingga berdasarkan Teorema 2.2, sistem awal (A, B, C2, D) adalah terkendali.

Sedangkan untuk keteramatan sistem awal (A, B, C2, D) dapat ditentukan berdasarkan *rank* dari matriks keteramatan M_o . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keteramatan M_o pada sistem awal (A, B, C2, D) adalah 20. Sehingga berdasarkan Teorema 2.3, sistem awal (A, B, C2, D) adalah teramati. Berdasarkan Teorema 2.4, jika sistem yang diberikan adalah stabil (dalam hal ini stabil asimtotik), terkendali, dan teramati maka dapat ditentukan gramian keterkendalian W dan gramian keteramatan M yang disajikan pada **Lampiran A**.

Sehingga dari gramian tersebut dapat dibentuk sebuah sistem setimbang dimana sistem setimbang merupakan salah satu tahapan dari sistem awal sebelum dapat direduksi menggunakan metode SPA.

b. Sistem Setimbang

Dengan menggunakan *software* MATLAB, dibentuk sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$ sehingga diperoleh bentuk matriks untuk sistem setimbang yang ditampilkan pada **Lampiran A**.

Selanjutnya akan ditentukan gramian keterkendalian \widetilde{W} dan gramian keteramatan \widetilde{M} dari sistem setimbang $(\widetilde{A}, \widetilde{B}, \widetilde{C2}, \widetilde{D})$ yang ditampilkan pada **Lampiran A**.

Terlihat bahwa nilai dari $\widetilde{W} = \widetilde{M}$ yang sama artinya dengan $\widetilde{W} = \widetilde{M} = \Sigma$, dengan $\Sigma = diag(\sigma_1, \sigma_2, \dots, \sigma_n), \quad \sigma_1 \ge \dots \ge \sigma_r \ge \dots \ge \sigma_n > 0$. Dimana σ merupakan nilai singular hankel dari sistem (A, B, C1, D) yang dapat didefinisikan sebagai $\sigma_i = |\sqrt{\lambda_i(WM)}|, i = 1, \dots, n$, dengan λ_i adalah nilai-nilai eigen dari WM. Nilai singular hankel ditampilkan pada Tabel 4.9.

i	$ \sigma_i $
1	2,3739
2	2,1143
3	2,0108
4	1,9859
5	1,8675
6	1,8571
7	1,7062
8	1,7029

Tabel 4.9. Nilai Singular Hankel

i	$ \sigma_i $
9	1,5264
10	1,5237
11	1,3251
12	1,3106
13	1,1628
14	1,1132
15	0,9870
16	0,9278
17	0,8122
18	0,7793
19	0,5500
20	0,5393

Berdasarkan Tabel 4.9, terlihat bahwa semua nilai dari singular hankel adalah positif dan determinannya tidak sama dengan 0. Hal ini menunjukkan bahwa gramian kesetimbangan Σ adalah definit positif yang mana menjamin bahwa sistem (*A*, *B*, *C*2, *D*) adalah sistem yang terkendali dan teramati. Nilai dari singular hankel akan ditampilkan melalui grafik pada Gambar 4.10 berikut :

Gambar 4.10. Nilai Singular Hankel

Kestabila	an dari sistem setin	nbang ($\tilde{A}, \tilde{B}, \widetilde{C2}$, \widetilde{D}) dapat	ditentukan	berdasarkan
nilai $ \lambda $ dari m	natriks à yang ditar	npilkan pada Ta	abel 4.10.		

i	$ \lambda_i $
1	0,1985
2	0,1985
3	0,2275
4	0,2275
5	0,2498
6	0,2498
7	0,2358
8	0,2358
9	0,2483
10	0,2483
11	0,2334
12	0,2418
13	0,2418
14	0,2518
15	0,2518
16	0,2414
17	0,2414
18	0,2116
19	0,2116
20	0,1934

Tabel 4.10. Nilai Eigen dari Sistem Setimbang $(\tilde{A}, \tilde{B}, \widetilde{C2}, \widetilde{D})$

Berdasarkan Tabel 4.10, terlihat bahwa nilai $|\lambda|$ dari matrik \tilde{A} yang bernilai kurang dari 1 berjumlah 20. Sehingga berdasarkan Teorema 2.1, sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$ adalah stabil asimtotik.

Keterkendalian sistem setimbang $(\tilde{A}, \tilde{B}, \widetilde{C2}, \widetilde{D})$ dapat ditentukan berdasarkan rank dari matriks keterkendalian M_c . Dengan menggunakan software MATLAB, diketahui bahwa *rank* dari matriks keterkendalian M_c pada sistem setimbang $(\tilde{A}, \tilde{B}, \widetilde{C2}, \widetilde{D})$ adalah 20. Sehingga berdasarkan Teorema 2.2, sistem setimbang $(\tilde{A}, \tilde{B}, \widetilde{C2}, \widetilde{D})$ adalah terkendali.

Sedangkan untuk keteramatan sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$ dapat ditentukan berdasarkan *rank* dari matriks keteramatan M_o . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keteramatan M_o pada sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$ adalah 20. Sehingga berdasarkan Teorema 2.3, sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$ adalah teramati.

Gambar 4.11 berikut akan menampilkan grafik fungsi transfer yang bertujuan untuk melihat bagaimana performansi antara sistem awal (A, B, C2, D) dan sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$.

Gambar 4.11. Frekuensi Respon antara Sistem Awal dan Sistem Setimbang

Berdasarkan Gambar 4.11, terlihat bahwa frekuensi respon antara sistem awal (A, B, C2, D) dan sistem setimbang $(\tilde{A}, \tilde{B}, \widetilde{C2}, \widetilde{D})$ memiliki performansi yang sama dimana sistem awal (A, B, C2, D) dan sistem setimbang $(\tilde{A}, \tilde{B}, \widetilde{C2}, \widetilde{D})$ memiliki kesamaan nilai pada fase baik dalam frekuensi rendah maupun frekuensi tinggi.

Sebelum memasuki tahap reduksi sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$ menggunakan metode SPA, akan dilakukan pengecekan kembali syarat dimana sistem tersebut dapat direduksi yang sesuai dengan Teorema 2.6. Diperoleh hasil dari syarat orde berapa saja agar dapat dilakukan reduksi dengan metode SPA yang ditampilkan pada Tabel 4.11 berikut :

Orde Reduksi	$\parallel G - G_r \parallel_{\infty}$	$2\sigma_{r+1}$	Keterangan	Waktu
1	51,6045	2,8490	М	3,20871
2	47,3760	4,6045	М	2,53826
3	43,3543	4,6045	М	2,69084
4	39,3825	4,0888	М	3,25281
5	35,6476	4,0888	М	2,49766
6	31,9333	3,0866	М	2,47170
7	28,5209	3,5041	М	2,60979
8	25,1150	3,5041	М	2,73911
9	22,0622	2,9202	М	2,79775
10	19,0148	2,9202	М	4,89994
11	16,3645	2,4073	М	2,87367
12	13,7433	2,1413	М	3,21291
13	11,4177	1,9007	М	2,68631
14	9,1913	1,7733	М	4,55099
15	7,2172	1,6086	М	4,17072
16	5,3616	1,4687	М	3,18725
17	3,7371	1,4572	М	3,47026
18	2,1785	1,1000	М	4,27663
19	1,0786	1,0786	М	3,72201

Tabel 4.11. Syarat Orde Tereduksi dengan SPA pada Simulasi 2

Berdasarkan Tabel 4.11, dapat disimpulkan bahwa sistem dapat direduksi dengan metode SPA ke dalam bentuk orde 1 sampai 19. Selanjutkan akan dijelaskan mengenai beberapa sistem tereduksi yang dilihat berdasarkan waktu komputasi tercepat dan nilai norm $|| G - G_r ||_{\infty}$ terkecil. Untuk penjelasan lebih detail sistem tereduksi orde 1 sampai sistem tereduksi orde 19 dapat dilihat pada **Lampiran B.**

c. Sistem Tereduksi dengan Metode SPA

Selanjutkan akan dijelaskan mengenai beberapa sistem tereduksi dengan metode SPA yaitu sistem tereduksi orde 6 yang dilihat berdasarkan waktu komputasi tercepat dan sistem tereduksi orde 19 berdasarkan nilai norm $\| G - G_r \|_{\infty}$ terkecil sebagai berikut :

Reduksi Orde 6

Dengan orde 6 maka dari sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$ dapat dibentuk menjadi sistem tereduksi $(\tilde{A_r}, \tilde{B_r}, \tilde{C2_r}, \tilde{D_r})$ sebagai berikut : ArS =

0.6295	0.0000	0.0000	0.0216	-0.1886	-0.0000
0.0000	0.0219	-0.1041	0.0000	-0.0000	0.7245
-0.0000	0.9613	0.1359	0.0000	-0.0000	-0.0008
0.5323	0.0000	-0.0000	0.4569	0.5973	0.0000
0.4704	0.0000	0.0000	-0.7714	-0.0239	0.0000
-0.0000	0.1573	-1.1115	-0.0000	-0.0000	-0.1047
BrS =					
515 -					
0.5761	0.5818	-0.5761	0.5818		
0.4332	0.4368	0.4332	-0.4368		
-0.0014	-0.0006	-0.0014	0.0006		
-0.2187	-0.2206	0.2187	-0.2206		
-0.2676	-0.2694	0.2676	-0.2694		
-0.0213	-0.0213	-0.0213	0.0213		
C2rS =					
0.3116	0.3399	-0.0022	-0.0475	-0.2822	-0.0441
0.2294	0.0121	0.3388	0.1627	-0.0254	0.0299
0.1009	0.0081	0.0533	0.3202	-0.1003	-0.2580
0.0885	-0.0679	0.0097	0.2873	-0.3740	-0.1862
0.1011	0.0308	-0.0616	0.2447	-0.5288	-0.1219
0.1011	-0.0308	0.0616	0.2447	-0.5288	0.1219
0.0885	0.0679	-0.0097	0.2873	-0.3740	0.1862
0.1009	-0.0081	-0.0533	0.3202	-0.1003	0.2580
0.2294	-0.0121	-0.3388	0.1627	-0.0254	-0.0299
0.3116	-0.3399	0.0022	-0.0475	-0.2822	0.0441
DrS =					
-0.1530	-0.1590	-0.0261	0.0264		
-0.1612	-0.1628	-0.0047	0.0048		
-0.1152	-0.1164	-0.0430	0.0434		

-0.1152	-0.1164	-0.0430	0.0434
-0.0791	-0.0799	0.0143	-0.0143
-0.0834	-0.0841	0.0409	-0.0412
-0.0409	-0.0412	0.0834	-0.0841
-0.0143	-0.0143	0.0791	-0.0799
0.0430	0.0434	0.1152	-0.1164
0.0047	0.0048	0.1612	-0.1628
0.0261	0.0264	0.1530	-0.1590

Kestabilan dari sistem terduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ dapat ditentukan berdasarkan nilai $|\lambda|$ dari matriks $\widetilde{A_r}$ yang ditampilkan pada Tabel 4.12.

i	$ \lambda_i $
1	0,7311
2	0,7465
3	0,7465
4	0,9211
5	0,9322
6	0,9322

Tabel 4.12. Nilai Eigen dari Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2}_r, \widetilde{D_r})$ Orde 6

Berdasarkan Tabel 4.12, terlihat bahwa nilai $|\lambda|$ dari matrik $\widetilde{A_r}$ yang bernilai kurang dari 1 berjumlah 6. Sehingga berdasarkan Teorema 2.1, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 adalah stabil asimtotik.

Keterkendalian sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 dapat ditentukan berdasarkan *rank* dari matriks keterkendalian M_c . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keterkendalian M_c pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 adalah 6. Sehingga berdasarkan Teorema 2.2, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 adalah terkendali.

Sedangkan untuk keteramatan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 dapat ditentukan berdasarkan *rank* dari matriks keteramatan M_o . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keteramatan M_o pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 adalah 6. Sehingga berdasarkan Teorema 2.3, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 adalah teramati.

Dalam kasus ini, orde dari sistem awal (A, B, C2, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 berbeda sehingga untuk melihat bagaimana performansi dari kedua sistem tersebut dapat dilihat melalui grafik fungsi transfernya yang memenuhi Teorema 2.6 dan ditampilkan oleh Gambar 4.3 berikut

Gambar 4.12. Frekuensi Respon antara Sistem Awal dan Sistem Tereduksi Orde 6

Gambar 4.12 merupakan grafik fungsi transfer antara sistem awal (A, B, C2, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6. Terlihat bahwa frekuensi respon antara sistem awal (A, B, C2, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6 memiliki performansi yang berbeda dimana grafik cenderung sama saat frekuensi rendah sedangkan saat frekuensi tinggi grafik cenderung berbeda. Sehingga metode SPA ini bekerja dengan baik saat frekuensi rendah yaitu saat frekuensi < $10^{-1} rad/s$.

Reduksi Orde 19

Dengan orde 19 maka dari sistem setimbang $(\tilde{A}, \tilde{B}, \tilde{C2}, \tilde{D})$ dapat dibentuk menjadi sistem tereduksi $(\tilde{A_r}, \tilde{B_r}, \tilde{C2_r}, \tilde{D_r})$ sebagai berikut :

Ars =

-0.0768	-0.1814	0.2046	-0.1954	-0.2174	0.1928	0.0484	-0.0697	-0.0024	-0.0538	0.1750	0.1148
0.1893	-0.0681	0.0939	-0.1156	-0.3139	0.2987	0.0243	0.1008	-0.1947	0.2920	-0.3480	-0.1334
0.0355	0.0063	-0.0327	-0.1028	0.0158	-0.0402	-0.0184	0.3937	0.3668	0.3281	0.3151	0.1673
0.0318	-0.0062	0.0164	0.7907	0.0386	0.0438	-0.0250	0.0423	-0.0455	-0.0168	0.0158	-0.0118
-0.2203	0.1280	0.2143	-0.0037	0.2469	-0.0392	-0.3180	-0.2029	-0.3363	0.1690	-0.0338	0.3228
-0.0155	-0.2602	-0.5486	-0.1515	0.1017	0.0735	-0.1213	0.0201	-0.2114	-0.1180	-0.1252	0.3433
0.2125	0.4030	-0.2374	0.0461	-0.0471	0.0637	0.0025	-0.0504	-0.3081	-0.3439	0.5101	0.0660
0.1338	0.2382	0.0193	-0.2031	-0.1256	0.2392	0.1540	-0.3288	0.0970	-0.2039	-0.1672	-0.1047
-0.3082	0.2877	-0.0855	-0.0532	0.0680	0.0003	-0.5280	0.0877	0.1665	-0.0843	-0.0503	-0.3107
-0.2897	-0.1966	-0.3131	0.1904	-0.1746	-0.1106	0.3247	-0.4129	-0.0687	0.2631	0.0948	-0.0526
-0.0661	-0.3242	0.1752	-0.0944	-0.1972	-0.3620	-0.1579	-0.0516	0.1008	-0.3614	0.0910	0.0343
0.2324	0.2606	0.0652	0.0238	-0.2731	-0.3860	-0.0419	-0.1156	-0.2000	0.2121	-0.2261	0.1858
0.1661	0.0607	-0.0045	-0.0438	0.3813	-0.1529	0.0773	-0.2385	0.2571	-0.0845	-0.2635	0.3454
0.1837	-0.2468	0.3834	-0.0254	0.0758	-0.0412	-0.1414	-0.2577	-0.1076	0.1551	0.3648	-0.0547
-0.0295	-0.1262	0.0482	0.0877	-0.0023	0.3281	-0.2470	-0.2977	0.2720	-0.1903	-0.1352	0.0652
-0.1606	0.0719	0.0558	-0.2026	0.3787	-0.2157	0.3586	-0.0658	-0.0825	-0.0605	-0.0543	-0.3946
-0.0759	0.1642	0.0024	-0.0246	0.0984	0.3763	0.0250	-0.2075	0.1531	0.3416	0.2246	0.0865
-0.1171	-0.0593	-0.2285	-0.1343	-0.0093	-0.1311	-0.2099	-0.0847	-0.1867	0.1938	0.0428	-0.3264
-0.1018	0.1540	-0.1954	-0.2357	-0.2055	-0.1280	-0.1162	-0.1941	0.1447	0.1643	0.1613	0.1797

Columns 13 through 19

0.5054	-0.1217	-0.3387	0.0539	-0.1901	0.1095	0.2195
-0.0750	0.0515	0.3755	0.2149	-0.3532	0.2096	0.0451
-0.3547	-0.0334	-0.2035	0.2601	-0.0370	0.1594	0.2305
-0.0077	-0.0277	-0.0408	0.0681	0.0067	-0.0191	0.0852
-0.2368	0.2497	-0.1299	-0.1432	-0.2615	0.0750	0.1509
-0.0073	-0.0871	0.0833	-0.0877	0.1399	-0.0739	0.2840
-0.0455	-0.0916	0.1090	0.1929	-0.2543	0.2205	-0.0041
-0.3172	0.2565	-0.2330	0.2335	0.2183	-0.2793	0.2061
0.1456	0.0534	-0.0357	0.2693	-0.1341	-0.1206	-0.0082
-0.1751	0.0857	-0.1383	0.2746	-0.1929	-0.0284	-0.1139
-0.3437	-0.1691	0.1962	-0.0115	-0.3178	-0.3281	-0.0082
0.0423	-0.4486	-0.2555	-0.0251	0.0999	-0.0867	0.0262
0.2284	-0.0538	0.2153	0.4612	-0.1255	0.0474	-0.0294
-0.0661	0.0359	0.2673	0.1474	0.3792	0.0851	0.1327
-0.2489	-0.3952	-0.0752	-0.0337	0.0791	0.4522	-0.0811
-0.1150	-0.2181	0.0448	-0.1758	-0.1783	0.2802	0.1143
0.0755	-0.3050	0.2621	-0.2260	-0.2167	-0.4486	0.0707
0.0721	-0.1964	0.0410	0.2042	0.2486	0.0666	0.2229
0.0250	0.1834	0.1050	-0.1743	0.1350	0.2158	-0.4215

BrS =

0.2156	0.2153	-0.1180	0.1221
0.0079	0.0086	-0.2138	0.2147
0.0332	0.0349	-0.0765	0.0765
0.4592	0.4638	-0.4592	0.4638
0.1531	0.1545	0.1614	-0.1618
-0.1590	-0.1597	-0.4210	0.4254
-0.1014	-0.1012	0.0680	-0.0697
0.1992	0.2025	-0.1507	0.1516
-0.2226	-0.2258	-0.2790	0.2822
-0.2548	-0.2578	0.0508	-0.0507
0.2453	0.2477	0.0015	-0.0012
-0.2084	-0.2092	-0.1725	0.1731
0.0903	0.0907	0.0070	-0.0069
-0.2176	-0.2208	-0.2134	0.2162
-0.0792	-0.0793	0.1086	-0.1114
0.0600	0.0619	-0.3783	0.3814
0.0347	0.0365	-0.0428	0.0419
0.5287	0.5341	0.3193	-0.3226
0.3053	0.3064	-0.3053	0.3064

C2rS =

Columns 1 through 12

0.3551	-0.0262	-0.1414	0.2195	-0.0269	-0.2236	-0.1596	-0.1276	0.1309	-0.0639	0.0968	-0.2182
-0.1109	-0.1502	0.1196	0.2009	-0.1785	-0.1669	0.1003	-0.2568	0.1533	-0.1108	0.0009	0.0771
-0.0032	0.0958	-0.0359	0.1559	0.1614	-0.2974	-0.0516	-0.0643	0.1077	0.3069	0.0813	-0.1328
-0.2973	0.0609	0.0482	0.1302	0.1539	-0.0063	0.0093	-0.1556	0.2239	0.2438	-0.1798	0.0330
-0.0455	-0.0686	-0.0370	0.1206	0.1182	-0.0772	-0.3043	0.1981	-0.1943	0.2365	-0.3159	0.1689
-0.0458	0.1669	0.1180	0.1206	0.2531	0.2154	-0.0840	-0.3750	-0.2198	0.0021	0.0020	-0.1527
-0.1599	-0.3498	-0.3717	0.1302	0.2394	0.2100	0.1707	0.0638	0.1698	0.0117	0.1272	0.0290
-0.1831	-0.1984	-0.2013	0.1559	-0.3499	0.1192	-0.3528	-0.1419	-0.0830	-0.1326	-0.0837	-0.1876
0.1204	0.2927	-0.0306	0.2009	-0.2095	-0.0368	0.0107	0.1061	0.2883	0.0490	-0.1140	-0.1004
-0.3027	0.3032	0.1061	0.2195	-0.2904	0.0662	0.1208	0.0984	0.1862	-0.1033	-0.0378	0.2123

Columns 13 through 19

0.1676	0.1219	-0.0475	-0.2193	-0.1651	0.2778	0.4673
0.3060	0.3344	0.1535	0.0901	-0.1322	0.2135	-0.1531
0.2164	-0.2034	0.2035	0.2956	0.0671	-0.2092	-0.1175
-0.0635	-0.1672	-0.4009	-0.0323	-0.0969	0.1808	0.0643
-0.1487	0.2564	0.1621	0.0208	-0.0673	0.1255	0.0078
0.0075	0.1743	0.1009	-0.1628	0.2711	-0.0496	0.0078
0.0089	0.0072	0.1666	-0.1140	0.1168	0.0069	0.0643
-0.0517	-0.2346	0.0171	0.0380	-0.0308	-0.0727	-0.1175
-0.1553	-0.1142	0.2219	-0.3961	0.1064	0.0774	-0.1531
-0.0185	0.0731	0.2508	0.1330	0.1665	-0.0380	0.4673

D	r	S	=
-	-	-	

-0.0159	-0.0174	0.0159	-0.0174
0.0027	0.0029	-0.0027	0.0029
-0.0017	-0.0018	0.0017	-0.0018
0.0001	0.0001	-0.0001	0.0001
-0.0005	-0.0005	0.0005	-0.0005
-0.0005	-0.0005	0.0005	-0.0005
0.0001	0.0001	-0.0001	0.0001
-0.0017	-0.0018	0.0017	-0.0018
0.0027	0.0029	-0.0027	0.0029
-0.0159	-0.0174	0.0159	-0.0174

Kestabilan dari sistem terduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ dapat ditentukan berdasarkan nilai $|\lambda|$ dari matriks $\widetilde{A_r}$ yang ditampilkan pada Tabel 4.13.

i	$ \lambda_i $
1	0,6762
2	0,8442
3	0,8442
4	0,2116
5	0,2116
6	0,2414
7	0,2414
8	0,2518
9	0,2518
10	0,2418
11	0,2418
12	0,1934
13	0,7729
14	0,7729
15	0,7243
16	0,7243
17	0,2334
18	0,8073
19	0,8073

Tabel 4.13. Nilai Eigen dari Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 19

Berdasarkan Tabel 4.13, terlihat bahwa nilai $|\lambda|$ dari matrik $\widetilde{A_r}$ yang bernilai kurang dari 1 berjumlah 19. Sehingga berdasarkan Teorema 2.1, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 adalah stabil asimtotik.

Keterkendalian sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 dapat ditentukan berdasarkan *rank* dari matriks keterkendalian M_c . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keterkendalian M_c pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 adalah 19. Sehingga berdasarkan Teorema 2.2, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 adalah terkendali.

Sedangkan untuk keteramatan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 dapat ditentukan berdasarkan *rank* dari matriks keteramatan M_o . Dengan menggunakan *software* MATLAB, diketahui bahwa *rank* dari matriks keteramatan M_o pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 adalah 19. Sehingga berdasarkan Teorema 2.3, sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 adalah teramati.

Dalam kasus ini, orde dari sistem awal (A, B, C2, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 berbeda sehingga untuk melihat bagaimana performansi dari kedua sistem tersebut dapat dilihat melalui grafik fungsi transfernya yang memenuhi Teorema 2.6 dan ditampilkan oleh Gambar 4.13 berikut

Gambar 4.13. Frekuensi Respon antara Sistem Awal dan Sistem Tereduksi Orde 19

Gambar 4.13 merupakan grafik fungsi transfer antara sistem awal (A, B, C2, D) dan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6. Terlihat bahwa frekuensi respon antara sistem awal (A, B, C2, D) dan sistem tereduksi

 $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19 memiliki performansi yang berbeda dimana grafik cenderung sama saat frekuensi rendah sedangkan saat frekuensi tinggi grafik cenderung berbeda. . Sehingga metode SPA ini bekerja dengan baik saat frekuensi rendah yaitu saat frekuensi < $10^0 rad/s$.

d. Estimasi

Setelah dilakukan proses reduksi model, selanjutnya akan dilakukan estimasi dengan mengimplementasikan algoritma filter kalman. Proses estimasi ini dilakukan pada sistem awal (A, B, C2, D) dan sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r}$).

Pada sistem awal (A, B, C2, D) diberikan estimasi awal $\widehat{x_0}$ adalah sama dengan syarat awal yaitu $h(x, 0) = 2 + \sin(2\pi x)$ dan u(x, 0) = 0. Kovariansi kesalahan estimasi awal $P_0 = 10^{-5}I$ dimana I adalah matriks identitas. Derau sistem w dibangkitkan dari nilai random dengan mengambil mean nol dan kovariansi $Q = 10^{-5}I$. Sedangkan untuk derau pengukuran v juga dibangkitkan dari nilai random dengan mengambil mean nol dan kovariansi $R = 10^{-3}$.

Sedangkan sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ diberikan estimasi awal $\widehat{x_0}$ adalah perkalian antara matriks transformasi *T* dengan syarat awal yang berlaku pada sistem awal (A, B, C2, D). Kovariansi kesalahan estimasi awal $P_0 = 10^{-5}I$ dimana *I* adalah matriks identitas. Derau sistem *w* dibangkitkan dari nilai random dengan mengambil mean nol dan kovariansi $Q = 10^{-5}I$. Sedangkan untuk derau pengukuran v juga dibangkitkan dari nilai random dengan mengambil mean nol dan kovariansi $R = 10^{-3}$.

Simulasi pada sistem tereduksi dimulai dari orde 4. Hal ini dikarenakan jumlah inputan pada algoritma filter kalman berjumlah 4 sehingga untuk sistem tereduksi orde 1 sampai 3 tidak dapat dijalankan. Pada simulasi ini yang dibandingkan adalah output dari :

- Sistem awal (A, B, C2, D) yang dimisalkan y
- Estimasi sistem awal (A, B, C2, D) yang dimisalkan y1.
- Estimasi sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ yang dimisalkan y2.
- Sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ yang dimisalkan y3.

Hal ini dilakukan karena jumlah variabel x pada sistem awal (A, B, C2, D)berbeda dengan jumlah variabel \tilde{x}_r pada sistem tereduksi $(\widetilde{A}_r, \widetilde{B}_r, \widetilde{C2}_r, \widetilde{D}_r)$. Sehingga yang dapat dibandingkan adalah variabel pada sistem pengukurannya yaitu y. Selain itu, variabel \tilde{x}_r pada sistem tereduksi $(\widetilde{A}_r, \widetilde{B}_r, \widetilde{C2}_r, \widetilde{D}_r)$ merupakan penjumlahan linier dari variabel $x = x_1$ x_2 x_3 ... x_{18} x_{19} x_{20} pada sistem awal (A, B, C2, D).

Akan ditampilkan kembali bentuk sistem linear waktu diskrit sistem tereduksi pada persamaan (2.29)

$$\begin{aligned} \tilde{x}_{r_{k+1}} &= \tilde{A}_r \tilde{x}_{r_k} + \tilde{B}_r \tilde{u}_k \\ \tilde{y}_{r_k} &= \tilde{C}_r \tilde{x}_{r_k} + \tilde{D}_r \tilde{u}_k \end{aligned}$$

dengan

$$\tilde{A}_{r} = \tilde{A}_{11} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}$$
$$\tilde{B}_{r} = \tilde{B}_{1} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_{2}$$
$$\tilde{C}_{r} = \tilde{C}_{1} - \tilde{C}_{2}\tilde{A}_{22}^{-1}\tilde{A}_{21}$$
$$\tilde{D}_{r} = \tilde{D} - \tilde{C}_{2}\tilde{A}_{22}^{-1}\tilde{B}_{2}$$

Jika $\tilde{x}_{r_{k+1}}$ dijabarkan akan diperoleh

$$\begin{split} \tilde{x}_{r_{k+1}} &= \left(\tilde{A}_{11} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}\right)\tilde{x}_{r_{k}} + \left(\tilde{B}_{1} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_{2}\right)\tilde{u}_{k} \\ &= \tilde{A}_{11}\tilde{x}_{r_{k}} - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}\right)\tilde{x}_{r_{k}} + \tilde{B}_{1}\tilde{u}_{k} - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_{2}\right)\tilde{u}_{k} \\ &\text{dengan } \tilde{x}_{r_{k}} = \begin{bmatrix}\tilde{x}_{1k}\\\tilde{x}_{2k}\end{bmatrix} \text{dimana } \tilde{x}_{2k} = 0 \text{ maka } \tilde{x}_{r_{k}} = \tilde{x}_{1k}, \text{ sehingga} \\ &= \tilde{A}_{11}\tilde{x}_{1k} - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}\right)\tilde{x}_{1k} + \tilde{B}_{1}\tilde{u}_{k} - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_{2}\right)\tilde{u}_{k} \end{split}$$

 \tilde{x}_{1_k} merupakan nilai x_k pada saat sistem setimbang yang diperoleh dengan mengkonstruksi matriks transformasi T seperti pada persamaan (2.10). Hanya saja matriks transformasi T didekomposisi bersesuaian dengan orde dari sistem tereduksi dan diperoleh $T_1^{-1}x_k$, sehingga

$$= \tilde{A}_{11}T_1^{-1}x_k - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}\right)T_1^{-1}x_k + \tilde{B}_1\tilde{u}_k - \left(\tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_2\right)\tilde{u}_k$$

dengan $x_k = \begin{bmatrix} x_1 & x_2 & \cdots & \cdots & x_{19} & x_{20} \end{bmatrix}^T$

Berikut grafik hasil estimasi algoritma filter kalman pada sistem awal (A, B, C2, D) yang akan ditampilkan pada Gambar 4.14.

Gambar 4.14. Akurasi Hasil Estimasi antara y dan y1

Gambar 4.14 menunjukkan grafik nilai sebenarnya (y) dan grafik nilai hasil estimasi (y1) untuk sistem awal (A, B, C2, D). Terlihat bahwa grafik nilai sebenarnya dan grafik nilai hasil estimasi memiliki performansi yang berbeda. Grafik tersebut menunjukkan kecepatan aliran sungai pada tiap titik. Karena grafik antara memiliki perbedaan yang cukup signifikan, nilai eror yang dihasilkanpun cukup besar.

Berikutnya akan ditampilkan beberapa grafik hasil estimasi algoritma filter kalman pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ yaitu orde 13 dan orde 19. Untuk lebih detail mengenai hasil estimasi algoritma filter kalman pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 4 sampai orde 19 dapat dilihat pada **Lampiran C.**

Gambar 4.15. Akurasi Hasil Estimasi antara y dan y2 untuk orde 6

Gambar 4.15 menunjukkan grafik nilai sebenarnya (y) untuk sistem awal (A, B, C2, D) dan grafik nilai hasil estimasi (y2) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6. Terlihat bahwa grafik (y) dan (y2) memiliki performansi yang berbeda, hal ini telah dijelaskan sebelumnya bahwa nilai dari $\widetilde{x_r}$ pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ merupakan penjumlahan linier dari nilai x pada sistem awal (A, B, C1, D). Sehingga grafik yang dihasilkan antara (y) dan (y2) jelas berbeda. Eror yang dihasilkanpun lebih besar dibandingkan eror yang dihasilkan antara (y) dan (y1). Namun secara waktu komputasi, estimasi pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ memiliki waktu yang lebih cepat.

Gambar 4.16. Akurasi Hasil Estimasi antara y dan y3 untuk orde 6

Gambar 4.16 menunjukkan grafik nilai sebenarnya (y) untuk sistem awal (A, B, C2, D) dan grafik nilai sebenarnya (y3) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 6. Terlihat bahwa grafik (y) dan (y3) memiliki performansi yang berbeda, hal ini telah dijelaskan sebelumnya bahwa nilai dari $\widetilde{x_r}$ pada sistem tereduksi ($\widetilde{A_r}, \widetilde{B_r}, 2\widetilde{1_r}, \widetilde{D_r}$) merupakan penjumlahan linier dari nilai x pada sistem awal (A, B, C2, D). Sehingga grafik yang dihasilkan antara (y) dan (y3) jelas berbeda. Eror yang dihasilkan hampir sama dengan eror yang dihasilkan antara (y) dan (y1), namun secara waktu komputasi estimasi pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ memiliki waktu yang lebih cepat.

Gambar 4.17. Akurasi Hasil Estimasi antara y dan y2 untuk orde 19

Gambar 4.17 menunjukkan grafik nilai sebenarnya (y) untuk sistem awal (A, B, C2, D) dan grafik nilai hasil estimasi (y2) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19. Terlihat bahwa grafik (y) dan (y2) memiliki performansi yang berbeda, hal ini telah dijelaskan sebelumnya bahwa nilai dari $\tilde{x_r}$ pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ merupakan penjumlahan linier dari nilai x pada sistem awal (A, B, C2, D). Sehingga grafik yang dihasilkan antara (y) dan (y2) jelas berbeda. Eror yang dihasilkan hampir sama dengan eror yang dihasilkan antara (y) dan (y1). Namun secara waktu komputasi, estimasi pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ memiliki waktu yang lebih cepat.

Gambar 4.18. Akurasi Hasil Estimasi antara y dan y3 untuk orde 19

Gambar 4.18 menunjukkan grafik nilai sebenarnya (y) untuk sistem awal (A, B, C2, D) dan grafik nilai sebenarnya (y3) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ orde 19. Terlihat bahwa grafik (y) dan (y3) memiliki performansi yang berbeda, hal ini telah dijelaskan sebelumnya bahwa nilai dari $\widetilde{x_r}$ pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ merupakan penjumlahan linier dari nilai x pada sistem awal (A, B, C2, D). Sehingga grafik yang dihasilkan antara (y) dan (y3) jelas berbeda. Eror yang dihasilkan hampir sama dengan eror yang dihasilkan antara (y) dan (y1), namun secara waktu komputasi estimasi pada sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ memiliki waktu yang lebih cepat.

Berikut akan disajikan Tabel 4.14 yang menjelaskan secara singkat mengenai rata - rata nilai eror (*MSE*) dan waktu komputasi pada masing - masing sistem dimana nilai eror dihitung dengan persamaan sebagai berikut

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\widehat{x}_i - x_i)^2$$

dengan x adalah nilai sebenarnya dan \hat{x} adalah nilai estimasi yang terdapat pada data pengukuran y. Sedangkan untuk detail lebih rinci mengenai rata-rata nilai eror (*MSE*) akan disajikan dalam **Lampiran D**.

Sistem	М	Waktu		
Distem	$y - y^2$	<i>y</i> – <i>y</i> 3	Komputasi	
Awal	<i>y</i> – <i>y</i> 1 =	0,03734	0,00668	
Orde 4	0,31294	0,06020	0,00531	
Orde 5	0,04004	0,06392	0,00539	
Orde 6	0,86946	0,05084	0,00526	
Orde 7	0,14478	0,07122	0,00497	
Orde 8	0,44816	0,00229	0,00498	
Orde 9	0,79494	0,05320	0,00382	
Orde 10	0,06020	0,21964	0,00416	
Orde 11	4,76948	0,04698	0,00396	
Orde 12	0,15000	0,01538	0,00453	
Orde 13	0,00046	0,12906	0,00422	
Orde 14	0,26148	0,06054	0,00394	
Orde 15	0,00269	0,00966	0,00382	
Orde 16	2,91326	0,21058	0,00389	
Orde 17	0,00400	0,05264	0,00450	
Orde 18	0,03788	0,49056	0,00409	
Orde 19	0,02812	0,01064	0,00413	

Tabel 4.14. Hasil Estimasi Filter Kalman pada Sistem Awal dan Sistem Tereduksi

Berdasarkan Tabel 4.14, menunjukkan bahwa *MSE* dari nilai sebenarnya (y) dan nilai hasil estimasi (y1) untuk sistem awal (A, B, C1, D) adalah 0,003734 dengan waktu komputasi 0,000668. Untuk *MSE* terkecil antara nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan nilai hasil estimasi (y2) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ adalah orde 13 dengan nilai 0,00046 serta waktu komputasinya adalah 0,00422. Untuk *MSE* terkecil antara nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan nilai sebenarnya (y3) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ adalah orde 8 dengan nilai 0,00229 serta waktu komputasinya adalah 0,00498. Sedangkan secara keseluruhan, waktu komputasi sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ lebih cepat dibandingkan dengan sistem awal (A, B, C1, D) yaitu orde 9 dan orde 15 dengan waktu 0,00382.

BAB 5 KESIMPULAN DAN SARAN

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan analisis dan pembahasan yang telah dilakukan, maka kesimpulan yang diambil dari penelitian ini adalah sebagai berikut :

- Analisis hasil pada Kasus 1 dan Kasus 2, dapat disimpulkan bahwa sistem tereduksi memiliki sifat yang sama dengan sistem awal yaitu sifat kestabilan (stabil asimtotis), keterkendalian (terkendali) dan keteramatan (teramati).
- 2. Analisis hasil pada Kasus 1 dan Kasus 2, dapat disimpulkan bahwa frekuensi respon antara sistem awal dan sistem tereduksi cenderung memiliki grafik yang sama pada saat frekuensi rendah dan cenderung memiliki grafik yang berbeda pada saat frekuensi tinggi. Sehingga metode SPA ini baik digunakan pada saat frekuensi rendah.
- 3. Analisis hasil estimasi pada Kasus 1, dapat disimpulkan bahwa MSE dari nilai sebenarnya (y) dan nilai hasil estimasi (y1) untuk sistem awal (A, B, C1, D) adalah 0,00021 dengan waktu komputasi 0,000707. Untuk MSE terkecil antara nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan nilai hasil estimasi (y2) untuk sistem tereduksi (A, B, C1, D) dan nilai hasil estimasi (y2) untuk sistem tereduksi (A, F, B, C1, D) dan nilai hasil estimasi (y2) untuk sistem tereduksi (A, F, B, C1, D) dan nilai hasil estimasi (y2) untuk sistem tereduksi (A, F, E, C1, D) dan nilai hasil estimasi (y2) untuk sistem tereduksi (A, F, E, C1, D) dan nilai o,00506. Untuk MSE terkecil antara nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan nilai sebenarnya (y3) untuk sistem tereduksi (A, F, E, C1, D) dan nilai sebenarnya (y3) untuk sistem tereduksi (A, F, E, C1, D) dan nilai sebenarnya (sistem tereduksi (A, F, E, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (y3) untuk sistem tereduksi (A, F, E, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, F, E, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (A, B, C1, D) dan nilai sebenarnya (b) untuk sistem tereduksi (b) untuk sistem tereduksi (b) untuk sistem tereduksi dengan orde 15 lebih cepat dibandingkan sistem awal yaitu 0,00365.
- Analisis hasil estimasi pada Kasus 2, dapat disimpulkan bahwa MSE dari nilai sebenarnya (y) dan nilai hasil estimasi (y1) untuk sistem awal (A, B, C1, D) adalah 0,003734 dengan waktu komputasi 0,000668.

Untuk *MSE* terkecil antara nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan nilai hasil estimasi (y2) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ adalah orde 13 dengan nilai 0,00046 serta waktu komputasinya adalah 0,00422. Untuk *MSE* terkecil antara nilai sebenarnya (y) untuk sistem awal (A, B, C1, D) dan nilai sebenarnya (y3) untuk sistem tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ adalah orde 8 dengan nilai 0,00229 serta waktu komputasinya adalah 0,00382.

5.2 Saran

Pada penelitian ini kesimpulan yang diperoleh hanya berlaku pada kasus yang ada pada Tesis ini. Sehingga untuk penelitian selanjutnya dapat dikembangkan metode reduksi lainnya, misalnya saja dengan metode *Hankel Norm Approximation (HNA)*. Untuk estimasi dapat dikembangkan dengan algoritma lainnya, misalnya EnKF, EKF atau FKF untuk mendapatkan hasil yang lebih maksimal dalam hal akurasi dan waktu komputasi. Reduksi model juga dapat dikembangkan pada bidang lainnya seperti untuk desain kontrol.

DAFTAR PUSTAKA

DAFTAR PUSTAKA

- Mustaqim, K., Arif, D.K., dan Apriliani, E. (2016). *Reduksi Model Sistem Linear Waktu Diskrit Tak Stabil menggunakan Metode Pemotongan Setimbang*. Surabaya: Institut Teknologi Sepuluh Nopember.
- Rochmah, M., Fatmawati, dan Purwati, U.D. (2015). Model Tereduksi Sistem Linier
 Waktu Diskrit dengan Metode Singular Perturbation Approximation.
 Surabaya: Universitas Airlangga.
- Arif, D.K. (2014). Konstruksi dan Implementasi Algoritma Filter Kalman pada Model Tereduksi. Yogyakarta: Universitas Gadjah Mada.
- Arif, D.K, et al. (2014). Construction of the Kalman Filter Algorithm on the Model Reduction. International JournalControl and Automation (IJCA), Vol. 7, No.9, pp. 257-270.
- Kumar, D. Tiwari, J.P dan Nagar, S.K. (2011). Reduction of Unstable Discrete Time Systems by Hankel Norm Approximation. International Journal of Engineering Science and Technology, Vol. 3, No. 4.
- Zhou, K. Salomon, G dan Wu, E. (1999). Balanced Realization and Model Reduction for Unstable Systems. International Journal Robust Nonlinear Control, Vol. 9, p183 – 198.
- Green, M., Limebeer, D.J.N, (1995). *Linear Robust Control*. New Jersey: Pearson Education, Inc.
- Anton, H., (1981). *Elementary Linear Algebra, 3rd Edition*. John Wiley & Sons, Inc.
- Ogata, K, (2007). Discrete-Time Control Systems . Prentice Hall Inc, USA.
- Paraskevopoulos, N.P, (1996). Digital Control Systems. Prentice-Hall Europe.
- Skogestad,S., Postlethwaite,I. (2001). *Multivariable Feedback Control Analysis and Design*. Chichester: John Wiley and Sons.
- Lewis, F. L. (1986). Optimal Estimation With An Introduction Stochastic Control Theory. USA.
- Verlaan M. (1998). Efficient Kalman Filtering Algorithms for Hydrodynamic Models. Belanda: University of Delft.

- Burkardt, John. (2010). *Numerical Solution Of The Shallow Water Equations*. Lectures 23 and 24. Information Technology Departement, Virginia Tech. <u>http://people.sc.fsu.edu/~jburkardt/presentations/shallow water 2010.pdf</u>
- Chendra, H.D., dan Pudjaprasetya, S.R. (2007). Perancangan Reflektor Gelombang Berupa Deretan N-Balok, Sebuah Tinjauan Matematis. Bandung: Institut Teknologi Bandung.

LAMPIRAN

LAMPIRAN A

KASUS 1

w =

-0.0011 0.0832

0.0139

0.8673

-0.0333

0.0817

0.0278

-0.0135

-0.0055

-0.0023

-0.0020

-0.0146 0.0139

0.0815

0.8500

0.0278

0.0801

-0.0055

-0.0133

-0.0020

-0.0022

-0.0333

-0.0007 -0.0144

-0.0033

0.0817

0.0278

0.8698

-0.0556

0.0793

0.0419

-0.0122

-0.0078

-0.0019 -0.0033

-0.0141

0.0278

-0.0556

0.8524

0.0419

0.0777

-0.0120

0.0001

-0.0013

-0.0135

-0.0055

0.0793

0.0419

0.8736

-0.0781 0.0758

0.0561

0.0001

-0.0020

-0.0055

-0.0133

0.0419

-0.0781

0.8561

0.0561

0.0743

0.0000

0.0001

-0.0023

-0.0020

-0.0122

0.0758

0.0561

0.8786

-0.1009

0.0000

0.0001 -0.0020

-0.0078

-0.0120

0.0561

0.0743

0.8609

-0.1009

Gramian Keterkendalian W •

Columns 1	through 12	2									
0.8786	0.1009	0.0758	-0.0561	-0.0122	0.0078	-0.0023	0.0020	0.0001	-0.0001	0.0000	-0.0000
0.1009	0.8609	-0.0561	0.0743	0.0078	-0.0120	0.0020	-0.0022	-0.0001	0.0001	-0.0000	0.0000
0.0758	-0.0561	0.8736	0.0781	0.0793	-0.0419	-0.0135	0.0055	-0.0020	0.0013	0.0001	-0.0001
-0.0561	0.0743	0.0781	0.8561	-0.0419	0.0777	0.0055	-0.0133	0.0013	-0.0020	-0.0001	0.0001
-0.0122	0.0078	0.0793	-0.0419	0.8698	0.0556	0.0817	-0.0278	-0.0144	0.0033	-0.0019	0.0007
0.0078	-0.0120	-0.0419	0.0777	0.0556	0.8524	-0.0278	0.0801	0.0033	-0.0141	0.0007	-0.0019
-0.0023	0.0020	-0.0135	0.0055	0.0817	-0.0278	0.8673	0.0333	0.0832	-0.0139	-0.0149	0.0011
0.0020	-0.0022	0.0055	-0.0133	-0.0278	0.0801	0.0333	0.8500	-0.0139	0.0815	0.0011	-0.0146
0.0001	-0.0001	-0.0020	0.0013	-0.0144	0.0033	0.0832	-0.0139	0.8661	0.0111	0.0837	0.0000
-0.0001	0.0001	0.0013	-0.0020	0.0033	-0.0141	-0.0139	0.0815	0.0111	0.8488	-0.0000	0.0820
0.0000	-0.0000	0.0001	-0.0001	-0.0019	0.0007	-0.0149	0.0011	0.0837	-0.0000	0.8661	-0.0111
-0.0000	0.0000	-0.0001	0.0001	0.0007	-0.0019	0.0011	-0.0146	0.0000	0.0820	-0.0111	0.8488
-0.0000	0.0000	0.0000	-0.0000	0.0001	-0.0000	-0.0019	-0.0000	-0.0149	-0.0011	0.0832	0.0139
0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0001	0.0000	-0.0018	-0.0011	-0.0146	0.0139	0.0815
0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0001	0.0000	-0.0019	-0.0007	-0.0144	-0.0033
0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0001	-0.0007	-0.0019	-0.0033	-0.0141
0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001	-0.0020	-0.0013
0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001	-0.0013	-0.0020
0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001
0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001
Columns 1	3 through 3	20									
-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000				
0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000				
0.0001	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000				
-0.0000	0.0001	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000				
-0.0019	0.0000	0.0001	0.0000	0.0000	0.0000	-0.0000	-0.0000				
-0.0000	-0.0018	0.0000	0.0001	0.0000	0.0000	-0.0000	-0.0000				
-0.0149	-0.0011	-0.0019	-0.0007	0.0001	0.0001	0.0000	0.0000				

75
• Gramian Keteramatan M

M =

As =

Columns 1	through 1	2									
2.9698	1.9919	0.1982	0.1708	0.2002	-0.2771	0.0141	-0.0231	0.2314	-0.2330	0.0269	-0.0271
1.9919	2.0146	0.1905	0.1826	0.2069	-0.2847	0.0145	-0.0236	0.2337	-0.2353	0.0272	-0.0273
0.1982	0.1905	3.0126	1.5467	0.1739	0.1275	0.2020	-0.2664	0.0150	-0.0214	0.2302	-0.2320
0.1708	0.1826	1.5467	2.0632	0.1469	0.1580	0.2152	-0.2805	0.0159	-0.0224	0.2324	-0.2342
0.2002	0.2069	0.1739	0.1469	3.0461	1.1032	0.1566	0.0826	0.2039	-0.2564	0.0156	-0.0200
-0.2771	-0.2847	0.1275	0.1580	1.1032	2.0973	0.1020	0.1404	0.2253	-0.2785	0.0173	-0.0218
0.0141	0.0145	0.2020	0.2152	0.1566	0.1020	3.0683	0.6613	0.1463	0.0367	0.2049	-0.2461
-0.0231	-0.0236	-0.2664	-0.2805	0.0826	0.1404	0.6613	2.1200	0.0561	0.1298	0.2356	-0.2776
0.2314	0.2337	0.0150	0.0159	0.2039	0.2253	0.1463	0.0561	3.0794	0.2203	0.1428	-0.0097
-0.2330	-0.2353	-0.0214	-0.0224	-0.2564	-0.2785	0.0367	0.1298	0.2203	2.1313	0.0097	0.1263
0.0269	0.0272	0.2302	0.2324	0.0156	0.0173	0.2049	0.2356	0.1428	0.0097	3.0794	-0.2203
-0.0271	-0.0273	-0.2320	-0.2342	-0.0200	-0.0218	-0.2461	-0.2776	-0.0097	0.1263	-0.2203	2.1313
0.2231	0.2253	0.0267	0.0270	0.2302	0.2323	0.0158	0.0187	0.2049	0.2461	0.1463	-0.0367
-0.2253	-0.2276	-0.0269	-0.0272	-0.2322	-0.2343	-0.0187	-0.0216	-0.2356	-0.2776	-0.0561	0.1298
0.0345	0.0348	0.2220	0.2242	0.0267	0.0269	0.2302	0.2322	0.0156	0.0200	0.2039	0.2564
-0.0348	-0.0352	-0.2242	-0.2265	-0.0269	-0.0272	-0.2323	-0.2343	-0.0173	-0.0218	-0.2253	-0.2785
0.2157	0.2179	0.0343	0.0346	0.2220	0.2242	0.0267	0.0269	0.2302	0.2320	0.0150	0.0214
-0.2179	-0.2201	-0.0346	-0.0350	-0.2242	-0.2265	-0.0270	-0.0272	-0.2324	-0.2342	-0.0159	-0.0224
0.0418	0.0422	0.2157	0.2179	0.0345	0.0348	0.2231	0.2253	0.0269	0.0271	0.2314	0.2330
-0.0422	-0.0426	-0.2179	-0.2201	-0.0348	-0.0352	-0.2253	-0.2276	-0.0272	-0.0273	-0.2337	-0.2353
Columns 1	3 through	20									
0.2231	-0.2253	0.0345	-0.0348	0.2157	-0.2179	0.0418	-0.0422				
0.2253	-0.2276	0.0348	-0.0352	0.2179	-0.2201	0.0422	-0.0426				
0.0267	-0.0269	0.2220	-0.2242	0.0343	-0.0346	0.2157	-0.2179				
0.0270	-0.0272	0.2242	-0.2265	0.0346	-0.0350	0.2179	-0.2201				
0.2302	-0.2322	0.0267	-0.0269	0.2220	-0.2242	0.0345	-0.0348				
0.2323	-0.2343	0.0269	-0.0272	0.2242	-0.2265	0.0348	-0.0352				
0.0158	-0.0187	0.2302	-0.2323	0.0267	-0.0270	0.2231	-0.2253				
0.0187	-0.0216	0.2322	-0.2343	0.0269	-0.0272	0.2253	-0.2276				
0.2049	-0.2356	0.0156	-0.0173	0.2302	-0.2324	0.0269	-0.0272				
0.2461	-0.2776	0.0200	-0.0218	0.2320	-0.2342	0.0271	-0.0273				
0.1463	-0.0561	0.2039	-0.2253	0.0150	-0.0159	0.2314	-0.2337				
-0.0367	0.1298	0.2564	-0.2785	0.0214	-0.0224	0.2330	-0.2353				
3.0683	-0.6613	0.1566	-0.1020	0.2020	-0.2152	0.0141	-0.0145				
-0.6613	2.1200	-0.0826	0.1404	0.2664	-0.2805	0.0231	-0.0236				
0.1566	-0.0826	3.0461	-1.1032	0.1739	-0.1469	0.2002	-0.2069				
-0.1020	0.1404	-1.1032	2.0973	-0.1275	0.1580	0.2771	-0.2847				
0.2020	0.2664	0.1739	-0.1275	3.0126	-1.5467	0.1982	-0.1905				
-0.2152	-0.2805	-0.1469	0.1580	-1.5467	2.0632	-0.1708	0.1826				
0.0141	0.0231	0.2002	0.2771	0.1982	-0.1708	2.9698	-1.9919				
-0.0145	-0.0236	-0.2069	-0.2847	-0.1905	0.1826	-1.9919	2.0146				

• Matriks pada Sistem Setimbang $(\widetilde{A}, \widetilde{B}, \widetilde{C1}, \widetilde{D})$

Columns 1 through 12 0.7942 -0.0880 -0.0000 -0.0709 -0.0000 0.0000 0.0337 0.0267 0.0000 0.0000 -0.0000 -0.0089 -0.0000 0.2265 -0.0000 0.0360 -0.0000 -0.1802 0.0807 -0.0000 0.1104 -0.0000 -0.0951 0.0000 0.0000 0.2578 -0.0750 0.5290 0.2886 -0.0000 -0.0000 -0.0000 -0.0490 -0.0000 -0.0741 -0.0000 0.0000 -0.9371 0.0000 0.0178 0.0000 0.0231 0.0251 -0.0450 -0.0000 0.0222 -0.0000 -0.0000 0.0943 0.0000 -0.9047 -0.0000 0.1267 0.0000 -0.0000 -0.0587-0.0000 -0.0050 0.0000 0.1110 -0.9544 -0.0354 0.0258 -0.0000 -0.01440.0000 -0.0000 -0.0228 0.0000 -0.0000 -0.1149 0.0000 -0.0000 -0.0050 0.0000 -0.0092 0.0000 0.9103 -0.0859 0.0000 0.1572 -0.0000 -0.1963 0.0000 -0.0884 0.0000 0.0583 -0.0000 0.8778 -0.0000 -0.0000 -0.0965 0.0000 0.1623 0.0000 0.2131 -0.0000 -0.0048 -0.0000 -0.0293 -0.8521 -0.0000 -0.3430 0.0668 0.0000 0.0152 -0.0000 -0.0000 -0.0086 0.0000 0.0240 -0.0000 -0.0363 0.0000 0.0000 -0.8453 -0.0000 -0.3708 -0.0000 -0.1260 0 0000 0 0114 0 0000 -0.0508 -0 0000 0 1704 0 3070 -0.0000 -0 7499 0 0000 0 3988 0 0000 0.0357 -0.0000 0.0354 0.0000 -0.1767 -0.0000 -0.0000 -0.3494 0.0000 0.7725 -0.0000 0.2910 -0.0000 -0.0265 -0.0000 0.0528 0.0000 -0.0355 0.1218 -0.0000 -0.3465 0.0000 -0.7895 0.0000 -0.02620.0000 -0.0665-0.0000 0.0882 0.0000 -0.0000-0.02440.0000 0.2960 -0.0000-0.8478-0.0000 -0.0205 0.0000 -0.0085 -0.0000 0.0645 0.1113 -0.0000 0.1586 -0.0000 0.2217 -0.0000 0.0397 -0.0000 0.0458 0.0000 -0.0155 -0.0000 0.0000 0.1114 0.0000 0.0990 0.0000 0.0297 -0.0000 -0.0069 -0.0000 0.0463 0.0000 -0.0696 0.0626 -0.0000 0.0564 -0.0000 -0.08810.0000 -0.0172 -0.0657 0.0000 0.0060 -0.0000 -0.0269 0.0000 -0.0303 0.0000 -0.0000 0.0000 0.0598 -0.0000 0.0226 0.0000 -0.0509 -0.0000 -0.0334 0.0213 -0.0000 -0.0043 0.0000 0.0205 -0.0000 -0.0357 -0.0000 0.0161 0.0000 -0.0258 0.0000 0.0272 0.0000 0.0317 -0.0000 -0.0059 0.0000

Columns 13 through 20

0.0000	-0.0125	0.0000	-0.0639	0.0000	-0.0431	0.0000	0.1254
0.2048	-0.0000	0.1239	0.0000	-0.1458	-0.0000	-0.0482	0.0000
0.0000	0.1696	-0.0000	-0.0632	-0.0000	0.2093	-0.0000	-0.0860
-0.0170	0.0000	0.0354	-0.0000	-0.1254	0.0000	0.1497	-0.0000
0.0000	-0.0594	0.0000	0.0121	-0.0000	0.1702	0.0000	0.0701
0.0325	-0.0000	-0.0966	0.0000	0.1110	-0.0000	0.0736	-0.0000
-0.0434	-0.0000	-0.0858	-0.0000	-0.1356	-0.0000	-0.0359	-0.0000
0.0000	-0.0191	0.0000	-0.1378	0.0000	-0.0797	0.0000	-0.0519
0.2487	-0.0000	-0.1127	-0.0000	-0.0936	0.0000	0.0304	-0.0000
-0.0000	-0.2224	0.0000	-0.0914	0.0000	0.0202	-0.0000	-0.0734
0.0133	0.0000	-0.1157	0.0000	-0.0005	-0.0000	-0.0338	0.0000
-0.0000	0.0803	0.0000	0.0426	0.0000	-0.0116	-0.0000	-0.0086
0.2781	0.0000	0.1156	0.0000	-0.0281	-0.0000	0.0851	-0.0000
-0.0000	0.0162	-0.0000	-0.0815	0.0000	-0.0523	0.0000	0.0721
0.8443	-0.0000	0.0517	0.0000	-0.0277	0.0000	0.0479	-0.0000
-0.0000	-0.8550	0.0000	-0.2284	0.0000	-0.0811	0.0000	0.0330
0.0571	-0.0000	-0.8727	0.0000	-0.1314	0.0000	-0.1149	0.0000
0.0000	0.2089	-0.0000	-0.8053	0.0000	-0.3468	0.0000	0.1723
-0.0366	0.0000	0.1046	-0.0000	-0.7868	0.0000	-0.1770	-0.0000
0.0000	0.0096	-0.0000	-0.2946	0.0000	0.7173	-0.0000	-0.2743

Bs =

0.4565	0.4616	0.4565	-0.4616
-0.6739	-0.6815	0.6739	-0.6815
-0.4899	-0.4955	-0.4899	0.4955
-0.1547	-0.1564	0.1547	-0.1564
-0.1725	-0.1745	-0.1725	0.1745
-0.0248	-0.0250	0.0248	-0.0250
-0.1008	-0.1020	0.1008	-0.1020
0.1569	0.1588	0.1569	-0.1588
-0.0441	-0.0447	0.0441	-0.0447
0.0410	0.0415	0.0410	-0.0415
-0.0739	-0.0749	0.0739	-0.0749
-0.0484	-0.0491	-0.0484	0.0491
0.0525	0.0534	-0.0525	0.0534
0.0096	0.0097	0.0096	-0.0097
0.0708	0.0719	-0.0708	0.0719
-0.0597	-0.0604	-0.0597	0.0604
-0.0087	-0.0077	0.0087	-0.0077
-0.0257	-0.0276	-0.0257	0.0276
0.0465	0.0428	-0.0465	0.0428
0.0508	0.0473	0.0508	-0.0473

Cls =

Columns 1 through 12

0.2084	-0.3456	-0.2655	-0.0719	-0.0908	-0.0079	-0.0666	0.0954	-0.0299	0.0245	-0.0736	-0.0523
0.2040	-0.0857	0.0238	0.3489	0.2665	0.0745	0.0014	-0.1292	0.0794	-0.1032	-0.0886	-0.0256
0.1554	-0.0287	0.2025	0.0915	0.0341	-0.3723	0.0590	0.2556	0.0032	0.1349	-0.2161	0.0058
0.1309	0.0561	0.1463	0.0575	-0.2069	-0.0972	-0.4343	0.0052	0.0276	-0.2504	-0.0681	0.3565
0.1208	-0.0212	0.0906	-0.0553	-0.2014	-0.0844	-0.1068	-0.3419	0.4196	0.3050	0.2123	0.0267
0.1208	0.0212	0.0906	0.0553	-0.2014	0.0844	0.1068	-0.3419	-0.4196	0.3050	-0.2123	0.0267
0.1309	-0.0561	0.1463	-0.0575	-0.2069	0.0972	0.4343	0.0052	-0.0276	-0.2504	0.0681	0.3565
0.1554	0.0287	0.2025	-0.0915	0.0341	0.3723	-0.0590	0.2556	-0.0032	0.1349	0.2161	0.0058
0.2040	0.0857	0.0238	-0.3489	0.2665	-0.0745	-0.0014	-0.1292	-0.0794	-0.1032	0.0886	-0.0256
0.2084	0.3456	-0.2655	0.0719	-0.0908	0.0079	0.0666	0.0954	0.0299	0.0245	0.0736	-0.0523

Columns 13 through 20

0.0829	0.0154	0.0845	-0.0195	0.1657	-0.2553	-0.4641	-0.4376
0.1282	-0.0406	-0.1781	0.3517	0.3337	-0.2114	0.0842	0.0738
-0.0966	-0.3532	-0.2540	0.0510	-0.1168	0.0961	-0.0490	-0.0460
-0.2172	0.0069	0.1096	-0.0253	0.0646	-0.0493	0.0197	0.0014
0.0974	-0.0168	-0.0836	0.0342	-0.0328	0.0082	-0.0202	-0.0129
-0.0974	-0.0168	0.0836	0.0342	0.0328	0.0082	0.0202	-0.0129
0.2172	0.0069	-0.1096	-0.0253	-0.0646	-0.0493	-0.0197	0.0014
0.0966	-0.3532	0.2540	0.0510	0.1168	0.0961	0.0490	-0.0460
-0.1282	-0.0406	0.1781	0.3517	-0.3337	-0.2114	-0.0842	0.0738
-0.0829	0.0154	-0.0845	-0.0195	-0.1657	-0.2553	0.4641	-0.4376

Ds =

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

• Gramian Keterkendalian \widetilde{W}

W_tilda =

Columns	1	through	12
	_		

2.3980	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000
-0.0000	2.1357	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000
0.0000	0.0000	2.0312	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000
0.0000	0.0000	-0.0000	2.0061	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000
-0.0000	0.0000	-0.0000	0.0000	1.8864	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000
-0.0000	0.0000	-0.0000	0.0000	-0.0000	1.8760	-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000
-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	1.7235	-0.0000	0.0000	0.0000	-0.0000	0.0000
-0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	1.7202	-0.0000	-0.0000	0.0000	-0.0000
-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	1.5419	-0.0000	0.0000	-0.0000
0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	1.5392	-0.0000	0.0000
0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	1.3386	-0.0000
0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	1.3239
0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000
-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000
-0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000
0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000
-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000
-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000
-0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000
Columns 1	3 through	20									
0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000				
0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000				
0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000				
-0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000				
-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000				
-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000				
0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000				
-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000				
0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000				
0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000				
0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000				
0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000				
1.1746	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000				
-0.0000	1.1245	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000				
-0.0000	-0.0000	0.9971	0.0000	0.0000	0.0000	0.0000	-0.0000				
-0.0000	-0.0000	0.0000	0.9372	-0.0000	-0.0000	-0.0000	-0.0000				
-0.0000	-0.0000	0.0000	-0.0000	0.8205	0.0000	0.0000	0.0000				
0.0000	0.0000	0.0000	-0.0000	0.0000	0.7872	-0.0000	0.0000				
0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	0.5556	-0.0000				
0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.5448				

• Gramian Keteramatan *M*

M_tilda =

2.3980	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
-0.0000	2.1357	0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000
-0.0000	0.0000	2.0312	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000
0.0000	-0.0000	-0.0000	2.0061	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000
0.0000	-0.0000	0.0000	0.0000	1.8864	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000
-0.0000	0.0000	-0.0000	0.0000	-0.0000	1.8760	0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000
-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	1.7235	-0.0000	-0.0000	-0.0000	0.0000	0.0000
0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	1.7202	-0.0000	0.0000	-0.0000	-0.0000
0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	1.5419	0.0000	-0.0000	-0.0000
-0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	1.5392	-0.0000	-0.0000
-0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	1.3386	-0.0000
-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	1.3239
0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000
-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000
-0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000
0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000
-0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000
-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000

Columns 13 through 20

0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000
-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000
0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000
-0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000
-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000
-0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000
-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000
-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
-0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000
-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000
-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000
1.1746	-0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000
-0.0000	1.1245	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000
0.0000	-0.0000	0.9971	0.0000	-0.0000	-0.0000	-0.0000	-0.0000
0.0000	-0.0000	0.0000	0.9372	-0.0000	0.0000	-0.0000	-0.0000
-0.0000	-0.0000	-0.0000	-0.0000	0.8205	-0.0000	-0.0000	0.0000
0.0000	0.0000	-0.0000	0.0000	-0.0000	0.7872	-0.0000	-0.0000
0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.5556	-0.0000
-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.5448

KASUS 2

• Gramian Keterkendalian W

w =

0.8786	0.1009	0.0758	-0.0561	-0.0122	0.0078	-0.0023	0.0020	0.0001	-0.0001	0.0000	-0.0000
0.1009	0.8609	-0.0561	0.0743	0.0078	-0.0120	0.0020	-0.0022	-0.0001	0.0001	-0.0000	0.0000
0.0758	-0.0561	0.8736	0.0781	0.0793	-0.0419	-0.0135	0.0055	-0.0020	0.0013	0.0001	-0.0001
-0.0561	0.0743	0.0781	0.8561	-0.0419	0.0777	0.0055	-0.0133	0.0013	-0.0020	-0.0001	0.0001
-0.0122	0.0078	0.0793	-0.0419	0.8698	0.0556	0.0817	-0.0278	-0.0144	0.0033	-0.0019	0.0007
0.0078	-0.0120	-0.0419	0.0777	0.0556	0.8524	-0.0278	0.0801	0.0033	-0.0141	0.0007	-0.0019
-0.0023	0.0020	-0.0135	0.0055	0.0817	-0.0278	0.8673	0.0333	0.0832	-0.0139	-0.0149	0.0011
0.0020	-0.0022	0.0055	-0.0133	-0.0278	0.0801	0.0333	0.8500	-0.0139	0.0815	0.0011	-0.0146
0.0001	-0.0001	-0.0020	0.0013	-0.0144	0.0033	0.0832	-0.0139	0.8661	0.0111	0.0837	0.0000
-0.0001	0.0001	0.0013	-0.0020	0.0033	-0.0141	-0.0139	0.0815	0.0111	0.8488	-0.0000	0.0820
0.0000	-0.0000	0.0001	-0.0001	-0.0019	0.0007	-0.0149	0.0011	0.0837	-0.0000	0.8661	-0.0111
-0.0000	0.0000	-0.0001	0.0001	0.0007	-0.0019	0.0011	-0.0146	0.0000	0.0820	-0.0111	0.8488
-0.0000	0.0000	0.0000	-0.0000	0.0001	-0.0000	-0.0019	-0.0000	-0.0149	-0.0011	0.0832	0.0139
0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0001	0.0000	-0.0018	-0.0011	-0.0146	0.0139	0.0815
0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0001	0.0000	-0.0019	-0.0007	-0.0144	-0.0033
0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0001	-0.0007	-0.0019	-0.0033	-0.0141
0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001	-0.0020	-0.0013
0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001	-0.0013	-0.0020
0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001
0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0001	0.0001
~ 1 1											
corumns r	.s through	20									
-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000				
0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000				
0.0001	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000				
-0.0000	0.0001	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000				
-0.0019	0.0000	0.0001	0.0000	0.0000	0.0000	-0.0000	-0.0000				
-0.0000	-0.0018	0.0000	0.0001	0.0000	0.0000	-0.0000	-0.0000				
-0.0149	-0.0011	-0.0019	-0.0007	0.0001	0.0001	0.0000	0.0000				
-0.0011	-0.0146	-0.0007	-0.0019	0.0001	0.0001	0.0000	0.0000				
0.0832	0.0139	-0.0144	-0.0033	-0.0020	-0.0013	0.0001	0.0001				
0.0139	0.0815	-0.0033	-0.0141	-0.0013	-0.0020	0.0001	0.0001				
0.8673	-0.0333	0.0817	0.0278	-0.0135	-0.0055	-0.0023	-0.0020				

0.0070	0.0000	0.0011	0.01/0	0.0100	0.0000	0.0010	0.0020
-0.0333	0.8500	0.0278	0.0801	-0.0055	-0.0133	-0.0020	-0.0022
0.0817	0.0278	0.8698	-0.0556	0.0793	0.0419	-0.0122	-0.0078
0.0278	0.0801	-0.0556	0.8524	0.0419	0.0777	-0.0078	-0.0120
-0.0135	-0.0055	0.0793	0.0419	0.8736	-0.0781	0.0758	0.0561
-0.0055	-0.0133	0.0419	0.0777	-0.0781	0.8561	0.0561	0.0743
-0.0023	-0.0020	-0.0122	-0.0078	0.0758	0.0561	0.8786	-0.1009
-0.0020	-0.0022	-0.0078	-0.0120	0.0561	0.0743	-0.1009	0.8609

• Gramian Keteramatan M

м =

Columns 1 through 12

1.9348	1.9520	0.1754	0.1867	-0.2734	0.2028	-0.0226	0.0142	-0.2260	0.2290	-0.0263	0.0266
1.9520	2.9698	0.1674	0.1982	-0.2716	0.2002	-0.0226	0.0141	-0.2284	0.2314	-0.0265	0.0269
0.1754	0.1674	1.9815	1.5157	0.1517	0.1440	-0.2694	0.2109	-0.0215	0.0155	-0.2250	0.2278
0.1867	0.1982	1.5157	3.0126	0.1249	0.1738	-0.2611	0.2020	-0.0210	0.0150	-0.2274	0.2302
-0.2734	-0.2716	0.1517	0.1249	2.0142	1.0811	0.1348	0.1000	-0.2675	0.2208	-0.0209	0.0169
0.2028	0.2002	0.1440	0.1738	1.0811	3.0461	0.0809	0.1566	-0.2513	0.2039	-0.0196	0.0156
-0.0226	-0.0226	-0.2694	-0.2611	0.1348	0.0809	2.0360	0.6481	0.1247	0.0550	-0.2666	0.2309
0.0142	0.0141	0.2109	0.2020	0.1000	0.1566	0.6481	3.0683	0.0359	0.1463	-0.2411	0.2049
-0.2260	-0.2284	-0.0215	-0.0210	-0.2675	-0.2513	0.1247	0.0359	2.0469	0.2159	0.1213	0.0095
0.2290	0.2314	0.0155	0.0150	0.2208	0.2039	0.0550	0.1463	0.2159	3.0794	-0.0095	0.1428
-0.0263	-0.0265	-0.2250	-0.2274	-0.0209	-0.0196	-0.2666	-0.2411	0.1213	-0.0095	2.0469	-0.2159
0.0266	0.0269	0.2278	0.2302	0.0169	0.0156	0.2309	0.2049	0.0095	0.1428	-0.2159	3.0794
-0.2186	-0.2208	-0.0261	-0.0264	-0.2250	-0.2275	-0.0207	-0.0183	-0.2666	-0.2309	0.1247	-0.0550
0.2208	0.2231	0.0264	0.0267	0.2276	0.2302	0.0183	0.0158	0.2411	0.2049	-0.0359	0.1463
-0.0338	-0.0341	-0.2175	-0.2198	-0.0261	-0.0264	-0.2250	-0.2276	-0.0209	-0.0169	-0.2675	-0.2208
0.0341	0.0345	0.2198	0.2220	0.0264	0.0267	0.2275	0.2302	0.0196	0.0156	0.2513	0.2039
-0.2114	-0.2136	-0.0336	-0.0339	-0.2175	-0.2198	-0.0261	-0.0264	-0.2250	-0.2278	-0.0215	-0.0155
0.2136	0.2157	0.0339	0.0343	0.2198	0.2220	0.0264	0.0267	0.2274	0.2302	0.0210	0.0150
-0.0409	-0.0413	-0.2114	-0.2136	-0.0338	-0.0341	-0.2186	-0.2208	-0.0263	-0.0266	-0.2260	-0.2290
0.0413	0.0418	0.2136	0.2157	0.0341	0.0345	0.2208	0.2231	0.0265	0.0269	0.2284	0.2314
Columns 1	3 through	20									
-0.2186	0.2208	-0.0338	0.0341	-0.2114	0.2136	-0.0409	0.0413				
-0.2208	0.2231	-0.0341	0.0345	-0.2136	0.2157	-0.0413	0.0418				
-0.0261	0.0264	-0.2175	0.2198	-0.0336	0.0339	-0.2114	0.2136				
-0.0264	0.0267	-0.2198	0.2220	-0.0339	0.0343	-0.2136	0.2157				
-0.2250	0.2276	-0.0261	0.0264	-0.2175	0.2198	-0.0338	0.0341				
-0.2275	0.2302	-0.0264	0.0267	-0.2198	0.2220	-0.0341	0.0345				
-0.0207	0.0183	-0.2250	0.2275	-0.0261	0.0264	-0.2186	0.2208				
-0.0183	0.0158	-0.2276	0.2302	-0.0264	0.0267	-0.2208	0.2231				
-0.2666	0.2411	-0.0209	0.0196	-0.2250	0.2274	-0.0263	0.0265				
-0.2309	0.2049	-0.0169	0.0156	-0.2278	0.2302	-0.0266	0.0269				
0.1247	-0.0359	-0.2675	0.2513	-0.0215	0.0210	-0.2260	0.2284				
-0.0550	0.1463	-0.2208	0.2039	-0.0155	0.0150	-0.2290	0.2314				
2.0360	-0.6481	0.1348	-0.0809	-0.2694	0.2611	-0.0226	0.0226				
-0.6481	3.0683	-0.1000	0.1566	-0.2109	0.2020	-0.0142	0.0141				
0.1348	-0.1000	2.0142	-1.0811	0.1517	-0.1249	-0.2734	0.2716				
-0.0809	0.1566	-1.0811	3.0461	-0.1440	0.1738	-0.2028	0.2002				
-0.2694	-0.2109	0.1517	-0.1440	1.9815	-1.5157	0.1754	-0.1674				
0.2611	0.2020	-0.1249	0.1738	-1.5157	3.0126	-0.1867	0.1982				
-0.0226	-0.0142	-0.2734	-0.2028	0.1754	-0.1867	1.9348	-1.9520				
0.0226	0.0141	0.2716	0.2002	-0.1674	0.1982	-1.9520	2.9698				

• Matriks pada Sistem Setimbang $(\widetilde{A}, \widetilde{B}, \widetilde{C2}, \widetilde{D})$

As =

0.7942	0.0000	0.0880	-0.0000	0.0709	-0.0000	-0.0000	-0.0338	-0.0000	-0.0267	0.0000	0.0089
-0.0000	0.2265	0.0000	-0.0360	0.0000	0.1802	-0.0807	-0.0000	0.1104	-0.0000	-0.0951	-0.0000
-0.5289	0.0000	0.2886	-0.0000	0.2578	-0.0000	0.0000	-0.0490	-0.0000	-0.0741	0.0000	-0.0750
0.0000	0.9371	-0.0000	0.0177	-0.0000	-0.0451	0.0231	0.0000	-0.0222	0.0000	-0.0250	-0.0000
-0.0943	-0.0000	-0.9047	-0.0000	0.1267	-0.0000	-0.0000	-0.0587	-0.0000	-0.0050	0.0000	0.1110
0.0000	0.0143	0.0000	-0.9544	-0.0000	-0.0354	-0.0228	0.0000	-0.0258	0.0000	0.1149	0.0000
0.0000	0.0050	0.0000	-0.0092	0.0000	0.9103	-0.0859	-0.0000	-0.1572	0.0000	0.1963	0.0000
0.0884	0.0000	0.0583	-0.0000	0.8778	-0.0000	-0.0000	-0.0965	0.0000	0.1623	-0.0000	0.2131
0.0000	-0.0048	0.0000	-0.0152	-0.0000	0.0293	0.8521	-0.0000	-0.3430	-0.0000	0.0668	-0.0000
0.0086	0.0000	0.0240	0.0000	-0.0363	-0.0000	-0.0000	-0.8453	-0.0000	-0.3708	-0.0000	-0.1260
-0.0000	0.0114	-0.0000	0.0508	-0.0000	-0.1704	-0.3070	0.0000	-0.7499	0.0000	0.3988	-0.0000
-0.0357	0.0000	0.0354	0.0000	-0.1767	0.0000	-0.0000	-0.3494	0.0000	0.7725	0.0000	0.2910
0.0000	-0.0265	0.0000	-0.0528	-0.0000	0.0355	-0.1218	0.0000	-0.3465	0.0000	-0.7895	0.0000
-0.0262	0.0000	0.0665	0.0000	-0.0882	0.0000	0.0000	0.0244	-0.0000	-0.2960	0.0000	0.8478
-0.0000	-0.0205	0.0000	0.0085	-0.0000	-0.0645	-0.1113	0.0000	0.1586	-0.0000	0.2218	0.0000
-0.0397	0.0000	0.0458	0.0000	-0.0155	0.0000	0.0000	0.1114	0.0000	0.0990	0.0000	0.0297
-0.0000	0.0069	0.0000	0.0463	0.0000	-0.0696	0.0626	-0.0000	-0.0564	0.0000	0.0881	-0.0000
0.0172	-0.0000	-0.0303	0.0000	-0.0657	0.0000	0.0000	0.0060	-0.0000	-0.0269	-0.0000	0.0598
-0.0000	0.0226	-0.0000	0.0509	0.0000	0.0334	-0.0213	-0.0000	-0.0043	-0.0000	0.0205	-0.0000
0.0357	0.0000	0.0161	0.0000	-0.0258	0.0000	-0.0000	0.0272	0.0000	0.0317	0.0000	-0.0059

Columns 13 through 20

-0.0000	-0.0125	0.0000	0.0639	-0.0000	0.0431	0.0000	-0.1254
0.2048	-0.0000	0.1239	-0.0000	0.1458	0.0000	-0.0482	-0.0000
-0.0000	-0.1696	-0.0000	-0.0632	-0.0000	0.2093	0.0000	-0.0860
0.0170	-0.0000	-0.0354	0.0000	-0.1254	-0.0000	-0.1496	-0.0000
0.0000	0.0594	0.0000	0.0121	-0.0000	0.1702	-0.0000	0.0701
-0.0325	-0.0000	0.0966	-0.0000	0.1110	-0.0000	-0.0736	-0.0000
0.0434	-0.0000	0.0858	-0.0000	-0.1356	-0.0000	0.0359	0.0000
-0.0000	0.0191	-0.0000	-0.1378	0.0000	-0.0797	0.0000	-0.0519
0.2487	0.0000	-0.1127	-0.0000	0.0936	0.0000	0.0304	-0.0000
-0.0000	0.2224	0.0000	-0.0914	-0.0000	0.0202	-0.0000	-0.0734
0.0133	-0.0000	-0.1157	0.0000	0.0005	0.0000	-0.0338	-0.0000
0.0000	-0.0803	-0.0000	0.0426	0.0000	-0.0116	0.0000	-0.0086
0.2781	0.0000	0.1156	0.0000	0.0281	0.0000	0.0851	0.0000
-0.0000	0.0162	0.0000	0.0815	-0.0000	0.0523	0.0000	-0.0721
0.8443	-0.0000	0.0517	-0.0000	0.0277	-0.0000	0.0479	0.0000
0.0000	0.8550	-0.0000	-0.2284	0.0000	-0.0811	-0.0000	0.0330
-0.0571	0.0000	0.8727	0.0000	-0.1314	0.0000	0.1149	0.0000
-0.0000	-0.2089	0.0000	-0.8053	0.0000	-0.3468	-0.0000	0.1723
-0.0366	0.0000	0.1046	0.0000	0.7868	-0.0000	-0.1770	0.0000
0.0000	-0.0096	0.0000	-0.2946	0.0000	0.7173	0.0000	-0.2743

Bs =

-0.4546	-0.4588	0.4546	-0.4588
0.6713	0.6773	0.6713	-0.6773
-0.4881	-0.4924	0.4881	-0.4924
-0.1541	-0.1555	-0.1541	0.1555
-0.1719	-0.1734	0.1719	-0.1734
-0.0247	-0.0249	-0.0247	0.0249
-0.1005	-0.1013	-0.1005	0.1013
0.1564	0.1578	-0.1564	0.1578
0.0440	0.0444	0.0440	-0.0444
0.0409	0.0412	-0.0409	0.0412
0.0738	0.0742	0.0738	-0.0742
-0.0484	-0.0486	0.0484	-0.0486
-0.0526	-0.0528	-0.0526	0.0528
-0.0096	-0.0096	0.0096	-0.0096
-0.0708	-0.0711	-0.0708	0.0711
-0.0595	-0.0601	0.0595	-0.0601
-0.0076	-0.0087	-0.0076	0.0087
-0.0272	-0.0258	0.0272	-0.0258
-0.0421	-0.0467	-0.0421	0.0467
0.0465	0.0510	-0.0465	0.0510

C2s =

Columns 1 through 12

-0.2030 0.0853 0.0237 0.3471 0.2652 0.0742 0.0014 -0.1285 -0.0790 -0.1026 0 -0.1546 0.0286 0.2014 0.0910 0.0340 -0.3704 0.0587 0.2543 -0.0032 0.1342 0	0.0881 -0.0255 0.2150 0.0058
-0.1546 0.0286 0.2014 0.0910 0.0340 -0.3704 0.0587 0.2543 -0.0032 0.1342 0	.2150 0.0058
-0.1303 -0.0558 0.1455 0.0572 -0.2059 -0.0967 -0.4321 0.0052 -0.0275 -0.2492 0	.0678 0.3547
-0.1202 0.0210 0.0901 -0.0550 -0.2003 -0.0840 -0.1063 -0.3401 -0.4175 0.3035 -0	.2113 0.0266
-0.1202 -0.0210 0.0901 0.0550 -0.2003 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840 0.0840 0.1063 -0.3401 0.4175 0.3035 0.0840	.2113 0.0266
-0.1303 0.0558 0.1455 -0.0572 -0.2059 0.0967 0.4321 0.0052 0.0275 -0.2492 -0	.0678 0.3547
-0.1546 -0.0286 0.2014 -0.0910 0.0340 0.3704 -0.0587 0.2543 0.0032 0.1342 -0.0587 0.0034 0.0032 0.	.2150 0.0058
-0.2030 -0.0853 0.0237 -0.3471 0.2652 -0.0742 -0.0014 -0.1285 0.0790 -0.1026 -0.0933	.0881 -0.0255
-0.2073 -0.3439 -0.2641 0.0715 -0.0903 0.0079 0.0663 0.0949 -0.0297 0.0244 -0	.0733 -0.0520

-0.4354	0.4618	-0.2540	0.1649	-0.0194	-0.0840	-0.0153	-0.0825
0.0734	-0.0838	-0.2103	0.3320	0.3499	0.1772	0.0404	-0.1275
-0.0458	0.0488	0.0956	-0.1162	0.0507	0.2527	0.3514	0.0961
0.0014	-0.0196	-0.0490	0.0642	-0.0252	-0.1090	-0.0068	0.2162
-0.0128	0.0201	0.0081	-0.0326	0.0340	0.0832	0.0167	-0.0969
-0.0128	-0.0201	0.0081	0.0326	0.0340	-0.0832	0.0167	0.0969
0.0014	0.0196	-0.0490	-0.0642	-0.0252	0.1090	-0.0068	-0.2162
-0.0458	-0.0488	0.0956	0.1162	0.0507	-0.2527	0.3514	-0.0961
0.0734	0.0838	-0.2103	-0.3320	0.3499	-0.1772	0.0404	0.1275
-0.4354	-0.4618	-0.2540	-0.1649	-0.0194	0.0840	-0.0153	0.0825

Ds =				
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

• Gramian Keterkendalian \widetilde{W}

1.1132 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000

0.0000

0.0000

-0.0000 0.0000 0.0000

-0.0000 -0.0000 0.0000

0.7793

-0.0000 0.5500 -0.0000

0.0000 -0.0000 0.5393

0.0000 0.0000 0.0000

0 - 1111												
W_tilda =												
Columns 1	through 1:	2										
2.3739	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	
0.0000	2.1143	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	
-0.0000	0.0000	2.0108	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	
0.0000	0.0000	-0.0000	1.9859	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	
0.0000	-0.0000	-0.0000	-0.0000	1.8675	-0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	
-0.0000	0.0000	0.0000	-0.0000	-0.0000	1.8571	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	
-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	1.7062	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	
0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	1.7029	-0.0000	-0.0000	0.0000	0.0000	
-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	1.5264	0.0000	0.0000	-0.0000	
-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	1.5237	-0.0000	0.0000	
0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000	1.3251	-0.0000	
-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	1.3106	
-0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	
-0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	
-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	
-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	
0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	
0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	
0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	
0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	
Columns 1	3 through	20										
-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000					
0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000					
0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000					
-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000					
0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000					
0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000					
-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000					
-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000					
0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000					
-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000					
-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000					
0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000					
1.1628	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000					
0.0000	1.1132	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000					
0.0000	0.0000	0.9870	0.0000	-0.0000	0.0000	0.0000	0.0000					
-0.0000	0.0000	0.0000	0.9278	0.0000	-0.0000	0.0000	0.0000					
0.0000	-0.0000	-0.0000	0.0000	0.8122	-0.0000	-0.0000	0.0000					

• Gramian Keteramatan \tilde{M}

M_tilda =

2.3739	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
0.0000	2.1143	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000
-0.0000	0.0000	2.0108	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	-0.0000
0.0000	-0.0000	-0.0000	1.9859	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000
0.0000	0.0000	0.0000	-0.0000	1.8675	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.0000	0.0000	0.0000	-0.0000	0.0000	1.8571	-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000
0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	1.7062	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	1.7029	-0.0000	-0.0000	0.0000	-0.0000
0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	1.5264	-0.0000	-0.0000	0.0000
-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	1.5237	0.0000	-0.0000
-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	1.3251	0.0000
-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	1.3106
0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000
-0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000
0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000
-0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000
0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000
-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000
-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000
Columns 13	through 20										

-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000	0.0000
-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	0.0000
0.0000	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000
-0.0000	-0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	0.0000
-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000
-0.0000	-0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000
-0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000	0.0000	-0.0000
0.0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	-0.0000
1.1628	0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	1.1132	0.0000	0.0000	-0.0000	0.0000	-0.0000	-0.0000
0.0000	0.0000	0.9870	0.0000	-0.0000	0.0000	0.0000	0.0000
-0.0000	0.0000	0.0000	0.9278	0.0000	-0.0000	0.0000	0.0000
0.0000	-0.0000	-0.0000	0.0000	0.8122	-0.0000	-0.0000	0.0000
0.0000	0.0000	0.0000	-0.0000	-0.0000	0.7793	-0.0000	0.0000
0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	0.5500	-0.0000
0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	0.5393

LAMPIRAN B

KASUS 1

• Reduksi Orde 1

```
> Matriks Sistem Tereduksi (\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}) Orde 1
    ArS =
        0.7350
    BrS =
       -0.5233 -0.5288 -0.5233 0.5288
    ClrS =
       -0.2718
       -0.3152
       -0.3416
       -0.3567
       -0.3634
       -0.3634
       -0.3567
       -0.3416
       -0.3152
       -0.2718
    DrS =
       -0.0393 -0.0347 -0.0342 0.0347
       -0.1224 -0.1238 -0.1224
-0.1746 -0.1766 -0.1746
                                       0.1238
                                       0.1766
       -0.2043 -0.2065 -0.2043
-0.2175 -0.2199 -0.2175
                                       0.2065
                                       0.2199
       -0.2175 -0.2199 -0.2175
                                       0.2199
       -0.2043 -0.2065 -0.2043
                                       0.2065
       -0.1746 -0.1766 -0.1746
                                       0.1766
       -0.1224 -0.1238 -0.1224
                                       0.1238
       -0.0342 -0.0347 -0.0393
                                       0.0347
```

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 1

i	$ \lambda_i $
1	0,7350

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 2

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 2

ArS =

```
0.7250 0.0000
-0.0000 -0.7709
BrS =
0.5233 0.5288 0.5233 -0.5288
-0.6961 -0.7054 0.6961 -0.7054
```

ClrS =

0.2718	-0.2254		
0.3152	-0.2682		
0.3416	-0.2343		
0.3567	-0.1026		
0.3634	-0.0538		
0.3634	0.0538		
0.3567	0.1026		
0.3416	0.2343		
0.3152	0.2682		
0.2718	0.2254		
DrS =			
-0.1279	-0.1245	0.0544	-0.0551
-0.2278	-0.2306	-0.0170	0.0170
-0.2667	-0.2699	-0.0825	0.0832
-0.2446	-0.2474	-0.1640	0.1657
-0.2387	-0.2413	-0.1964	0.1985
-0.1964	-0.1985	-0.2387	0.2413
-0.1640	-0.1657	-0.2446	0.2474
-0.0825	-0.0832	-0.2667	0.2699
-0.0170	-0.0170	-0.2278	0.2306
0.0544	0.0551	-0.1279	0.1245

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 2

i	$ \lambda_i $
1	0,7350
2	0,7709

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 3

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 3

ArS =

0.7566	0.0427	-0.0000	
-0.7660	-0.2781	0.0000	
-0.0000	0.0000	-0.7709	
BrS =			
0.5025	0.5076	0.5025	-0.5076
0.6930	0.7015	0.6930	-0.7015
-0.6961	-0.7054	0.6961	-0.7054
ClrS =			
0.2523	-0.0406	-0.2254	
0.2582	-0.1033	-0.2682	
0.1587	-0.3104	-0.2343	
0.0992	-0.4328	-0.1026	
0.0793	-0.4767	-0.0538	
0.0793	-0.4767	0.0538	
0.0992	-0.4328	0.1026	
0.1587	-0.3104	0.2343	
0.2582	-0.1033	0.2682	
0.2523	-0.0406	0.2254	

-		-	-
ю	-	~	=
-	-	~	

DrS =			
-0.1096	-0.1060	0.0727	-0.0736
-0.1749	-0.1770	0.0359	-0.0366
-0.0974	-0.0985	0.0868	-0.0882
-0.0064	-0.0063	0.0743	-0.0755
0.0242	0.0248	0.0665	-0.0676
0.0665	0.0676	0.0242	-0.0248
0.0743	0.0755	-0.0064	0.0063
0.0868	0.0882	-0.0974	0.0985
0.0359	0.0366	-0.1749	0.1770
0.0727	0.0736	-0.1096	0.1060

Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 3

i	$ \lambda_i $
1	0,7240
2	0,7709
3	0,2454

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 4

```
Matriks Sistem Tereduksi (\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}) Orde 4
```

20426255			
0.1794	-0.0000	-0.7005	0.0000
-0.0000	0.7566	-0.0000	0.0427
1.1395	0.0000	0.1524	-0.0000
0.0000	-0.7660	-0.0000	-0.2781
BrS =			
-0.4034	-0.4080	0.4034	-0.4080
-0.5025	-0.5076	-0.5025	0.5076
0.0853	0.0874	-0.0853	0.0874
-0.6930	-0.7015	-0.6930	0.7015
ClrS =			
-0.3355	-0.2523	0.0071	0.0406
-0.0722	-0.2582	-0.2511	0.1033
-0.0150	-0.1587	-0.2575	0.3104
0.0672	-0.0992	-0.1713	0.4328
-0.0184	-0.0793	-0.0472	0.4767
0.0184	-0.0793	0.0472	0.4767
-0.0672	-0.0992	0.1713	0.4328
0.0150	-0.1587	0.2575	0.3104
0.0722	-0.2582	0.2511	0.1033
0.3355	-0.2523	-0.0071	0.0406
DrS =			
-0.1094	-0.1058	0.0724	-0.0734
-0.1544	-0.1560	0.0154	-0.0156
-0.0765	-0.0770	0.0659	-0.0668
0.0073	0.0078	0.0605	-0.0614
0.0281	0.0287	0.0626	-0.0636
0.0626	0.0636	0.0281	-0.0287
0.0605	0.0614	0.0073	-0.0078
0.0659	0.0668	-0.0765	0.0770
0.0154	0.0156	-0.1544	0.1560
0.0724	0.0734	-0.1094	0.1058

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 4

i	$ \lambda_i $
1	0,9086
2	0,9086
3	0,7240
4	0,2454

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 5

0.6295	0.0000	-0.02	16 -0.	1885	-0.0000
0.0000	0.1794	-0.00	00 -0.	0000	0.7005
-0.5323	-0.0000	0.45	69 -0.	5973	0.0000
0.4703	0.0000	0.77	14 -0.	0239	0.0000
0.0000	-1.1395	-0.00	00 0.	0000	0.1524
BrS =					
-0.5788	-0.5849	-0.5788	0.5849		
-0.4034	-0.4080	0.4034	-0.4080		
-0.2195	-0.2220	-0.2195	0.2220		
0.2680	0.2717	0.2680	-0.2717		
-0.0853	-0.0874	0.0853	-0.0874		
ClrS =					
-0.3132	-0.3355	-0.0477	0.2836	-0.0	071
-0.2305	-0.0722	0.1635	0.0255	0.2	511
-0.1015	-0.0150	0.3218	0.1008	0.2	575
-0.0889	0.0672	0.2887	0.3759	0.1	713
-0.1017	-0.0184	0.2459	0.5314	0.0	472
-0.1017	0.0184	0.2459	0.5314	-0.0	472
-0.0889	-0.0672	0.2887	0.3759	-0.1	713
-0.1015	0.0150	0.3218	0.1008	-0.2	575
-0.2305	0.0722	0.1635	0.0255	-0.2	511
-0.3132	0.3355	-0.0477	0.2836	0.0	071
DrS =					
-0.1572	-0.1543	0.0246	-0.0248		
-0.1639	-0.1656	0.0059	-0.0059		
-0.1078	-0.1088	0.0347	-0.0350		
-0.0737	-0.0744	-0.0205	0.0209		
-0.0799	-0.0809	-0.0454	0.0460		
-0.0454	-0.0460	-0.0799	0.0809		
-0.0205	-0.0209	-0.0737	0.0744		
0.0347	0.0350	-0.1078	0.1088		
0.0059	0.0059	-0.1639	0.1656		
0.0246	0.0248	-0.1572	0.1543		

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 5

i	$ \lambda_i $
1	0,9086
2	0,9086

i	$ \lambda_i $
3	0,7465
4	0,7465
5	0,7311

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 6

0.6295	-0.0000	0.0000	-0.0216	-0.1885	-0.0000
-0.0000	0.0218	0.1041	0.0000	0.0000	-0.7245
-0.0000	-0.9613	0.1359	0.0000	-0.0000	-0.0008
-0.5323	0.0000	-0.0000	0.4569	-0.5973	0.0000
0.4703	-0.0000	0.0000	0.7714	-0.0239	-0.0000
-0.0000	-0.1573	-1.1115	0.0000	0.0000	-0.1047
BrS =					
-0.5788	-0.5849	-0.5788	0.5849		
-0.4346	-0.4398	0.4346	-0.4398		
-0.0005	-0.0014	0.0005	-0.0014		
-0.2195	-0.2220	-0.2195	0.2220		
0.2680	0.2717	0.2680	-0.2717		
-0.0212	-0.0216	0.0212	-0.0216		
ClrS =					
-0.3132	-0.3416	-0.0022	-0.0477	0.2836	-0.0444
-0.2305	-0.0121	0.3405	0.1635	0.0255	0.0301
-0.1015	-0.0082	0.0536	0.3218	0.1008	-0.2593
-0.0889	0.0682	0.0097	0.2887	0.3759	-0.1871
-0.1017	-0.0309	-0.0619	0.2459	0.5314	-0.1226
-0.1017	0.0309	0.0619	0.2459	0.5314	0.1226
-0.0889	-0.0682	-0.0097	0.2887	0.3759	0.1871
-0.1015	0.0082	-0.0536	0.3218	0.1008	0.2593
-0.2305	0.0121	-0.3405	0.1635	0.0255	-0.0301
-0.3132	0.3416	0.0022	-0.0477	0.2836	0.0444
DrS =					
-0.1590	-0.1562	0.0264	-0.0267		
-0.1628	-0.1645	0.0048	-0.0048		
-0.1164	-0.1176	0.0433	-0.0438		
-0.0799	-0.0807	-0.0143	0.0146		
-0.0841	-0.0851	-0.0412	0.0418		
-0 0412	-0.0419	-0.0841	0 0851		

-0.0143 -0.0146 -0.0799

0.0438 -0.1164

0.0048 -0.1628 0.0267 -0.1590

0.0433

0.0048

0.0264

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 6

0.0807

0.1176

0.1645

0.1562

i	$ \lambda_i $
1	0,9322
2	0,9322

i	$ \lambda_i $
3	0,9211
4	0,7465
5	0,7465
6	0,7311

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 7

-0.2848	-0.0000	-0.0007	-0.0000	-0.2599	-0.0000	-0.5900
-0.0000	0.6295	0.0000	-0.0216	-0.0000	0.1885	-0.0000
0.9040	0.0000	0.1908	0.0000	-0.1740	0.0000	-0.1567
0.0000	-0.5323	-0.0000	0.4569	0.0000	0.5973	-0.0000
-0.1784	-0.0000	0.9530	-0.0000	0.0598	0.0000	0.0259
0.0000	-0.4703	-0.0000	-0.7714	-0.0000	-0.0239	0.0000
0.1299	0.0000	-0.0270	-0.0000	1.1600	-0.0000	-0.2961

BrS =

0.4471	0.4528	-0.4471	0.4528
0.5788	0.5849	0.5788	-0.5849
0.1357	0.1365	-0.1357	0.1365
0.2195	0.2220	0.2195	-0.2220
-0.0156	-0.0159	0.0156	-0.0159
0.2680	0.2717	0.2680	-0.2717
0.0939	0.0952	-0.0939	0.0952

ClrS =

0.3242	0.3132	0.1012	0.0477	-0.0271	0.2836	0.0615
-0.0938	0.2305	0.3330	-0.1635	0.0198	0.0255	0.0407
0.0355	0.1015	-0.0269	-0.3218	0.3324	0.1008	0.0177
-0.0719	0.0889	-0.0179	-0.2887	-0.0233	0.3759	0.2477
0.0489	0.1017	-0.0586	-0.2459	-0.0013	0.5314	0.1272
-0.0489	0.1017	0.0586	-0.2459	0.0013	0.5314	-0.1272
0.0719	0.0889	0.0179	-0.2887	0.0233	0.3759	-0.2477
-0.0355	0.1015	0.0269	-0.3218	-0.3324	0.1008	-0.0177
0.0938	0.2305	-0.3330	-0.1635	-0.0198	0.0255	-0.0407
-0.3242	0.3132	-0.1012	0.0477	0.0271	0.2836	-0.0615

DrS =

-0.1627	-0.1599	0.0301	-0.0304	
-0.1649	-0.1667	0.0070	-0.0070	
-0.1142	-0.1153	0.0411	-0.0416	
-0.0948	-0.0958	0.0005	-0.0005	
-0.0916	-0.0927	-0.0337	0.0342	
-0.0337	-0.0342	-0.0916	0.0927	
0.0005	0.0005	-0.0948	0.0958	
0.0411	0.0416	-0.1142	0.1153	
0.0070	0.0070	-0.1649	0.1667	
0.0301	0.0304	-0.1627	0.1599	

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 7

i	$ \lambda_i $
1	0,9268

i	$ \lambda_i $
2	0,9268
3	0,9385
4	0,9385
5	0,7465
6	0,7465
7	0,7311

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 8

ArS =

-0.2848	-0.0000	-0.0007	-0.0000	0.0000	-0.2599	0.0000	0.5900
-0.0000	0.5786	-0.0000	0.1231	-0.1276	-0.0000	-0.0568	0.0000
0.9040	0.0000	0.1908	0.0000	0.0000	-0.1740	0.0000	0.1567
0.0000	-0.7229	0.0000	-0.0846	-0.3725	-0.0000	-0.1769	0.0000
0.0000	-0.2175	-0.0000	0.7672	0.4932	-0.0000	-0.2041	0.0000
-0.1784	-0.0000	0.9530	0.0000	-0.0000	0.0598	-0.0000	-0.0259
0.0000	-0.0653	0.0000	-0.7216	0.8647	0.0000	-0.3026	0.0000
-0.1299	-0.0000	0.0270	-0.0000	-0.0000	-1.1600	-0.0000	-0.2961

BrS =

0.4471	0.4528	-0.4471	0.4528
-0.6071	-0.6135	-0.6071	0.6135
0.1357	0.1365	-0.1357	0.1365
-0.3188	-0.3232	-0.3188	0.3232
-0.0694	-0.0700	-0.0694	0.0700
-0.0156	-0.0159	0.0156	-0.0159
-0.1725	-0.1749	-0.1725	0.1749
-0.0939	-0.0952	0.0939	-0.0952

ClrS =

0.3242	-0.3205	0.1012	-0.1717	0.0204	-0.0271	0.1363	-0.0615
-0.0938	-0.2004	0.3330	0.2593	-0.0084	0.0198	0.2535	-0.0407
0.0355	-0.0797	-0.0269	0.1329	0.2710	0.3324	0.1249	-0.0177
-0.0719	-0.0759	-0.0179	-0.0629	0.3043	-0.0233	0.2433	-0.2477
0.0489	-0.0775	-0.0586	-0.0250	0.1606	-0.0013	0.5051	-0.1272
-0.0489	-0.0775	0.0586	-0.0250	0.1606	0.0013	0.5051	0.1272
0.0719	-0.0759	0.0179	-0.0629	0.3043	0.0233	0.2433	0.2477
-0.0355	-0.0797	0.0269	0.1329	0.2710	-0.3324	0.1249	0.0177
0.0938	-0.2004	-0.3330	0.2593	-0.0084	-0.0198	0.2535	0.0407
-0.3242	-0.3205	-0.1012	-0.1717	0.0204	0.0271	0.1363	0.0615

DrS =

-0.1468	-0.1437	0.0460	-0.0466
-0.1281	-0.1293	0.0438	-0.0443
-0.1010	-0.1019	0.0544	-0.0550
-0.0685	-0.0691	0.0268	-0.0271
-0.0273	-0.0276	0.0305	-0.0310
0.0305	0.0310	-0.0273	0.0276
0.0268	0.0271	-0.0685	0.0691
0.0544	0.0550	-0.1010	0.1019
0.0438	0.0443	-0.1281	0.1293
0.0460	0.0466	-0.1468	0.1437

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 8

i	$ \lambda_i $
1	0,9268
2	0,9268
3	0,9385
4	0,9385
5	0,7266
6	0,7963
7	0,7963
8	0,5831

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 9

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 9

ArS =

-0.4908	-0.7637	-0.0000	-0.0000	-0.0441	0.0000	-0.0421	0.2498	-0.0000
0.1379	0.2989	0.0000	0.0000	-0.3312	-0.0000	0.0577	0.6122	0.0000
-0.0000	-0.0000	0.5786	0.1231	0.0000	-0.1276	-0.0000	-0.0000	0.0568
0.0000	-0.0000	-0.7229	-0.0846	0.0000	-0.3725	-0.0000	0.0000	0.1769
-0.6851	0.3578	-0.0000	0.0000	-0.4422	-0.0000	0.2965	-0.1900	0.0000
0.0000	-0.0000	-0.2175	0.7672	0.0000	0.4932	-0.0000	0.0000	0.2041
0.4543	-0.3736	0.0000	0.0000	-0.6716	0.0000	0.2996	-0.2078	0.0000
0.0524	-0.0521	0.0000	-0.0000	0.4330	-0.0000	0.9984	0.1631	-0.0000
-0.0000	0.0000	0.0653	0.7216	0.0000	-0.8647	-0.0000	-0.0000	-0.3026

BrS =

0.1642	0.1669	-0.1642	0.1669
0.4632	0.4683	-0.4632	0.4683
-0.6071	-0.6125	-0.6071	0.6135
-0.3188	-0.3232	-0.3188	0.3232
-0.0473	-0.0481	0.0473	-0.0481
-0.0694	-0.0700	-0.0694	0.0700
-0.0379	-0.0384	0.0379	-0.0384
-0.0764	-0.0770	0.0764	-0.0770
0.1725	0.1749	0.1725	-0.1749

ClrS =

0.1102	0.3224	-0.3205	-0.1717	-0.0960	0.0204	-0.0691	-0.0091	-0.1363
-0.3192	0.1195	-0.2004	0.2593	0.0147	-0.0084	-0.0702	-0.0201	-0.2535
0.0774	-0.0133	-0.0797	0.1329	0.1826	0.2710	-0.2731	-0.0276	-0.1249
-0.0294	-0.0661	-0.0759	-0.0629	-0.2008	0.3043	-0.2323	-0.0870	-0.2433
0.0727	0.0059	-0.0775	-0.0250	0.0262	0.1606	0.0488	-0.1372	-0.5051
-0.0727	-0.0059	-0.0775	-0.0250	-0.0262	0.1606	-0.0488	0.1372	-0.5051
0.0294	0.0661	-0.0759	-0.0629	0.3008	0.3043	0.2323	0.0870	-0.2433
-0.0774	0.0133	-0.0797	0.1329	-0.1826	0.2710	0.2731	0.0276	-0.1249
0.3192	-0.1195	-0.2004	0.2593	-0.0147	-0.0084	0.0702	0.0201	-0.2535
-0.1102	-0.3224	-0.3205	-0.1717	0.0960	0.0204	0.0691	0.0091	-0.1363

DrS =

-0.1455	-0.1425	0.0448	-0.0453
-0.1284	-0.1297	0.0442	-0.0447
-0.0999	-0.1008	0.0533	-0.0539
-0.0659	-0.0665	0.0242	-0.0245
-0.0325	-0.0327	0.0356	-0.0361
0.0356	0.0361	-0.0325	0.0327
0.0242	0.0245	-0.0659	0.0665
0.0533	0.0539	-0.0999	0.1008
0.0442	0.0447	-0.1284	0.1297
0.0448	0.0453	-0.1455	0.1425

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 9

i	$ \lambda_i $
1	0,9404
2	0,9404
3	0,9365
4	0,9365
5	0,9320
6	0,7266
7	0,7963
8	0,7693
9	0,5831

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 10

```
Matriks Sistem Tereduksi (\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r}) Orde 10
```

-0.3887	-0.3436	-0.0222	-0.2397	0.1172	-0.2039	0.0435	-0.0152	0.1472	0.3367
-0.1851	-0.1536	-0.1367	-0.0664	0.1872	0.2030	-0.0491	0.0092	-0.1511	0.4253
0.6398	-0.5591	0.2373	0.2248	0.0745	0.2027	0.0093	0.0161	-0.1052	0.1271
0.2783	0.6466	0.1013	0.2636	0.2394	-0.1220	0.0142	0.0673	0.0789	0.3560
0.3967	0.1429	-0.1265	-0.6353	-0.4422	0.0000	0.0000	-0.2965	0.0000	0.1900
0.1019	-0.0189	-0.8451	0.2277	0.0000	0.3057	0.0289	0.0000	0.2220	-0.0000
0.1569	-0.1371	-0.3277	0.1324	-0.0000	-0.7623	0.1933	0.0000	-0.3586	-0.0000
0.2277	0.0262	-0.1157	-0.5291	0.6716	-0.0000	-0.0000	0.2996	0.0000	-0.2078
-0.0594	0.0574	0.0748	-0.0391	0.0000	0.2272	1.0074	-0.0000	-0.1087	0.0000
0.0240	-0.0015	-0.0155	-0.0682	-0.4330	0.0000	0.0000	0.9984	0.0000	0.1631

BrS =

-0.6622	-0.6704	-0.1881	0.1898	
0.1793	0.1810	0.7994	-0.8089	
-0.2692	-0.2712	-0.0738	0.0738	
-0.4034	-0.4077	0.1609	-0.1619	
-0.0473	-0.0481	0.0473	-0.0481	
-0.1223	-0.1237	-0.1223	0.1237	
0.0729	0.0738	0.0729	-0.0738	
0.0379	0.0384	-0.0379	0.0384	
0.0038	0.0037	0.0038	-0.0037	
0.0764	0.0770	-0.0764	0.0770	

ClrS =

-0.4014	0.0582	-0.1350	-0.2734	-0.0960	0.0018	0.0207	0.0691	-0.2163	0.0091
0.2243	0.0962	-0.3729	-0.1756	0.0147	0.0882	-0.0295	0.0702	-0.2197	0.0201
-0.1128	0.0374	0.0110	0.0267	0.1826	0.3925	0.0921	0.2731	-0.2650	0.0276
-0.0330	0.1244	0.0259	0.0077	-0.3008	0.1926	-0.2820	0.2323	-0.1990	0.0870
-0.0841	0.0035	-0.0575	0.0348	0.0262	0.0873	-0.2625	-0.0488	-0.4678	0.1372
0.0228	0.0779	-0.0639	-0.0307	-0.0262	0.0873	-0.2625	0.0488	-0.4678	-0.1372
-0.1092	0.0302	-0.0013	-0.0667	0.3008	0.1926	-0.2820	-0.2323	-0.1990	-0.0870
-0.0092	0.0969	-0.0049	-0.0739	-0.1826	0.3925	0.0921	-0.2731	-0.2650	-0.0276
-0.1697	-0.0844	-0.2770	0.3418	-0.0147	0.0882	-0.0295	-0.0702	-0.2197	-0.0201
-0.0773	0.4860	0.0015	0.1235	0.0960	0.0018	0.0207	-0.0691	-0.2163	-0.0091
DrS =									
-0.1516	-0.1487	0.0387	-0.0391						
-0.1329	-0.1342	0.0397	-0.0402						
-0.1094	-0.1105	0.0437	-0.0442						
-0.0692	-0.0699	0.0209	-0.0211						
-0.0418	-0.0422	0.0264	-0.0267						
0.0264	0.0267	-0.0418	0.0422						
0.0209	0.0211	-0.0692	0.0699						
0.0437	0.0442	-0.1094	0.1105						
0.0397	0.0402	-0.1329	0.1342						
0 0287	0 0291	-0 1516	0 1487						

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 10

i	$ \lambda_i $
1	0,9404
2	0,9404
3	0,9365
4	0,9365
5	0,9320
6	0,8174
7	0,8174
8	0,7896
9	0,7896
10	0,7272

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 11

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 11

110102-022107	120112-0202-02	10-0752 (Fighted 10-10)	91540 Alexandro 5	11 Contraction of the second	101001000000000000000000000000000000000	STRUCTURE CONTRACTOR	1012-1012 Date 57	1000 1000 1000 1000 1000 1000 1000 100	001211212020	0.002.003.002.00
0.1696	0.0780	-0.3192	-0.1455	0.2789	-0.0547	0.0843	0.1673	-0.0431	-0.0805	-0.2890
-0.4546	-0.0444	0.0132	0.4841	0.5708	0.0308	-0.0099	-0.3689	0.0039	0.0085	-0.1400
-0.4075	-0.5057	0.1008	0.0176	-0.3504	-0.1180	0.0991	0.2989	0.0079	-0.0489	-0.4199
0.6201	-0.2858	0.3659	0.1323	0.2734	0.1260	-0.2263	0.0817	0.0196	0.1409	-0.2585
0.1310	-0.2694	0.3526	0.3212	-0.1273	0.0049	0.2416	-0.0998	-0.0477	-0.1714	0.0711
0.0204	0.5016	0.2737	0.3512	-0.3864	0.3682	0.1101	-0.0433	0.0015	-0.0600	-0.1006
0.3129	-0.0206	-0.4599	0.5194	-0.1746	-0.4084	0.2057	0.0000	0.0289	0.2220	0.0000
0.0347	0.2877	0.3584	-0.2268	-0.0619	-0.6535	-0.0000	-0.3773	0.0000	0.0000	-0.2817
0.0171	0.0017	-0.1710	0.2679	-0.1982	-0.1663	-0.7623	0.0000	0.1933	-0.3586	-0.0000
0.0171	-0.0023	0.0375	-0.0745	0.0716	0.0396	0.2272	-0.0000	1.0074	-0.1087	-0.0000
0.1467	-0.4280	-0.2473	-0.2288	-0.2943	0.2473	0.0000	-0.7829	0.0000	-0.0000	0.0169

BrS =

-0.8490	-0.8586	-0.0700	0.0701
-0.0486	-0.0497	0.1305	-0.1324
-0.0999	-0.1018	0.3422	-0.2459
0.0132	0.0143	0.2815	-0.2850
-0.2179	-0.2202	-0.7038	0.7124
-0.2670	-0.2701	0.3721	-0.2755
0.1223	0.1237	0.1223	-0.1237
-0.0363	-0.0371	0.0363	-0.0371
-0.0729	-0.0738	-0.0729	0.0738
-0.0038	-0.0037	-0.0038	0.0037
-0.1059	-0.1073	0.1059	-0.1073

ClrS =

-0.4616	-0.0701	-0.0174	0.0287	-0.1206	-0.2184	-0.0018	-0.0275	-0.0207	0.2163	0.0774
-0.0681	0.1154	0.3206	-0.3434	-0.0405	-0.1130	-0.0882	0.0993	0.0295	0.2197	0.1308
-0.0489	-0.2738	0.0722	0.0168	-0.0933	-0.0815	-0.3925	0.2654	-0.0921	0.2650	0.1022
-0.0379	-0.1874	0.3290	0.1588	-0.0201	-0.2428	-0.1926	-0.0947	0.2820	0.1990	0.1799
-0.1322	-0.0051	0.1619	0.1130	0.1087	-0.0689	-0.0873	0.2031	0.2625	0.4678	0.2691
0.0198	0.0143	-0.0911	-0.1446	-0.1682	0.1224	-0.0873	-0.2031	0.2625	0.4678	-0.2691
-0.0767	0.1982	-0.3337	-0.0647	-0.1400	0.2214	-0.1926	0.0947	0.2820	0.1990	-0.1799
-0.0567	0.2836	-0.0679	0.0557	-0.0431	0.0703	-0.3925	-0.2654	-0.0921	0.2650	-0.1022
-0.1937	-0.0976	0.0346	-0.0426	0.1482	0.4254	-0.0882	-0.0993	0.0295	0.2197	-0.1308
-0.0273	0.1141	0.1209	0.1698	-0.4025	0.2493	-0.0018	0.0275	-0.0207	0.2163	-0.0774

DrS =

-0.1378	-0.1347	0.0249	-0.0251	
-0.1114	-0.1125	0.0182	-0.0184	
-0.0860	-0.0869	0.0203	-0.0205	
-0.0385	-0.0389	-0.0098	0.0099	
-0.0097	-0.0097	-0.0057	0.0057	
-0.0057	-0.0057	-0.0097	0.0097	
-0.0098	-0.0099	-0.0385	0.0389	
0.0203	0.0205	-0.0860	0.0869	
0.0182	0.0184	-0.1114	0.1125	
0.0249	0.0251	-0.1378	0.1347	

\triangleright	Tabel Nilai	Eigen Sistem	Tereduksi	$(\widetilde{A_r}, \widetilde{B_r}, $	$\widetilde{C1}_r, \widetilde{D_r})$	Orde 11

i	$ \lambda_i $
1	0,8933
2	0,8933
3	0,8784
4	0,8784
5	0,7272
6	0,8174
7	0,8174
8	0,8792
9	0,8792
10	0,7869
11	0,7869

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

>	Matriks	s Siste	m Ter	eduks	i ($\widetilde{A_r}$,	$\widetilde{B_r}, \widetilde{C1}$	$(r, \widetilde{D_r})$	Orde	12			
	0.0596	-0.1364	0.0173	0.4164	-0.3292	0.2771	0.4868	-0.3847	0.0133	0.3415	0.0250	-0.039
	0.3153	0.3268	-0.0079	0.1972	0.3821	0.0998	0.2831	-0.0232	-0.0599	-0.3170	-0.1695	-0.061
	-0.4946	0.0098	0.2707	-0.0253	0.5157	0.1330	-0.0758	-0.1116	0.0565	0.4571	0.0502	0.030
	0.0435	0.1906	0.1041	0.3201	-0.1072	0.3245	0.0438	0.7393	0.1227	0.2218	-0.0674	0.177
	-0.0232	-0.1595	-0.3276	0.4788	0.0781	0.0989	-0.5692	-0.0801	0.3759	-0.1008	-0.0884	-0.119
	-0.1412	-0.1241	0.0065	-0.0136	-0.3298	0.1718	-0.2064	-0.1863	-0.2169	0.0299	-0.4665	0.048
	0.1952	-0.3551	0.0966	0.3336	0.0982	-0.7012	0.1063	0.0956	0.0456	0.2103	-0.0576	0.203
	-0.0662	0.0357	-0.0174	-0.1861	-0.2503	-0.2097	-0.0766	0.2610	-0.2440	0.1713	-0.3103	-0.079
	0.0090	0.4722	0.3391	0.3644	-0.1945	-0.1715	-0.3613	-0.1618	-0.3773	-0.0000	0.2817	-0.000
	-0.6633	0.2586	-0.4073	0.2096	-0.0891	-0.2684	0.2955	0.0680	-0.0000	-0.1848	0.0000	0.042
	-0.0044	0.3319	0.3061	-0.2309	-0.3970	-0.1903	0.0208	-0.1209	0.7829	0.0000	0.0169	-0.000
	-0.2853	-0.4277	0.5912	0.1963	-0.0881	0.0816	0.1321	0.1415	0.0000	-0.6382	-0.0000	-0.080
	BrS =											
	0.1707	0.1724	0.1124	-0.1154								
	-0 3285	-0 2222	0 4998	-0.5052								
	-0 1347	-0 1360	0 2111	-0 2125								
	-0.0824	-0.0832	-0.0993	0 1013								
	0.1221	0.1233	0.2147	-0.2176								
	-0.7443	-0.7527	-0.0166	0.0162								
	-0.2059	-0.2092	0.0295	-0.0300								
	0.3383	0.3418	0.7235	-0.7316								
	0.0363	0.0371	-0.0363	0.0371								
	-0.0616	-0.0622	-0.0616	0.0622								
	-0.1059	-0.1073	0.1059	-0.1073								
	0.0767	0.0778	0.0767	-0.0778								
	ClrS =											
	0.0822	-0.2337	-0.1053	-0.0761	0.0233	-0.3751	-0.1273	0.2105	0.0275	0.0162	0.0774	-0.252
	-0.2725	-0.1378	-0.1452	-0.1032	0.0183	-0.0431	0.3430	0.1573	-0.0993	0.0435	0.1308	-0.325
	0.0563	-0.0783	0.0315	-0.0426	-0.2818	-0.0332	-0.0034	0.1299	-0.2654	0.3593	0.1022	-0.297
	0.1570	-0.2159	-0.1648	0.0621	-0.2626	0.1681	0.0818	0.2809	0.0947	-0.0339	0.1799	-0.397
	0.2172	0.1123	-0.5062	0.1397	-0.0437	-0.0039	0.0228	-0.0013	-0.2031	0.0127	0.2691	0.010
	0.2105	0.3788	-0.2315	-0.0572	-0.0327	-0.1436	0.2077	-0.1688	0.2031	0.0127	-0.2691	0.010
	0.1669	0.1384	0.2644	0.1648	0.1491	-0.2213	0.1901	-0.1839	-0.0947	-0.0339	-0.1799	-0.397
	0.0564	-0.0070	0.1065	0.1404	0.2513	-0.0231	0.1074	0.0008	0.2654	0.3593	-0.1022	-0.297
	-0.2589	0.1822	0.0691	0.3381	-0.1028	-0.1870	-0.0621	0.0302	0.0993	0.0435	-0.1308	-0.325
	0.0514	0.3107	0.1678	-0.0366	0.1643	-0.0180	0.0099	0.3521	-0.0275	0.0162	-0.0774	-0.252
	DrS =											
	-0.1185	-0.1151	0.0442	-0.0447								
	-0.0882	-0.0890	0.0414	-0.0419								
	-0.0632	-0.0638	0.0431	-0.0436								
	-0.0140	-0.0141	0.0147	-0.0149								
	-0.0051	-0.0051	-0.0011	0.0011								
	-0.0011	-0.0011	-0.0051	0.0051								
	0.0147	0.0149	-0.0140	0.0141								
	0.0431	0.0436	-0.0632	0.0638								
	0.0414	0.0419	-0.0882	0.0890								
	0.0442	0.0447	-0.1185	0.1151								

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 12

i	$ \lambda_i $
1	0,8933
2	0,8933
3	0,8784
4	0,8784
5	0,7158
6	0,8251
7	0,8251
8	0,8792

i	$ \lambda_i $
9	0,8792
10	0,7695
11	0,7695
12	0,6708

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 14

ArS =

0.2638	-0.1665	-0.2439	-0.0324	-0.0754	0.1666	-0.2298	0.0345	0.1097	0.0458	-0.6846	-0.0217	0.1018	0.0920
-0.4440	0.5301	0.0924	-0.2469	-0.0817	-0.1238	0.0286	-0.0064	0.0455	-0.1334	-0.5087	0.0700	0.0133	0.1253
0.3014	0.2860	0.1810	0.4219	0.3036	-0.2134	-0.1677	0.1953	0.1017	0.3493	-0.1549	-0.0638	0.0856	0.0106
0.2723	-0.1199	0.4122	0.0297	0.1756	-0.3656	0.2959	-0.0316	-0.2786	-0.4619	-0.1848	0.1595	0.1186	0.0542
-0.0566	-0.1619	-0.1354	-0.5371	0.3044	-0.5465	-0.1437	0.0850	0.1248	0.2617	0.0941	0.2135	0.1257	-0.0048
-0.6523	-0.3089	0.1686	0.2017	0.3668	0.1105	-0.0635	0.0853	-0.0883	-0.0078	-0.0850	-0.0805	0.1079	0.0266
-0.0847	-0.0089	0.0344	0.0442	-0.2967	-0.1299	-0.2273	0.0466	-0.1952	0.0970	0.1043	-0.2803	0.7230	-0.0064
-0.0253	-0.0039	-0.1156	-0.0794	-0.1598	0.0303	0.3387	0.0657	-0.6691	0.3305	-0.1315	-0.1081	-0.0405	0.0203
-0.0024	0.0092	0.2113	-0.1381	0.2909	-0.0213	-0.1046	-0.1858	-0.1866	0.3926	-0.0711	-0.3156	-0.3705	0.0141
-0.1710	-0.1576	-0.1080	0.2708	-0.3456	-0.5180	0.1577	-0.3407	0.2805	0.0607	-0.0718	-0.2963	-0.2078	0.0369
-0.0397	0.5423	0.1799	0.0270	-0.1075	-0.0128	0.0299	0.0624	0.0526	0.0870	0.2822	0.0177	0.0024	0.2441
-0.0377	0.0560	-0.2658	0.1624	0.2690	0.0849	0.6535	-0.0541	0.2522	0.2551	-0.0443	0.1477	0.2955	-0.0098
-0.0429	0.0462	-0.0654	0.2301	-0.0844	-0.0316	-0.2273	-0.5582	-0.2528	0.1891	-0.0023	0.6225	0.0583	0.0000
-0.0740	-0.2886	0.6078	-0.0942	-0.3840	0.1069	0.1525	0.1499	0.2452	0.2781	-0.0497	0.2422	-0.0000	-0.0125

BrS =

-0.2925	-0.2961	-0.3737	0.3781										
0.2958	0.2983	0.2440	-0.2459										
-0.0894	-0.0902	0.3800	-0.3844										
-0.0444	-0.0450	-0.1775	0.1798										
-0.2071	-0.2096	0.0404	-0.0408										
-0.2914	-0.2947	-0.0319	0.0328										
0.2386	0.2417	-0.1335	0.1354										
-0.3135	-0.3170	0.2626	-0.2652										
0.4676	0.4732	-0.4992	0.5052										
-0.1159	-0.1179	-0.0229	0.0228										
-0.5112	-0.5171	-0.4972	0.5029										
0.1633	0.1649	-0.1575	0.1589										
-0.0055	-0.0058	0.0055	-0.0058										
0.0243	0.0244	0.0243	-0.0244										
ClrS =													
-0.1067	0.1542	0.0542	-0.1024	-0.0750	-0.0366	0.1426	-0.3600	0.2670	-0.0578	-0.2864	-0.0457	0.0784	-0.3578
0.1571	0.3492	0.0615	-0.0633	0.0758	0.0843	-0.0794	-0.3240	-0.0615	0.2492	0.0062	-0.0328	0.1760	-0.3735
0.0137	0.0998	0.2844	-0.1872	0.1385	-0.0682	0.0441	-0.1752	0.1215	-0.1761	0.1624	-0.1236	0.3619	-0.3889
-0.2195	0.1164	-0.0494	0.1325	0.3939	0.0510	-0.0448	-0.3587	-0.1331	-0.2677	0.1468	-0.0447	-0.0776	0.0325
-0.3519	0.0274	-0.1023	-0.0695	0.0697	0.2794	-0.3255	0.1506	0.1908	-0.0315	0.0837	0.3276	-0.0010	-0.0462
-0.0822	0.0515	-0.1645	-0.5036	-0.0071	0.2535	0.3534	0.0170	-0.0761	0.0932	0.0841	0.0448	0.0010	-0.0462
-0.1699	0.0916	-0.4779	-0.0474	-0.0373	-0.2866	0.0089	0.1325	-0.1271	-0.0493	0.1456	-0.2724	0.0776	0.0325
-0.0766	0.0824	-0.0452	0.0454	-0.2877	-0.2481	-0.0809	0.1364	-0.1555	-0.0791	0.1630	0.1636	-0.3619	-0.3889
0.0287	0.2924	-0.0783	0.2538	-0.0543	0.0425	0.0829	0.3981	0.0961	-0.0909	0.0078	-0.0311	-0.1760	-0.3735
-0.2216	0.1068	0.1128	0.0223	-0.0169	-0.1256	-0.0792	0.3350	-0.2765	0.0198	-0.2789	0.0365	-0.0784	-0.3578

DrS =

-0.0837	-0.0800	0.0233	-0.0236	
-0.0494	-0.0498	0.0171	-0.0173	
-0.0199	-0.0201	0.0127	-0.0129	
0.0062	0.0063	-0.0053	0.0053	
-0.0085	-0.0086	0.0040	-0.0040	
0.0040	0.0040	-0.0085	0.0086	
-0.0053	-0.0053	0.0062	-0.0063	
0.0127	0.0129	-0.0199	0.0201	
0.0171	0.0173	-0.0494	0.0498	
0.0233	0.0236	-0.0837	0.0800	

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 14

i	$ \lambda_i $
1	0,8659
2	0,8053

i	$ \lambda_i $
3	0,8053
4	0,8625
5	0,8625
6	0,8212
7	0,8212
8	0,8189
9	0,8189
10	0,7871
11	0,7871
12	0,7051
13	0,7377
14	0,7377

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 15

ArS =

0.2178	0.0290	-0.2981	0.6374	0.0509	-0.2307	0.1035	-0.1437	0.0486	0.2091	0.0479	-0.0527	0.0357	-0.0033	0.1133
-0.0434	0.2842	0.2858	0.0573	0.3370	-0.4397	-0.0733	0.0545	-0.1619	0.0599	-0.5119	0.1170	0.3323	0.0210	-0.0445
-0.0252	0.0065	0.2400	0.3723	0.1847	0.4741	0.2305	0.1109	-0.0718	-0.4003	-0.1993	-0.3241	0.0235	-0.1441	0.0564
-0.1843	-0.0618	0.1084	0.2265	0.0651	0.1106	-0.1232	0.0080	0.0450	-0.1925	-0.0883	0.0060	0.0844	-0.0705	-0.0000
0.0254	0.4182	0.0037	-0.0112	-0.2753	-0.0441	0.1668	0.5815	-0.3833	0.0008	0.2261	0.0882	0.0323	-0.2877	-0.0076
-0.4466	0.2042	0.1745	-0.0036	-0.0470	0.2148	-0.1282	-0.1657	0.3631	0.3393	-0.0184	0.1197	0.0001	-0.5039	0.0661
-0.0113	0.2095	-0.0236	-0.0672	-0.1774	-0.2973	0.4072	-0.2671	0.1409	0.0233	0.0474	-0.5983	0.0413	-0.1295	0.0571
-0.0235	-0.3357	0.1926	0.0003	-0.4830	-0.1616	-0.1163	0.2490	-0.0019	0.1080	-0.4717	-0.2469	-0.1796	-0.0246	0.0755
0.0622	0.2061	-0.0076	0.5172	-0.1455	0.0130	-0.2960	0.0686	0.0467	0.1199	-0.0088	0.0771	-0.3938	0.0256	-0.1919
0.3186	-0.4319	0.1431	0.0365	0.1977	-0.1507	0.3440	0.1372	0.1704	0.1395	0.0154	0.3350	-0.0386	-0.4131	-0.0701
0.2693	0.2288	-0.3624	-0.1538	0.0271	-0.1096	-0.2401	0.2460	0.5181	-0.3811	-0.1922	-0.0574	0.0019	-0.2413	-0.0335
0.2548	0.2251	0.5247	-0.1329	0.1984	-0.1126	-0.0730	-0.0903	0.0797	-0.0261	0.1526	-0.0857	-0.5428	0.0797	-0.0005
-0.4833	0.0731	-0.0349	0.0840	-0.0063	-0.1905	0.4576	0.2308	0.3043	-0.1005	-0.0489	0.2584	-0.2116	0.3434	0.1029
0.3871	0.1937	0.2667	0.0175	-0.2018	0.3488	0.1769	0.1207	0.3488	0.3088	-0.0747	0.0685	0.3363	0.3383	0.0694
-0.1686	-0.1467	-0.0060	-0.0000	0.4211	-0.0746	-0.1824	0.5289	0.1236	0.3482	0.2098	-0.4396	0.0634	0.1147	-0.0125

BrS =

0.3193	0.3225	0.4211	-0.4266
-0.1409	-0.1426	-0.0398	0.0402
-0.1360	-0.1380	0.1726	-0.1748
0.6744	0.6820	-0.6744	0.6820
0.1542	0.1558	0.0514	-0.0515
0.0385	0.0395	0.1480	-0.1501
-0.2326	-0.2344	-0.3433	0.3468
0.1568	0.1587	0.1735	-0.1755
-0.4675	-0.4733	-0.3542	0.3580
-0.1362	-0.1380	-0.1496	0.1514
0.0482	0.0488	0.0562	-0.0568
0.2767	0.2801	0.1473	-0.1487
-0.0171	-0.0169	-0.0077	0.0070
0.0220	0.0224	-0.0841	0.0852
-0.0243	-0.0244	-0.0243	0.0244

DrS =														
-0.0545	-0.0505	-0.0058	0.0060											
-0.0163	-0.0163	-0.0160	0.0162											
-0.0045	-0.0044	-0.0027	0.0028											
0.0006	0.0007	0.0003	-0.0004											
-0.0028	-0.0028	-0.0017	0.0018											
-0.0017	-0.0018	-0.0028	0.0028											
0.0003	0.0004	0.0006	-0.0007											
-0.0027	-0.0028	-0.0045	0.0044											
-0.0160	-0.0162	-0.0163	0.0163											
-0.0058	-0.0060	-0.0545	0.0505											
Clr3 =														
0.1152	-0.1451	0.1003	0.3587	-0.0082	-0.1271	-0.2083	0.0577	-0.1847	-0.2366	0.2213	0.1714	0.1642	0.0207	0.3578
0.1391	-0.0249	0.2849	0.0865	-0.0104	-0.3579	-0.3527	-0.0695	0.2540	-0.1039	0.1601	-0.0574	0.0543	-0.0599	0.3735
0.0567	0.1126	-0.0434	0.0290	-0.1614	0.0388	-0.0614	0.1940	0.2505	-0.1274	0.3302	0.1996	-0.0842	0.1247	0.3889
-0.0250	-0.1923	-0.2707	-0.0560	0.2189	0.2194	-0.2520	0.1825	0.2505	0.1157	0.0052	-0.1065	0.1126	0.3463	-0.0325
-0.0514	-0.2498	-0.0323	0.0214	-0.5333	-0.0174	-0.2506	-0.0080	-0.1080	0.2926	-0.1212	-0.0397	0.0430	0.0383	0.0462
0.0558	-0.4795	0.0150	-0.0214	-0.0593	0.0198	0.2049	0.1567	0,1350	-0.2113	-0.1521	0.0075	-0.3546	-0.1220	0.0462
-0.0283	-0.1705	0.0966	0.0560	0.1300	0.0719	0.0402	0.1510	-0.0515	0.2389	0.4391	-0.3064	-0.0287	-0.3015	-0.0325
-0.0177	0.0290	-0.2302	-0.0290	0.1167	0.1119	-0.0582	-0.0282	-0.0123	0.1559	-0.1482	0.0500	0.1227	-0.4345	0.3889
-0.2113	0.0914	-0.2318	-0.0865	0.2531	0.0078	-0.0708	-0.0175	-0.1973	0.1937	-0.1562	0.0895	-0.4290	0.0172	0.3735
0,2763	0.0758	-0.0572	-0.3587	0.1335	0.2128	-0.0805	0.0736	-0.2719	0.0687	-0.1761	0.0484	-0,1731	-0.0285	0.3578

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 15

i	$ \lambda_i $
1	0,7072
2	0,7072
3	0,8253
4	0,8253
5	0,7526
6	0,7526
7	0,8212
8	0,8212
9	0,8038
10	0,8038
11	0,7871
12	0,7871
13	0,7377
14	0,7377
15	0,7051

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 16

					< <i>i</i>										
ArS =															
0.1359	0.0332	0.0618	0.3847	-0.4025	0.3611	0.0902	0.1590	-0.2391	-0.2280	0.1091	-0.0849	-0.0068	-0.4291	0.0676	-0.1208
-0.0208	-0.0324	-0.1050	-0.2763	0.0404	0.4696	0.2504	-0.3736	-0.0910	-0.1754	-0.4279	0.3881	-0.0331	-0.1171	-0.0552	0.0156
-0.0619	0.0625	0.6976	-0.0175	-0.1318	0.0746	-0.0513	-0.0488	0.0061	-0.0222	0.0680	-0.0083	0.0160	-0.0060	-0.0326	-0.0172
-0.4370	-0.1483	0.0386	0.0932	-0.0462	0.0836	0.3482	-0.3489	0.4052	-0.0670	0.3910	-0.1668	0.0617	0.0184	-0.3242	-0.1010
-0.2056	0.3673	0.3109	0.0706	-0.2463	0.1063	-0.1839	-0.1528	-0.0508	0.2199	0.0226	0.3371	0.1447	0.2341	0.0691	0.1744
0.1082	0.1552	-0.1348	0.5258	0.1590	-0.0184	0.0255	0.0160	0.0910	0.1061	-0.1255	0.1107	0.1246	-0.0912	-0.4905	0.4562
0.1356	0.0050	0.0514	0.2823	-0.0081	-0.1099	0.2746	-0.0301	0.3480	-0.1368	-0.0472	0.1690	-0.5575	0.1414	0.4167	0.1073
-0.0969	0.1751	0.0718	-0.1784	0.2841	-0.0958	0.2787	0.0397	-0.5011	-0.2619	0.4108	0.1202	-0.1990	0.0654	-0.0552	0.3338
0.1654	0.0078	0.0364	0.1928	0.2562	-0.0585	0.1076	-0.0229	0.1670	0.1269	0.2418	0.5306	0.1990	-0.1027	0.1642	-0.3872
-0.1927	0.1841	-0.0443	0.1479	-0.0681	0.0114	0.4452	0.2426	-0.0624	-0.1061	-0.2297	-0.1799	0.3855	0.3967	0.2279	-0.0555
0.2765	0.6201	-0.0124	-0.2455	0.1008	0.1154	0.0275	0.2106	0.3418	-0.2947	0.0958	-0.0681	0.0514	-0.0222	-0.1632	-0.1122
-0.3101	0.0190	-0.0/5/	-0.2261	-0.12582	0.1428	-0.0036	0.4005	0.1997	0.1940	-0.0100	0.0001	-0.2522	-0.1309	0.0420	0.2435
0 2210	0.1001	0.0000	0.0200	0.1299	0.0252	0.2605	0.0070	0.1007	0.1922	0.2592	0.0031	0.4214	-0.2210	0.0430	0.4703
-0.0217	0.2208	-0 5420	-0.0116	-0 4480	-0 0457	-0.0967	-0.2420	-0.0710	-0 0140	0 2252	0.0514	-0 0222	0 1005	0.1000	-0.0114
0.0040	0.3016	0.1296	-0.0765	-0.0635	-0.3489	0.0228	-0.3731	0.0860	0.0391	-0.1995	-0.2802	-0.0938	-0.2866	0.1656	0.1376
BrS =															
.0.0426	-0.0425	0. 1	e10 0	1622											
0.0617	0.0522	-0.1	800 0.	0010											
0.0017	0.0023	5 0.0	009 -0.	5000											
0.5285	0.5335	9 0.5	285 -0.	5339											
-0.1641	-0.1658	3 -0.0	420 0.	0428											
-0.4913	-0.4975	5 -0.1	729 0.	1752											
0.0887	0.0900	0.1	213 -0.	1233											
-0.2200	-0.2228	0.2	846 -0.	2882											
0.0661	0.0672	-0.1	545 0.	1562											
0.2616	0.2648	-0.2	575 0.	2606											
0.1888	0.1913	-0.0	532 0.	0545											
-0 1801	-0 1820	0.1	272 -0	1287											
0 2746	0 2771	-0.2	020 0	2050											
0 2202	0.0000		700 0.	2745											
-0.1000	-0.1015	0.0	100 -0.	1000											
-0.1003	-0.1010		200 -0.	1302											
0.2624	0.2655	0.2	624 -0.	2655											
0.2553	0.2581	-0.4	562 0.	4616											
ClrS =															
0.0388	-0.0821	0.2148	-0.1283	-0.5245	-0.3199	0.0317	0.0803	0.0961	-0.0575	-0.1599	0.3054	0.002	8 -0.0993	-0.092	3 0.0410
0.0991	-0.0900	0.1546	-0.1237	-0.0287	-0.4807	0.2671	-0.0546	-0.0925	-0.2803	-0.1071	0.4047	0.059	0 0.036	-0.254	5 -0.0037
-0.2108	-0.0454	0.1305	-0.1070	0.0177	-0.1533	0.1677	0.4903	0.1195	-0.2018	0.0153	-0.1048	-0.147	5 -0.1248	-0.132	1 -0.1065
0.0184	-0.1861	0.1243	0.0663	0.0810	0.0745	-0.2196	0.2094	-0.2095	0.0820	0.4949	0.1925	-0.152	1 -0.0138	-0.048	7 -0.1044
0.3499	0.0765	0.0858	-0.0987	-0.0320	0.1508	-0.3077	0.0631	0.2008	-0.3180	0.0335	0.0209	0.206	9 0.186	-0.176	4 -0.1150
0.1625	0.1296	0.0858	-0.1334	0.0177	0.0763	0.0237	-0.2649	0.0552	-0.0649	0.0969	-0.1651	-0.169	5 -0.519	-0.176	4 -0.1168
0.0204	0.0877	0.1243	0.5330	-0.1217	0.0035	-0.0344	-0.0607	-0.2191	-0.2958	-0.0833	-0.0521	-0.187	5 -0.0426	5 -0.048	7 0.1256
0.1072	-0.4203	0.1305	0.0076	-0.0320	0.3026	0.2037	0.0216	-0.0040	-0.035	-0.0925	-0.2487	-0.074	5 0.1373	-0.132	1 0.2153
0.4168	0.0145	0.1546	0.0396	-0.0150	-0.1702	0.1190	0.0117	-0.0381	0.5211	-0.0115	-0.2076	-0.168	7 0.2014	-0.254	5 -0.0488
0.1913	0.0764	0.2148	-0.1058	-0.2314	0.1277	0.3435	-0.0850	-0.2133	0.2673	0.0610	-0.1345	-0.028	5 0.2544	4 -0.092	3 -0.3154
D-9 =															

-0.0342	-0.0300	0.0144	-0.0145	
0.0053	0.0056	0.0057	-0.0057	
-0.0038	-0.0037	-0.0020	0.0021	
0.0009	0.0010	0.0007	-0.0007	
-0.0011	-0.0010	0.0000	-0.0000	
0.0000	0.0000	-0.0011	0.0010	
0.0007	0.0007	0.0009	-0.0010	
-0.0020	-0.0021	-0.0038	0.0037	
0.0057	0.0057	0.0053	-0.0056	
0.0144	0.0145	-0.0342	0.0300	

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 16

i	$ \lambda_i $
1	0,7072
2	0,7072
3	0,8253
4	0,8253
5	0,7526
6	0,7526
7	0,7966
8	0,7966

i	$ \lambda_i $
9	0,8038
10	0,8038
11	0,7801
12	0,7801
13	0,7307
14	0,7307
15	0,6723
16	0,4629

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 17

ArS =

0.3034	0.0417	0.0682	0.3939	0.2672	0.1518	0.2317	0.3418	-0.2328	0.1073	0.0651	0.0296	-0.3912	0.1155	0.0399	-0.1748	-0.3893
-0.0173	0.7902	0.0398	-0.0475	-0.0100	-0.0139	-0.0040	0.1042	0.0245	-0.0113	-0.0470	0.0264	0.0807	-0.0034	-0.0401	-0.0290	-0.0055
-0.0914	-0.2004	-0.1999	-0.2994	-0.0869	0.1899	0.0717	-0.0533	-0.1201	-0.0401	-0.3853	0.3048	-0.0566	-0.0122	0.3248	0.1535	-0.2919
-0.2890	0.1180	0.2924	0.2470	-0.1573	0.2213	-0.3678	0.1086	-0.3012	-0.0075	-0.2218	-0.0588	0.2163	-0.3002	-0.0760	-0.1231	-0.2533
-0.2274	0.0939	-0.2337	0.3283	-0.2189	-0.3257	0.3894	-0.0487	0.0960	0.2757	-0.1369	-0.0318	0.2353	0.1898	0.1551	-0.2620	-0.0614
-0.3648	0.1118	-0.1588	0.1180	0.1766	0.2545	0.3494	0.0598	-0.0157	0.0051	0.3105	0.2692	-0.0736	-0.3475	-0.0583	0.2515	0.126
-0.1151	-0.0090	0.2575	-0.0210	0.1403	0.1131	0.1339	-0.0017	-0.2021	-0.1138	0.3617	0.1167	0.4056	0.4322	0.3799	0.1892	-0.0529
-0.2192	-0.3827	0.3338	0.1596	0.0521	0.0659	0.1929	0.0275	0.1601	0.2483	-0.0148	-0.3423	0.0981	-0.0803	-0.2031	0.1520	-0.0955
0.2292	-0.0325	0.3832	0.0691	-0.4249	0.1402	0.3179	-0.2399	-0.0018	-0.1240	0.0875	0.2696	-0.0888	-0.3287	0.1089	-0.2333	0.1014
-0.2351	-0.1218	0.0026	-0.0479	-0.0341	0.1490	0.0157	0.3288	-0.3373	0.1150	-0.1916	-0.0644	-0.2160	0.1524	0.1654	-0.2464	0.6395
-0.2467	0.1130	-0.0707	-0.2355	0.0397	0.3048	0.1898	0.1304	0.2604	0.0524	-0.2132	-0.1027	-0.0948	0.1111	-0.0914	-0.0203	-0.1644
-0.1339	0.1523	0.3857	-0.1957	0.1635	-0.4915	0.2573	-0.1622	-0.3020	-0.0299	-0.2611	0.0581	-0.2492	0.0044	-0.0894	0.2161	0.0176
-0.1783	-0.0682	-0.3074	0.4026	-0.0006	-0.0293	-0.2200	-0.3857	-0.2282	-0.1364	-0.0032	0.1577	-0.2145	0.0881	-0.1162	0.1307	0.0496
0.0578	0.0498	0.1929	0.0671	-0.0990	0.0085	-0.3186	0.0730	0.1724	0.6662	0.0171	0.4438	-0.0855	0.1333	0.0429	0.2650	0.0659
0.1924	-0.0509	-0.1069	0.0971	-0.3582	-0.1070	0.1072	0.5205	-0.1016	-0.2168	-0.1253	0.0038	0.1259	-0.0884	-0.0539	0.5384	0.0921
0.3325	-0.0370	-0.1121	-0.1179	0.1886	0.1657	0.2216	-0.2086	-0.3772	0.3188	-0.1722	0.0639	0.4115	-0.0645	-0.3209	-0.0163	0.1253
0.1042	0.1076	0.1797	0.2193	-0.0352	0.3835	0.0777	-0.2600	0.1961	-0.1758	-0.3658	-0.0023	-0.0718	0.3992	-0.1495	0.1941	0.1287

- 12	-	-	-
- 22	œ	2	-

-0.0125	-0.0126	-0.0108	0.010
0.4611	0.4658	0.4611	-0.4658
0.0678	0.0688	0.3339	-0.3371
-0.2355	-0.2385	-0.0901	0.0915
-0.1275	-0.1302	-0.0706	0.070
-0.2683	-0.2712	0.0884	-0.089
0.1426	0.1440	-0.1274	0.128
0.3563	0.3603	0.3563	-0.360
0.2172	0.2193	-0.1186	0.1194
0.1384	0.1405	0.0844	-0.084
0.3388	0.3428	-0.6288	0.636
-0.1169	-0.1182	-0.2008	0.203
0.4508	0.4563	-0.1505	0.1514
0.0554	0.0562	-0.1643	0.1664
0.1212	0.1216	-0.1158	0.1165
0.1279	0.1292	-0.0699	0.0706
-0.2923	-0.2954	0.1126	-0.1139

ClrS =

-0.0058	0.2295	-0.0207	-0.2344	-0.4323	-0.0149	0.0688	0.0070	-0.1287	0.2416	0.3486	-0.3383	0.0423	0.0972	-0.0227	0.1679	-0.2162
-0.0527	0.2049	-0.1145	-0.1980	-0.0401	0.1607	0.0884	-0.1603	-0.2249	0.0036	0.2282	-0.2968	-0.4667	0.0906	0.0940	0.0690	-0.1763
0.3107	0.1555	-0.1209	-0.2953	0.1489	0.3438	0.0054	-0.0370	0.1278	0.1183	0.1715	0.0763	-0.0020	-0.2345	-0.0141	-0.1576	0.1886
-0.0133	0.1317	-0.0645	0.1831	-0.1849	0.1341	0.2549	-0.0202	0.4372	-0.1490	0.0059	-0.0437	-0.1051	0.0478	-0.2458	0.1760	0.2190
-0.3452	0.1212	0.2827	0.0122	-0.0575	0.2606	-0.1202	-0.1461	-0.0137	-0.2271	0.1502	-0.0299	0.1730	0.1024	0.2159	-0.0836	0.2137
-0.4260	0.1212	-0.2925	0.0018	-0.0785	0.0937	0.1210	-0.1461	-0.0854	0.2076	-0.1361	0.1915	0.1339	-0.2694	-0.0247	0.0055	-0.0804
-0.0883	0.1317	-0.0225	0.1017	0.4300	-0.0384	-0.1036	-0.0202	-0.1926	-0.0464	0.1472	-0.1159	0.1099	-0.0793	-0.3660	0.2725	0.0792
0.2531	0.1555	-0.2816	0.2043	-0.1045	0.1781	-0.0130	-0.0370	-0.2526	-0.1014	-0.1267	-0.1327	0.3083	0.2895	-0.0383	-0.0590	-0.0225
0.1696	0.2049	-0.0981	0.3930	-0.0493	-0.0879	-0.0895	-0.1603	-0.0259	0.2230	0.0442	-0.1055	-0.1052	-0.1434	0.4276	0.2049	0.1444
0.1108	0.2295	0.1254	0.0326	0.1577	0.0836	-0.0481	0.0070	0.0133	0.1301	-0.4054	-0.3631	-0.0503	-0.2833	0.3771	0.1564	0.1372

DrS =

-0.0282	-0.0246	0.0085	-0.0092	
8800.0	0.0087	0.0022	-0.0026	
-0.0048	-0.0047	-0.0010	0.0011	
0.0016	0.0016	0.0000	-0.0002	
-0.0013	-0.0012	0.0003	-0.0002	
0.0003	0.0002	-0.0013	0.0012	
0.0000	0.0002	0.0016	-0.0016	
-0.0010	-0.0011	-0.0048	0.0047	
0.0022	0.0026	8800.0	-0.0087	
0.0085	0.0092	-0.0282	0.0246	

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 17

i	$ \lambda_i $
1	0,7914
2	0,7914
3	0,8068
4	0,4629
5	0,7565

i	$ \lambda_i $
6	0,7565
7	0,7966
8	0,7966
9	0,8184
10	0,8184
11	0,7801
12	0,7801
13	0,7307
14	0,7307
15	0,6723
16	0,7151
17	0,7151

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 18 ArS =

0.2115	0.0491	-0.1580	-0.2196	0.2673	0.3122	0.2576	0.0762	0.1042	0.2415	0.2053	0.0263	-0.3130	-0.2167	-0.0147	0.0497	0.1462	-0.4693
0.0509	0.5883	-0.0234	0.1427	-0.0226	0.0083	-0.0675	0.0152	-0.2482	-0.0246	0.1424	0.1313	-0.0522	-0.0103	-0.0345	0.1037	0.0604	-0.0344
-0.0639	-0.1042	0.0668	-0.0201	0.0849	-0.1171	0.2869	0.4753	-0.1913	0.2109	-0.2412	0.2800	-0.2382	0.1434	0.2036	-0.1501	0.2957	0.2545
0.3403	-0.0063	-0.1991	0.0269	0.3301	-0.1113	0.0375	-0.2524	0.2969	0.1612	0.0195	0.0324	-0.0403	-0.1001	0.4657	0.1034	-0.2493	0.4005
0.1473	0.1126	0.0447	0.1710	0.0706	0.3752	-0.1602	-0.0443	-0.4393	0.0458	-0.3349	-0.1182	-0.0812	0.1100	0.2334	0.2865	0.0087	-0.0482
0.1019	0.0081	-0.1727	0.0633	-0.0566	-0.1124	0.0864	-0.1211	-0.1240	-0.2623	0.2338	-0.2549	-0.3834	0.4396	0.1147	-0.3475	0.0523	-0.1348
-0.0644	0.0442	0.3021	-0.0020	-0.4324	0.0676	-0.1243	0.1679	0.1723	0.2217	0.4124	-0.0685	-0.3331	-0.0115	0.1999	0.3228	-0.0562	0.1759
0.0186	-0.0458	-0.2125	-0.3729	-0.0791	0.1405	0.1910	0.2210	0.1229	-0.1201	-0.0445	-0.4140	0.2249	0.3806	0.1085	0.3013	0.0623	0.0259
0.1109	-0.5847	-0.1263	0.4280	0.1048	-0.0086	-0.1370	-0.0328	-0.0047	-0.0884	0.2093	0.1365	-0.0401	0.0717	-0.1306	0.3721	0.3144	-0.0684
-0.5192	-0.0597	-0.2222	-0.2302	0.2873	0.0104	-0.4072	0.0702	-0.2409	0.2452	0.2850	0.0828	0.1389	0.0495	0.1808	-0.0279	0.0361	0.0184
-0.2320	-0.2113	0.1671	0.0135	0.1247	0.2186	-0.0917	-0.1898	0.0424	0.0247	-0.2213	0.0876	-0.3504	0.2765	-0.0511	-0.1332	-0.3720	-0.0284
0.0554	-0.1689	0.3834	-0.1305	0.2004	0.2549	-0.0024	0.0348	0.1630	0.1706	-0.0537	-0.1313	0.2100	0.0896	-0.0655	-0.1140	-0.0276	-0.1066
-0.1762	0.1794	0.0589	0.1250	0.0422	0.3472	0.3701	-0.1752	0.1552	-0.2281	0.2067	0.4899	0.2496	0.2707	0.0223	0.0937	0.0080	0.0667
0.3251	0.0787	-0.1128	-0.3188	-0.0833	-0.1059	-0.1916	-0.1079	0.0093	0.3341	-0.0260	0.2822	-0.0595	0.4499	-0.4585	0.1286	-0.0010	0.1479
0.2960	0.0173	0.4046	-0.2306	0.2453	0.0354	-0.3149	-0.0147	-0.0796	-0.4017	0.1837	-0.0078	-0.0252	0.0172	0.0428	-0.1491	0.2472	0.2211
0.1667	0.0146	-0.0925	0.1287	-0.2932	0.0097	-0.3641	0.1376	0.3357	0.0423	-0.1252	0.2545	0.1649	0.2033	0.3940	-0.2418	0.1123	-0.3699
0.1808	-0.0268	-0.0192	0.1336	0.1988	-0.0073	-0.0482	0.5855	-0.0761	-0.1693	0.2275	0.0645	0.0524	0.0481	-0.1643	0.0427	-0.5472	-0.0972
-0.0481	-0.0279	-0.3197	-0.2120	-0.0906	0.3019	-0.1872	0.1381	0.1730	-0.3911	-0.2251	0.1919	-0.3400	-0.2482	-0.1155	0.0300	0.0273	0.2101

BrS =			
-0.1462	-0.1482	0.0935	-0.0938
0.5327	0.5387	0.5327	-0.5387
-0.0017	-0.0019	0.0645	-0.0659
0.1763	0.1791	0.0343	-0.0345
-0.1058	-0.1063	-0.3353	0.3375
0.2009	0.2040	-0.2843	0.2885
0.0036	0.0032	-0.1129	0.1149
-0.0570	-0.0567	0.3339	-0.3377
0.1003	0.1028	0.1003	-0.1028
-0.0105	-0.0100	-0.0417	0.0426
-0.0809	-0.0823	0.5035	-0.5088
0.6593	0.6658	-0.1874	0.1896
-0.1408	-0.1428	-0.1318	0.1336
-0.0888	-0.0897	-0.0787	0.0791
-0.2350	-0.2379	0.1463	-0.1477
-0.0260	-0.0272	0.1562	-0.1581
-0.0335	-0.0335	-0.0417	0.0427
0.3092	0.3125	-0.1894	0.1919
0.3092	0.3113	-0.1094	0.1919

ClrS =																	
-0.1393	0.3596	-0.0775	0.3710	0.0928	0.2802	-0.1032	0.1492	0.3217	0.1585	-0.0501	0.0289	-0.0805	0.0385	-0.2866	-0.1953	0.1363	0.2926
-0.0409	0.1960	-0.2116	0.2420	0.1312	-0.0508	-0.0320	-0.1319	-0.0529	0.0174	0.0959	-0.3262	0.2148	0.2257	-0.1277	0.0384	0.0804	0.3561
-0.1471	0.1150	-0.4922	0.0142	0.0123	0.0429	-0.2225	-0.0911	-0.1379	-0.0965	-0.1068	0.0015	0.0222	0.0780	0.1319	0.0472	-0.3489	-0.1968
0.0928	0.1313	-0.0079	-0.1470	0.0290	0.0966	-0.3141	-0.3088	-0.0231	0.2134	0.0111	-0.0816	0.0226	-0.2559	-0.2706	0.0157	0.1788	-0.2651
0.2180	0.0728	-0.0697	0.1473	0.2591	-0.3097	0.2122	-0.1001	-0.1486	0.2680	0.0865	0.1201	-0.1742	0.0576	-0.0473	-0.2520	-0.0663	-0.1368
0.0545	0.0728	0.3450	0.1861	0.0673	0.3268	-0.0469	-0.1277	-0.1486	0.1717	0.0167	-0.0817	-0.1744	0.2069	0.2109	0.1492	-0.2063	-0.0552
-0.0081	0.1313	-0.0500	-0.2101	0.3418	0.1840	-0.0466	-0.0167	-0.0231	-0.1488	0.2249	0.1283	0.0224	0.0890	0.3372	-0.0772	0.3338	-0.0042
0.4267	0.1150	0.0626	0.0225	0.1436	0.0387	-0.1734	0.3403	-0.1379	-0.0638	-0.2120	0.0794	0.3253	-0.0753	0.0195	-0.0523	-0.0786	0.0267
0.0178	0.1960	0.0154	0.0747	0.0808	-0.1356	0.1673	0.0473	-0.0529	-0.0528	-0.4354	-0.0648	-0.0556	0.0313	0.0200	0.3907	0.2628	-0.1523
-0.1582	0.3596	0.1728	0.0040	0.1506	-0.4341	-0.1307	0.1650	0.3217	-0.1600	0.0521	-0.0824	-0.2101	0.0566	0.0532	0.2975	0.0052	-0.2445
DrS =																	

-0.0358	-0.0331	0.0009	-0.0007	
0.0063	0.0058	-0.0004	0.0003	
-0.0038	-0.0035	0.0001	-0.0001	
0.0008	0.0008	-0.0007	0.0007	
-0.0013	-0.0012	0.0003	-0.0003	
0.0003	0.0003	-0.0013	0.0012	
-0.0007	-0.0007	0.0008	-0.0008	
0.0001	0.0001	-0.0038	0.0035	
-0.0004	-0.0003	0.0063	-0.0058	
0.0009	0.0007	-0.0358	0.0331	

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C1_r}, \widetilde{D_r})$ Orde 18

i	$ \lambda_i $
1	0,7914
2	0,7914
3	0,7729
4	0,7729
5	0,7565
6	0,7565
7	0,7234
8	0,7234
9	0,8184
10	0,8184
11	0,8442
12	0,8442
13	0,8073
14	0,8073
15	0,7151
16	0,7151
17	0,6762
18	0,8068

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

KASUS 2

```
• Reduksi Orde 1
```

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 1

```
0.7350
BrS =
           0.5260 -0.5208 0.5260
   0.5208
C2rS =
   0.2704
   0.3136
   0.3399
   0.3549
   0.3615
   0.3615
   0.3549
   0.3399
   0.3136
   0.2704
DrS =
  -0.0340 -0.0393 0.0340 -0.0342
-0.1213 -0.1224 0.1213 -0.1224
                    0.1730 -0.1746
  -0.1730 -0.1746
  -0.2024
           -0.2043
                     0.2024
                              -0.2043
                     0.2155 -0.2175
  -0.2155 -0.2175
                    0.2155 -0.2175
  -0.2155
           -0.2175
  -0.2024
           -0.2043
                     0.2024
                              -0.2043
                    0.1730 -0.1746
  -0.1730 -0.1746
  -0.1213 -0.1224
                              -0.1224
                     0.1213
  -0.0340
           -0.0342
                      0.0340
                              -0.0393
```

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 1

i	$ \lambda_i $
1	0,7350

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 2

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 2

ArS =

	0.7350 0.0000	0.0000 -0.7709		
BrS	=			
	0.5208	0.5260	-0.5208	0.5260
	0.6948	0.6997	0.6948	-0.6997

C2rS =

0.2242		
0.2668		
0.2331		
0.1021		
0.0535		
-0.0535		
-0.1021		
-0.2331		
-0.2668		
-0.2242		
-0.1279	-0.0540	0.0544
-0.2278	0.0166	-0.0170
-0.2667	0.0816	-0.0825
-0.2446	0.1623	-0.1640
-0.2446	0.1623 0.1945	-0.1640 -0.1964
-0.2446 -0.2387 -0.1964	0.1623 0.1945 0.2365	-0.1640 -0.1964 -0.2387
-0.2387 -0.1964 -0.1640	0.1623 0.1945 0.2365 0.2424	-0.1640 -0.1964 -0.2387 -0.2446
-0.2387 -0.1964 -0.1640 -0.0825	0.1623 0.1945 0.2365 0.2424 0.2645	-0.1640 -0.1964 -0.2387 -0.2446 -0.2667
-0.2446 -0.2387 -0.1964 -0.1640 -0.0825 -0.0170	0.1623 0.1945 0.2365 0.2424 0.2645 0.2260	-0.1640 -0.1964 -0.2387 -0.2446 -0.2667 -0.2278
	0.2242 0.2668 0.2331 0.1021 0.0535 -0.0535 -0.1021 -0.2331 -0.2668 -0.2242 -0.1279 -0.2278 -0.2278 -0.2267	0.2242 0.2668 0.2331 0.1021 0.0535 -0.0535 -0.1021 -0.2331 -0.2668 -0.2242 -0.1279 -0.0540 -0.2278 0.0166 -0.2667 0.0816

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 2

i	$ \lambda_i $
1	0,7350
2	0,7709

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 3

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 3

0.7566	-0.0427	-0.0000	
0.7660	-0.2780	-0.0000	
-0.0000	-0.0000	-0.7709	
BrS =			
0.5000	0.5050	-0.5000	0.5050
-0.6910	-0.6965	0.6910	-0.6965
-0.6948	-0.6997	-0.6948	0.6997
C2rS =			
0.2510	0.0404	-0.2242	
0.2569	0.1028	-0.2668	
0.1579	0.3088	-0.2331	
0.0987	0.4307	-0.1021	
0.0789	0.4743	-0.0535	
0.0789	0.4743	0.0535	
0.0987	0.4307	0.1021	
0.1579	0.3088	0.2331	
0.2569	0.1028	0.2668	
0.2510	0.0404	0.2242	

-0.1038	-0.1096	-0.0721	0.0727
-0.1735	-0.1749	-0.0359	0.0360
-0.0965	-0.0974	-0.0864	0.0868
-0.0061	-0.0064	-0.0740	0.0743
0.0243	0.0242	-0.0663	0.0665
0.0663	0.0665	-0.0243	0.0242
0.0740	0.0743	0.0061	-0.0064
0.0864	0.0868	0.0965	-0.0974
0.0359	0.0360	0.1735	-0.1749
0.0721	0.0727	0.1038	-0.1096

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 3

i	$ \lambda_i $
1	0,7239
2	0,2454
3	0,7709

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 4

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 4

0.1794	0.0000	-0.7005	-0.0000
0.0000	0.7566	0.0000	0.0427
1.1395	-0.0000	0.1524	0.0000
-0.0000	-0.7660	0.0000	-0.2780
BrS =			
0.4019	0.4055	0.4019	-0.4055
-0.5000	-0.5050	0.5000	-0.5050
-0.0860	-0.0858	-0.0860	0.0858
-0.6910	-0.6965	0.6910	-0.6965
C2r3 =			
0.3338	-0.2510	-0.0071	0.0404
0.0718	-0.2569	0.2499	0.1028
0.0150	-0.1579	0.2562	0.3088
-0.0660	0.0097	0.1705	0 4207

0.0710	-0.2003	0.2455	0.1020
0.0150	-0.1579	0.2562	0.3088
-0.0669	-0.0987	0.1705	0.4307
0.0183	-0.0789	0.0470	0.4743
-0.0183	-0.0789	-0.0470	0.4743
0.0669	-0.0987	-0.1705	0.4307
-0.0150	-0.1579	-0.2562	0.3088
-0.0718	-0.2569	-0.2499	0.1028
-0.3338	-0.2510	0.0071	0.0404

DrS =

-0.1036	-0.1093	-0.0719	0.0724
-0.1529	-0.1544	-0.0152	0.0154
-0.0755	-0.0765	-0.0654	0.0660
0.0077	0.0073	-0.0602	0.0605
0.0282	0.0281	-0.0624	0.0626
0.0624	0.0626	-0.0282	0.0281
0.0602	0.0605	-0.0077	0.0073
0.0654	0.0660	0.0755	-0.0765
0.0152	0.0154	0.1529	-0.1544
0.0719	0.0724	0.1036	-0.1093

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 4

i	$ \lambda_i $
1	0,7239
2	0,2454
3	0,9086
4	0,9086

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 5

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 5

0.6295	-0.0000	0.0216	0.1886	-0.0000
-0.0000	0.1794	0.0000	-0.0000	-0.7005
0.5323	-0.0000	0.4569	-0.5973	0.0000
-0.4704	0.0000	0.7714	-0.0239	0.0000
0.0000	1.1395	-0.0000	-0.0000	0.1524

BrS =

0.5761	0.5818	-0.5761	0.5818	
0.4019	0.4055	0.4019	-0.4055	
-0.2187	-0.2206	0.2187	-0.2206	
0.2676	0.2694	-0.2676	0.2694	
-0.0860	-0.0858	-0.0860	0.0858	
C2rS =				
0.3116	0.3338	-0.0475	0.2822	-0.0071
0.2294	0.0718	0.1627	0.0254	0.2499
0.1009	0.0150	0.3202	0.1003	0.2562
0.0885	-0.0669	0.2873	0.3740	0.1705
0.1011	0.0183	0.2447	0.5288	0.0470
0.1011	-0.0183	0.2447	0.5288	-0.0470
0.0885	0.0669	0.2873	0.3740	-0.1705
0.1009	-0.0150	0.3202	0.1003	-0.2562
0.2294	-0.0718	0.1627	0.0254	-0.2499
0.3116	-0.3338	-0.0475	0.2822	0.0071

D	r	3	=

-0.1512	-0.1572	-0.0243	0.0246
-0.1623	-0.1639	-0.0058	0.0059
-0.1066	-0.1078	-0.0343	0.0347
-0.0730	-0.0737	0.0205	-0.0205
-0.0793	-0.0799	0.0451	-0.0454
-0.0451	-0.0454	0.0793	-0.0799
-0.0205	-0.0205	0.0730	-0.0737
0.0343	0.0347	0.1066	-0.1078
0.0058	0.0059	0.1623	-0.1639
0.0243	0.0246	0.1512	-0.1572

Tabel Nilai Eigen Sist	tem Tered	uksi ($\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}$, $\widetilde{D_r}$) Orde 5
	i	$ \lambda_i $	
	1	0,7311	
	2	0,7465	
	3	0,7465	
	4	0,9086	
	5	0,9086	

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 7

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 7 ArS =

-0.2847	0.0000	0.0007	-0.0000	0.2599	-0.0000	-0.5900
0.0000	0.6295	-0.0000	-0.0216	-0.0000	-0.1886	0.0000
-0.9041	0.0000	0.1907	-0.0000	-0.1740	0.0000	0.1566
-0.0000	-0.5323	0.0000	0.4569	-0.0000	-0.5973	-0.0000
0.1783	-0.0000	0.9530	-0.0000	0.0598	0.0000	-0.0259
0.0000	0.4704	-0.0000	0.7714	-0.0000	-0.0239	-0.0000
0.1298	-0.0000	0.0270	-0.0000	-1.1600	0.0000	-0.2961

BrS =

0.4460	0.4493	0.4460	-0.4493
-0.5761	-0.5818	0.5761	-0.5818
-0.1344	-0.1363	-0.1344	0.1363
-0.2187	-0.2206	0.2187	-0.2206
0.0157	0.0157	0.0157	-0.0157
0.2676	0.2694	-0.2676	0.2694
0.0937	0.0943	0.0937	-0.0943

C2r3 =

0.3225	-0.3116	-0.1007	-0.0475	0.0269	0.2822	0.0612
-0.0933	-0.2294	-0.3314	0.1627	-0.0197	0.0254	0.0405
0.0353	-0.1009	0.0268	0.3202	-0.3308	0.1003	0.0176
-0.0715	-0.0885	0.0178	0.2873	0.0232	0.3740	0.2464
0.0487	-0.1011	0.0583	0.2447	0.0013	0.5288	0.1265
-0.0487	-0.1011	-0.0583	0.2447	-0.0013	0.5288	-0.1265
0.0715	-0.0885	-0.0178	0.2873	-0.0232	0.3740	-0.2464
-0.0353	-0.1009	-0.0268	0.3202	0.3308	0.1003	-0.0176
0.0933	-0.2294	0.3314	0.1627	0.0197	0.0254	-0.0405
-0.3225	-0.3116	0.1007	-0.0475	-0.0269	0.2822	-0.0612

DrS =

-0.1566	-0.1627	-0.0298	0.0301
-0.1634	-0.1649	-0.0068	0.0070
-0.1130	-0.1142	-0.0408	0.0411
-0.0939	-0.0948	-0.0004	0.0005
-0.0909	-0.0916	0.0335	-0.0337
-0.0335	-0.0337	0.0909	-0.0916
0.0004	0.0005	0.0939	-0.0948
0.0408	0.0411	0.1130	-0.1142
0.0068	0.0070	0.1634	-0.1649
0.0298	0.0301	0.1566	-0.1627

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 7

i	$ \lambda_i $
1	0,7311
2	0,7465
3	0,7465
4	0,9268
5	0,9268
6	0,9385
7	0,9385

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 8

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 8

-0.2847	-0.0000	0.0007	0.0000	-0.0000	-0.2599	-0.0000	-0.5900
-0.0000	0.5786	-0.0000	-0.1231	0.1276	-0.0000	0.0568	-0.0000
-0.9041	-0.0000	0.1907	0.0000	-0.0000	0.1740	0.0000	0.1566
-0.0000	0.7229	-0.0000	-0.0846	-0.3725	-0.0000	-0.1769	0.0000
-0.0000	0.2175	0.0000	0.7672	0.4932	-0.0000	-0.2041	0.0000
-0.1783	-0.0000	-0.9530	0.0000	0.0000	0.0598	-0.0000	0.0259
-0.0000	0.0653	0.0000	-0.7216	0.8647	0.0000	-0.3026	-0.0000
0.1298	0.0000	0.0270	0.0000	-0.0000	1.1600	0.0000	-0.2961
BrS =							
0.4460	0.4493	0.4460	-0.4493				
0.6043	0.6102	-0.6043	0.6102				
-0.1344	-0.1363	-0.1344	0.1363				
-0.3183	-0.3204	0.3183	-0.3204				
-0.0689	-0.0698	0.0689	-0.0698				
-0.0157	-0.0157	-0.0157	0.0157				
-0.1723	-0.1734	0.1723	-0.1734				
0.0937	0.0943	0.0937	-0.0943				

C2r3 =

0.3225	0.3189	-0.1007	-0.1708	0.0203	-0.0269	0.1357	0.0612
-0.0933	0.1994	-0.3314	0.2580	-0.0083	0.0197	0.2522	0.0405
0.0353	0.0793	0.0268	0.1322	0.2696	0.3308	0.1243	0.0176
-0.0715	0.0755	0.0178	-0.0626	0.3028	-0.0232	0.2421	0.2464
0.0487	0.0771	0.0583	-0.0248	0.1597	-0.0013	0.5026	0.1265
-0.0487	0.0771	-0.0583	-0.0248	0.1597	0.0013	0.5026	-0.1265
0.0715	0.0755	-0.0178	-0.0626	0.3028	0.0232	0.2421	-0.2464
-0.0353	0.0793	-0.0268	0.1322	0.2696	-0.3308	0.1243	-0.0176
0.0933	0.1994	0.3314	0.2580	-0.0083	-0.0197	0.2522	-0.0405
-0.3225	0.3189	0.1007	-0.1708	0.0203	0.0269	0.1357	-0.0612

DrS =

-0.1408	-0.1467	-0.0456	0.0460
-0.1267	-0.1281	-0.0435	0.0438
-0.0998	-0.1010	-0.0539	0.0544
-0.0678	-0.0685	-0.0266	0.0268
-0.0270	-0.0273	-0.0303	0.0305
0.0303	0.0305	0.0270	-0.0273
0.0266	0.0268	0.0678	-0.0685
0.0539	0.0544	0.0998	-0.1010
0.0435	0.0438	0.1267	-0.1281
0.0456	0.0460	0.1408	-0.1467

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 8

i	$ \lambda_i $
1	0,5831
2	0,7936
3	0,7936
4	0,9268
5	0,9268
6	0,9385
7	0,9385
8	0,7266

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati
```
> Matriks Sistem Tereduksi (\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r}) Orde 9
```

ArS =

0.4004	0.5373	-0.0000	0.0000	-0.2842	0.0000	0.0699	-0.4565	0.0000
-0.3644	-0.5923	0.0000	-0.0000	-0.1757	-0.0000	-0.0149	-0.4783	-0.0000
0.0000	0.0000	0.5786	-0.1231	-0.0000	-0.1276	0.0000	-0.0000	-0.0568
-0.0000	0.0000	0.7229	-0.0846	0.0000	0.3725	-0.0000	-0.0000	0.1769
0.6067	-0.4789	0.0000	0.0000	-0.4422	-0.0000	0.2965	0.1900	0.0000
0.0000	-0.0000	-0.2175	-0.7672	-0.0000	0.4932	0.0000	0.0000	-0.2041
-0.5267	0.2618	-0.0000	0.0000	-0.6716	-0.0000	0.2996	0.2078	0.0000
0.0690	-0.0265	0.0000	0.0000	-0.4330	-0.0000	-0.9984	0.1631	0.0000
0.0000	-0.0000	-0.0653	0.7216	0.0000	0.8647	-0.0000	0.0000	-0.3026

BrS =

-0.3537 -0.3386 0.6043 -0.3183	-0.3573 -0.3409 0.6102 -0.3204	-0.3537 -0.3386 -0.6043 0.3183	0.3573 0.3409 0.6102 -0.3204
0.0474	0.0476	0.0474	-0.0476
0.0689	0.0698	-0.0689	0.0698
0.0378	0.0381	0.0378	-0.0381
-0.0758	-0.0768	-0.0758	0.0768
0.1723	0.1734	-0.1723	0.1734

C2r3 =

•

-0.2479	-0.2311	0.3189	-0.1708	0.0955	-0.0203	0.0687	-0.0090	-0.1357
-0.2384	0.2412	0.1994	0.2580	-0.0146	0.0083	0.0699	-0.0200	-0.2522
0.0436	-0.0648	0.0793	0.1322	-0.1817	-0.2696	0.2717	-0.0275	-0.1243
0.0481	0.0536	0.0755	-0.0626	0.2993	-0.3028	0.2311	-0.0865	-0.2421
0.0243	-0.0684	0.0771	-0.0248	-0.0261	-0.1597	-0.0486	-0.1365	-0.5026
-0.0243	0.0684	0.0771	-0.0248	0.0261	-0.1597	0.0486	0.1365	-0.5026
-0.0481	-0.0536	0.0755	-0.0626	-0.2993	-0.3028	-0.2311	0.0865	-0.2421
-0.0436	0.0648	0.0793	0.1322	0.1817	-0.2696	-0.2717	0.0275	-0.1243
0.2384	-0.2412	0.1994	0.2580	0.0146	0.0083	-0.0699	0.0200	-0.2522
0.2479	0.2311	0.3189	-0.1708	-0.0955	-0.0203	-0.0687	0.0090	-0.1357

DrS =

-0.1396	-0.1455	-0.0444	0.0448
-0.1271	-0.1284	-0.0438	0.0442
-0.0988	-0.0999	-0.0528	0.0533
-0.0652	-0.0659	-0.0240	0.0242
-0.0321	-0.0325	-0.0354	0.0356
0.0354	0.0356	0.0321	-0.0325
0.0240	0.0242	0.0652	-0.0659
0.0528	0.0533	0.0988	-0.0999
0.0438	0.0442	0.1271	-0.1284
0.0444	0.0448	0.1396	-0.1455

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 9

i	$ \lambda_i $
1	0,5831
2	0,7963
3	0,7963
4	0,9404
5	0,9404

i	$ \lambda_i $
6	0,9365
7	0,9365
8	0,7266
9	0,9320

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 10

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 10

ArS =

-0.4755	-0.1085	0.1043	-0.6258	8 0.0	502 -0	.2596	-0.0275	-0.025	9 -0.165	6 0.2098
0.0186	0.5184	0.5624	0.0973	2 -0.1	469 0	.0209	-0.0347	-0.040	1 -0.015	5 -0.2225
0.0458	-0.2534	-0.5060	0.102	7 -0.1	435 -0	.2543	-0.0374	0.006	8 -0.170	4 -0.3727
0.2078	0.0802	-0.1289	0.421	7 0.2	587 -0	.0789	-0.0351	0.052	7 -0.071	2 0.4524
0.4555	0.3725	-0.3128	-0.391	6 -0.4	422 -0	.0000	0.0000	-0.296	5 0.000	0 0.1900
0.5245	-0.5653	0.3658	-0.2199	9 -0.0	0000 0	.3057	-0.0289	-0.000	0 -0.221	9 0.0000
-0.2909	0.1443	-0.2508	-0.000	8 -0.0	0000 0	.7623	0.1933	0.000	0 -0.358	6 -0.0000
0.2940	0.3128	-0.1599	-0.3689	9 0.6	5716 0.	.0000	0.0000	0.299	6 0.000	0 -0.2078
0.0840	-0.0178	0.0792	0.017	5 0.0	0000 -0	.2272	1.0074	-0.000	0 -0.108	7 0.0000
0.0334	0.0404	-0.0153	-0.0498	8 -0.4	1330 -0	.0000	0.0000	0.998	4 -0.000	0 0.1631
BrS =										
0.3673	0.3694	-0.0843	0.0850							
0.2229	0.2252	-0.5721	0.578.	1						
0.0733	0.0740	-0.6045	0.6090							
0.7145	0.7214	-0.0254	0.025							
0.0474	0.0476	0.0474	-0.0476							
0.1218	0.1229	-0.1218	0.1229	9						
0.0727	0.0732	-0.0727	0.073	2						
-0.0378	-0.0381	-0.0378	0.038.	1						
0.0036	0.0038	-0.0036	0.003	8						
-0.0758	-0.0768	-0.0758	0.076	8						
C2rS =										
0 2275	0.0790	0.0191	0 4290	0.0055	-0.0019		0206 -0	0697 -0	2152 -0 0	0000
-0.4057	0.0728	0.0224	0.2267	-0.0146	-0.0010	-0	0200 -0.	0600 -0	2186 -0.0	1200
0.0996	0.0654	0.0128	0.0211	-0.1817	-0.2905	0	0916 -0	2717 -0	2636 -0.0	0275
0.0351	0.0593	0.1112	-0.0006	0.2993	-0.1917	-0.	2806 -0.	2311 -0.	.1980 -0.0	0865
0.0414	0.0829	-0.0393	0.0370	-0.0261	-0.0869	-0.	2612 0.	0486 -0.	.4654 -0.1	1365
-0.0600	0.0463	0.0572	0.0498	0.0261	-0.0869	-0.	2612 -0.	0486 -0.	.4654 0.1	1365
0.0835	0.0129	0.0281	0.0959	-0.2993	-0.1917	-0.	2806 0.	2311 -0.	.1980 0.0	0865
-0.0059	0.0077	0.1019	0.0659	0.1817	-0.3905	0.	0916 0.	2717 -0.	.2636 0.0	0275
0.0221	0.3739	-0.2903	-0.0511	0.0146	-0.0877	-0.	0293 0.	0699 -0.	.2186 0.0	0200
0.0472	0.3244	0.3815	-0.0425	-0.0955	-0.0018	0.	0206 0.	0687 -0.	.2153 0.0	0090
DrS =										
-0.1457	-0.1516	-0.0383	0.0387							
-0.1316	-0.1329	-0.0394	0.0397							

-0.1316	-0.1329	-0.0394	0.0397
-0.1083	-0.1094	-0.0433	0.0437
-0.0685	-0.0692	-0.0207	0.0209
-0.0413	-0.0418	-0.0262	0.0264
0.0262	0.0264	0.0413	-0.0418
0.0207	0.0209	0.0685	-0.0692
0.0433	0.0437	0.1083	-0.1094
0.0394	0.0397	0.1316	-0.1329
0.0383	0.0387	0.1457	-0.1516

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 10

i	$ \lambda_i $
1	0,7272
2	0,7869
3	0,7869
4	0,9404
5	0,9404
6	0,9365
7	0,9365
8	0,8174
9	0,8174
10	0,9320

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 11

-0.1941	0.0729	0.0348	-0.0634	-0.0502	-0.0345	-0.3140	0.1157	0.0622	0.2229	-0.1632
0.1109	-0.0540	0.3599	-0.5903	0.4195	-0.3220	-0.0016	0.3676	-0.0012	-0.0000	0.1409
0.5814	-0.1785	0.0436	0.0448	-0.2863	-0.2711	0.1829	0.1670	0.0007	-0.1010	-0.2774
0.2088	-0.0869	0.4921	0.3543	0.5085	0.4658	-0.0263	-0.0664	0.0036	0.0174	-0.1295
-0.5762	-0.1538	-0.1255	-0.0064	0.2339	-0.0894	-0.0561	0.1606	-0.0244	0.0121	-0.2881
0.0770	0.7717	-0.0184	-0.1505	-0.0304	0.2156	0.0535	0.2556	-0.0107	-0.0380	-0.3717
0.2244	0.0226	-0.6542	0.0414	0.5432	-0.0372	0.3057	-0.0000	0.0289	0.2219	-0.0000
0.0773	-0.2943	-0.1091	-0.6320	-0.0735	0.4306	-0.0000	-0.3772	-0.0000	0.0000	-0.2817
0.2571	0.0063	-0.2707	0.0268	0.1622	-0.0435	-0.7623	0.0000	0.1933	-0.3586	-0.0000
-0.0930	-0.0009	0.0652	-0.0083	-0.0272	0.0158	0.2272	0.0000	1.0074	-0.1087	-0.0000
0.0051	0.4274	0.1887	-0.0898	0.1830	-0.4541	-0.0000	-0.7829	0.0000	-0.0000	0.0169

BrS =

0.4439	0.4478	-0.7540	0.7603
0.0768	0.0770	0.1047	-0.1052
-0.3337	-0.3358	-0.4679	0.4727
-0.1041	-0.1057	-0.1685	0.1706
-0.7074	-0.7141	-0.1221	0.1224
-0.1421	-0.1431	0.0635	-0.0642
0.1218	0.1229	-0.1218	0.1229
-0.0365	-0.0365	-0.0365	0.0365
-0.0727	-0.0732	0.0727	-0.0732
-0.0036	-0.0038	0.0036	-0.0038
-0.1057	-0.1065	-0.1057	0.1065

0.2646	0.0849	-0.2142	-0.0943	-0.3825	-0.0135	-0.0018	-0.0274	-0.0206	0.2153	0.0770
-0.0229	-0.1184	0.2450	-0.3406	-0.1974	0.1447	-0.0877	0.0988	0.0293	0.2186	0.1302
0.1094	0.2756	-0.0049	-0.0755	-0.0249	0.0539	-0.3905	0.2640	-0.0916	0.2636	0.1017
0.1780	0.1897	-0.0258	-0.0883	-0.0320	0.3872	-0.1917	-0.0942	0.2806	0.1980	0.1790
0.0406	0.0081	-0.0362	0.0672	-0.1390	0.2133	-0.0869	0.2021	0.2612	0.4654	0.2677
0.0370	-0.0129	0.1188	-0.0662	0.0301	-0.2268	-0.0869	-0.2021	0.2612	0.4654	-0.2677
0.0294	-0.1920	-0.0132	0.1021	-0.0095	-0.4227	-0.1917	0.0942	0.2806	0.1980	-0.1790
0.0673	-0.2780	-0.0172	0.0868	-0.0211	-0.0842	-0.3905	-0.2640	-0.0916	0.2636	-0.1017
-0.1144	0.1006	0.2521	0.3111	-0.2280	-0.1221	-0.0877	-0.0988	0.0293	0.2186	-0.1302
0.4139	-0.0989	0.2456	0.1327	0.0939	-0.1029	-0.0018	0.0274	-0.0206	0.2153	-0.0770
DrS =										
-0.1320	-0.1378	-0.0246	0.0249							
-0.1102	-0.1114	-0.0180	0.0182							
-0.0851	-0.0860	-0.0201	0.0203							
-0.0381	-0.0385	0.0097	-0.0098							
-0.0095	-0.0097	0.0056	-0.0057							
-0.0056	-0.0057	0.0095	-0.0097							
-0.0097	-0.0098	0.0381	-0.0385							
0.0201	0.0203	0.0851	-0.0860							
0.0180	0.0182	0.1102	-0.1114							
0.0246	0.0249	0.1320	-0.1378							

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 11

C2r3 =

i	$ \lambda_i $
1	0,7272
2	0,7869
3	0,7869
4	0,8784
5	0,8784
6	0,8792
7	0,8792
8	0,8174
9	0,8174
10	0,8933
11	0.8933

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 12

ArS =

0.2347	-0.1497	-0.0060	-0.0450	-0.2987	-0.1893	-0.0132	-0.4017	-0.2225	-0.4044	0.1836	-0.2093
-0.1393	-0.1085	-0.1494	-0.5803	-0.3099	0.0591	-0.2175	-0.2612	0.1282	0.0957	-0.4743	0.0140
0.1029	-0.1441	0.3465	-0.1779	-0.3031	-0.1241	-0.4907	0.2448	-0.1589	0.2278	0.2144	0.2246
-0.1841	0.4132	-0.2180	0.4330	-0.3446	-0.0846	-0.3041	-0.1888	-0.3629	-0.0710	-0.0918	0.0454
0.2945	-0.2907	0.3536	0.2546	-0.0309	-0.2924	-0.2183	0.1487	0.1732	-0.1797	-0.2132	-0.0153
0.5425	0.0202	-0.5736	-0.1687	0.0952	0.0307	-0.1462	0.2770	0.0045	-0.3336	-0.0120	0.0494
0.1139	-0.3197	0.1204	0.0864	-0.3951	0.1935	0.4961	-0.1662	0.0225	-0.1169	-0.0286	-0.0217
0.3086	-0.0658	-0.1480	0.1765	-0.3530	0.4648	0.0649	0.1929	-0.1360	0.4160	0.0447	-0.0493
0.3619	0.5021	0.4062	-0.2558	0.0689	-0.0285	0.2702	0.0531	-0.3772	-0.0000	-0.2817	-0.0000
0.1218	-0.0159	0.2508	0.0683	0.3054	0.6682	-0.3861	-0.3421	-0.0000	-0.1848	-0.0000	0.0424
-0.2230	-0.5179	-0.0979	-0.1770	0.3158	0.0015	0.0419	0.0752	-0.7829	-0.0000	0.0169	0.0000
-0.4331	0.1042	0.1872	-0.1104	-0.2696	0.2925	-0.0075	0.5479	0.0000	-0.6382	-0.0000	-0.0800

BrS =

0.5600	0.5652	-0.0212	0.0210
-0.1444	-0.1453	-0.2527	0.2546
0.0691	0.0705	0.4454	-0.4493
-0.3436	-0.3466	-0.0377	0.0381
-0.2626	-0.2643	-0.5437	0.5484
-0.1729	-0.1737	0.1449	-0.1455
-0.5202	-0.5250	0.4063	-0.4108
0.2332	0.2355	-0.3678	0.3708
-0.0365	-0.0365	-0.0365	0.0365
-0.0612	-0.0618	0.0612	-0.0618
-0.1057	-0.1065	-0.1057	0.1065
0.0766	0.0771	-0.0766	0.0771

C2r3 =

0 2048	-0.0406	0.0402	-0.2634	-0.1614	-0.0845	-0 2587	0 1070	-0.0274	0.0161	0 0770	-0.2515
	0.0100	0.0100	0.2001		0.0010	0.2007					
0.1188	0.1985	0.3075	-0.1293	0.1847	0.2531	-0.0383	0.0492	0.0988	0.0433	0.1302	-0.3240
-0.1334	-0.0302	0.0167	-0.2857	0.0129	-0.0562	-0.0668	-0.0046	0.2640	0.3575	0.1017	-0.2960
-0.1638	0.3038	0.0973	-0.3213	-0.0303	-0.1580	-0.0927	-0.1267	-0.0942	-0.0337	0.1790	-0.3954
0.1392	0.1154	0.0598	0.0357	0.0449	-0.2081	-0.1588	-0.4759	0.2021	0.0126	0.2677	0.0104
0.1077	-0.2081	0.1010	0.1600	0.3458	-0.2121	-0.0521	-0.2766	-0.2021	0.0126	-0.2677	0.0104
-0.0703	-0.2566	0.1611	0.3301	0.0394	-0.1559	-0.1107	0.1961	0.0942	-0.0337	-0.1790	-0.3954
0.0199	0.0712	0.0772	0.2501	-0.0351	-0.0541	-0.0687	0.1599	-0.2640	0.3575	-0.1017	-0.2960
-0.1643	-0.1608	-0.0573	0.1196	-0.0336	0.2803	-0.3368	-0.0575	-0.0988	0.0433	-0.1302	-0.3240
0.0055	0.0986	-0.2599	0.0944	0.2948	-0.0667	-0.2116	0.2343	0.0274	0.0161	-0.0770	-0.2515

DrS =

-0.1128	-0.1184	-0.0438	0.0442
-0.0872	-0.0882	-0.0410	0.0414
-0.0625	-0.0632	-0.0427	0.0431
-0.0138	-0.0140	-0.0146	0.0147
-0.0050	-0.0051	0.0011	-0.0011
-0.0011	-0.0011	0.0050	-0.0051
0.0146	0.0147	0.0138	-0.0140
0.0427	0.0431	0.0625	-0.0632
0.0410	0.0414	0.0872	-0.0882
0.0438	0.0442	0.1128	-0.1184

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 12

i	$ \lambda_i $
1	0,6708
2	0,7695
3	0,7695
4	0,8784

i	$ \lambda_i $
5	0,8784
6	0,8792
7	0,8792
8	0,8251
9	0,8251
10	0,8933
11	0.8933
12	0,7158

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 14

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 13

ArS =

0.6262	0.1020	0.3082	0.2311	0.1977	-0.1262	-0.0082	0.2414	-0.2705	-0.1713	0.0639	-0.0254	-0.0973
-0.1051	0.2294	-0.5235	0.1673	0.6369	-0.0954	-0.1415	-0.0943	-0.1014	0.0686	0.0561	-0.1836	0.0007
0.0507	0.2043	0.0963	-0.4060	-0.1149	-0.2361	-0.5299	0.0477	0.2551	0.2999	0.3891	-0.1050	-0.0130
0.1368	-0.1630	0.0776	0.2931	-0.0179	0.0877	0.3396	-0.1024	0.1703	0.2997	0.2466	-0.4058	-0.0520
-0.0809	-0.3967	-0.3271	-0.3815	0.1455	-0.1279	0.3971	0.3524	0.0842	-0.0703	0.0853	0.0254	0.0948
-0.0820	0.2589	0.0387	-0.2514	-0.0504	0.2586	0.0319	0.2759	-0.0600	-0.4313	0.0261	-0.6458	-0.0487
0.1419	-0.2512	-0.0484	-0.3802	0.0576	0.3655	-0.1411	-0.2218	-0.6619	0.2085	0.0027	-0.0165	-0.0013
-0.1976	0.1819	0.0952	0.0457	0.0744	0.5321	-0.0187	-0.2051	0.1612	-0.3523	0.2678	0.3034	0.0906
0.0245	-0.0890	0.2153	-0.1913	0.3810	-0.1896	-0.1408	0.1851	0.0925	-0.2761	-0.0937	0.2840	-0.1141
0.1716	0.0140	-0.0234	-0.0159	0.1796	0.2936	0.1783	0.2281	0.0871	0.2287	0.5020	0.2251	-0.2390
0.6242	0.0181	-0.3633	-0.2253	-0.0584	0.1266	0.0059	-0.3254	0.3967	-0.1821	-0.1848	-0.0000	-0.0424
-0.0343	0.4166	0.2832	-0.3915	0.1323	-0.2532	0.5366	-0.3553	-0.0849	0.0920	-0.0000	0.0583	-0.0000
-0.0380	-0.1937	-0.1893	0.0664	-0.2214	-0.3978	-0.0008	-0.3191	-0.2481	-0.5043	0.6382	0.0000	-0.0800

BrS =

0.4478	0.4525	-0.2533	0.2564
0.0396	0.0401	-0.0405	0.0409
0.0937	0.0945	-0.2360	0.2376
-0.3563	-0.3597	-0.4244	0.4281
0.2924	0.2951	-0.3121	0.3149
-0.0434	-0.0434	0.2192	-0.2211
-0.1343	-0.1347	-0.1449	0.1454
0.1773	0.1785	-0.4107	0.4144
-0.6929	-0.6986	-0.2429	0.2456
-0.1050	-0.1059	0.5196	-0.5241
-0.0612	-0.0618	0.0612	-0.0618
-0.0057	-0.0055	-0.0057	0.0055
-0.0766	-0.0771	0.0766	-0.0771

C2r3 =

0.2474	0.2027	-0.0640	-0.1612	0.0092	-0.0279	-0.0450	0.2266	-0.4100	-0.0574	0.0161	0.0780	0.2515
0.3002	0.2661	-0.1286	-0.1058	-0.1406	0.1084	0.3336	0.0327	0.0736	0.0118	0.0433	0.1752	0.3240
0.0893	0.1364	-0.2256	0.1538	-0.0499	-0.0206	0.0120	0.2184	-0.1186	0.1377	0.3575	0.3601	0.2960
0.0807	0.2944	-0.0914	0.1533	0.0576	-0.2834	0.0800	0.0169	-0.0572	0.2490	-0.0337	-0.0771	0.3954
0.0913	0.0317	-0.0345	0.2627	0.0739	-0.2089	-0.0537	-0.5653	-0.1499	-0.1484	0.0126	-0.0010	-0.0104
0.1888	-0.2964	-0.1116	-0.0142	-0.4827	-0.3146	0.0574	0.0411	-0.0629	-0.1361	0.0126	0.0010	-0.0104
0.1283	-0.3261	0.3168	0.0913	-0.1167	0.1628	-0.0760	0.0040	-0.0354	0.0446	-0.0337	0.0771	0.3954
0.0325	-0.1147	0.3684	-0.0622	0.1036	0.0127	-0.0097	-0.1162	0.0811	0.0069	0.3575	-0.3601	0.2960
0.2440	-0.1830	-0.0226	-0.0502	0.2124	0.0905	-0.3278	-0.1148	0.2604	0.0178	0.0433	-0.1752	0.3240
0.0979	-0.1516	0.2373	0.1820	0.3263	-0.0926	0.0502	0.1034	0.1763	-0.2768	0.0161	-0.0780	0.2515

DrS =

-0.0852	-0.0906	-0.0163	0.0164
-0.0560	-0.0567	-0.0098	0.0098
-0.0260	-0.0264	-0.0062	0.0063
0.0061	0.0061	0.0053	-0.0054
-0.0092	-0.0093	-0.0031	0.0032
0.0031	0.0032	0.0092	-0.0093
-0.0053	-0.0054	-0.0061	0.0061
0.0062	0.0063	0.0260	-0.0264
0.0098	0.0098	0.0560	-0.0567
0.0163	0.0164	0.0852	-0.0906

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 13

i	$ \lambda_i $
1	0,6708
2	0,7695
3	0,7695
4	0,8625
5	0,8625
6	0,8189
7	0,8189
8	0,8251
9	0,8251
10	0,8053
11	0.8053
12	0,7158
13	0,8659

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 14

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 14

ArS =

0.1729	0.0585	-0.3419	0.3299	-0.1111	0.3212	0.2255	-0.0246	-0.1031	-0.3939	0.0221	0.4651	-0.0778	0.0080
-0.5518	0.1050	0.2202	0.3811	-0.0784	-0.3955	0.0715	0.0612	-0.2530	-0.1278	-0.1630	0.1355	-0.2345	-0.0488
-0.0527	-0.2381	0.1041	-0.3016	0.2593	0.0092	-0.4252	0.0414	-0.5528	-0.0972	0.0520	0.3984	0.1495	-0.0766
0.2452	-0.3066	0.0576	0.0914	0.2493	-0.4150	-0.0242	0.0842	0.1675	-0.2431	0.4487	-0.0665	-0.3388	0.0374
-0.0895	-0.1932	0.1805	0.1862	0.2238	-0.0026	0.4880	0.0564	-0.0974	0.0068	0.2646	-0.0232	0.6509	-0.0185
-0.1828	0.0506	-0.0390	0.0382	0.6115	0.2088	-0.0451	0.2061	0.3132	-0.4144	-0.3780	-0.0578	0.0331	0.0331
-0.2727	0.0172	-0.0199	-0.2886	0.2912	0.1415	0.1882	-0.3887	0.0172	-0.0021	0.3129	0.0442	-0.3347	0.0080
-0.1726	0.2492	-0.2484	-0.1507	-0.0135	0.1044	0.1803	0.2903	0.0598	0.2190	0.2820	0.3617	-0.1222	0.0045
-0.2105	0.1311	0.2013	-0.2314	0.1032	0.0105	0.0990	0.3028	0.2942	0.2761	0.0155	0.1630	0.0083	-0.2454
0.2312	-0.0585	0.1003	0.1361	0.1020	0.1424	0.0906	0.6180	-0.3205	0.2071	-0.0539	-0.1737	-0.2995	-0.0733
-0.4251	-0.4128	-0.1950	0.0004	-0.3789	0.1408	-0.3351	0.2933	0.2456	-0.1488	0.2256	-0.0630	0.0983	0.0263
-0.2511	0.0607	-0.4034	-0.0479	0.0935	0.1570	0.0932	-0.0181	-0.3908	-0.0359	0.1242	-0.5496	-0.0452	-0.1100
0.0384	0.4697	0.4398	0.1991	-0.0151	0.3646	-0.3478	0.0060	-0.0080	-0.1726	0.4053	-0.1273	0.0583	-0.0000
-0.0227	-0.1260	-0.1870	0.5565	0.3386	0.0574	-0.3119	-0.1942	0.0526	0.5504	0.0474	0.1215	-0.0000	-0.0125

0.3240	0.3268	-0.1749	0.1768
-0.0414	-0.0422	-0.0115	0.0117
0.0286	0.0283	-0.0471	0.0475
-0.1042	-0.1049	-0.2938	0.2965
0.0183	0.0186	0.1977	-0.2000
-0.1477	-0.1492	0.0818	-0.0822
0.2754	0.2781	0.4545	-0.4588
-0.6858	-0.6920	-0.0243	0.0243
0.5130	0.5175	-0.4650	0.4691
0.0977	0.0977	0.3941	-0.3979
0.1301	0.1308	0.2556	-0.2576
-0.0511	-0.0519	-0.4120	0.4148
0.0057	0.0055	0.0057	-0.0055
0.0240	0.0244	-0.0240	0.0244

C2r5 =

BrS =

0.1336	-0.2034	0.1649	-0.0228	-0.0469	0.0788	0.1732	-0.3795	0.2874	0.0810	0.0345	-0.0284	-0.0780	-0.3560
-0.0784	-0.3909	-0.0340	0.1238	-0.0308	0.0955	0.1820	-0.0937	-0.0100	-0.2459	-0.1880	-0.1368	-0.1752	-0.3717
0.1341	-0.0955	0.1163	0.0344	-0.0713	0.3529	0.0622	-0.1802	-0.1650	-0.0464	0.0183	0.1725	-0.3601	-0.3870
0.2942	-0.0998	0.1822	-0.2993	-0.2492	0.0803	0.2054	0.0797	-0.1513	-0.0872	-0.3248	0.0763	0.0771	0.0324
0.0068	0.1422	-0.1255	-0.3035	0.1666	-0.0509	-0.3168	-0.2053	-0.0862	0.1019	-0.4111	-0.1018	0.0010	-0.0460
-0.3794	0.2108	0.2395	0.2347	-0.2230	-0.0217	0.0363	-0.2983	-0.0876	0.0573	-0.2071	-0.0535	-0.0010	-0.0460
-0.0220	0.2461	0.2665	-0.1631	-0.0139	-0.3610	0.0737	-0.0112	-0.1473	-0.3614	0.1766	-0.0046	-0.0771	0.0324
0.0213	0.0429	-0.2457	-0.0422	-0.0272	-0.3077	-0.0868	-0.0840	-0.1668	-0.0871	0.1580	0.1802	0.3601	-0.3870
0.2046	0.2278	-0.1884	0.0394	-0.1122	-0.0556	-0.1882	0.0038	-0.0157	-0.1561	0.1626	-0.3303	0.1752	-0.3717
0.1337	0.1698	-0.1276	0.1489	-0.0254	-0.1984	-0.2642	0.0684	0.2618	-0.2169	-0.0869	0.1942	0.0780	-0.3560

DrS =

-0.0784 -0.0488	-0.0836 -0.0494	-0.0231 -0.0169	0.0233 0.0171
-0.0197	-0.0199	-0.0126	0.0127
0.0062	0.0062	0.0052	-0.0053
-0.0084	-0.0085	-0.0039	0.0040
0.0039	0.0040	0.0084	-0.0085
-0.0052	-0.0053	-0.0062	0.0062
0.0126	0.0127	0.0197	-0.0199
0.0169	0.0171	0.0488	-0.0494
0.0231	0.0233	0.0784	-0.0836

≻ Tabe	el Nilai Eigen	Sistem	Tereduksi	$(\widetilde{A_r}, \widetilde{A_r})$	$\widetilde{B_r}, \widetilde{C2}$	$(\widetilde{D_r})$	Orde 14
				(//-	-,,,	1-11	

i	$ \lambda_i $
1	0,8659
2	0,7377
3	0,7377
4	0,8625
5	0,8625
6	0,8189
7	0,8189
8	0,8212
9	0,8212
10	0,8053
11	0.8053
12	0,7051

i	$ \lambda_i $
13	0,7871
14	0,7871

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

• Reduksi Orde 15

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 15

ArS =

0.204/	0.1070	-0.1150	0.1055	0.1103	0.1451	0.30//	0.0501	-0.4154	0.0100	0.1002	-0.0172	-0.1010	-0.1010	-0.0055	
0.2190	-0.1177	0.1982	0.1614	0.0546	-0.4641	-0.1134	0.5019	-0.1970	0.0720	-0.0815	0.1551	0.4367	0.1318	0.0232	
-0.3669	-0.0939	0.2038	0.3475	0.0531	-0.4647	-0.1163	-0.1437	0.1935	-0.0893	-0.0234	-0.0356	-0.2946	-0.2379	-0.1001	
-0.1769	0.4438	-0.0775	0.3419	-0.1885	-0.2218	0.2709	0.0247	-0.1833	-0.1386	0.0036	-0.2169	0.1109	-0.1946	0.1426	
0.2860	0.3338	0.4366	0.1865	0.1657	-0.0553	0.0133	-0.1461	-0.0174	0.3660	-0.0185	0.1197	-0.3614	0.3569	0.1111	
-0.2440	-0.2101	-0.3756	0.2610	0.2184	0.0770	-0.0328	0.3347	-0.0352	0.0580	0.4082	0.3475	-0.2347	0.1434	0.0402	
-0.1320	0.5421	-0.2843	-0.0194	-0.0147	0.1300	-0.4627	0.3399	-0.1236	0.0312	-0.2567	-0.0999	-0.1696	0.0762	0.0114	
-0.0467	-0.0388	0.0519	0.1326	-0.0074	0.1174	-0.0676	0.0681	0.2266	0.0859	-0.2536	0.0164	0.1136	-0.0916	0.0000	
0.2720	-0.2706	-0.4354	-0.0220	-0.2176	-0.4046	-0.1853	-0.2250	-0.2872	0.1297	-0.2481	0.0129	-0.2715	-0.0182	-0.0156	
0.3005	0.2781	-0.2928	-0.1389	0.0800	-0.3407	-0.0610	-0.0704	0.4320	0.0773	0.5295	-0.2025	0.1058	0.0190	-0.0000	
0.0342	-0.1444	-0.2275	0.5235	-0.1550	0.2404	0.0180	-0.0802	0.2246	0.3695	-0.1008	-0.2354	0.2602	0.2103	-0.0637	
-0.1966	0.0153	-0.2014	-0.2432	0.0317	-0.2048	0.5257	0.1977	0.2973	0.0172	-0.3699	0.0220	-0.1725	0.4082	-0.0972	
-0.4037	0.1226	-0.0810	-0.1391	0.1252	-0.1191	-0.0006	-0.4433	-0.3947	0.2220	0.1049	0.0736	0.3618	0.3239	-0.1576	
-0.2165	0.0268	0.1042	-0.2424	-0.5933	-0.0381	0.0495	0.2208	0.0000	0.5450	0.2044	0.0770	-0.1086	-0.2418	-0.0125	
BrS =															
-0.1995	-0.2018	0.1346	-0.1365												
-0.4904	-0.4944	0.2801	-0.2829												
-0.0964	-0.0974	0.1057	-0.1072												
-0.3031	-0.3060	0.3380	-0.3410												
0.2668	0.2688	-0.3315	0.3339												
0.0861	0.0865	-0.1448	0.1460												
0.1267	0.1280	-0.2050	0.2066												
-0.1817	-0.1837	0.2378	-0.2403												
-0.6718	-0.6778	-0.6718	0.6778												
0.0401	0.0409	-0.2151	0.2168												
-0.1184	-0.1200	0.0719	-0.0722												
0.0164	0.0160	0.2271	-0.2287												
0.0042	0.0042	0.0505	-0.0505												
-0.1787	-0.1798	0.0050	-0.0052												
-0.0240	-0.0244	0.0240	-0.0244												
C2-8 -															
C215 -															
-0 1555	-0 2729	0.0210	-0 1575	0 0731	0 0430	0.0504	-0.0254	-0.2568	-0.0865	0.0551	-0 2750	-0 0974	0.0652	0.2560	
-0.2598	0 0119	0.0582	-0.0522	-0 1807	-0 1486	0 0157	-0.0406	-0.0861	0.0423	-0 1045	-0 4221	-0 1242	0 2452	0 3717	
-0 1070	-0 1279	0.0736	-0.0800	0 1070	0.0590	-0 2447	0 2225	-0.0288	0 1094	0.0918	-0.0832	0 2422	0 2879	0 3870	
-0.0152	0 0020	0 2484	-0 4814	-0 2298	-0 1106	0.0826	0 2157	0.0557	0 1071	0.0255	0 2724	0 1222	-0.0020	-0.0324	
0 4557	-0 1029	-0 1682	-0 1705	-0.2963	0 1044	0.0004	-0.0582	-0.0212	-0.0782	-0 2449	-0.2199	0 1807	0.0018	0.0460	
0.0874	-0.0060	-0.0387	-0.1610	-0.0298	0.1481	-0.4791	-0.2846	0.0212	-0.0091	-0.0191	0.2289	-0.2962	0,1270	0.0460	
0,0101	-0.1482	0.1575	0.1945	-0.3085	0.2277	0.0812	-0.1251	-0.0557	0.4620	0.1951	-0.0118	-0.1129	0.0021	-0.0324	
0,2027	-0.1315	-0.1348	0.1482	0.0259	-0.2607	0.2328	-0.0975	0.0288	0,1807	-0.0412	0.2461	-0.0741	0.0405	0.3870	
-0.2084	0.0439	-0.2920	0.0275	-0.1112	-0.0500	0.0146	-0.2197	0.0861	-0.0001	-0.0056	0.3788	0.2829	-0.2152	0.3717	
-0.0493	-0.0047	-0.1279	-0.1616	0.2622	0.0836	0.1451	-0.2022	0.3568	0,1805	-0.1562	0.1478	0.0706	-0.1824	0.3560	
DrS =															

0.0814 0.1172 0.0184 0.1768 -0.5597 0.0484 0.0173 -0.1170 0.0640 -0.4597 0.1245 0.4060 0.0160 0.3547 0.0359

-0.0494	-0.0544	0.0058	-0.0058
-0.0160	-0.0163	0.0159	-0.0160
-0.0043	-0.0045	0.0027	-0.0027
0.0006	0.0006	-0.0004	0.0003
-0.0027	-0.0028	0.0017	-0.0017
-0.0017	-0.0017	0.0027	-0.0028
0.0004	0.0003	-0.0006	0.0006
-0.0027	-0.0027	0.0043	-0.0045
-0.0159	-0.0160	0.0160	-0.0163
-0.0058	-0.0058	0.0494	-0.0544

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 15

i	$ \lambda_i $
1	0,7071
2	0,7377

i	$ \lambda_i $
3	0,7377
4	0,7526
5	0,7526
6	0,8038
7	0,8038
8	0,8212
9	0,8212
10	0,8253
11	0.8253
12	0,7051
13	0,7871
14	0,7871
15	0,7071

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 16

0.7707	-0.0015	-0.0103	-0.0161	0.0153	-0.0299	-0.0037	-0.0008	0.0112	0.0128	0.0119	-0.0131	-0.0108	0.0089	0.0046	0.0736
-0.0019	0.1112	-0.2092	-0.2116	-0.0334	0.2727	0.1567	0.2824	0.3086	0.0809	0.3051	-0.0871	-0.3287	0.0460	0.1072	-0.1589
-0.0090	0.2653	-0.1100	0.3141	0.0517	-0.1783	-0.1549	0.0686	-0.0609	0.1865	-0.0568	0.3292	-0.5928	0.1623	-0.4029	0.0193
-0.0303	0.0725	0.2904	0.0670	-0.2022	-0.2100	0.0092	-0.3529	0.0016	-0.4069	0.4239	-0.2888	-0.1865	-0.1039	-0.3131	0.1176
-0.1141	-0.4131	0.1255	0.2319	0.3552	0.3168	-0.3048	-0.2506	0.2280	-0.0088	-0.0487	-0.1839	-0.3571	-0.1549	0.1427	-0.0073
0.0529	0.2952	0.0637	0.1702	0.1423	0.0327	-0.1775	0.1852	0.5552	-0.2884	0.0863	0.2652	0.1906	-0.3222	0.0312	0.0281
0.0470	0.2134	0.2129	-0.2221	-0.4358	0.1525	-0.3267	-0.3300	0.1757	0.1655	-0.3553	0.1292	0.0115	-0.0089	0.0628	-0.1278
-0.0866	0.0206	0.7154	0.0169	0.0040	-0.0330	0.1201	0.3146	-0.2176	-0.0062	-0.0267	0.2069	-0.1116	-0.0240	0.2565	0.1989
0.0370	-0.0581	-0.0743	-0.2500	-0.3173	-0.2970	0.1109	0.1512	0.1553	0.0336	-0.0946	-0.1604	-0.3956	-0.2678	0.2402	0.2135
-0.0080	-0.1811	0.2087	0.4184	-0.3643	-0.0676	0.0239	0.2738	0.3407	0.3808	-0.0028	-0.3008	0.1663	0.1084	-0.2171	-0.1635
0.1839	-0.2478	0.2258	-0.1687	0.0165	-0.0672	0.1332	-0.0339	0.1555	-0.3402	-0.0082	0.1936	-0.1432	0.4622	-0.0089	-0.4996
0.1963	0.3423	0.0856	0.1974	0.1294	-0.0707	-0.0401	-0.2328	-0.0907	0.3481	0.3827	-0.2012	-0.0183	0.1342	0.4385	-0.1474
0.0400	-0.0570	0.2219	-0.5489	0.3633	-0.1451	-0.0184	0.0010	0.1420	0.4087	0.1710	-0.0072	0.0533	-0.2207	-0.3828	-0.0699
0.2016	-0.0825	-0.0553	0.0347	0.2443	-0.5379	-0.2713	0.0971	0.0195	-0.1008	-0.2458	-0.2178	0.0146	0.0379	0.1127	-0.0425
0.1508	-0.5110	-0.1317	0.1152	-0.2626	-0.1218	-0.1192	-0.1314	-0.0696	0.1624	0.3657	0.4999	0.0761	-0.2043	0.0970	0.0589
-0.4211	0.0585	-0.0909	-0.0689	-0.0195	-0.3877	-0.0814	-0.0586	0.0044	0.0371	0.1923	0.1203	0.0261	-0.0351	0.2176	-0.3849

BrS	=

0.4871	0.4920	-0.4871	0.4920	
-0.3707	-0.3739	-0.3816	0.3847	
0.0342	0.0343	0.0325	-0.0324	
-0.0874	-0.0879	-0.1265	0.1275	
0.1007	0.1020	-0.1117	0.1123	
0.0389	0.0394	0.1455	-0.1470	
-0.1187	-0.1197	-0.0620	0.0621	
-0.0373	-0.0376	-0.1974	0.1993	
0.2810	0.2838	0.4123	-0.4157	
0.1026	0.1035	0.0664	-0.0672	
0.0148	0.0145	0.3007	-0.3037	
-0.0337	-0.0342	0.3392	-0.3420	
0.0113	0.0120	0.1188	-0.1201	
-0.5601	-0.5649	-0.1281	0.1296	
-0.2674	-0.2694	0.0097	-0.0102	
0.3584	0.3610	-0.3584	0.3610	

C2r5 =															
0.2216	-0.1288	0.0646	0.1025	0.0713	-0.0295	0.2896	-0.1313	0.0321	0.0467	-0.1348	0.0102	-0.0803	-0.5962	-0.1441	-0.0974
0.1680	0.0438	-0.0145	0.2281	0.1556	0.0751	0.3530	-0.1735	0.0158	0.0249	-0.2802	-0.0682	0.1313	-0.2591	0.1421	-0.4824
0.1520	0.1419	-0.1993	-0.1124	-0.0277	0.2945	0.2455	-0.3594	-0.1393	0.1000	0.0220	0.1889	-0.1018	0.0189	-0.2100	-0.0410
0.1322	0.3686	-0.0348	-0.1165	-0.2858	-0.0523	-0.1655	-0.2543	0.1502	-0.3070	0.1540	-0.0259	0.1698	-0.0838	0.0328	0.0106
0.1209	-0.1135	-0.3215	0.0659	-0.1514	0.0107	0.3085	0.2799	0.1762	-0.2998	0.1545	0.0152	-0.1341	-0.0160	0.1797	0.0005
0.1209	0.0019	0.1638	-0.1605	-0.0835	0.1721	-0.1344	-0.0325	0.0094	0.0887	-0.0713	0.1067	-0.4282	-0.0370	0.4419	0.0005
0.1322	0.2624	0.1277	0.2104	0.2351	-0.0881	-0.0395	0.1519	0.1057	0.0667	0.1099	0.4971	0.0759	-0.0399	0.0774	0.0106
0.1520	0.0002	0.2897	0.0453	-0.0036	0.2840	0.0899	0.1826	-0.1625	0.0316	0.4518	-0.0826	0.1017	0.0836	-0.0783	-0.0410
0.1680	-0.0739	0.0877	-0.0451	-0.2235	0.0690	-0.3717	0.2845	-0.2020	-0.1416	-0.0200	0.0073	-0.0949	-0.0860	-0.2463	-0.4824
0.2216	0.1894	-0.0526	0.0269	-0.0348	0.0656	-0.2346	0.3209	-0.4744	-0.0891	-0.0574	-0.2466	-0.0751	-0.1868	-0.0447	-0.0974
DrS =															
-0.0293	-0.0342	-0.0142	0.0144												

0.0054	0.0053	-0.0056	0.0057
-0.0037	-0.0038	0.0020	-0.0020
0.0010	0.0009	-0.0007	0.0007
-0.0010	-0.0011	-0.0000	0.0000
0.0000	0.0000	0.0010	-0.0011
0.0007	0.0007	-0.0010	0.0009
-0.0020	-0.0020	0.0037	-0.0038
0.0056	0.0057	-0.0054	0.0053
0.0142	0.0144	0.0293	-0.0342

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 16

i	$ \lambda_i $
1	0,6723
2	0,7307
3	0,7307
4	0,7526
5	0,7526
6	0,8038
7	0,8038
8	0,7966
9	0,7966
10	0,8253
11	0.8253
12	0,4628
13	0,7871
14	0,7871
15	0,7071
16	0,7071

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 17

ArS =

0.4453	0.0651	0.0795	0.2813	-0.2971	-0.0529	-0.0324	0.0372	-0.2239	0.0425	-0.0927	0.2221	0.4270	0.0812	0.1737	0.3784	-0.1473
0.2211	0.0070	-0.0383	-0.0107	0.3663	-0.1793	0.0935	0.0004	-0.1527	0.0119	0.1471	-0.1249	0.1606	0.5116	0.1305	-0.1416	-0.2783
0.2032	-0.1006	0.2626	0.1159	0.2074	-0.0766	-0.2130	-0.0146	-0.1468	0.2259	0.4707	0.4119	-0.2591	-0.1382	0.1393	-0.0448	0.2431
0.1911	0.1304	0.2692	-0.1055	0.1751	0.0595	0.1507	-0.1676	0.2659	-0.4506	0.4239	-0.2304	0.0887	0.1103	-0.0418	0.1534	0.0972
0.2417	-0.1227	-0.4601	0.1003	0.0896	-0.0865	0.2071	-0.0123	0.2676	-0.0011	-0.0595	0.0294	-0.4812	-0.0680	0.2426	0.2799	-0.1761
0.0034	0.0003	-0.0146	0.0045	-0.0073	0.7902	-0.0169	0.0081	0.0189	0.0117	0.0025	0.0142	0.0037	0.1576	-0.0076	-0.0034	0.0408
-0.0245	-0.4008	0.3410	-0.1025	-0.2110	0.1288	0.1852	0.1428	-0.2154	-0.2499	-0.1464	-0.0387	-0.1999	0.0875	0.0621	0.4012	0.1714
-0.2281	0.3992	-0.3073	-0.3358	0.1152	-0.1595	0.0070	0.1277	-0.1390	-0.0607	0.1450	0.1726	0.0943	0.0308	-0.0995	0.5240	0.2063
0.1879	0.3024	-0.0537	0.1394	-0.1769	-0.0708	-0.2173	0.4052	-0.0625	-0.5104	-0.1400	0.1443	-0.3215	0.0733	-0.0618	-0.2559	-0.0367
0.2492	-0.1613	0.0461	-0.1314	-0.0751	-0.1190	-0.6022	-0.2426	0.2420	0.0551	-0.1243	-0.0979	-0.0446	0.0846	-0.4645	0.2082	-0.0919
0.3844	-0.2526	-0.1087	-0.4924	-0.0497	0.0102	0.1181	0.5352	-0.0496	0.1689	0.0996	-0.0678	0.0822	0.0123	-0.1247	-0.1900	0.0667
-0.1888	0.1134	0.1175	-0.0919	-0.3108	-0.0286	-0.0399	-0.0282	-0.2819	0.1918	0.2847	-0.1985	-0.3604	0.2718	0.0374	0.0886	-0.3968
0.2245	0.0856	-0.0545	-0.3478	-0.1910	0.0675	0.2636	-0.5429	-0.2060	-0.0911	-0.0568	0.4024	-0.0759	-0.0590	-0.0439	-0.1851	-0.0996
-0.0678	-0.2035	0.1757	-0.0131	-0.1092	-0.3718	0.2032	-0.0552	-0.1109	-0.1906	0.0043	-0.2049	0.0977	-0.3546	-0.0061	-0.0894	-0.0631
0.1784	0.0011	-0.3505	0.0360	-0.2393	0.1654	-0.2096	-0.0299	-0.1446	-0.0974	0.4042	-0.3266	0.1530	-0.3881	0.1200	-0.0098	0.0438
0.1577	0.3956	0.2584	-0.2503	-0.2256	-0.0775	-0.0462	0.0068	0.3090	0.2769	-0.2198	-0.2011	-0.0047	-0.0121	0.4631	-0.0136	0.2006
0.1318	0.2887	0.1390	0.2289	-0.1214	0.0897	0.3828	0.1427	0.1722	0.2824	0.1553	0.0295	-0.0607	-0.1664	-0.4611	0.0628	-0.0984

BrS =																	
0.1721	0.1742	0.0866	-0.087	8													
-0.2494	-0.2512	-0.4766	0.480	9													
0.0218	0.0219	-0.1656	0.166	9													
0.1139	0.1152	0.2612	-0.263	6													
0.1669	0.1686	-0.0373	0.037	0													
0.4588	0.4634	-0.4588	0.463	4													
-0.4186	-0.4223	-0.1533	0.154	8													
0.1035	0.1040	-0.1943	0.196	4													
0.0133	0.0130	-0.0937	0.095	2													
-0.0416	-0.0413	-0.2253	0.227	1													
0.1551	0.1564	0.1988	-0.200	1													
0.1789	0.1801	0.1760	-0.176	9													
-0.1557	-0.1577	-0.0631	0.064	0													
0.4360	0.4393	-0.4360	0.439	3													
-0.3555	-0.3592	-0.1333	0.134	4													
-0.0843	-0.0858	-0.2265	0.229	4													
-0.2873	-0.2895	-0.1460	0.146	9													
C2rS =																	
-0.0285	-0.1345	0.1765	-0.1291	0.1544	0.2283	-0.2667	0.2006	0.1690	-0.1174	0.1042	0.2570	0.0629	-0.0019	-0.0130	0.0766	-0.5542	
-0.1025	0.1758	0.1944	-0.2410	0.0181	0.2039	-0.0989	0.0160	0.1147	0.0951	0.0696	0.1807	-0.0249	-0.4359	0.1230	-0.1998	-0.3445	
-0.2179	-0.1015	-0.1053	-0.2012	0.0143	0.1547	-0.4117	-0.1174	-0.3403	0.0326	-0.0270	0.0153	0.0390	-0.0699	0.2591	0.0147	0.1778	
-0.0729	-0.2435	-0.3190	0.0169	-0.1830	0.1311	0.1459	-0.0833	-0.0766	0.2993	-0.0656	-0.2423	0.1437	0.0249	0.0525	0.0417	-0.3247	
0.2129	0.0276	-0.2315	-0.3371	0.0271	0.1206	0.1475	-0.2684	0.0448	-0.2996	-0.2186	0.0989	0.1536	0.0175	-0.1233	-0.1368	-0.0302	
-0.0892	0.1940	-0.0273	0.4180	0.0435	0.1206	-0.0067	0.0718	-0.1251	-0.2207	-0.1212	0.0673	0.3881	0.0175	0.1118	-0.1904	-0.0666	
0.0773	0.1435	-0.0072	0.1278	-0.1508	0.1311	-0.0390	-0.2125	0.0653	-0.3066	0.2341	-0.3307	-0.2541	0.0249	0.2627	-0.0153	-0.0943	
0.1965	-0.2936	-0.0280	0.0948	0.3110	0.1547	0.0851	0.0364	0.3043	0.0088	-0.0690	0.0393	-0.0266	-0.0699	0.3918	0.0819	0.1066	
0.1431	0.0860	-0.0343	0.1252	0.2764	0.2039	0.0492	0.0773	-0.2224	-0.0300	-0.1464	-0.0929	-0.1078	-0.4359	-0.1682	0.3515	-0.0910	
0.1156	0.3456	0.1816	-0.1542	0.3634	0.2283	0.0265	0.0557	-0.2836	0.1301	-0.3090	-0.3082	-0.1066	-0.0019	0.0034	0.1171	0.0050	

DrS =

-0.0282	-0.0090	0.0085
0.0088	-0.0025	0.0022
-0.0048	0.0011	-0.0010
0.0016	-0.0002	0.0000
-0.0013	-0.0002	0.0003
0.0003	0.0012	-0.0013
0.0000	-0.0016	0.0016
-0.0010	0.0046	-0.0048
0.0022	-0.0085	0.0088
0.0085	0.0241	-0.0282
	-0.0282 0.0088 -0.0048 0.0016 -0.0013 0.0003 0.0000 -0.0010 0.0022 0.0085	-0.0282 -0.0090 0.0088 -0.0025 -0.0048 0.0011 0.0016 -0.0002 -0.0013 -0.0002 0.0002 0.0012 0.0000 -0.0016 -0.0010 0.0046 0.0022 -0.0085 0.0085

Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 17

i	$ \lambda_i $
1	0,6723
2	0,7307
3	0,7307

i	$ \lambda_i $
4	0,7565
5	0,7565
б	0,8144
7	0,8144
8	0,7966
9	0,7966
10	0,7151
11	0,7151
12	0,4628
13	0,7913
14	0,7913
15	0,7801
16	0,7801
17	0,8068

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

> Matriks Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 18

ArS =

0.5043	0.2861	0.2183	-0.2801	0.0147	0.0238	0.1310	-0.1442	0.2674	-0.1256	-0.1077	-0.3239	0.0026	-0.3077	-0.0162	-0.0757	-0.2936	-0.1144
0.3681	-0.1529	-0.0673	0.4402	-0.0607	0.3104	0.0835	-0.2713	0.0442	-0.0169	-0.0876	0.1919	-0.1908	-0.0028	0.3867	-0.0621	0.0656	0.0433
-0.1165	0.2287	-0.2856	-0.0614	0.0553	0.2730	-0.0876	-0.0239	-0.3088	0.0411	-0.0853	-0.3697	0.1178	-0.1071	0.4718	-0.3068	0.0264	0.1823
0.2480	0.3428	0.1194	0.3247	-0.1016	-0.0724	-0.2771	0.5100	-0.0301	0.0701	-0.0577	-0.0584	-0.3193	-0.1690	0.0292	0.1696	0.0672	-0.0149
-0.0028	0.0094	-0.0049	0.0116	0.7907	0.0211	0.0142	0.0027	-0.0110	-0.0003	0.0302	-0.0062	-0.0063	-0.0426	-0.0259	0.1419	0.0070	-0.0031
0.2483	-0.0042	-0.4572	0.2026	-0.1071	-0.2630	-0.2241	-0.1253	0.1746	-0.4049	0.0883	0.1061	0.4055	-0.1017	-0.1039	0.0140	-0.0837	0.0913
0.1365	-0.2817	-0.0964	0.0553	0.0405	-0.2186	-0.1641	-0.0468	0.0296	0.5635	-0.3516	-0.2476	0.2677	-0.0253	0.0303	0.2266	-0.0279	0.2219
-0.0087	-0.0794	-0.1503	-0.1804	-0.1648	0.4892	0.0921	0.4706	-0.0192	0.0585	-0.1555	0.2069	0.2792	-0.2311	-0.1074	0.0738	-0.1667	0.0352
-0.1078	0.4965	-0.0942	0.2791	0.0712	0.1487	-0.0641	-0.0774	0.2500	0.1108	-0.0263	-0.1810	0.2603	0.3167	-0.1861	0.0224	0.2230	-0.1066
0.0037	-0.0636	0.1569	-0.2256	0.1406	0.2970	-0.4666	-0.1323	0.3607	-0.0078	-0.0603	0.1533	-0.0361	-0.2268	-0.0836	-0.1305	0.4741	0.1440
0.1520	-0.2294	-0.0595	-0.0067	-0.0322	0.3470	-0.0091	0.0264	0.1351	0.0692	0.3078	-0.3203	-0.0100	0.2841	0.0838	0.2711	-0.0121	-0.4195
0.1567	-0.1327	0.1482	-0.0119	-0.0302	0.0757	-0.5319	-0.1306	-0.4984	0.0096	0.2100	-0.0757	0.1022	-0.0497	-0.2432	-0.2026	-0.1128	-0.2764
-0.2131	0.3429	-0.0352	-0.0937	-0.0295	0.0665	-0.2304	-0.3128	0.1103	0.3144	0.1354	0.4025	-0.0194	-0.0794	0.2486	0.2127	-0.4591	-0.1150
0.1833	0.0285	0.0732	0.2517	0.1470	0.1042	0.1482	0.0445	0.0554	0.2726	-0.0497	0.1426	0.0363	0.2224	-0.2970	-0.4547	-0.2549	0.0256
-0.2220	-0.0518	-0.2743	0.0685	0.0058	0.1711	-0.1552	-0.1560	0.0210	-0.1559	-0.3764	-0.2217	-0.4468	-0.0231	-0.3917	0.1447	-0.3223	0.0555
-0.1513	-0.0476	0.1013	-0.1459	-0.3483	-0.1247	-0.1331	-0.0431	0.2784	0.1218	-0.1882	-0.0999	-0.1140	0.2408	0.0464	-0.3321	0.0190	-0.0767
-0.3195	-0.2262	0.0113	0.2621	0.2298	-0.1260	-0.0963	0.2332	0.2875	-0.0725	-0.0383	-0.0753	0.0652	-0.2809	0.1868	-0.2588	-0.1745	-0.3679
0.2260	-0.0107	-0.4558	-0.3142	0.1469	-0.1424	-0.0671	0.2558	0.1153	0.1617	0.1838	0.0782	-0.3328	0.1409	0.0500	-0.2190	0.0148	-0.0038

BrS =

-0.0476	-0.0484	-0.0036	0.0033
-0.0856	-0.0861	-0.2402	0.2420
0.1356	0.1359	0.1749	-0.1769
0.2340	0.2364	0.0888	-0.0888
0.4592	0.4638	-0.4592	0.4638
0.2816	0.2838	0.0662	-0.0665
-0.0840	-0.0839	0.0101	-0.0101
0.0065	0.0062	-0.2678	0.2703
-0.3273	-0.3304	-0.1884	0.1904
0.0347	0.0356	0.2614	-0.2632
0.2643	0.2676	0.2663	-0.2678
-0.1921	-0.1936	-0.2760	0.2775
0.0472	0.0473	0.0594	-0.0600
0.2336	0.2346	0.4310	-0.4365
-0.0400	-0.0409	0.0501	-0.0509
0.4110	0.4141	-0.4110	0.4141
-0.3049	-0.3077	0.1120	-0.1138
-0.3146	-0.3189	-0.0837	0.0854

C2r8 =																	
-0.0131	-0.1074	0.2949	0.0547	0.2195	0.1797	-0.2650	0.1617	-0.0636	-0.2086	0.0657	-0.1086	0.0863	0.4302	0.1452	0.2493	-0.3366	0.1943
-0.0567	0.0693	-0.0339	-0.0707	0.2009	-0.0514	-0.0790	0.1306	0.0885	-0.2692	0.2312	0.1696	0.0572	0.2765	0.1189	-0.3521	-0.2425	0.1527
0.1425	0.0705	-0.2947	-0.1716	0.1559	0.2628	-0.0305	-0.1058	-0.1389	0.1260	0.0262	0.1804	-0.0222	0.1748	-0.3983	-0.1078	0.0937	0.1797
0.2759	-0.2991	0.1562	-0.1668	0.1302	-0.1069	0.0150	-0.0434	0.1923	0.4039	-0.0011	0.2077	0.1216	-0.0166	0.0359	0.0509	-0.1721	0.0274
-0.0117	0.2415	0.0835	-0.3993	0.1206	-0.1736	0.2049	-0.0315	-0.0281	0.0297	0.0416	-0.3408	0.3112	0.0136	-0.0334	0.0117	-0.0067	-0.0053
-0.0299	-0.2982	-0.0441	-0.1396	0.1206	0.1700	0.2996	-0.3492	0.1290	-0.2791	-0.1007	-0.1452	-0.1728	-0.0042	0.0683	0.0117	-0.0309	0.0522
0.1284	-0.0052	-0.2143	-0.0471	0.1302	-0.4012	-0.2084	-0.1654	-0.1639	0.0581	0.0196	-0.1456	-0.3620	0.0771	0.1791	0.0509	0.0017	0.0631
-0.0045	0.1721	0.4531	0.1572	0.1559	-0.0996	0.1729	-0.1200	-0.2689	0.0398	-0.0504	0.1118	-0.1835	-0.0919	-0.0858	-0.1078	0.0440	0.2602
0.1033	-0.0459	0.0080	0.1165	0.2009	0.0462	-0.0096	0.0242	-0.1926	-0.0029	-0.4844	-0.0179	0.1482	-0.0126	0.1203	-0.3521	-0.0330	-0.1990
0.1162	0.1808	-0.0872	-0.1786	0.2195	-0.0810	-0.0470	0.1224	-0.0416	-0.2411	-0.5254	0.3202	0.0322	0.0684	0.0816	0.2493	0.0651	-0.3067
DrS =																	
-0.0324	-0.0358	-0.0006	0.0009														
0.0057	0.0063	0.0003	-0.0004														
-0.0034	-0.0038	-0.0001	0.0001														
0.0008	8000.0	0.0006	-0.0007														
-0.0012	-0.0013	-0.0003	0.0003														
0.0003	0.0003	0.0012	-0.0013														
-0.0006	-0.0007	-0.0008	0.0008														
0.0001	0.0001	0.0034	-0.0038														
-0.0003	-0.0004	-0.0057	0.0063														
0.0006	0.0009	0.0324	-0.0358														

> Tabel Nilai Eigen Sistem Tereduksi $(\widetilde{A_r}, \widetilde{B_r}, \widetilde{C2_r}, \widetilde{D_r})$ Orde 18

i	$ \lambda_i $
1	0,6762
2	0,8442
3	0,8442
4	0,7565
i	$ \lambda_i $
5	0,7565
6	0,8184
7	0,8184
8	0,7729
9	0,7729
10	0,7151
11	0,7151
12	0,8073
13	0,7913
14	0,7913
15	0,7243
16	0,7243
17	0,8068
18	0,8073

Sifat Sistem : Stabil Asimtotis, Terkendali, Teramati

LAMPIRAN C

KASUS 1

• Akurasi Hasil Estimasi antara y dan y2 orde 4

• Akurasi Hasil Estimasi antara y dan y3 orde 4

• Akurasi Hasil Estimasi antara y dan y2 orde 6

• Akurasi Hasil Estimasi antara y dan y3 orde 7

• Akurasi Hasil Estimasi antara y dan y2 orde 9

• Akurasi Hasil Estimasi antara y dan y2 orde 12

• Akurasi Hasil Estimasi antara y dan y2 orde 14

• Akurasi Hasil Estimasi antara y dan y3 orde 14

• Akurasi Hasil Estimasi antara y dan y2 orde 16

• Akurasi Hasil Estimasi antara y dan y3 orde 17

Ketinggian Air Sungai

KASUS 2

• Akurasi Hasil Estimasi antara y dan y2 orde 4

• Akurasi Hasil Estimasi antara y dan y3 orde 18

• Akurasi Hasil Estimasi antara y dan y3 orde 5

• Akurasi Hasil Estimasi antara y dan y2 orde 8

• Akurasi Hasil Estimasi antara y dan y3 orde 9

• Akurasi Hasil Estimasi antara y dan y2 orde 11

• Akurasi Hasil Estimasi antara y dan y3 orde 12

• Akurasi Hasil Estimasi antara y dan y2 orde 14

• Akurasi Hasil Estimasi antara y dan y3 orde 15

• Akurasi Hasil Estimasi antara y dan y2 orde 17

• Akurasi Hasil Estimasi antara y dan y3 orde 18

LAMPIRAN D

KASUS 1

• Tabel rata – rata waktu komputasi

Rata - Rata Waktu Komputasi									
Sistan									
Sistem	1	2	3	4	5	Kala - Kala			
Awal	0,00907	0,00636	0,00608	0,00751	0,00632	0,00707			
Orde 4	0,01478	0,00509	0,00538	0,00566	0,00501	0,00718			
Orde 5	0,00514	0,00489	0,00488	0,00493	0,00506	0,00498			
Orde 6	0,00491	0,00554	0,00493	0,00497	0,00525	0,00512			
Orde 7	0,00555	0,00499	0,00478	0,00501	0,00498	0,00506			
Orde 8	0,00533	0,00488	0,00485	0,00551	0,00482	0,00508			
Orde 9	0,00362	0,00525	0,00369	0,00355	0,00362	0,00395			
Orde 10	0,00360	0,00418	0,00369	0,00371	0,00538	0,00411			
Orde 11	0,00370	0,00392	0,00356	0,00369	0,00380	0,00374			
Orde 12	0,00528	0,00373	0,00356	0,00389	0,00359	0,00401			
Orde 13	0,00405	0,00360	0,00537	0,00363	0,00382	0,00409			
Orde 14	0,00362	0,00375	0,00383	0,00364	0,00411	0,00379			
Orde 15	0,00362	0,00373	0,00367	0,00368	0,00358	0,00365			
Orde 16	0,00394	0,00360	0,00362	0,00533	0,00401	0,00410			
Orde 17	0,00369	0,00372	0,00373	0,00374	0,00548	0,00407			
Orde 18	0,00374	0,00551	0,00376	0,00376	0,00381	0,00412			
Orde 19	0,00378	0,00410	0,00379	0,00385	0,00383	0,00387			
• Tabel rata – rata MSE

S	$y - y^2$					Rat	y - y3					Rata – F MSE
ister redu	Percobaan					ta – R MSE	Percobaan					
n ksi	1	2	3	4	5	ata	1	2	3	4	5	lata
Orde 4	0,09140	0,10770	0,10800	0,12910	0,09740	0,10672	0,42290	0,40730	0,42740	0,38780	0,39160	0,40740
Orde 5	0,22510	0,24230	0,24240	0,21800	0,21980	0,22952	0,05260	0,06790	0,06050	0,05320	0,06190	0,05922
Orde 6	0,94470	1,02560	0,97850	1,01610	0,95640	0,98426	0,20770	0,20250	0,20230	0,19290	0,21250	0,20358
Orde 7	0,04890	0,05610	0,05010	0,06050	0,05530	0,05418	0,24260	0,23440	0,20320	0,22790	0,21160	0,22394
Orde 8	1,04680	0,99500	0,97550	0,99840	1,01630	1,00640	0,19610	0,21060	0,17630	0,19600	0,22130	0,20006
Orde 9	0,32660	0,30850	0,35410	0,32390	0,31980	0,32658	0,08850	0,07810	0,09920	0,08170	0,07880	0,08526
Orde 10	2,12530	2,10360	2,08590	2,15480	2,00270	2,09446	0,08940	0,10980	0,08270	0,11890	0,08780	0,09772
Orde 11	0,00940	0,00690	0,00460	0,00530	0,00900	0,00704	0,03070	0,03280	0,02930	0,03440	0,02780	0,03100
Orde 12	0,18000	0,18810	0,15830	0,18720	0,20390	0,18350	0,24960	0,24880	0,24490	0,25970	0,27700	0,25600
Orde 13	0,54890	0,54810	0,58590	0,57370	0,55210	0,56174	0,07480	0,07790	0,08480	0,08520	0,06840	0,07822
Orde 14	0,31350	0,28000	0,31520	0,32840	0,29050	0,30552	0,61290	0,55020	0,56460	0,60330	0,58390	0,58298
Orde 15	0,39950	0,35360	0,34160	0,38660	0,34480	0,36522	0,20680	0,21260	0,18510	0,21020	0,17430	0,19780
Orde 16	0,08430	0,08690	0,08950	0,08430	0,10680	0,09036	0,08670	0,08640	0,09460	0,09800	0,09260	0,09166
Orde 17	0,86490	0,86990	0,86380	0,88550	0,89840	0,87650	0,20990	0,23630	0,22340	0,24320	0,23800	0,23016
Orde 18	2,89610	2,79220	2,79310	2,79480	2,65910	2,78706	0,01450	0,01400	0,00990	0,01290	0,00650	0,01156
Orde 19	0,05560	0,05380	0,06030	0,04930	0,06290	0,05638	0,28710	0,29750	0,30190	0,30240	0,30330	0,29844

KASUS 2

• Tabel rata – rata waktu komputasi

Rata - Rata Waktu Komputasi										
Sistem										
Sistem	1	2	3	4	5	Kata - Kata				
Awal	0,00659	0,00703	0,00666	0,00581	0,00732	0,00668				
Orde 4	0,00474	0,00672	0,00476	0,00555	0,00479	0,00531				
Orde 5	0,00481	0,00531	0,00688	0,00520	0,00478	0,00539				
Orde 6	0,00484	0,00479	0,00473	0,00525	0,00670	0,00526				
Orde 7	0,00492	0,00491	0,00488	0,00509	0,00503	0,00497				
Orde 8	0,00483	0,00505	0,00516	0,00496	0,00489	0,00498				
Orde 9	0,00432	0,00355	0,00350	0,00348	0,00428	0,00382				
Orde 10	0,00368	0,00351	0,00360	0,00468	0,00534	0,00416				
Orde 11	0,00491	0,00364	0,00391	0,00379	0,00353	0,00396				
Orde 12	0,00372	0,00349	0,00528	0,00532	0,00486	0,00453				
Orde 13	0,00394	0,00387	0,00573	0,00371	0,00387	0,00422				
Orde 14	0,00426	0,00404	0,00374	0,00398	0,00370	0,00394				
Orde 15	0,00368	0,00397	0,00369	0,00400	0,00374	0,00382				
Orde 16	0,00380	0,00364	0,00372	0,00415	0,00417	0,00389				
Orde 17	0,00451	0,00449	0,00404	0,00381	0,00567	0,00450				
Orde 18	0,00384	0,00429	0,00383	0,00395	0,00452	0,00409				
Orde 19	0,00409	0,00411	0,00486	0,00374	0,00384	0,00413				

• Tabel rata – rata MSE

Te S	<i>y</i> – <i>y</i> 2					Rat	<u>y - y3</u>					Rata – F MSE
ister redu	Percobaan					:a – R MSE	Percobaan					
n ksi	1	2	3	4	5	ata	1	2	3	4	5	tata
Orde 4	0,25000	0,32570	0,34980	0,32160	0,31760	0,31294	0,06850	0,06880	0,04680	0,05370	0,06320	0,06020
Orde 5	0,03120	0,04420	0,04980	0,04150	0,03350	0,04004	0,06270	0,06340	0,06530	0,06730	0,06090	0,06392
Orde 6	0,84390	0,90220	0,84970	0,89380	0,85770	0,86946	0,04550	0,05240	0,04550	0,05920	0,05160	0,05084
Orde 7	0,14360	0,13260	0,15680	0,14920	0,14170	0,14478	0,07170	0,05280	0,08310	0,07100	0,07750	0,07122
Orde 8	0,46300	0,45410	0,41640	0,45140	0,45590	0,44816	0,00098	0,00031	0,00470	0,00450	0,00095	0,00229
Orde 9	0,79590	0,78990	0,80140	0,78330	0,80420	0,79494	0,06140	0,05050	0,05110	0,04680	0,05620	0,05320
Orde 10	0,05370	0,06240	0,05090	0,06370	0,07030	0,06020	0,23380	0,22430	0,21720	0,22060	0,20230	0,21964
Orde 11	4,73120	4,74570	4,80700	4,82140	4,74210	4,76948	0,05360	0,04510	0,04050	0,04370	0,05200	0,04698
Orde 12	0,14480	0,14550	0,15420	0,15150	0,15400	0,15000	0,01460	0,01390	0,01430	0,01700	0,01710	0,01538
Orde 13	0,00002	0,00014	0,00055	0,00027	0,00130	0,00046	0,14600	0,11790	0,12800	0,13312	0,12030	0,12906
Orde 14	0,26300	0,24520	0,23960	0,27110	0,28850	0,26148	0,06530	0,05880	0,05450	0,05160	0,07250	0,06054
Orde 15	0,00390	0,00240	0,00280	0,00340	0,00093	0,00269	0,01190	0,00940	0,01210	0,00710	0,00780	0,00966
Orde 16	2,89290	2,94520	2,94270	2,95600	2,82950	2,91326	0,21330	0,20990	0,22040	0,20900	0,20030	0,21058
Orde 17	0,00380	0,00370	0,00690	0,00200	0,00360	0,00400	0,04340	0,05640	0,05970	0,04750	0,05620	0,05264
Orde 18	0,02850	0,04070	0,03610	0,04310	0,04100	0,03788	0,50880	0,50790	0,46830	0,48450	0,48330	0,49056
Orde 19	0,02730	0,03310	0,02560	0,02760	0,02700	0,02812	0,00960	0,01150	0,00910	0,01370	0,00930	0,01064

BIODATA PENULIS

BIODATA PENULIS

Penulis memiliki nama lengkap Vimala Rachmawati. Dilahirkan di Surabaya pada tanggal 28 Juli 1993 dan merupakan anak pertama dari 4 bersaudara. Pendidikan formal yang telah ditempuh yaitu SDN Sidotopo Wetan 3 No. 257, SMPN 1 Surabaya. Setelah menyelesaikan pendidikannya di SMAN 2 Surabaya, penulis melanjutkan pendidikan S1 di Departemen Matematika ITS melalui jalur SNMPTN Tulis pada tahun 2011. Pada masa perkuliahan penulis

memilih Matematika Terapan sebagai bidang keahliannya.

Selanjutnya penulis melanjutkan pendidikan S2 di Departemen Matematika ITS melalui jalur mandiri pada tahun 2015. Pada masa perkuliahan penulis memilih melanjutkan bidang keahliannya yakni Matematika Terapan.

Selama penulisan Tugas Akhir ini, penulis tidak lepas dari kekurangan. Untuk kritik, saran, dan pertanyaan mengenai Tugas Akhir ini dapat dikirimkan melalui *e-mail* ke <u>vimalarachmawati@gmail.com</u>.